1
|
Su Y, Chao B, Ren J, Shuang L. Platelet related gene IQGAP1 contributes to the onset and abnormal immune landscape of ischemic stroke patients. J Stroke Cerebrovasc Dis 2025; 34:108194. [PMID: 39674432 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION Ischemic stroke (IS) is a complex illness resulting from a combination of numerous environmental and genetic risk factors. Recent reports have shed light on the vital role that platelets play in the pathophysiology of IS. Here, we aimed to explore the potential platelet-related genes in IS and investigate the effect of platelet-related genes in the immune microenvironment of IS. METHODS The data of IS were retrieved from the Gene Expression Omnibus database. Firstly, we screened the platelet-related genes that were correlated with the onset of IS using differential expression analysis, enrichment analyses, and protein-protein interaction (PPI) network. Moreover, we analyzed the clinical value and functional information of platelet-related genes in IS. Finally, we explored the correlation between platelet-related genes and immune cells' infiltration. RESULTS Ten platelet-related genes that were correlated with the onset of IS were identified, among which IQGAP1 was located at the core of the PPI network. IQGAP1 was found to be expressed in the normal brain tissue and its expression was significantly elevated in IS samples. The area under the curve (AUC) values for IQGAP1 in both the GSE16561 and GSE58294 datasets were close to 1. IQGAP1 knockdown might increase OGD/R‑induced HT22 cell viability. Additionally, FoxO signaling pathway, NOD-like receptor signaling pathway, Phagosome and Platelet activation pathways were significantly activated in IS patients with high IQGAP1 expression compared to those with low IQGAP1 expression. The IS patients in the IQGAP1high and IQGAP1low groups showed dramatically different proportions of immune cells and immune-related functions, and the IQGAP1 expression was correlated with the immune cell' infiltration in IS. CONCLUSIONS In this study, we identified the IQGAP1 might serve as a potential diagnostic marker for IS, and the IQGAP1 expression was very relevant in determining the immune cell' infiltration in IS patients.
Collapse
Affiliation(s)
- Youle Su
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, 010050, People's Republic of China
| | - Bo Chao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, 010050, People's Republic of China
| | - Junhao Ren
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, 010050, People's Republic of China
| | - Lian Shuang
- Department of Geriatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, 010050, People's Republic of China.
| |
Collapse
|
2
|
Zhao N, Chen C, Guo Y, Liu T, Che N, Zhang D, Liang X, Zhang Y, Zhao X. LOXL2 serves as a prognostic biomarker for hepatocellular carcinoma by mediating immune infiltration and vasculogenic mimicry. Dig Liver Dis 2023; 55:661-672. [PMID: 36192339 DOI: 10.1016/j.dld.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/13/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The development of human hepatocellular carcinoma (HCC) is a multistep process that is accompanied by progressive changes in the liver microenvironment, including immune evasion and angiogenesis. Lysyl oxidase-like 2 (LOXL2) has been suggested to contribute to tumour progression and metastasis; however, the underlying mechanism remains unclear. The purpose of the present study was to explore the relationship between LOXL2 and immune infiltration and vasculogenic mimicry (VM) and to identify the role of LOXL2 in HCC diagnosis prognosis evaluation. METHODS The Cancer Genome Atlas (TCGA), UALCAN, GEPIA and Kaplan-Meier plotter databases were used to analyse LOXL2 expression and perform survival analysis. The Tumour Immune Estimation Resource (TIMER) was used to analyse immune cell infiltration, immune cell biomarkers and immune checkpoints. Immunohistochemistry (IHC) of 201 HCC samples was used to confirm the expression of LOXL2 and its relationship with VM. Coimmunoprecipitation (co-IP) and gain- and loss-of-function studies were performed to confirm the molecular mechanism of LOXL2 in VM. RESULTS The expression of LOXL2 in HCC was higher than that in normal tissues at both the mRNA and protein levels. High expression of LOXL2 was associated with a poorer prognosis of HCC. The genetic alteration rate of LOXL2 was 5%. LOXL2 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. Co-IP showed that LOXL2 can interact directly with IQGAP1. Both gain- and loss-of-function studies showed that LOXL2 significantly induced cell migration, invasion and VM formation when IQGAP1 was upregulated. CONCLUSIONS LOXL2 is involved in immune cell infiltration and promotes VM by upregulating IQGAP1. LOXL2 can be used as a novel biomarker for HCC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
3
|
LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proc Natl Acad Sci U S A 2022; 119:e2118816119. [PMID: 35394866 PMCID: PMC9169816 DOI: 10.1073/pnas.2118816119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)–induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.
Collapse
|
4
|
Pathni A, Özçelikkale A, Rey-Suarez I, Li L, Davis S, Rogers N, Xiao Z, Upadhyaya A. Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation. Front Immunol 2022; 13:779888. [PMID: 35371019 PMCID: PMC8966475 DOI: 10.3389/fimmu.2022.779888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an integral role in the adaptive immune response by killing infected cells. Antigen presenting cells (APCs), such as dendritic cells, present pathogenic peptides to the T cell receptor on the CTL surface and co-stimulatory signals required for complete activation. Activated CTLs secrete lytic granules containing enzymes that trigger target cell death at the CTL-target contact, also known as the immune synapse (IS). The actin and microtubule cytoskeletons are instrumental in the killing of CTL targets. Lytic granules are transported along microtubules to the IS, where granule secretion is facilitated by actin depletion and recovery. Furthermore, actomyosin contractility promotes target cell death by mediating mechanical force exertion at the IS. Recent studies have shown that inflammatory cytokines produced by APCs, such as interleukin-12 (IL-12), act as a third signal for CTL activation and enhance CTL proliferation and effector function. However, the biophysical mechanisms mediating such enhanced effector function remain unclear. We hypothesized that the third signal for CTL activation, IL-12, modulates cytoskeletal dynamics and force exertion at the IS, thus potentiating CTL effector function. Here, we used live cell total internal reflection fluorescence (TIRF) microscopy to study actomyosin and microtubule dynamics at the IS of murine primary CTLs activated in the presence of peptide-MHC and co-stimulation alone (two signals), or additionally with IL-12 (three signals). We found that three signal-activated CTLs have altered actin flows, myosin dynamics and microtubule growth rates as compared to two signal-activated CTLs. We further showed that lytic granules in three-signal activated CTLs are less clustered and have lower velocities than in two-signal activated CTLs. Finally, we used traction force microscopy to show that three signal-activated CTLs exert greater traction forces than two signal-activated CTLs. Our results demonstrate that activation of CTLs in the presence of IL-12 leads to differential modulation of the cytoskeleton, thereby augmenting the mechanical response of CTLs to their targets. This indicates a potential physical mechanism via which the third signal can enhance the CTL response.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States
| | - Altuğ Özçelikkale
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Scott Davis
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Nate Rogers
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Zhengguo Xiao
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Physics, University of Maryland, College Park, MD, United States
| |
Collapse
|
5
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
6
|
Wei T, Choi S, Buehler D, Lee D, Ward-Shaw E, Anderson RA, Lambert PF. Role of IQGAP1 in Papillomavirus-Associated Head and Neck Tumorigenesis. Cancers (Basel) 2021; 13:2276. [PMID: 34068608 PMCID: PMC8126105 DOI: 10.3390/cancers13092276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 25% of head and neck squamous cell carcinomas (HNSCC) are associated with human papillomavirus (HPV) infection. In these cancers as well as in HPV-associated anogenital cancers, PI3K signaling is highly activated. We previously showed that IQ motif-containing GTPase activating protein 1 (IQGAP1), a PI3K pathway scaffolding protein, is overexpressed in and contributes to HNSCC and that blocking IQGAP1-mediated PI3K signaling reduces HPV-positive HNSCC cell survival and migration. In this study, we tested whether IQGAP1 promotes papillomavirus (PV)-associated HNSCCs. IQGAP1 was necessary for optimal PI3K signaling induced by HPV16 oncoproteins in transgenic mice and MmuPV1 infection, a mouse papillomavirus that causes HNSCC in mice. Furthermore, we found that, at 6 months post-infection, MmuPV1-infected Iqgap1-/- mice developed significantly less severe tumor phenotypes than MmuPV1-infected Iqgap1+/+ mice, indicating a role of IQGAP1 in MmuPV1-associated HNSCC. The tumors resulting from MmuPV1 infection showed features consistent with HPV infection and HPV-associated cancer. However, such IQGAP1-dependent effects on disease severity were not observed in an HPV16 transgenic mouse model for HNC. This may reflect that IQGAP1 plays a role in earlier stages of viral pathogenesis, or other activities of HPV16 oncogenes are more dominant in driving carcinogenesis than their influence on PI3K signaling.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (R.A.A.)
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | - Denis Lee
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (R.A.A.)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| |
Collapse
|
7
|
Ha E, Bae SC, Kim K. Large-scale meta-analysis across East Asian and European populations updated genetic architecture and variant-driven biology of rheumatoid arthritis, identifying 11 novel susceptibility loci. Ann Rheum Dis 2021; 80:558-565. [PMID: 33310728 PMCID: PMC8053349 DOI: 10.1136/annrheumdis-2020-219065] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Nearly 110 susceptibility loci for rheumatoid arthritis (RA) with modest effect sizes have been identified by population-based genetic association studies, suggesting a large number of undiscovered variants behind a highly polygenic genetic architecture of RA. Here, we performed the largest-ever trans-ancestral meta-analysis with the aim to identify new RA loci and to better understand RA biology underlying genetic associations. METHODS Genome-wide RA association summary statistics in three large case-control collections consisting of 311 292 individuals of Korean, Japanese and European populations were used in an inverse-variance-weighted fixed-effects meta-analysis. Several computational analyses using public omics resources were conducted to prioritise causal variants and genes, RA variant-implicating features (tissues, pathways and transcription factors) and potentially repurposable drugs for RA treatment. RESULTS We identified 11 new RA susceptibility loci that explained 6.9% and 1.8% of the single-nucleotide polymorphism-based heritability in East Asians and Europeans, respectively, and confirmed 71 known non-human leukocyte antigens (HLA) susceptibility loci, identifying 90 independent association signals. The RA variants were preferentially located in binding sites of various transcription factors and in cell type-specific transcription-activation histone marks that simultaneously highlighted the importance of CD4+ T-cell activation and the potential role of non-immune organs in RA pathogenesis. A total of 615 plausible effector genes, based on gene-based associations, expression-associated variants and chromatin interaction, included targets of drugs approved for RA treatments and potentially repurposable drugs approved for other indications. CONCLUSION Our findings provide useful insights regarding RA genetic aetiology and variant-driven RA pathogenesis.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Meng KP, Majedi FS, Thauland TJ, Butte MJ. Mechanosensing through YAP controls T cell activation and metabolism. J Exp Med 2021; 217:151831. [PMID: 32484502 PMCID: PMC7398163 DOI: 10.1084/jem.20200053] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Upon immunogenic challenge, lymph nodes become mechanically stiff as immune cells activate and proliferate within their encapsulated environments, and with resolution, they reestablish a soft baseline state. Here we show that sensing these mechanical changes in the microenvironment requires the mechanosensor YAP. YAP is induced upon activation and suppresses metabolic reprogramming of effector T cells. Unlike in other cell types in which YAP promotes proliferation, YAP in T cells suppresses proliferation in a stiffness-dependent manner by directly restricting the translocation of NFAT1 into the nucleus. YAP slows T cell responses in systemic viral infections and retards effector T cells in autoimmune diabetes. Our work reveals a paradigm whereby tissue mechanics fine-tune adaptive immune responses in health and disease.
Collapse
Affiliation(s)
- Kevin P Meng
- Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Fatemeh S Majedi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA
| | - Timothy J Thauland
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Cao L, Yonis A, Vaghela M, Barriga EH, Chugh P, Smith MB, Maufront J, Lavoie G, Méant A, Ferber E, Bovellan M, Alberts A, Bertin A, Mayor R, Paluch EK, Roux PP, Jégou A, Romet-Lemonne G, Charras G. SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical actin organization. Nat Cell Biol 2020; 22:803-814. [PMID: 32572169 DOI: 10.1038/s41556-020-0531-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/04/2020] [Indexed: 01/02/2023]
Abstract
Cell shape is controlled by the submembranous cortex, an actomyosin network mainly generated by two actin nucleators: the Arp2/3 complex and the formin mDia1. Changes in relative nucleator activity may alter cortical organization, mechanics and cell shape. Here we investigate how nucleation-promoting factors mediate interactions between nucleators. In vitro, the nucleation-promoting factor SPIN90 promotes formation of unbranched filaments by Arp2/3, a process thought to provide the initial filament for generation of dendritic networks. Paradoxically, in cells, SPIN90 appears to favour a formin-dominated cortex. Our in vitro experiments reveal that this feature stems mainly from two mechanisms: efficient recruitment of mDia1 to SPIN90-Arp2/3 nucleated filaments and formation of a ternary SPIN90-Arp2/3-mDia1 complex that greatly enhances filament nucleation. Both mechanisms yield rapidly elongating filaments with mDia1 at their barbed ends and SPIN90-Arp2/3 at their pointed ends. Thus, in networks, SPIN90 lowers branching densities and increases the proportion of long filaments elongated by mDia1.
Collapse
Affiliation(s)
- Luyan Cao
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Amina Yonis
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | - Malti Vaghela
- London Centre for Nanotechnology, University College London, London, UK.,Department of Physics and Astronomy, University College London, London, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, London, UK.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Priyamvada Chugh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Matthew B Smith
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK.,The Francis Crick institute, London, UK
| | - Julien Maufront
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Universités, Paris, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Antoine Méant
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Emma Ferber
- London Centre for Nanotechnology, University College London, London, UK
| | - Miia Bovellan
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | - Art Alberts
- Van Andel research institute, Grand Rapids, MI, USA
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Universités, Paris, France
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Ewa K Paluch
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK.,Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Canada
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | | | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK. .,Department of Cell and Developmental Biology, University College London, London, UK. .,Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
10
|
Tayama S, Okuyama Y, Phung HT, Asao A, Kobayashi S, Musha T, Machiyama T, Sakurai T, Zhang C, Ushio-Fukai M, Kawabe T, So T, Ishii N. IQ motif-containing GTPase-activating protein 1 is essential for the optimal maintenance of lung ILC2s. Int Immunol 2020; 32:233-241. [PMID: 31819988 DOI: 10.1093/intimm/dxz077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play critical roles in type 2 immunity and are crucial for pathogenesis of various types of inflammatory disease. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein that is involved in multiple cellular functions such as cell survival and trafficking. While the roles for IQGAP1 in T and B lymphocytes have been uncovered, the physiological significance of IQGAP1 in innate lymphocytes remains to be elucidated. In the current study, we demonstrate that using bone marrow chimeras, the deficiency of IQGAP1 caused an impaired survival of lung ILC2s in a cell-intrinsic manner and that Iqgap1-/- mice displayed decreased accumulation of ILC2s after administration of papain and thereby reduced the pathology of the disease. Moreover, Iqgap1-/- ILC2s showed a significantly enhanced apoptosis as compared to wild-type ILC2s under both steady-state and inflammatory conditions. Together these results identify for the first time that IQGAP1 is essential for homeostasis of ILC2s in the lung.
Collapse
Affiliation(s)
- Shunichi Tayama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hai The Phung
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Asao
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuhei Kobayashi
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomi Musha
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoaki Machiyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Sakurai
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chengming Zhang
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masuko Ushio-Fukai
- Department of Medicine (Cardiology), Augusta University, Augusta, GA, USA
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Centrioles control the capacity, but not the specificity, of cytotoxic T cell killing. Proc Natl Acad Sci U S A 2020; 117:4310-4319. [PMID: 32041868 DOI: 10.1073/pnas.1913220117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunological synapse formation between cytotoxic T lymphocytes (CTLs) and the target cells they aim to destroy is accompanied by reorientation of the CTL centrosome to a position beneath the synaptic membrane. Centrosome polarization is thought to enhance the potency and specificity of killing by driving lytic granule fusion at the synapse and thereby the release of perforin and granzymes toward the target cell. To test this model, we employed a genetic strategy to delete centrioles, the core structural components of the centrosome. Centriole deletion altered microtubule architecture as expected but surprisingly had no effect on lytic granule polarization and directional secretion. Nevertheless, CTLs lacking centrioles did display substantially reduced killing potential, which was associated with defects in both lytic granule biogenesis and synaptic actin remodeling. These results reveal an unexpected role for the intact centrosome in controlling the capacity but not the specificity of cytotoxic killing.
Collapse
|
12
|
Trenton NJ, McLaughlin RT, Bellamkonda SK, Tsao DS, Rodzinski A, Mace EM, Orange JS, Schweikhard V, Diehl MR. Membrane and Actin Tethering Transitions Help IQGAP1 Coordinate GTPase and Lipid Messenger Signaling. Biophys J 2020; 118:586-599. [PMID: 31952801 PMCID: PMC7002982 DOI: 10.1016/j.bpj.2019.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
The coordination of lipid messenger signaling with cytoskeletal regulation is central to many organelle-specific regulatory processes. This coupling often depends on the function of multidomain scaffolds that orchestrate transient interactions among multiple signaling intermediates and regulatory proteins on organelles. The number of possible scaffold interaction partners and the ability for these interactions to occur at different timescales makes investigations of scaffold functions challenging. This work employs live cell imaging to probe how the multidomain scaffold IQ motif containing GTPase activating protein 1 (IQGAP1) coordinates the activities of proteins affecting local actin polymerization, membrane processing, and phosphoinositide signaling. Using endosomes that are confined by a local actin network as a model system, we demonstrate that IQGAP1 can transition between different actin and endosomal membrane tethered states. Fast scaffold binding/disassociation transitions are shown to be driven by interactions between C-terminal scaffold domains and Rho GTPases at the membrane. Fluctuations in these binding modes are linked to negative regulation of actin polymerization. Although this control governs core elements of IQGAP1 dynamics, actin binding by the N-terminal calponin homology domain of the scaffold is shown to help the scaffold track the temporal development of endosome membrane markers, implying actin associations bolster membrane and actin coordination. Importantly, these effects are not easily distilled purely through standard (static) co-localization analyses or traditional pathway perturbations methods and were resolved by performing dynamic correlation and multiple regression analyses of IQGAP1 scaffold mutants. Using these capabilities with pharmacological inhibition, we provide evidence that membrane tethering is dependent on the activities of the lipid kinase phosphoinositide 3-kinase in addition to the Rho GTPases Rac1 and Cdc42. Overall, these methods and results point to a scaffold tethering mechanism that allows IQGAP1 to help control the amplitude of phosphoinositide lipid messenger signaling by coordinating signaling intermediate activities with the development and disassembly of local actin cytoskeletal networks.
Collapse
Affiliation(s)
| | - R Tyler McLaughlin
- Department of Bioengineering, Rice University, Houston, Texas; Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, Texas
| | | | - David S Tsao
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, Texas; Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas.
| |
Collapse
|
13
|
Okuyama Y, Nagashima H, Ushio-Fukai M, Croft M, Ishii N, So T. IQGAP1 restrains T-cell cosignaling mediated by OX40. FASEB J 2019; 34:540-554. [PMID: 31914585 DOI: 10.1096/fj.201900879rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
A costimulatory signal from the tumor necrosis factor receptor (TNFR) family molecule OX40 (CD134), which is induced on activated T cells, is important for T-cell immunity. Aberrant OX40 cosignaling has been implicated in autoimmune and inflammatory disorders. However, the molecular mechanism by which the OX40 cosignaling regulates the T-cell response remains obscure. We found that OX40 associated with a scaffold protein, IQ motif-containing GTPase-activating protein 1 (IQGAP1) after ligation by its ligand OX40L. Naïve CD4+ T cells from Iqgap1-/- mice displayed enhanced proliferation and cytokine secretion upon receiving OX40 cosignaling. A C-terminal IQGAP1 region was responsible for its association with OX40, and TNFR-associated factor 2 (TRAF2) bridged these two proteins. The enhanced cytokine response in Iqgap1-/- T cells was restored by the expression of the C-terminal IQGAP1. Thus, the IQGAP1 binding limits the OX40 cosignaling. Disease severity of experimental autoimmune encephalomyelitis (EAE) was significantly exacerbated in Iqgap1-/- mice as compared to wild-type mice. Additionally, recipient mice with Iqgap1-/- donor CD4+ T cells exhibited significantly higher EAE scores than those with their wild-type counterparts, and OX40 blockade led to a significant reduction in the EAE severity. Thus, our study defines an important component of the OX40 cosignaling that restricts inflammation driven by antigen-activated T cells.
Collapse
Affiliation(s)
- Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
14
|
Wei T, Choi S, Buehler D, Anderson RA, Lambert PF. A PI3K/AKT Scaffolding Protein, IQ Motif-Containing GTPase Associating Protein 1 (IQGAP1), Promotes Head and Neck Carcinogenesis. Clin Cancer Res 2019; 26:301-311. [PMID: 31597661 DOI: 10.1158/1078-0432.ccr-19-1063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Head and neck cancer (HNC) is the sixth most common cancer worldwide with a 5-year survival rate of less than 50%. The PI3K/AKT/mTOR signaling pathway is frequently implicated in HNC. Recently, IQ motif-containing GTPase-activating protein 1 (IQGAP1) was discovered to scaffold the PI3K/AKT signaling pathway. IQGAP1 gene expression is increased in HNC, raising the hypothesis that IQGAP1 contributes to HNC. EXPERIMENTAL DESIGN We performed a combination of in vitro studies using human cancer cell lines treated with a cell-permeable peptide that interferes with IQGAP1's ability to bind to PI3K, and in vivo studies utilizing mice genetically knocked out for the Iqgap1 (Iqgap1 -/-). In vivo EGF stimulation assays were used to evaluate PI3K signaling. To study the role of IQGAP1 in HNC, we used a well-validated mouse model that drives HNC via a synthetic oral carcinogen, 4-nitroquinoline 1-oxide (4NQO). RESULTS IQGAP1 is necessary for efficient PI3K signaling in vitro and in vivo. Disruption of IQGAP1-scaffolded PI3K/AKT signaling reduced HNC cell survival. Iqgap1 -/- mice had significantly lower cancer incidences, lesser disease severity, and fewer cancer foci. IQGAP1 protein levels were increased in HNC arising in Iqgap1+/+ mice. The level of PI3K signaling in 4NQO-induced HNC arising in Iqgap1 -/- mice was significantly reduced, consistent with the hypothesis that IQGAP1 contributes to HNC at least partly through PI3K signaling. High IQGAP1 expression correlated with reduced survival, and high pS6 levels correlated with high IQGAP1 levels in patients with HNC. CONCLUSIONS These data demonstrate that IQGAP1 contributes to head and neck carcinogenesis.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
15
|
Hansson B, Morén B, Fryklund C, Vliex L, Wasserstrom S, Albinsson S, Berger K, Stenkula KG. Adipose cell size changes are associated with a drastic actin remodeling. Sci Rep 2019; 9:12941. [PMID: 31506540 PMCID: PMC6736966 DOI: 10.1038/s41598-019-49418-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue plays a major role in regulating whole-body insulin sensitivity and energy metabolism. To accommodate surplus energy, the tissue rapidly expands by increasing adipose cell size (hypertrophy) and cell number (hyperplasia). Previous studies have shown that enlarged, hypertrophic adipocytes are less responsive to insulin, and that adipocyte size could serve as a predictor for the development of type 2 diabetes. In the present study, we demonstrate that changes in adipocyte size correlate with a drastic remodeling of the actin cytoskeleton. Expansion of primary adipocytes following 2 weeks of high-fat diet (HFD)-feeding in C57BL6/J mice was associated with a drastic increase in filamentous (F)-actin as assessed by fluorescence microscopy, increased Rho-kinase activity, and changed expression of actin-regulating proteins, favoring actin polymerization. At the same time, increased cell size was associated with impaired insulin response, while the interaction between the cytoskeletal scaffolding protein IQGAP1 and insulin receptor substrate (IRS)-1 remained intact. Reversed feeding from HFD to chow restored cell size, insulin response, expression of actin-regulatory proteins and decreased the amount of F-actin filaments. Together, we report a drastic cytoskeletal remodeling during adipocyte expansion, a process which could contribute to deteriorating adipocyte function.
Collapse
Affiliation(s)
- Björn Hansson
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Björn Morén
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Claes Fryklund
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Lars Vliex
- Lund University, Department of Experimental Medical Science, Lund, Sweden.,Maastricht University, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
| | | | | | - Karin Berger
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Karin G Stenkula
- Lund University, Department of Experimental Medical Science, Lund, Sweden.
| |
Collapse
|
16
|
Hammer JA, Wang JC, Saeed M, Pedrosa AT. Origin, Organization, Dynamics, and Function of Actin and Actomyosin Networks at the T Cell Immunological Synapse. Annu Rev Immunol 2019; 37:201-224. [PMID: 30576253 PMCID: PMC8343269 DOI: 10.1146/annurev-immunol-042718-041341] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.
Collapse
Affiliation(s)
- John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jia C Wang
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mezida Saeed
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Antonio T Pedrosa
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
17
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Tocker AM, Durocher E, Jacob KD, Trieschman KE, Talento SM, Rechnitzer AA, Roberts DM, Davis BK. The Scaffolding Protein IQGAP1 Interacts with NLRC3 and Inhibits Type I IFN Production. THE JOURNAL OF IMMUNOLOGY 2017; 199:2896-2909. [PMID: 28864474 DOI: 10.4049/jimmunol.1601370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
Sensing of cytosolic nucleotides is a critical initial step in the elaboration of type I IFN. One of several upstream receptors, cyclic GMP-AMP synthase, binds to cytosolic DNA and generates dicyclic nucleotides that act as secondary messengers. These secondary messengers bind directly to stimulator of IFN genes (STING). STING recruits TNFR-associated NF-κB kinase-binding kinase 1 which acts as a critical node that allows for efficient activation of IFN regulatory factors to drive the antiviral transcriptome. NLRC3 is a recently characterized nucleotide-binding domain, leucine-rich repeat containing protein (NLR) that negatively regulates the type I IFN pathway by inhibiting subcellular redistribution and effective signaling of STING, thus blunting the transcription of type I IFNs. NLRC3 is predominantly expressed in lymphoid and myeloid cells. IQGAP1 was identified as a putative interacting partner of NLRC3 through yeast two-hybrid screening. In this article, we show that IQGAP1 associates with NLRC3 and can disrupt the NLRC3-STING interaction in the cytosol of human epithelial cells. Furthermore, knockdown of IQGAP1 in THP1 and HeLa cells causes significantly more IFN-β production in response to cytosolic nucleic acids. This result phenocopies NLRC3-deficient macrophages and fibroblasts and short hairpin RNA knockdown of NLRC3 in THP1 cells. Our findings suggest that IQGAP1 is a novel regulator of type I IFN production, possibly via interacting with NLRC3 in human monocytic and epithelial cells.
Collapse
Affiliation(s)
- Aaron M Tocker
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Emily Durocher
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Kimberly D Jacob
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Kate E Trieschman
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Suzanna M Talento
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Alma A Rechnitzer
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Beckley K Davis
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| |
Collapse
|
19
|
Azoulay-Alfaguter I, Strazza M, Peled M, Novak HK, Muller J, Dustin ML, Mor A. The tyrosine phosphatase SHP-1 promotes T cell adhesion by activating the adaptor protein CrkII in the immunological synapse. Sci Signal 2017; 10:10/491/eaal2880. [PMID: 28790195 DOI: 10.1126/scisignal.aal2880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The adaptor protein CrkII regulates T cell adhesion by recruiting the guanine nucleotide exchange factor C3G, an activator of Rap1. Subsequently, Rap1 stimulates the integrin LFA-1, which leads to T cell adhesion and interaction with antigen-presenting cells (APCs). The adhesion of T cells to APCs is critical for their proper function and education. The interface between the T cell and the APC is known as the immunological synapse. It is characterized by the specific organization of proteins that can be divided into central supramolecular activation clusters (c-SMACs) and peripheral SMACs (p-SMACs). Through total internal reflection fluorescence (TIRF) microscopy and experiments with supported lipid bilayers, we determined that activated Rap1 was recruited to the immunological synapse and localized to the p-SMAC. C3G and the active (dephosphorylated) form of CrkII also localized to the same compartment. In contrast, inactive (phosphorylated) CrkII was confined to the c-SMAC. Activation of CrkII and its subsequent movement from the c-SMAC to the p-SMAC depended on the phosphatase SHP-1, which acted downstream of the T cell receptor. In the p-SMAC, CrkII recruited C3G, which led to Rap1 activation and LFA-1-mediated adhesion of T cells to APCs. Functionally, SHP-1 was necessary for both the adhesion and migration of T cells. Together, these data highlight a signaling pathway in which SHP-1 acts through CrkII to reshape the pattern of Rap1 activation in the immunological synapse.
Collapse
Affiliation(s)
| | - Marianne Strazza
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Michael Peled
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hila K Novak
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Kennedy Institute for Rheumatology, Oxford University, Oxford, UK
| | - James Muller
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael L Dustin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Kennedy Institute for Rheumatology, Oxford University, Oxford, UK
| | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA. .,Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Bardwell AJ, Lagunes L, Zebarjedi R, Bardwell L. The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. J Biol Chem 2017; 292:8750-8761. [PMID: 28396345 DOI: 10.1074/jbc.m116.767087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) scaffold proteins, such as IQ motif containing GTPase activating protein 1 (IQGAP1), are promising targets for novel therapies against cancer and other diseases. Such approaches require accurate information about which domains on the scaffold protein bind to the kinases in the MAPK cascade. Results from previous studies have suggested that the WW domain of IQGAP1 binds to the cancer-associated MAPKs ERK1 and ERK2, and that this domain might thus offer a new tool to selectively inhibit MAPK activation in cancer cells. The goal of this work was therefore to critically evaluate which IQGAP1 domains bind to ERK1/2. Here, using quantitative in vitro binding assays, we show that the IQ domain of IQGAP1 is both necessary and sufficient for binding to ERK1 and ERK2, as well as to the MAPK kinases MEK1 and MEK2. Furthermore, we show that the WW domain is not required for ERK-IQGAP1 binding, and contributes little or no binding energy to this interaction, challenging previous models of how WW-based peptides might inhibit tumorigenesis. Finally, we show that the ERK2-IQGAP1 interaction does not require ERK2 phosphorylation or catalytic activity and does not involve known docking recruitment sites on ERK2, and we obtain an estimate of the dissociation constant (Kd ) for this interaction of 8 μm These results prompt a re-evaluation of published findings and a refined model of IQGAP scaffolding.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Leonila Lagunes
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Ronak Zebarjedi
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
21
|
Wang JC, Lee JYJ, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 2017; 130:1094-1109. [PMID: 28167682 DOI: 10.1242/jcs.191858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse, a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves polarization of the microtubule-organizing center (MTOC) towards the APC. We now show that BCR-induced MTOC polarization requires the Rap1 GTPase (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. We also show that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170 (also known as CLIP1). Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. Thus the Rap1-cofilin-1 pathway coordinates actin and microtubule organization at the immune synapse.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jeff Y-J Lee
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sonja Christian
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - May Dang-Lawson
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Caitlin Pritchard
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Spencer A Freeman
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
22
|
Voisinne G, García-Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, Malissen M, Burlet-Schiltz O, Gonzalez de Peredo A, Malissen B, Roncagalli R. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol 2016; 12:876. [PMID: 27474268 PMCID: PMC4965873 DOI: 10.15252/msb.20166837] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell receptor (TCR) signaling is essential for the function of T cells and negatively regulated by the E3 ubiquitin-protein ligases CBL and CBLB Here, we combined mouse genetics and affinity purification coupled to quantitative mass spectrometry to monitor the dynamics of the CBL and CBLB signaling complexes that assemble in normal T cells over 600 seconds of TCR stimulation. We identify most previously known CBL and CBLB interacting partners, as well as a majority of proteins that have not yet been implicated in those signaling complexes. We exploit correlations in protein association with CBL and CBLB as a function of time of TCR stimulation for predicting the occurrence of direct physical association between them. By combining co-recruitment analysis with biochemical analysis, we demonstrated that the CD5 transmembrane receptor constitutes a key scaffold for CBL- and CBLB-mediated ubiquitylation following TCR engagement. Our results offer an integrated view of the CBL and CBLB signaling complexes induced by TCR stimulation and provide a molecular basis for their negative regulatory function in normal T cells.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Antonio García-Blesa
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
23
|
Scaffolding protein IQGAP1: an insulin-dependent link between caveolae and the cytoskeleton in primary human adipocytes? Biochem J 2016; 473:3177-88. [PMID: 27458251 DOI: 10.1042/bcj20160581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed IQ motif-containing GTPase activating protein-1 (IQGAP1) is a scaffolding protein implicated in an array of cellular functions, in particular by binding to cytoskeletal elements and signaling proteins. A role of IQGAP1 in adipocytes has not been reported. We therefore investigated the cellular IQGAP1 interactome in primary human adipocytes. Immunoprecipitation and quantitative mass spectrometry identified caveolae and caveolae-associated proteins as the major IQGAP1 interactors alongside cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced abundance of IQGAP1 in adipocytes from patients with type 2 diabetes compared with cells from nondiabetic control subjects. Both the abundance of IQGAP1 protein and mRNA were reduced, indicating a transcriptional defect in diabetes. Our findings suggest a novel role of IQGAP1 in insulin-regulated interaction between caveolae and cytoskeletal elements of the adipocyte, and that this is quelled in the diabetic state.
Collapse
|
24
|
Bamidele AO, Kremer KN, Hirsova P, Clift IC, Gores GJ, Billadeau DD, Hedin KE. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes. J Cell Biol 2016. [PMID: 26195666 PMCID: PMC4508899 DOI: 10.1083/jcb.201411045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IQGAP1 mediates CXCR4 cell surface expression and signaling by regulating EEA-1+ endosome interactions with microtubules during CXCR4 trafficking and recycling. IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Ian C Clift
- Department of Immunology, Mayo Clinic, Rochester, MN 55905 Neurobiology of Disease Research Program, Mayo Clinic, Rochester, MN 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN 55905 Division of Oncology Research, Mayo Clinic, Rochester, MN 55905
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
25
|
Lin W, Suo Y, Deng Y, Fan Z, Zheng Y, Wei X, Chu Y. Morphological change of CD4(+) T cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse. BMC Immunol 2015; 16:49. [PMID: 26306899 PMCID: PMC4549951 DOI: 10.1186/s12865-015-0108-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The changes in T-cell morphology during immunological synapse (IS) formation are essential for T-cell activation. Previous researches have shown that T cell changed from spherical to elongated and/or flattened during in contact with B cell. As most powerful antigen presenting cell, dendritic cell (DC) has a strong ability to activate T cells. However, the morphological change of T cell which contacts DC and the relationship between morphological change and T-cell activation are not very clear. Thus, we studied the morphological change of CD4(+) T cell during contact with DC. RESULTS Using live-cell imaging, we discovered diversity in the T-cell morphological changes during contact with DCs. The elongation-flattening of CD4(+) T cells correlated with a low-level Ca(2+) response and a loss of T-cell receptor (TCR) signalling molecules in the IS, including zeta-chain associated protein kinase 70 (ZAP-70), phospholipase C-γ (PLC-γ) and protein kinase C-θ (PKC-θ), whereas rounding-flattening correlated with sufficient CD4(+) T-cell activation. Different morphological changes were correlated with the different amount of accumulated filamentous actin (F-actin) in the IS. Disruption of F-actin by cytochalasin D impaired the morphological change and the localisation of calcium microdomains in the IS and decreased the calcium response in CD4(+) T cells. CONCLUSION Our study discovered the diversity in morphological change of T cells during contacted with DCs. During this process, the different morphological changes of T cells modulate T-cell activation by the different amount of F-actin accumulation in the IS, which controls the distribution of calcium microdomains to affect T-cell activation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yuting Deng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yijie Zheng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Yiwei Chu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Comrie WA, Babich A, Burkhardt JK. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. ACTA ACUST UNITED AC 2015; 208:475-91. [PMID: 25666810 PMCID: PMC4332248 DOI: 10.1083/jcb.201406121] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Holck S, Nielsen HJ, Hammer E, Christensen IJ, Larsson LI. IQGAP1 in rectal adenocarcinomas: Localization and protein expression before and after radiochemotherapy. Cancer Lett 2015; 356:556-60. [DOI: 10.1016/j.canlet.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/13/2023]
|
29
|
Mueller N, Avota E, Collenburg L, Grassmé H, Schneider-Schaulies S. Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog 2014; 10:e1004574. [PMID: 25521388 PMCID: PMC4270778 DOI: 10.1371/journal.ppat.1004574] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022] Open
Abstract
T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression. Though the ability of measles virus (MV) to impair T cell activation has long been known, it is mechanistically not well understood. We have shown earlier that MV can contact dependently trigger activation of sphingomyelinases which is known to affect compartmentalization of membrane lipids and proteins. Because these are particularly important in the activity of the immune synapse (IS), we investigated whether MV-induced sphingomyelinase activity would interfere at that level with T cell activation. Our study for the first time revealed that the neutral sphingomyelinase 2 (NSM2) is transiently activated in primary T cells by co-stimulation through CD3 and CD28, and that this does occur to dampen early T cell responses. The virus appears to exploit this inhibitory activity of the enzyme to suppress T cell activation by promoting an enhanced and prolonged NSM2 activation. These findings do not only assign a hitherto novel role of the NSM2 in regulating T cell responses, but also reveal a novel strategy for viral T cell suppression.
Collapse
Affiliation(s)
- Nora Mueller
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | - Elita Avota
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | - Lena Collenburg
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | | | | |
Collapse
|
30
|
|
31
|
Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev 2014; 256:118-32. [PMID: 24117817 DOI: 10.1111/imr.12110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.
Collapse
Affiliation(s)
- Helena Soares
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France; CNRS, URA-1961, Paris, France
| | | | | |
Collapse
|
32
|
Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol 2014; 5:2. [PMID: 24478771 PMCID: PMC3896857 DOI: 10.3389/fimmu.2014.00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA ; Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
33
|
Kim J, Shapiro MJ, Bamidele AO, Gurel P, Thapa P, Higgs HN, Hedin KE, Shapiro VS, Billadeau DD. Coactosin-like 1 antagonizes cofilin to promote lamellipodial protrusion at the immune synapse. PLoS One 2014; 9:e85090. [PMID: 24454796 PMCID: PMC3890291 DOI: 10.1371/journal.pone.0085090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Actin depolymerizing factor-homology (ADF-H) family proteins regulate actin filament dynamics at multiple cellular locations. Herein, we have investigated the function of the ADF-H family member coactosin-like 1 (COTL1) in the regulation of actin dynamics at the T cell immune synapse (IS). We initially identified COTL1 in a genetic screen to identify novel regulators of T cell activation, and subsequently found that it associates with F-actin and localizes at the IS in response to TCR+CD28 stimulation. Live cell microscopy showed that depletion of COTL1 protein impaired T cell spreading in response to TCR ligation and abrogated lamellipodial protrusion at the T cell – B cell contact site, producing only a band of F-actin. Significantly, re-expression of wild type COTL1, but not a mutant deficient in F-actin binding could rescue these defects. In addition, COTL1 depletion reduced T cell migration. In vitro studies showed that COTL1 and cofilin compete with each other for binding to F-actin, and COTL1 protects F-actin from cofilin-mediated depolymerization. While depletion of cofilin enhanced F-actin assembly and lamellipodial protrusion at the IS, concurrent depletion of both COTL1 and cofilin restored lamellipodia formation. Taken together, our results suggest that COTL1 regulates lamellipodia dynamics in part by protecting F-actin from cofilin-mediated disassembly.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Shapiro
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Adebowale O. Bamidele
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Pinar Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Puspa Thapa
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Henry N. Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karen E. Hedin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Virginia S. Shapiro
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (DDB); (VSS)
| | - Daniel D. Billadeau
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (DDB); (VSS)
| |
Collapse
|
34
|
Abstract
It has been over 30 years since the reorganization of both the microtubule network and a 'peculiar actin polarization' was reported at the contact area of cytotoxic T lymphocytes interacting with target cells. Since that time, hundreds of studies have been published in an effort to elucidate the structure and function of the microtubule network and the actin cytoskeleton in T-cell activation, migration, and effector function at the interface between a T cell and its cognate antigen-presenting cell or target cell. This interface has become known as the immunological synapse, and this review examines some of the roles played by the cytoskeleton at the synapse.
Collapse
Affiliation(s)
- Alex T Ritter
- Cambridge Institute for Medical Research, University of Cambridge Biomedical CampusCambridge, UK
| | - Karen L Angus
- Cambridge Institute for Medical Research, University of Cambridge Biomedical CampusCambridge, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge Biomedical CampusCambridge, UK
| |
Collapse
|
35
|
Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N. IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 2013; 123:1138-56. [PMID: 23454766 PMCID: PMC3582119 DOI: 10.1172/jci63836] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/06/2012] [Indexed: 01/11/2023] Open
Abstract
In the tumor microenvironment, TGF-β induces transdifferentiation of quiescent pericytes and related stromal cells into myofibroblasts that promote tumor growth and metastasis. The mechanisms governing myofibroblastic activation remain poorly understood, and its role in the tumor microenvironment has not been explored. Here, we demonstrate that IQ motif containing GTPase activating protein 1 (IQGAP1) binds to TGF-β receptor II (TβRII) and suppresses TβRII-mediated signaling in pericytes to prevent myofibroblastic differentiation in the tumor microenvironment. We found that TGF-β1 recruited IQGAP1 to TβRII in hepatic stellate cells (HSCs), the resident liver pericytes. Iqgap1 knockdown inhibited the targeting of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor 1 (SMURF1) to the plasma membrane and TβRII ubiquitination and degradation. Thus, Iqgap1 knockdown stabilized TβRII and potentiated TGF-β1 transdifferentiation of pericytes into myofibroblasts in vitro. Iqgap1 deficiency in HSCs promoted myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of paracrine signaling molecules. Additionally, we found that IQGAP1 expression was downregulated in myofibroblasts associated with human colorectal liver metastases. Taken together, our studies demonstrate that IQGAP1 in the tumor microenvironment suppresses TβRII and TGF-β dependent myofibroblastic differentiation to constrain tumor growth.
Collapse
Affiliation(s)
- Chunsheng Liu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel D. Billadeau
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Haitham Abdelhakim
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Leof
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kozo Kaibuchi
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Carmelo Bernabeu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - George S. Bloom
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Liu Yang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lisa Boardman
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
36
|
Purbhoo MA. The function of sub-synaptic vesicles during T-cell activation. Immunol Rev 2012; 251:36-48. [DOI: 10.1111/imr.12012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco A. Purbhoo
- Section of Hepatology & Gastroenterology; Department of Medicine; Imperial College London; London; UK
| |
Collapse
|