1
|
Dreher L, Kuehl MB, Wenzel UO, Kylies D. Aortic aneurysm and dissection: complement and precision medicine in aortic disease. Am J Physiol Heart Circ Physiol 2025; 328:H814-H829. [PMID: 40019851 DOI: 10.1152/ajpheart.00853.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Aortic disease encompasses life-threatening conditions such as aortic aneurysm and dissection, which are associated with high prevalence, morbidity, and mortality. The complement system, a key component of innate immunity, not only defends against pathogens but also maintains tissue homeostasis. Recent discoveries have expanded its role beyond immunity, linking complement dysregulation to numerous diseases and positioning it as a target for pharmacotherapy. Complement-based treatments for precision medicine are emerging, with several pharmaceuticals either already approved or under investigation. In aortic disease, complement activation and dysregulation have unveiled novel mechanisms and clinical implications. Human and experimental studies suggest that all three complement pathways contribute to disease pathophysiology. The complement system induces direct cellular damage via the membrane attack complex, as well as matrix-metalloproteinase (MMP)-associated tissue damage by promoting MMP-2 and MMP-9 expression. The anaphylatoxins C3a and C5a exacerbate disease by recruiting immune cells and triggering proinflammatory responses. Examples include neutrophil extracellular trap formation and cytokine release by polymorphonuclear neutrophils. These findings highlight the complement system as a promising novel diagnostic and therapeutic target in aortic disease with potential for individualized treatment. However, gaps remain, emphasizing the need for standardized multisite preclinical studies to improve reproducibility and translation. Biomarker studies must also be validated across diverse patient cohorts for clinical applicability. This review examines current knowledge regarding complement in aortic disease, aiming to evaluate its potential for innovative diagnostic and personalized treatment strategies.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| | - Malte B Kuehl
- Department of Clinical Medicine - The Department of Pathology, Aarhus University, Aarhus, Denmark
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| |
Collapse
|
2
|
Wang HY, Peng XM, Yang M, Weng Y, Yang X, Zhan D, Ning Q, Luo XP, Chen Y. C5aR1-positive adipocytes mediate non-shivering thermogenesis in neonatal mice. iScience 2024; 27:111261. [PMID: 39758991 PMCID: PMC11700647 DOI: 10.1016/j.isci.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 10/23/2024] [Indexed: 01/07/2025] Open
Abstract
Brown adipose tissue (BAT) plays an important role in maintaining body temperature in newborn mammals; however, its mechanisms remain poorly understood. Here, we report the identification of a special population of brown adipose tissue-derived stromal cells (ASCs) in neonatal mice that highly express CD45 and can be differentiated into adipocytes with lower thermogenic ability. These CD45+ adipocytes also characteristically contained complement C5a receptor 1(C5aR1) on the cell membrane. C5ar1 deficiency in BAT resulted in an apparent immaturity of adipocytes and cold intolerance in neonatal mice. Mechanistically, loss of C5aR1 in these CD45+ brown adipocytes caused an increase in the secretion of plate factor four (PF4) from these cells, suppressing the maturity of neighboring brown adipocytes. Overall, our results indicated that the accumulation of C5aR1 positive brown adipocyte in neonatal BAT is essential for thermoregulation in newborn mice, which unveiled the regulatory mechanism of BAT-mediated thermogenesis in newborns.
Collapse
Affiliation(s)
- Huan-Yu Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Min Peng
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Yang
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Xi Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Di Zhan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Yong Chen
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
O'Connell P. Uncovering mechanisms underlying complement-mediated cancer immune evasion. Mol Ther 2024; 32:277-278. [PMID: 38246164 PMCID: PMC10862000 DOI: 10.1016/j.ymthe.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Affiliation(s)
- Patrick O'Connell
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, The Mount Sinai Hospital, New York, NY, USA; Department of Pediatrics, The Mount Sinai Hospital, New York, NY, USA.
| |
Collapse
|
4
|
Luan X, Lei T, Fang J, Liu X, Fu H, Li Y, Chu W, Jiang P, Tong C, Qi H, Fu Y. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8 + T cell activity. Mol Ther 2024; 32:469-489. [PMID: 38098230 PMCID: PMC10861991 DOI: 10.1016/j.ymthe.2023.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.
Collapse
Affiliation(s)
- Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xue Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Huijia Fu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yong Fu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Laumonnier Y, Korkmaz RÜ, Nowacka AA, Köhl J. Complement-mediated immune mechanisms in allergy. Eur J Immunol 2023; 53:e2249979. [PMID: 37381711 DOI: 10.1002/eji.202249979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Institute for Nutritional Medicine, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Alicja A Nowacka
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, USA
| |
Collapse
|
6
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Seiler DL, Kähler KH, Kleingarn M, Sadik CD, Bieber K, Köhl J, Ludwig RJ, Karsten CM. The complement receptor C5aR2 regulates neutrophil activation and function contributing to neutrophil-driven epidermolysis bullosa acquisita. Front Immunol 2023; 14:1197709. [PMID: 37275893 PMCID: PMC10235453 DOI: 10.3389/fimmu.2023.1197709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Daniel L. Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H. Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ralf J. Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
9
|
Nürge B, Schulz AL, Kaemmerer D, Sänger J, Evert K, Schulz S, Lupp A. Immunohistochemical identification of complement peptide C5a receptor 1 (C5aR1) in non-neoplastic and neoplastic human tissues. PLoS One 2021; 16:e0246939. [PMID: 33606748 PMCID: PMC7894821 DOI: 10.1371/journal.pone.0246939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/18/2022] Open
Abstract
The complement component C5a and its receptor C5aR1 are involved in the development of numerous inflammatory diseases. In addition to immune cells, C5aR1 is expressed in neoplastic cells of multiple tumour entities, where C5aR1 is associated with a higher proliferation rate, advanced tumour stage, and poor patient outcomes. The aim of the present study was to obtain a broad expression profile of C5aR1 in human non-neoplastic and neoplastic tissues, especially in tumour entities not investigated in this respect so far. For this purpose, we generated a novel polyclonal rabbit antibody, {5227}, against the carboxy-terminal tail of C5aR1. The antibody was initially characterised in Western blot analyses and immunocytochemistry using transfected human embryonic kidney (HEK) 293 cells. It was then applied to a large series of formalin-fixed, paraffin-embedded non-neoplastic and neoplastic human tissue samples. C5aR1 was strongly expressed by different types of immune cells in the majority of tissue samples investigated. C5aR1 was also present in alveolar macrophages, bronchial, gut, and bile duct epithelia, Kupffer cells, occasionally in hepatocytes, proximal renal tubule cells, placental syncytiotrophoblasts, and distinct stem cell populations of bone marrow. C5aR1 was also highly expressed in the vast majority of the 32 tumour entities investigated, where a hitherto unappreciated high prevalence of the receptor was detected in thyroid carcinomas, small-cell lung cancer, gastrointestinal stromal tumours, and endometrial carcinomas. In addition to confirming published findings, we found noticeable C5aR1 expression in many tumour entities for the first time. Here, it may serve as an interesting target for future therapies.
Collapse
Affiliation(s)
- Benjamin Nürge
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Alan Lennart Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Katja Evert
- Department of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
10
|
Laumonnier Y, Karsten CM, Köhl G, Köhl J. Characterization of Anaphylatoxin Receptor Expression and C3a/C5a Functions in Anaphylatoxin Receptor Reporter Mice. ACTA ACUST UNITED AC 2020; 130:e100. [PMID: 32710701 DOI: 10.1002/cpim.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anaphylatoxins (AT) C3a and C5a are effector molecules of C3 and C5 exerting multiple biologic functions through binding and activation of their cognate G protein-coupled receptors. C3a interacts with the C3a receptor (C3aR), whereas C5a and its primary degradation product C5a-desArg engage C5aR1 and C5aR2. In the past, analysis of AT expression has been hampered by cross reaction of antibodies designed to recognize the different AT receptors. Furthermore, assessment of effects mediated by cell-specific activation has been difficult. Here, floxed AT receptor reporter mice are described as tools to monitor AT receptor expression in cells and tissues and to study the functions of C3a and C5a by cell-specific deletion of their cognate AT receptors. © 2020 The Authors. Basic Protocol 1: Genotyping of floxed GFP-C5aR1 knockin mice Support Protocol 1: Genotyping of LysMcre-C5ar1-/- mice Basic Protocol 2: Genotyping of floxed tdTomato-C3aR and -tdTomato-C5aR2 knockin mice Support Protocol 2: Preparation of genomic DNA Basic Protocol 3: Determination of C5aR1, C5aR2, and C3aR expression using floxed AT receptor reporter mice Support Protocol 3: Determination of C3aR expression using a C3aR-specific antibody Support Protocol 4: Determination of C5aR1, C5aR2, and C3aR mRNA expression in floxed GFP-C5aR1, floxed tdTomato-C5aR2 or -tdTomato C3aR positive cells Basic Protocol 4: Analysis of C5aR1-driven ERK1/2 phosphorylation in GFP-C5aR1+ cells Basic Protocol 5: Assessment of C3aR functions in cells obtained from floxed tdTomato-C3aR knockin mice- Determination of C3aR internalization Alternate Protocol: C3a-induced increase in intracellular Ca2+ Basic Protocol 6: C5aR2-driven IFN-γ production from NK cells Support Protocol 5: Isolation of splenic NK cells by FACS.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
11
|
West EE, Kunz N, Kemper C. Complement and human T cell metabolism: Location, location, location. Immunol Rev 2020; 295:68-81. [PMID: 32166778 PMCID: PMC7261501 DOI: 10.1111/imr.12852] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
The complement system represents one of the evolutionary oldest arms of our immune system and is commonly recognized as a liver-derived and serum-active system critical for providing protection against invading pathogens. Recent unexpected findings, however, have defined novel and rather "uncommon" locations and activities of complement. Specifically, the discovery of an intracellularly active complement system-the complosome-and its key role in the regulation of cell metabolic pathways that underly normal human T cell responses have taught us that there is still much to be discovered about this system. Here, we summarize the current knowledge about the emerging functions of the complosome in T cell metabolism. We further place complosome activities among the non-canonical roles of other intracellular innate danger sensing systems and argue that a "location-centric" view of complement evolution could logically justify its close connection with the regulation of basic cell physiology.
Collapse
Affiliation(s)
- Erin E. West
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Abstract
The recognition of microbial or danger-associated molecular patterns by complement proteins initiates a cascade of events that culminates in the activation of surface complement receptors on immune cells. Such signalling pathways converge with those activated downstream of pattern recognition receptors to determine the type and magnitude of the immune response. Intensive investigation in the field has uncovered novel pathways that link complement-mediated signalling with homeostatic and pathological T cell responses. More recently, the observation that complement proteins also act in the intracellular space to shape T cell fates has added a new layer of complexity. Here, we consider fundamental mechanisms and novel concepts at the interface of complement biology and immunity and discuss how these affect the maintenance of homeostasis and the development of human pathology.
Collapse
|
13
|
Brilland B, Garnier AS, Chevailler A, Jeannin P, Subra JF, Augusto JF. Complement alternative pathway in ANCA-associated vasculitis: Two decades from bench to bedside. Autoimmun Rev 2020; 19:102424. [DOI: 10.1016/j.autrev.2019.102424] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022]
|
14
|
Goldstein JM, Valido A, Lewandowski JP, Walker RG, Mills MJ, Messemer KA, Besseling P, Lee KH, Wattrus SJ, Cho M, Lee RT, Wagers AJ. Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus. Sci Rep 2019; 9:18613. [PMID: 31819086 PMCID: PMC6901511 DOI: 10.1038/s41598-019-54766-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/19/2019] [Indexed: 01/20/2023] Open
Abstract
Recent advances in CRISPR/Cas gene editing technology have significantly expanded the possibilities and accelerated the pace of creating genetically engineered animal models. However, CRISPR/Cas-based strategies designed to precisely edit the genome can often yield unintended outcomes. Here, we report the use of zygotic CRISPR/Cas9 injections to generate a knock-in GFP reporter mouse at the Gdf11 locus. Phenotypic and genomic characterization of founder animals from these injections revealed a subset that contained the correct targeting event and exhibited GFP expression that, within the hematopoietic system, was restricted predominantly to lymphoid cells. Yet, in another subset of founder mice, we detected aberrant integration events at the target site that dramatically and inaccurately shifted hematopoietic GFP expression from the lymphoid to the myeloid lineage. Additionally, we recovered multiple Gdf11 deletion alleles that modified the C-terminus of the GDF11 protein. When bred to homozygosity, most of these alleles recapitulated skeletal phenotypes reported previously for Gdf11 knockout mice, suggesting that these represent null alleles. However, we also recovered one Gdf11 deletion allele that encodes a novel GDF11 variant protein ("GDF11-WE") predicted to contain two additional amino acids (tryptophan (W) and glutamic acid (E)) at the C-terminus of the mature ligand. Unlike the other Gdf11 deletion alleles recovered in this study, homozygosity for the Gdf11WE allele did not phenocopy Gdf11 knockout skeletal phenotypes. Further investigation using in vivo and in vitro approaches demonstrated that GDF11-WE retains substantial physiological function, indicating that GDF11 can tolerate at least some modifications of its C-terminus and providing unexpected insights into its biochemical activities. Altogether, our study confirms that one-step zygotic injections of CRISPR/Cas gene editing complexes provide a quick and powerful tool to generate gene-modified mouse models. Moreover, our findings underscore the critical importance of thorough characterization and validation of any modified alleles generated by CRISPR, as unintended on-target effects that fail to be detected by simple PCR screening can produce substantially altered phenotypic readouts.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA
| | - Austin Valido
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA
| | - Paul Besseling
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Samuel J Wattrus
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Miook Cho
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA.
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Ueda Y, Miwa T, Ito D, Kim H, Sato S, Gullipalli D, Zhou L, Golla M, Song D, Dunaief JL, Palmer MB, Song WC. Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation. Kidney Int 2019; 96:67-79. [PMID: 30910380 PMCID: PMC10084839 DOI: 10.1016/j.kint.2019.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/24/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by dysregulated complement activation. Clinically, aHUS is effectively treated by an anti-C5 monoclonal antibody (mAb) but whether the disease is mediated by the C5a receptor (C5aR) or C5b-9 pathway, or both, is unknown. Here we address this in a factor H mutant mouse (FHR/R) which developed complement-mediated TMA as well as macrovascular thrombosis caused by an aHUS-related factor H point mutation (mouse W1206R, corresponding to human W1183R). C5 deficiency and anti-C5 mAb treatment blocked all disease manifestations in FHR/R mice. C5aR1 gene deficiency prevented macrovascular thrombosis in various organs but did not improve survival or reduce renal TMA. Conversely, C6 or C9 deficiency significantly improved survival and markedly diminished renal TMA but did not prevent macrovascular thrombosis. Interestingly, as they aged both FHR/R C6-/- and FHR/R C9-/- mice developed glomerular disease reminiscent of C3 glomerulonephritis. Thus, C5aR and C5b-9 pathways drove different aspects of disease in FHR/R mice with the C5aR pathway being responsible for macrovascular thrombosis and chronic inflammatory injury while the C5b-9 pathway caused renal TMA. Our data provide new understanding of the pathogenesis of complement-mediated TMA and macrovascular thrombosis in FHR/R mice and suggest that C5 blockade is more effective for the treatment of aHUS than selectively targeting the C5aR or C5b-9 pathway alone.
Collapse
Affiliation(s)
- Yoshiyasu Ueda
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daisuke Ito
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hangsoo Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lin Zhou
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delu Song
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
Abstract
The classical complement system is engrained in the mind of scientists and clinicians as a blood-operative key arm of innate immunity, critically required for the protection against invading pathogens. Recent work, however, has defined a novel and unexpected role for an intracellular complement system-the complosome-in the regulation of key metabolic events that underlie peripheral human T cell survival as well as the induction and cessation of their effector functions. This review summarizes the current knowledge about the emerging vital role of the complosome in T cell metabolism and discusses how viewing the evolution of the complement system from an "unconventional" vantage point could logically account for the development of its metabolic activities.
Collapse
|
17
|
Zha H, Wang X, Zhu Y, Chen D, Han X, Yang F, Gao J, Hu C, Shu C, Feng Y, Tan Y, Zhang J, Li Y, Wan YY, Guo B, Zhu B. Intracellular Activation of Complement C3 Leads to PD-L1 Antibody Treatment Resistance by Modulating Tumor-Associated Macrophages. Cancer Immunol Res 2018; 7:193-207. [PMID: 30514794 DOI: 10.1158/2326-6066.cir-18-0272] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022]
Abstract
Complement aids in the construction of an immunosuppressive tumor microenvironment. Tumor cell-derived C3 has been previously reported, but whether and how it acts on antitumor immunity remains to be elucidated. Here, we describe a mechanism for tumor cell-derived C3 in suppressing antitumor immunity. Tumor cell-derived C3 was activated intracellularly, which results in generation of C3a. C3a modulated tumor-associated macrophages via C3a-C3aR-PI3Kγ signaling, thereby repressing antitumor immunity. Deletion of C3 in tumor cells that had high C3 expression enhanced efficacy of anti-PD-L1 treatment. Collectively, our results suggest tumor cell-derived C3 may be a useful target for cancer immunotherapy and that targeting C3 in tumor cells may enhance antitumor immunity.
Collapse
Affiliation(s)
- Haoran Zha
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China.,Department of Oncology, The General Hospital of the PLA Rocket Force, Beijing, P.R. China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Ying Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Diangang Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Xiao Han
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Fei Yang
- Department of Immunology, Third Military Medical University, Chongqing, P.R. China
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Chunyan Hu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Chi Shu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Yi Feng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Yulong Tan
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Jinyu Zhang
- Department of Immunology, Third Military Medical University, Chongqing, P.R. China
| | - Yongsheng Li
- Clinical Medicine Research Center and Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yisong Y Wan
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North California
| | - Bo Guo
- Maternal and Child Health Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, P.R. China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| |
Collapse
|
18
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
19
|
Piao C, Zhang WM, Li TT, Zhang CC, Qiu S, Liu Y, Liu S, Jin M, Jia LX, Song WC, Du J. Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer. Exp Cell Res 2018; 366:127-138. [PMID: 29551360 DOI: 10.1016/j.yexcr.2018.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/29/2023]
Abstract
Inflammatory cells such as macrophages can play a pro-tumorigenic role in the tumor stroma. Tumor-associated macrophages (TAMs) generally display an M2 phenotype with tumor-promoting activity; however, the mechanisms regulating the TAM phenotype remain unclear. Complement 5a (C5a) is a cytokine-like polypeptide that is generated during complement system activation and is known to promote tumor growth. Herein, we investigated the role of C5a on macrophage polarization in colon cancer metastasis in mice. We found that deficiency of the C5a receptor (C5aR) severely impairs the metastatic ability of implanted colon cancer cells. C5aR was expressed on TAMs, which exhibited an M2-like functional profile in colon cancer liver metastatic lesions. Furthermore, C5a mediated macrophage polarization and this process relied substantially on activation of the nuclear factor-kappa B (NF-κB) pathway. Finally, analysis of human colon carcinoma indicated that C5aR expression is negatively associated with tumor differentiation grade. Our results demonstrate that C5aR has a central role in regulating the M2 phenotype of TAMs, which in turn, contributes to hepatic metastasis of colon cancer through NF-κB signaling. C5a is a potential novel marker for cancer prognosis and drugs targeting complement system activation, specifically the C5aR pathway, may offer new therapeutic opportunities for colon cancer management.
Collapse
Affiliation(s)
- Chunmei Piao
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Wen-Mei Zhang
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Tao-Tao Li
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Cong-Cong Zhang
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Shulan Qiu
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Sa Liu
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Ming Jin
- Department of Biochemistry and Molecular Biology, College of Medicine, Yanbian University, Yanji, Jilin 133002, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China
| | - Wen-Chao Song
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China; Department of Pharmacology and Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.
| | - Jie Du
- Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing 100029, China.
| |
Collapse
|
20
|
C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and injury in experimental anti-myeloperoxidase glomerulonephritis. Kidney Int 2017; 93:615-625. [PMID: 29241626 DOI: 10.1016/j.kint.2017.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
The prospects for complement-targeted therapy in ANCA-associated vasculitis have been enhanced by a recent clinical trial in which C5a receptor 1 (C5aR1) inhibition safely replaced glucocorticoids in induction treatment. C5aR1 primes neutrophils for activation by anti-neutrophil cytoplasmic antibody (ANCA) and is therefore required in models of glomerulonephritis induced by anti-myeloperoxidase antibody. Although humoral and cellular autoimmunity play essential roles in ANCA-associated vasculitis, a role for C5aR1 in these responses has not been described. Here, we use murine models to dissect the role of C5aR1 in the generation of anti-myeloperoxidase autoimmunity and the effector responses resulting in renal injury. The genetic absence or pharmacological inhibition of C5aR1 results in reduced autoimmunity to myeloperoxidase with an attenuated Th1 response, increased Foxp3+ regulatory T cells and reduction in generation of myeloperoxidase-ANCA. These changes are mediated by C5aR1 on dendritic cells, which promotes activation, and thus myeloperoxidase autoimmunity and glomerulonephritis. We also use renal intravital microscopy to determine the effect of C5aR1 inhibition on ANCA induced neutrophil dysfunction. We found that myeloperoxidase-ANCA induce neutrophil retention and reactive oxygen species burst within glomerular capillaries. These pathological behaviors are abrogated by C5aR1 inhibition. Thus, C5aR1 inhibition ameliorates both autoimmunity and intra-renal neutrophil activation in ANCA-associated vasculitis.
Collapse
|
21
|
Hornum L, Hansen AJ, Tornehave D, Fjording MS, Colmenero P, Wätjen IF, Søe Nielsen NH, Bliddal H, Bartels EM. C5a and C5aR are elevated in joints of rheumatoid and psoriatic arthritis patients, and C5aR blockade attenuates leukocyte migration to synovial fluid. PLoS One 2017; 12:e0189017. [PMID: 29220376 PMCID: PMC5722346 DOI: 10.1371/journal.pone.0189017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/18/2017] [Indexed: 11/17/2022] Open
Abstract
Complement activation correlates to rheumatoid arthritis disease activity, and increased amounts of the complement split product C5a is observed in synovial fluids from rheumatoid arthritis patients. Blockade of C5a or its receptor (C5aR) is efficacious in several arthritis models. The aim of this study was to investigate the role of C5a and C5aR in human rheumatoid arthritis and psoriatic arthritis–both with respect to expression and function. Synovial fluid, blood and synovial samples were obtained from rheumatoid arthritis, psoriatic arthritis and osteoarthritis patients as a less inflammatory arthritis type, and blood from healthy subjects. Cells infiltrating synovial tissue were analysed by immunohistochemistry and flow cytometry. SF and blood were analysed for biomarkers by flow cytometry or ELISA. The effect of a blocking anti-human C5aR mAb on leukocyte migration was determined using a Boyden chamber. Appropriate statistical tests were applied for comparisons. C5aR+ cells were detected in most rheumatoid arthritis, in all psoriatic arthritis, but not in non-inflammatory control synovia. C5aR+ cells were primarily neutrophils and macrophages. C5aR+ macrophages were mainly found in lymphoid aggregates in close contact with T cells. C5a levels were increased in both rheumatoid arthritis and psoriatic arthritis synovial fluid compared to osteoarthritis, and in blood from rheumatoid arthritis compared to healthy subjects. Neutrophil and monocyte migration to rheumatoid arthritis synovial fluid was significantly inhibited by anti-C5aR. The data support that the C5a-C5aR axis may be driving the infiltration of inflammatory cells into the synovial fluid and synovium in both rheumatoid and psoriatic arthritis, and suggest that C5a or C5aR may be a promising treatment target in both diseases.
Collapse
Affiliation(s)
| | | | | | | | - Paula Colmenero
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Inger Falbe Wätjen
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | | | - Henning Bliddal
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Frederiksberg, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Else Marie Bartels
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| |
Collapse
|
22
|
Complement receptors C5aR1 and C5aR2 act differentially during the early immune response after bone fracture but are similarly involved in bone repair. Sci Rep 2017; 7:14061. [PMID: 29070810 PMCID: PMC5656620 DOI: 10.1038/s41598-017-14444-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Severely injured patients frequently suffer compromised fracture healing because of systemic post-traumatic inflammation. An important trigger of the posttraumatic immune response is the complement anaphylatoxin C5a, which acts via two receptors, C5aR1 and C5aR2, expressed on immune and bone cells. The blockade of C5a-mediated inflammation during the early inflammatory phase was demonstrated to improve fracture healing after severe injury. However, the distinct roles of the two complement receptors C5aR1 and C5aR2 in bone has to date not been studied. Here, we investigated bone turnover and regeneration in mice lacking either C5aR1 or C5aR2 in a model of isolated fracture and after severe injury, combining the fracture with an additional thoracic trauma. Both C5aR1−/− and C5aR2−/− mice displayed an increased bone mass compared to wild-type controls due to reduced osteoclast formation and increased osteoblast numbers, respectively. Following fracture, the inflammatory response was differently affected in these strains: It was decreased in C5aR1−/− mice but enhanced in C5aR2−/− mice. Both strains exhibited impaired fracture healing, disturbed osteoclastogenesis and delayed cartilage-to-bone transformation. Thus, our data suggest that C5aR1 and C5aR2 differentially regulate the immune response after fracture and are required for effective cartilage-to-bone transformation in the fracture callus and for undisturbed bone healing.
Collapse
|
23
|
Laumonnier Y, Wiese AV, Figge J, Karsten C. Regulation and function of anaphylatoxins and their receptors in allergic asthma. Mol Immunol 2017; 84:51-56. [PMID: 27916272 DOI: 10.1016/j.molimm.2016.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023]
Abstract
Allergic asthma is a disease of the airways driven by maladaptive T helper 2 (Th2) and Th17 immune response against harmless, airborne substances. The hallmarks of this disease are airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Distinct dendric cell (DC) subsets together with airway epithelial and pulmonary vascular endothelial cells play critical roles in allergen sensing and in driving T cell differentiation towards Th2 and Th17 effector or regulatory T cells (Treg). Previous studies suggested already a pivotal role for the anaphylatoxins (C5a, C3a) in the pathogenesis of allergic asthma. During sensitization for example it is described, that C3a promotes, whereas C5a protects from the development of maladaptive immunity during allergen sensitization. Here we will discuss the role of the anaphylatoxins (C3a, C5a) and their receptors during the pathogenesis of allergic asthma, and specifically in lung DC biology. We will also have a look on canonical and non-canonical complement activation and we will discuss novel concepts on how the adaptive immune system can regulate the function of ATRs also in the context of allergic asthma.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany.
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Christian Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
24
|
Karsten CM, Wiese AV, Mey F, Figge J, Woodruff TM, Reuter T, Scurtu O, Kordowski A, Almeida LN, Briukhovetska D, Quell KM, Sun J, Ender F, Schmudde I, Vollbrandt T, Laumonnier Y, Köhl J. Monitoring C5aR2 Expression Using a Floxed tdTomato-C5aR2 Knock-In Mouse. THE JOURNAL OF IMMUNOLOGY 2017; 199:3234-3248. [PMID: 28864475 DOI: 10.4049/jimmunol.1700710] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Abstract
The biological significance of C5a receptor [(C5aR)2/C5L2], a seven-transmembrane receptor binding C5a and C5adesArg, remains ill-defined. Specific ligation of C5aR2 inhibits C5a-induced ERK1/2 activation, strengthening the view that C5aR2 regulates C5aR1-mediated effector functions. Although C5aR2 and C5aR1 are often coexpressed, a detailed picture of C5aR2 expression in murine cells and tissues is still lacking. To close this gap, we generated a floxed tandem dye (td)Tomato-C5aR2 knock-in mouse that we used to track C5aR2 expression in tissue-residing and circulating immune cells. We found the strongest C5aR2 expression in the brain, bone marrow, and airways. All myeloid-derived cells expressed C5aR2, although with different intensities. C5aR2 expression in blood and tissue neutrophils was strong and homogeneous. Specific ligation of C5aR2 in neutrophils from tdTomato-C5aR2 mice blocked C5a-driven ERK1/2 phosphorylation, demonstrating functionality of C5aR2 in the reporter mice. In contrast to neutrophils, we found tissue-specific differences in C5aR2 expression in eosinophils, macrophages, and dendritic cell subsets. Naive and activated T cells stained negative for C5aR2, whereas B cells from different tissues homogeneously expressed C5aR2. Also, NK cell subsets in blood and spleen strongly expressed C5aR2. Activation of C5aR2 in NK cells suppressed IL-12/IL-18-induced IFN-γ production. Intratracheal IL-33 challenge resulted in decreased C5aR2 expression in pulmonary eosinophils and monocyte-derived dendritic cells. In summary, we provide a detailed map of murine C5aR2 immune cell expression in different tissues under steady-state conditions and upon pulmonary inflammation. The C5aR2 knock-in mouse will help to reliably track and conditionally delete C5aR2 expression in experimental models of inflammation.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany;
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fabian Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tom Reuter
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Olga Scurtu
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, Lübeck 23562, Germany; and
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany; .,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH 45229
| |
Collapse
|
25
|
Freeley S, Kemper C, Le Friec G. The "ins and outs" of complement-driven immune responses. Immunol Rev 2017; 274:16-32. [PMID: 27782335 DOI: 10.1111/imr.12472] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system represents an evolutionary old and critical component of innate immunity where it forms the first line of defense against invading pathogens. Originally described as a heat-labile fraction of the serum responsible for the opsonization and subsequent lytic killing of bacteria, work over the last century firmly established complement as a key mediator of the general inflammatory response but also as an acknowledged vital bridge between innate and adaptive immunity. However, recent studies particularly spanning the last decade have provided new insights into the novel modes and locations of complement activation and highlighted unexpected additional biological functions for this ancient system, for example, in regulating basic processes of the cell. In this review, we will cover the current knowledge about complement's established and novel roles in innate and adaptive immunity with a focus on the functional differences between serum circulating and intracellularly active complement and will describe and discuss the newly discovered cross-talks of complement with other cell effector systems particularly during T-cell induction and contraction.
Collapse
Affiliation(s)
- Simon Freeley
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK. .,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gaëlle Le Friec
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
26
|
Verschoor A, Karsten CM, Broadley SP, Laumonnier Y, Köhl J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev 2017; 274:112-126. [PMID: 27782330 DOI: 10.1111/imr.12473] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The activation of the complement system by canonical and non-canonical mechanisms results in the generation of multiple C3 and C5 cleavage fragments including anaphylatoxins C3a and C5a as well as opsonizing C3b/iC3b. It is now well appreciated that anaphylatoxins not only act as pro-inflammatory mediators but as immunoregulatory molecules that control the activation status of cells and tissue at several levels. Likewise, C3b/iC3b is more than the opsonizing fragment that facilitates engulfment and destruction of targets by phagocytes. In the circulation, it also facilitates the transport and delivery of bacteria and immune complexes to phagocytes, through a process known as immune adherence, with consequences for adaptive immunity. Here, we will discuss non-classical immunoregulatory properties of C3 and C5 cleavage fragments. We highlight the influence of anaphylatoxins on Th2 and Th17 cell development during allergic asthma with a particular emphasis on their role in the modulation of CD11b+ conventional dendritic cells and monocyte-derived dendritic cells. Furthermore, we discuss the control of anaphylatoxin-mediated activation of dendritic cells and allergic effector cells by adaptive immune mechanisms that involve allergen-specific IgG1 antibodies and plasma or regulatory T cell-derived IL-10 production. Finally, we take a fresh look at immune adherence with a particular focus on the development of antibacterial cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Steven P Broadley
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Zha H, Han X, Zhu Y, Yang F, Li Y, Li Q, Guo B, Zhu B. Blocking C5aR signaling promotes the anti-tumor efficacy of PD-1/PD-L1 blockade. Oncoimmunology 2017; 6:e1349587. [PMID: 29123963 DOI: 10.1080/2162402x.2017.1349587] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Anti-PD-1/PD-L1 therapy has achieved great success in the clinic; however, only a small fraction of cancer patient benefit from PD-1/PD-L1 blockade therapy, and overcoming resistance to PD-1/PD-L1 blockade has thus become a primary priority. In this study, we demonstrated that administration of PD-1/PD-L1 antibodies resulted in the activation of the complement system and massive generation of C5a. Generation of C5a did not change the accumulation of MDSCs in either the tumor or spleen but enhanced their inhibitory potential. In addition, blockade of C5a-C5aR signaling in combination with PD-1/PD-L1 antibodies greatly enhanced the anti-tumor efficacy of PD-1/PD-L1 antibodies. Overall, these data indicate an immunosuppressive role of C5a in the context of PD-1/PD-L1 blockade therapy and provide a strong incentive to clinically explore combination therapies using a C5a antagonist.
Collapse
Affiliation(s)
- Haoran Zha
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Xiao Han
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Ying Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Fei Yang
- Department of Immunology, Third Military Medical University, Chongqing, P.R. China.,Department of Pathogenic Biology, Third Military Medical University, Chongqing, P.R. China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| | - Qijing Li
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Bo Guo
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, P.R. China
| |
Collapse
|
28
|
Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D, Wiese AV, Sun J, Ender F, Antoniou K, Schröder T, Schmudde I, Berger JL, König P, Vollbrandt T, Laumonnier Y, Köhl J. Monitoring C3aR Expression Using a Floxed tdTomato-C3aR Reporter Knock-in Mouse. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28626064 DOI: 10.4049/jimmunol.1700318] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
C3a exerts multiple biologic functions through activation of its cognate C3a receptor. C3-/- and C3aR-/- mice have been instrumental in defining important roles of the C3a/C3aR axis in the regulation of acute and chronic inflammatory diseases, including ischemia/reperfusion injury, allergic asthma, autoimmune nephritis, and rheumatoid arthritis. Surprisingly little is known about C3aR expression and function in immune and stromal cells. To close this gap, we generated a floxed tandem-dye Tomato (tdTomato)-C3aR reporter knock-in mouse, which we used to monitor C3aR expression in cells residing in the lung, airways, lamina propria (LP) of the small intestine, brain, visceral adipose tissue, bone marrow (BM), spleen, and the circulation. We found a strong expression of tdTomato-C3aR in the brain, lung, LP, and visceral adipose tissue, whereas it was minor in the spleen, blood, BM, and the airways. Most macrophage and eosinophil populations were tdTomato-C3aR+ Interestingly, most tissue eosinophils and some macrophage populations expressed C3aR intracellularly. BM-derived dendritic cells (DCs), lung-resident cluster of differentiation (CD) 11b+ conventional DCs (cDCs) and monocyte-derived DCs, LP CD103+, and CD11b+ cDCs but not pulmonary CD103+ cDCs and splenic DCs were tdTomato-C3aR+ Surprisingly, neither BM, blood, lung neutrophils, nor mast cells expressed C3aR. Similarly, all lymphoid-derived cells were tdTomato-C3aR-, except some LP-derived type 3 innate lymphoid cells. Pulmonary and LP-derived epithelial cells expressed at best minor levels of C3aR. In summary, we provide novel insights into the expression pattern of C3aR in mice. The floxed C3aR knock-in mouse will help to reliably track and conditionally delete C3aR expression in experimental models of inflammation.
Collapse
Affiliation(s)
- Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | | | - Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Konstantina Antoniou
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Johann L Berger
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, Lübeck 23562, Germany; and
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany;
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany; .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
29
|
Facciabene A, De Sanctis F, Pierini S, Reis ES, Balint K, Facciponte J, Rueter J, Kagabu M, Magotti P, Lanitis E, DeAngelis RA, Buckanovich RJ, Song WC, Lambris JD, Coukos G. Local endothelial complement activation reverses endothelial quiescence, enabling t-cell homing, and tumor control during t-cell immunotherapy. Oncoimmunology 2017; 6:e1326442. [PMID: 28932632 PMCID: PMC5599081 DOI: 10.1080/2162402x.2017.1326442] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy relies upon the ability of T cells to infiltrate tumors. The endothelium constitutes a barrier between the tumor and effector T cells, and the ability to manipulate local vascular permeability could be translated into effective immunotherapy. Here, we show that in the context of adoptive T cell therapy, antitumor T cells, delivered at high enough doses, can overcome the endothelial barrier and infiltrate tumors, a process that requires local production of C3, complement activation on tumor endothelium and release of C5a. C5a, in turn, acts on endothelial cells promoting the upregulation of adhesion molecules and T-cell homing. Genetic deletion of C3 or the C5a receptor 1 (C5aR1), and pharmacological blockade of C5aR1, impaired the ability of T cells to overcome the endothelial barrier, infiltrate tumors, and control tumor progression in vivo, while genetic chimera mice demonstrated that C3 and C5aR1 expression by tumor stroma, and not leukocytes, governs T cell homing, acting on the local endothelium. In vitro, endothelial C3 and C5a expressions were required for endothelial activation by type 1 cytokines. Our data indicate that effective immunotherapy is a consequence of successful homing of T cells in response to local complement activation, which disrupts the tumor endothelial barrier.
Collapse
Affiliation(s)
- Andrea Facciabene
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Francesco De Sanctis
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Stefano Pierini
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klara Balint
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - John Facciponte
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Jens Rueter
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Masahiro Kagabu
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Paola Magotti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Evripidis Lanitis
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Ludwig Institute of Cancer Research and Department of Oncology, University of Lausanne, Switzerland
| | - Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- Internal Medicine Division of Hematology Oncology Obstetrics and Gynecology Division of Gynecologic Oncology, University of Michigan, MI, USA
| | - Wenchao C Song
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Coukos
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Ludwig Institute of Cancer Research and Department of Oncology, University of Lausanne, Switzerland
| |
Collapse
|
30
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
31
|
Ender F, Wiese AV, Schmudde I, Sun J, Vollbrandt T, König P, Laumonnier Y, Köhl J. Differential regulation of C5a receptor 1 in innate immune cells during the allergic asthma effector phase. PLoS One 2017; 12:e0172446. [PMID: 28231307 PMCID: PMC5322932 DOI: 10.1371/journal.pone.0172446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
C5a drives airway constriction and inflammation during the effector phase of allergic asthma, mainly through the activation of C5a receptor 1 (C5aR1). Yet, C5aR1 expression on myeloid and lymphoid cells during the allergic effector phase is ill-defined. Recently, we generated and characterized a floxed green fluorescent protein (GFP)-C5aR1 knock-in mouse. Here, we used this reporter strain to monitor C5aR1 expression in airway, pulmonary and lymph node cells during the effector phase of OVA-driven allergic asthma. C5aR1 reporter and wildtype mice developed a similar allergic phenotype with comparable airway resistance, mucus production, eosinophilic/neutrophilic airway inflammation and Th2/Th17 cytokine production. During the allergic effector phase, C5aR1 expression increased in lung tissue eosinophils but decreased in airway and pulmonary macrophages as well as in pulmonary CD11b+ conventional dendritic cells (cDCs) and monocyte-derived DCs (moDCs). Surprisingly, expression in neutrophils was not affected. Of note, moDCs but not CD11b+ cDCs from mediastinal lymph nodes (mLN) expressed less C5aR1 than DCs residing in the lung after OVA challenge. Finally, neither CD103+ cDCs nor cells of the lymphoid lineage such as Th2 or Th17-differentiated CD4+ T cells, B cells or type 2 innate lymphoid cells (ILC2) expressed C5aR1 under allergic conditions. Our findings demonstrate a complex regulation pattern of C5aR1 in the airways, lung tissue and mLN of mice, suggesting that the C5a/C5aR1 axis controls airway constriction and inflammation through activation of myeloid cells in all three compartments in an experimental model of allergic asthma.
Collapse
Affiliation(s)
- Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Anna V. Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Inken Schmudde
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- * E-mail: (JK); (YL)
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (JK); (YL)
| |
Collapse
|
32
|
Bradley SJ, Tobin AB. Design of Next-Generation G Protein-Coupled Receptor Drugs: Linking Novel Pharmacology and In Vivo Animal Models. Annu Rev Pharmacol Toxicol 2016; 56:535-59. [PMID: 26738479 DOI: 10.1146/annurev-pharmtox-011613-140012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the fact that G protein-coupled receptors (GPCRs) are the most successful drug targets in history, this supergene family of cell surface receptors has yet to be fully exploited as targets in the treatment of human disease. Here, we present optimism that this may change in the future by reviewing the substantial progress made in the understanding of GPCR molecular pharmacology that has generated an extensive toolbox of ligand types that include orthosteric, allosteric, and bitopic ligands, many of which show signaling bias. We discuss how combining these advances with recently described transgenic, chemical genetic, and optogenetic animal models will provide the framework to allow for the rational design of next-generation GPCR drugs that possess increased therapeutic efficacy and decreased adverse/toxic responses.
Collapse
Affiliation(s)
- Sophie J Bradley
- MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN United Kingdom; ,
| | - Andrew B Tobin
- MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN United Kingdom; ,
| |
Collapse
|
33
|
Hess C, Kemper C. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes. Immunity 2016; 45:240-54. [PMID: 27533012 PMCID: PMC5019180 DOI: 10.1016/j.immuni.2016.08.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.
Collapse
Affiliation(s)
- Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, 20 Hebelstrasse, 4031 Basel, Switzerland.
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, Medical Reseaerch Council Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill LA, Coll RC, Sher A, Leonard WJ, Köhl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ, Cope AP, Mayer-Barber KD, Kemper C. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science 2016; 352:aad1210. [PMID: 27313051 DOI: 10.1126/science.aad1210] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses.
Collapse
Affiliation(s)
- Giuseppina Arbore
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Avril A B Robertson
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Claudia Rheinheimer
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Pavel Dutow
- Institute for Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Trent M Woodruff
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Zu Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C Coll
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pete Monk
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Matthew A Cooper
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Matthew Arno
- Genomics Centre, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Behdad Afzali
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.,Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Helen J Lachmann
- UK National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Andrew P Cope
- Academic Department of Rheumatology, Division of Immunology, Infection and Inflammatory Diseases, King's College London, London SE1 1UL, UK
| | - Katrin D Mayer-Barber
- Laboratory of Clinical Infectious Diseases, Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Wang Y, Sun SN, Liu Q, Yu YY, Guo J, Wang K, Xing BC, Zheng QF, Campa MJ, Patz EF, Li SY, He YW. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression. Cancer Discov 2016; 6:1022-35. [PMID: 27297552 DOI: 10.1158/2159-8290.cd-15-1412] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. SIGNIFICANCE Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932.
Collapse
Affiliation(s)
- Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Sheng-Nan Sun
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Qing Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yang-Yang Yu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Kun Wang
- Hepatopancreatobiliary Surgery Department, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Bao-Cai Xing
- Hepatopancreatobiliary Surgery Department, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Qing-Feng Zheng
- Thoracic Surgery Department, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Michael J Campa
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Edward F Patz
- Department of Radiology, Duke University Medical Center, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Shi-You Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
36
|
Bidirectional Crosstalk between C5a Receptors and the NLRP3 Inflammasome in Macrophages and Monocytes. Mediators Inflamm 2016; 2016:1340156. [PMID: 27382187 PMCID: PMC4921141 DOI: 10.1155/2016/1340156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/04/2016] [Accepted: 05/15/2016] [Indexed: 11/17/2022] Open
Abstract
C5a is an inflammatory mediator generated by complement activation that positively regulates various arms of immune defense, including Toll-like receptor 4 (TLR4) signaling. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is activated by pathogen products and cellular/tissue damage products and is a major contributor of IL-1β. In this study, we investigate whether C5a modulates lipopolysaccharide- (LPS-) induced NLRP3 inflammasome activation in myeloid cells. Appearance of plasma IL-1β during endotoxemia was reduced in C5aR1−/− mice when compared to wild-type mice. In vitro, C5a significantly enhanced LPS-induced production of IL-1β in bone marrow Ly6C-high inflammatory monocytes, accompanied by augmented intracellular pro-IL-1β expression. This effect was abolished during p38 blockade by SB 203580 and in the absence of C5aR1. Conversely, C5a suppressed LPS-induced macrophage production of IL-1β, which was accompanied by attenuated levels of pro-IL-1β, NLRP3, and caspase-1 expression. C5a's suppressive effects were negated during phosphoinositide 3-kinase (PI3K) inhibition by wortmannin but were largely preserved in the absence of C5aR1. Thus, C5a bidirectionally amplifies TLR4-mediated NLRP3 inflammasome activation in monocytes while suppressing this pathway in macrophages. However, as C5aR1 deficiency attenuates the IL-1β response to LPS challenge in vivo, our results suggest overall that C5a augments physiologic inflammasome responses.
Collapse
|
37
|
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016; 12:383-401. [PMID: 27211870 DOI: 10.1038/nrneph.2016.70] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Christensen AD, Haase C, Cook AD, Hamilton JA. Granulocyte colony-stimulating factor (G-CSF) plays an important role in immune complex-mediated arthritis. Eur J Immunol 2016; 46:1235-45. [DOI: 10.1002/eji.201546185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anne D. Christensen
- Department of Medicine; University of Melbourne; Parkville Victoria Australia
- Novo Nordisk A/S; Måløv Denmark
| | | | - Andrew D. Cook
- Department of Medicine; University of Melbourne; Parkville Victoria Australia
| | - John A. Hamilton
- Department of Medicine; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
39
|
Scott D, Botto M. The paradoxical roles of C1q and C3 in autoimmunity. Immunobiology 2015; 221:719-25. [PMID: 26001732 DOI: 10.1016/j.imbio.2015.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 01/29/2023]
Abstract
In this review we will focus on the links between complement and autoimmune diseases and will highlight how animal models have provided insights into the manner by which C1q and C3 act to modulate both adaptive and innate immune responses. In particular we will highlight how C1q may not only act as initiator of the classical complement pathway, but can also mediate multiple immune responses in a complement activation independent manner.
Collapse
Affiliation(s)
- Diane Scott
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College London, London, UK
| | - Marina Botto
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
40
|
Nakano H, Moran TP, Nakano K, Gerrish KE, Bortner CD, Cook DN. Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3808-19. [PMID: 25769922 DOI: 10.4049/jimmunol.1402195] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/13/2015] [Indexed: 12/17/2022]
Abstract
Differential display of the integrins CD103 and CD11b are widely used to distinguish two major dendritic cell (DC) subsets in nonlymphoid tissues. CD103(+) DCs arise from FLT3-dependent DC precursors (preDCs), whereas CD11b(hi) DCs can arise either from preDCs or FLT3-independent monocytes. Functional characterization of these two lineages of CD11b(hi) DCs has been hindered by the lack of a widely applicable method to distinguish between them. We performed gene expression analysis of fractionated lung DCs from C57BL/6 mice and found that monocyte-derived DCs (moDCs), including CD11b(hi)Ly-6C(lo) tissue-resident and CD11b(hi)Ly-6C(hi) inflammatory moDCs, express the complement 5a receptor 1/CD88, whereas preDC-derived conventional DCs (cDCs), including CD103(+) and CD11b(hi) cDCs, express dipeptidyl peptidase-4/CD26. Flow cytometric analysis of multiple organs, including the kidney, liver, lung, lymph nodes, small intestine, and spleen, confirmed that reciprocal display of CD88 and CD26 can reliably distinguish FLT3-independent moDCs from FLT3-dependent cDCs in C57BL/6 mice. Similar results were obtained when DCs from BALB/c mice were analyzed. Using this novel approach to study DCs in mediastinal lymph nodes, we observed that most blood-derived lymph node-resident DCs, as well as tissue-derived migratory DCs, are cDCs. Furthermore, cDCs, but not moDCs, stimulated naive T cell proliferation. We anticipate that the use of Abs against CD88 and CD26 to distinguish moDCs and cDCs in multiple organs and mouse strains will facilitate studies aimed at assigning specific functions to distinct DC lineages in immune responses.
Collapse
Affiliation(s)
- Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709;
| | - Timothy P Moran
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27705
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Kevin E Gerrish
- Molecular Genetics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Carl D Bortner
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
41
|
Karsten CM, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, Czabanska A, Vollbrandt T, Figge J, Köhl J. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. THE JOURNAL OF IMMUNOLOGY 2015; 194:1841-55. [PMID: 25589074 DOI: 10.4049/jimmunol.1401401] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many of the biological properties of C5a are mediated through activation of its receptor (C5aR1), the expression of which has been demonstrated convincingly on myeloid cells, such as neutrophils, monocytes, and macrophages. In contrast, conflicting results exist regarding C5aR1 expression in dendritic cells (DCs) and lymphoid lineage cells. In this article, we report the generation of a floxed GFP-C5aR1 reporter knock-in mouse. Using this mouse strain, we confirmed strong C5aR1 expression in neutrophils from bone marrow, blood, lung, and spleen, as well as in peritoneal macrophages. Further, we show C5aR1 expression in lung eosinophils, lung- and lamina propria-resident and alveolar macrophages, bone marrow-derived DCs, and lung-resident CD11b(+) and monocyte-derived DCs, whereas intestinal and pulmonary CD103(+) DCs stained negative. Also, some splenic NKT cells expressed GFP, whereas naive NK cells and B2 cells lacked GFP expression. Finally, we did not observe any C5aR1 expression in naive or activated CD4(+) Th cells in vitro or in vivo. Mating the floxed GFP-C5aR1 mouse strain with LysMCre mice, we were able to specifically delete C5aR1 in neutrophils and macrophages, whereas C5aR1 expression was retained in DCs. In summary, our findings suggest that C5aR1 expression in mice is largely restricted to cells of the myeloid lineage. The novel floxed C5aR1 reporter knock-in mouse will prove useful to track C5aR1 expression in experimental models of acute and chronic inflammation and to conditionally delete C5aR1 in immune cells.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Benjamin Eurich
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Katharina Bröker
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Sreeja Roy
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Anna Czabanska
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | | | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
42
|
Abstract
Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.
Collapse
|
43
|
Calame DG, Mueller-Ortiz SL, Morales JE, Wetsel RA. The C5a anaphylatoxin receptor (C5aR1) protects against Listeria monocytogenes infection by inhibiting type 1 IFN expression. THE JOURNAL OF IMMUNOLOGY 2014; 193:5099-107. [PMID: 25297874 DOI: 10.4049/jimmunol.1401750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is a major cause of mortality resulting from food poisoning in the United States. In mice, C5 has been genetically linked to host resistance to listeriosis. Despite this genetic association, it remains poorly understood how C5 and its activation products, C5a and C5b, confer host protection to this Gram-positive intracellular bacterium. In this article, we show in a systemic infection model that the major receptor for C5a, C5aR1, is required for a normal robust host immune response against L. monocytogenes. In comparison with wild-type mice, C5aR1(-/-) mice had reduced survival and increased bacterial burden in their livers and spleens. Infected C5aR1(-/-) mice exhibited a dramatic reduction in all major subsets of splenocytes, which was associated with elevated caspase-3 activity and increased TUNEL staining. Because type 1 IFN has been reported to impede the host response to L. monocytogenes through the promotion of splenocyte death, we examined the effect of C5aR1 on type 1 IFN expression in vivo. Indeed, serum levels of IFN-α and IFN-β were significantly elevated in L. monocytogenes-infected C5aR1(-/-) mice. Similarly, the expression of TRAIL, a type 1 IFN target gene and a proapoptotic factor, was elevated in NK cells isolated from infected C5aR1(-/-) mice. Treatment of C5aR1(-/-) mice with a type 1 IFNR blocking Ab resulted in near-complete rescue of L. monocytogenes-induced mortality. Thus, these findings reveal a critical role for C5aR1 in host defense against L. monocytogenes through the suppression of type 1 IFN expression.
Collapse
Affiliation(s)
- Daniel G Calame
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030; M.D./Ph.D. Program, University of Texas Medical School at Houston/The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030; and
| | - Stacey L Mueller-Ortiz
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - John E Morales
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Rick A Wetsel
- The Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030; Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030
| |
Collapse
|
44
|
Clarke EV, Tenner AJ. Complement modulation of T cell immune responses during homeostasis and disease. J Leukoc Biol 2014; 96:745-56. [PMID: 25210145 DOI: 10.1189/jlb.3mr0214-109r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders.
Collapse
Affiliation(s)
- Elizabeth V Clarke
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, California, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
45
|
Vadrevu SK, Chintala NK, Sharma SK, Sharma P, Cleveland C, Riediger L, Manne S, Fairlie DP, Gorczyca W, Almanza O, Karbowniczek M, Markiewski MM. Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res 2014; 74:3454-65. [PMID: 24786787 DOI: 10.1158/0008-5472.can-14-0157] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of complement on cancer metastasis has not been well studied. In this report, we demonstrate in a preclinical mouse model of breast cancer that the complement anaphylatoxin C5a receptor (C5aR) facilitates metastasis by suppressing effector CD8(+) and CD4(+) T-cell responses in the lungs. Mechanisms of this suppression involve recruitment of immature myeloid cells to the lungs and regulation of TGFβ and IL10 production in these cells. TGFβ and IL10 favored generation of T regulatory cells (Treg) and Th2-oriented responses that rendered CD8(+) T cells dysfunctional. Importantly, pharmacologic blockade of C5aR or its genetic ablation in C5aR-deficient mice were sufficient to reduce lung metastases. Depletion of CD8(+) T cells abolished this beneficial effect, suggesting that CD8(+) T cells were responsible for the effects of C5aR inhibition. In contrast to previous findings, we observed that C5aR signaling promoted Treg generation and suppressed T-cell responses in organs where metastases arose. Overall, our findings indicated that the immunomodulatory functions of C5aR are highly context dependent. Furthermore, they offered proof-of-concept for complement-based immunotherapies to prevent or reduce cancer metastasis.
Collapse
Affiliation(s)
- Surya Kumari Vadrevu
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Navin K Chintala
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Sharad K Sharma
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Priya Sharma
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Clayton Cleveland
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Linley Riediger
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Sasikanth Manne
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Wojciech Gorczyca
- Bioreference Laboratories, Elmwood Park; Regional Cancer Care Associates, Hackensack, New Jersey; and
| | | | - Magdalena Karbowniczek
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center
| | - Maciej M Markiewski
- Authors' Affiliations: Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center;
| |
Collapse
|
46
|
|
47
|
Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, Standiford TJ, Ward PA. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J 2013; 27:5010-21. [PMID: 23982144 DOI: 10.1096/fj.13-236380] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.
Collapse
Affiliation(s)
- Markus Bosmann
- 1Department of Pathology, The University of Michigan Medical School, 1301 Catherine Rd., Ann Arbor, Michigan 48109-5602.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kemper C, Köhl J. Novel roles for complement receptors in T cell regulation and beyond. Mol Immunol 2013; 56:181-90. [PMID: 23796748 DOI: 10.1016/j.molimm.2013.05.223] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022]
Abstract
Complement receptors are expressed on cells of the innate and the adaptive immune system. They play important roles in pathogen and danger sensing as they translate the information gathered by complement fluid phase sensors into cellular responses. Further, they control complement activation on viable and apoptotic host cells, clearance of immune complexes and mediate opsonophagocytosis. More recently, evidence has accumulated that complement receptors form a complex network with other innate receptors systems such as the Toll-like receptors, the Notch signaling system, IgG Fc receptors and C-type lectin receptors contributing to the benefit and burden of innate and adaptive immune responses in autoimmune and allergic diseases as well as in cancer and transplantation. Here, we will discuss recent developments and emerging concepts of complement receptor activation and regulation with a particular focus on the differentiation, maintenance and contraction of effector and regulatory T cells.
Collapse
Affiliation(s)
- Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|
49
|
Abstract
C3a and C5a (also called anaphylatoxins) are inflammatory peptides generated during complement activation. They do not only play important roles in innate immunity through the initiation and regulation of inflammatory responses, but also significantly influence adaptive immune responses. Organ transplantation triggers an initial inflammatory response and subsequent to the specific immune response (also called the alloimmune response), both of which contribute to graft rejection. Emerging evidence suggests that anaphylatoxins, particularly C5a, are significantly involved in both inflammatory and alloimmune responses following organ transplantation, thus influencing graft outcome. This review will provide the information on our current understanding of the roles for anaphylatoxins in ischemia-reperfusion injury, graft rejection, and transplant tolerance, and the therapeutic potential of targeting anaphylatoxin receptors in organ transplantation.
Collapse
|
50
|
Schmudde I, Laumonnier Y, Köhl J. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma. Semin Immunol 2013; 25:2-11. [PMID: 23694705 DOI: 10.1016/j.smim.2013.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/22/2013] [Indexed: 12/28/2022]
Abstract
Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions.
Collapse
Affiliation(s)
- Inken Schmudde
- Institute for Systemic Inflammation Research, University of Lübeck, Germany
| | | | | |
Collapse
|