1
|
Qiu J, Zhang Y. Sex Hormone-Related Pathogenic Genes in Multiple Sclerosis: A Multi-omics Mendelian Randomization Study. J Mol Neurosci 2025; 75:58. [PMID: 40285955 DOI: 10.1007/s12031-025-02347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease with complex etiologies, including genetic factors. Sex hormones have been implicated in MS pathogenesis, but the underlying genetic mechanisms remain unclear.This study employed a multi-omics Mendelian randomization (MR) approach to evaluate the causal associations between sex hormone-related genes and MS. We utilized summary data from genome-wide association studies (GWAS) and blood-based methylation quantitative trait loci (mQTLs), expression QTL (eQTLs), and proteomic QTL (pQTLs). The analysis employed the summary data-based MR (SMR) method and the HEIDI test for pleiotropy. Colocalization analysis identified shared genetic determinants, validated in UK Biobank and FinnGen R10 cohort. Our study identified a total of 30 mQTLs and 15 eQTLs that confirmed the causal associations between sex hormone-related genes and MS by SMR and colocalization analyses. Notably, the methylation site cg19286687 of the DES gene was positively associated with MS risk. Similarly, DES expression was positively associated with MS risk in eQTL data. Integration of mQTL and eQTL data revealed a positive regulatory association between cg19286687 and DES expression, suggesting that low methylation level of cg19286687 may inhibit DES expression, potentially contributing to MS risk reduction. This multi-omics MR study suggests a potential causal association between sex hormone-related genes and MS. The findings highlight the importance of DES and its methylation the pathogenesis of MS, offering new ideas on disease mechanisms.
Collapse
Affiliation(s)
- Jiting Qiu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuwen Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseasesof the, Shanghai National Center for Translational Medicine, National Health Commission of the PR China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Mangani D, Subramanian A, Huang L, Cheng H, Krovi SH, Wu Y, Yang D, Moreira TG, Escobar G, Schnell A, Dixon KO, Krishnan RK, Singh V, Sobel RA, Weiner HL, Kuchroo VK, Anderson AC. Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic Th17 cell state. Immunity 2024; 57:2565-2582.e6. [PMID: 39447575 PMCID: PMC11614491 DOI: 10.1016/j.immuni.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
T helper (Th) 17 cells encompass a spectrum of cell states, including cells that maintain homeostatic tissue functions and pro-inflammatory cells that can drive autoimmune tissue damage. Identifying regulators that determine Th17 cell states can identify ways to control tissue inflammation and restore homeostasis. Here, we found that interleukin (IL)-23, a cytokine critical for inducing pro-inflammatory Th17 cells, decreased transcription factor T cell factor 1 (TCF1) expression. Conditional deletion of TCF1 in mature T cells increased the pro-inflammatory potential of Th17 cells, even in the absence of IL-23 receptor signaling, and conferred pro-inflammatory potential to homeostatic Th17 cells. Conversely, sustained TCF1 expression decreased pro-inflammatory Th17 potential. Mechanistically, TCF1 bound to RORγt, thereby interfering with its pro-inflammatory functions, and orchestrated a regulatory network that determined Th17 cell state. Our findings identify TCF1 as a major determinant of Th17 cell state and provide important insight for the development of therapies for Th17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Ayshwarya Subramanian
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linglin Huang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hanning Cheng
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - S Harsha Krovi
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Yufan Wu
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dandan Yang
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Thais G Moreira
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Giulia Escobar
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Alexandra Schnell
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Rajesh K Krishnan
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | | | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Howard L Weiner
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Wang Z, Heid B, He J, Xie H, Reilly CM, Dai R, Ahmed SA. Egr2 Deletion in Autoimmune-Prone C57BL6/lpr Mice Suppresses the Expression of Methylation-Sensitive Dlk1-Dio3 Cluster MicroRNAs. Immunohorizons 2023; 7:898-907. [PMID: 38153351 PMCID: PMC10759154 DOI: 10.4049/immunohorizons.2300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
We previously demonstrated that the upregulation of microRNAs (miRNAs) at the genomic imprinted Dlk1-Dio3 locus in murine lupus is correlated with global DNA hypomethylation. We now report that the Dlk1-Dio3 genomic region in CD4+ T cells of MRL/lpr mice is hypomethylated, linking it to increased Dlk1-Dio3 miRNA expression. We evaluated the gene expression of methylating enzymes, DNA methyltransferases (DNMTs), and demethylating ten-eleven translocation proteins (TETs) to elucidate the molecular basis of DNA hypomethylation in lupus CD4+ T cells. There was a significantly elevated expression of Dnmt1 and Dnmt3b, as well as Tet1 and Tet2, in CD4+ T cells of three different lupus-prone mouse strains compared to controls. These findings suggest that the hypomethylation of murine lupus CD4+ T cells is likely attributed to a TET-mediated active demethylation pathway. Moreover, we found that deletion of early growth response 2 (Egr2), a transcription factor gene in B6/lpr mice markedly reduced maternally expressed miRNA genes but not paternally expressed protein-coding genes at the Dlk1-Dio3 locus in CD4+ T cells. EGR2 has been shown to induce DNA demethylation by recruiting TETs. Surprisingly, we found that deleting Egr2 in B6/lpr mice induced more hypomethylated differentially methylated regions at either the whole-genome level or the Dlk1-Dio3 locus in CD4+ T cells. Although the role of methylation in EGR2-mediated regulation of Dlk1-Dio3 miRNAs is not readily apparent, these are the first data to show that in lupus, Egr2 regulates Dlk1-Dio3 miRNAs, which target major signaling pathways in autoimmunity. These data provide a new perspective on the role of upregulated EGR2 in lupus pathogenesis.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jianlin He
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
5
|
Gao Y, Wang Y, Chauss D, Villarino AV, Link VM, Nagashima H, Spinner CA, Koparde VN, Bouladoux N, Abers MS, Break TJ, Chopp LB, Park JH, Zhu J, Wiest DL, Leonard WJ, Lionakis MS, O'Shea JJ, Afzali B, Belkaid Y, Lazarevic V. Transcription factor EGR2 controls homing and pathogenicity of T H17 cells in the central nervous system. Nat Immunol 2023; 24:1331-1344. [PMID: 37443284 PMCID: PMC10500342 DOI: 10.1038/s41590-023-01553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yan Wang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIH Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hiroyuki Nagashima
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishal N Koparde
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy J Break
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura B Chopp
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Sanz M, Mann BT, Ryan PL, Bosque A, Pennington DJ, Hackstein H, Soriano-Sarabia N. Deep characterization of human γδ T cell subsets defines shared and lineage-specific traits. Front Immunol 2023; 14:1148988. [PMID: 37063856 PMCID: PMC10102470 DOI: 10.3389/fimmu.2023.1148988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Under non-pathological conditions, human γδ T cells represent a small fraction of CD3+ T cells in peripheral blood (1-10%). They constitute a unique subset of T lymphocytes that recognize stress ligands or non-peptide antigens through MHC-independent presentation. Major human γδ T cell subsets, Vδ1 and Vδ2, expand in response to microbial infection or malignancy, but possess distinct tissue localization, antigen recognition, and effector responses. We hypothesized that differences at the gene, phenotypic, and functional level would provide evidence that γδ T cell subpopulations belong to distinct lineages. Comparisons between each subset and the identification of the molecular determinants that underpin their differences has been hampered by experimental challenges in obtaining sufficient numbers of purified cells. By utilizing a stringent FACS-based isolation method, we compared highly purified human Vδ1 and Vδ2 cells in terms of phenotype, gene expression profile, and functional responses. We found distinct genetic and phenotypic signatures that define functional differences in γδ T cell populations. Differences in TCR components, repertoire, and responses to calcium-dependent pathways suggest that Vδ1 and Vδ2 T cells are different lineages. These findings will facilitate further investigation into the ligand specificity and unique role of Vδ1 and Vδ2 cells in early immune responses.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Brendan T. Mann
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Paul L. Ryan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Daniel J. Pennington
- Centre for Immunology, Blizzard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
7
|
Dai R, Wang Z, Heid B, Eden K, Reilly CM, Ahmed SA. EGR2 Deletion Suppresses Anti-DsDNA Autoantibody and IL-17 Production in Autoimmune-Prone B6/lpr Mice: A Differential Immune Regulatory Role of EGR2 in B6/lpr Versus Normal B6 Mice. Front Immunol 2022; 13:917866. [PMID: 35784356 PMCID: PMC9241489 DOI: 10.3389/fimmu.2022.917866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have reported that deletion of the transcription factor, early growth response protein 2 (EGR2), in normal C57BL/6 (B6) resulted in the development of lupus-like autoimmune disease. However, increased EGR2 expression has been noted in human and murine lupus, which challenges the notion of the autoimmune suppressive role of EGR2 in B6 mice. In this study, we derived both conditional EGR2-/-B6/lpr and EGR2-/-B6 mice to elucidate the immune and autoimmune regulatory roles of EGR2 in autoinflammation (B6/lpr) versus physiologically normal (B6) conditions. We found that conditional EGR2 deletion increased spleen weight, enhanced T cell activation and IFNγ production, and promoted germinal center B cells and LAG3+ regulatory T cells development in both B6/lpr and B6 mice. Nevertheless, EGR2 deletion also showed strikingly differential effects in these two strains on T lymphocyte subsets profile, Foxp3+ Tregs and plasma cell differentiation, anti-dsDNA autoantibodies and immunoglobulins production, and on the induction of IL-17 in in vitro activated splenocytes. Specifically, EGR2 deletion in B6/lpr mice significantly decreased serum levels of anti-dsDNA autoantibodies, total IgG, IgM, IgG1, and IgG2a with reduced plasma cells differentiation. Furthermore, EGR2 deletion in B6/lpr mice had no obvious effect on IgG immunocomplex deposition, medium caliber vessel, and glomeruli inflammation but increased complement C3 immunocomplex deposition and large caliber vessel inflammation in the kidneys. Importantly, we demonstrated that EGR2 deletion in B6/lpr mice significantly reduced pathogenic CD4-CD8-CD3+B220+ double negative T cells, which correlated with the reduced anti-dsDNA autoantibodies in serum and decreased IL-17 production in splenocytes of EGR2-/-B6/lpr mice. Together, our data strongly suggest that the role of EGR2 is complex. The immunoregulatory role of EGR2 varies at normal or autoinflammation conditions and should not be generalized in differential experimental settings.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- *Correspondence: S. Ansar Ahmed, ; Rujuan Dai,
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Kristin Eden
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- *Correspondence: S. Ansar Ahmed, ; Rujuan Dai,
| |
Collapse
|
8
|
Nian X, Li L, Ma X, Li X, Li W, Zhang N, Ohiolei JA, Li L, Dai G, Liu Y, Yan H, Fu B, Xiao S, Jia W. Understanding pathogen–host interplay by expression profiles of lncRNA and mRNA in the liver of Echinococcus multilocularis-infected mice. PLoS Negl Trop Dis 2022; 16:e0010435. [PMID: 35639780 PMCID: PMC9187083 DOI: 10.1371/journal.pntd.0010435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/10/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Almost all Echinococcus multilocularis (Em) infections occur in the liver of the intermediate host, causing a lethal zoonotic helminthic disease, alveolar echinococcosis (AE). However, the long non-coding RNAs (lncRNAs) expression profiles of the host and the potential regulatory function of lncRNA during Em infection are poorly understood. In this study, the profiles of lncRNAs and mRNAs in the liver of mice at different time points after Em infection were explored by microarray. Thirty-one differentially expressed mRNAs (DEMs) and 68 differentially expressed lncRNAs (DELs) were found continuously dysregulated. These DEMs were notably enriched in “antigen processing and presentation”, “Th1 and Th2 cell differentiation” and “Th17 cell differentiation” pathways. The potential predicted function of DELs revealed that most DELs might influence Th17 cell differentiation and TGF-β/Smad pathway of host by trans-regulating SMAD3, STAT1, and early growth response (EGR) genes. At 30 days post-infection (dpi), up-regulated DEMs were enriched in Toll-like and RIG-I-like receptor signaling pathways, which were validated by qRT-PCR, Western blotting and downstream cytokines detection. Furthermore, flow cytometric analysis and serum levels of the corresponding cytokines confirmed the changes in cell-mediated immunity in host during Em infection that showed Th1 and Th17-type CD4+ T-cells were predominant at the early infection stage whereas Th2-type CD4+ T-cells were significantly higher at the middle/late stage. Collectively, our study revealed the potential regulatory functions of lncRNAs in modulating host Th cell subsets and provide novel clues in understanding the influence of Em infection on host innate and adaptive immune response.
Collapse
Affiliation(s)
- Xiaofeng Nian
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Xusheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiurong Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - John Asekhaen Ohiolei
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Le Li
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Guodong Dai
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
| | - Yanhong Liu
- The Instrument Centre of State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- * E-mail: (HY); (SX); (WJ)
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, Jiangsu, P. R. China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
- * E-mail: (HY); (SX); (WJ)
| | - Wanzhong Jia
- State Key Laboratory of Veterinary Etiological Biology, National Professional Laboratory for Animal Echinococcosis, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Zoonoses of Agriculture Ministry, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, Jiangsu, P. R. China
- * E-mail: (HY); (SX); (WJ)
| |
Collapse
|
9
|
Li H, Wu H, Li W, Zhou J, Yang J, Peng W. Constructing a Multiple Sclerosis Diagnosis Model Based on Microarray. Front Neurol 2022; 12:721788. [PMID: 35126277 PMCID: PMC8812326 DOI: 10.3389/fneur.2021.721788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Multiple sclerosis is an immune-mediated demyelinating disorder of the central nervous system. Because of the complexity of etiology, pathology, clinical manifestations, and the diversity of classification, the diagnosis of MS is very difficult. We found that McDonald Criteria is very strict and relies heavily on the evidence for DIS and DIT. Therefore, we hope to find a new method to supplement the evidence and improve the accuracy of MS diagnosis. Results We finally selected GSE61240, GSE18781, and GSE185047 based on the GPL570 platform to build a diagnosis model. We initially selected 54 MS susceptibility locus genes identified by IMSGC and WTCCC2 as predictors for the model. After Random Forests and other series of screening, the logistic regression model was established with 4 genes as the final predictors. In external validation, the model showed high accuracy with an AUC of 0.96 and an accuracy of 86.30%. Finally, we established a nomogram and an online prediction tool to better display the diagnosis model. Conclusion The diagnosis model based on microarray data in this study has a high degree of discrimination and calibration in the validation set, which is helpful for diagnosis in the absence of evidence for DIS and DIT. Only one SLE case was misdiagnosed as MS, indicating that the model has a high specificity (93.93%), which is useful for differential diagnosis. The significance of the study lies in proving that it is feasible to identify MS by peripheral blood RNA, and the further application of the model and be used as a supplement to McDonald Criteria still need to be trained with larger sample size.
Collapse
Affiliation(s)
- Haoran Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiying Li
- Department of Comprehensive Surgery, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jiapei Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Wei Peng ; orcid.org/0000-0003-1384-9014
| |
Collapse
|
10
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
11
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Choi CY, Lee J. Molecular characterization of fish cytokine IL-17C from Amphiprion clarkii and its immunomodulatory effects on the responses to pathogen-associated molecular patterns and bacterial challenges. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110669. [PMID: 34428552 DOI: 10.1016/j.cbpb.2021.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022]
Abstract
Interleukin 17C (IL17C) is a cytokine that regulates innate immunity by recruiting antimicrobial peptides and pro-inflammatory cytokines. In this study, we characterized properties of IL-17C from Amphiprion clarkii also known as yellowtail clownfish (AcIL-17C). The AcIL-17C gene is 489 base pairs long and encodes a 163 amino acid long protein. AcIL-17C includes a signal peptide for localization in the extracellular space and comprises the IL-17 domain. The transcription analysis revealed that AcIL-17C mRNA was ubiquitously expressed in 12 tested tissues. Blood cells treated with polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharides (LPS), and Vibrio harveyi, AcIL-17C mRNA expression was upregulated at 6 h (following poly (I:C) and LPS treatments) and at 24 h post-injection (following all treatments). The downstream gene analysis of the epithelial fathead minnow (FHM) cells showed upregulated expression of genes, such as FHM_NK-Lysin, FHM_Hepcidin-1, FHM_Defensin-β, encoding antimicrobial peptides, as well as of FHM_IL-1β, FHM_TNF-A, FHM_IL-11, and FHM_STAT3 genes encoding inflammation-related proteins and IL-17C receptor genes FHM_IL-17RA, and FHM_IL-17RE at 12 and 24 h after treatment with AcIL-17C. The bacterial colony counting assay showed lower colony counts of Escherichia coli grown on FHM cells transfected with AcIL-17C carrying vector compared to those grown on control FHM cells. Further, AcIL-17C had a concentration-dependent positive effect on the survival of FHM cells infected with E. coli compared to the percentage of survived control cells. There has been a lack of studies characterizing the functions of teleost IL-17C. Therefore, these findings provide important information about the teleost host defense mechanisms and insights on the IL-17C-mediated antibacterial immunity.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea.
| |
Collapse
|
12
|
Zhou J, Zhang N, Zhang W, Lu C, Xu F. The YAP/HIF-1α/miR-182/EGR2 axis is implicated in asthma severity through the control of Th17 cell differentiation. Cell Biosci 2021; 11:84. [PMID: 33980319 PMCID: PMC8117288 DOI: 10.1186/s13578-021-00560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous chronic inflammatory disease of the airway, involving reversible airflow limitation and airway remodeling. T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. However, there is limited understanding of the signaling pathways controlling Th17 cell differentiation in asthma. The aim of this study was to investigate if the Yes-associated protein (YAP)/hypoxia inducible factor-1α (HIF-1α)/microRNA-182 (miR-182)/early growth response 2 (EGR2) axis is involved in mediating Th17 cell differentiation and disease severity in asthma. METHODS The study included 29 pediatric patients with asthma, 22 healthy volunteers, ovalbumin-induced murine asthma models, and mouse naive CD4+ T cells. The subpopulation of Th17 cells was examined by flow cytometry. The levels of interleukin-17A were determined by enzyme linked immunosorbent assay. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays and dual-luciferase reporter gene assays were performed to examine interactions between HIF-1α and miR-182, and between miR-182 and EGR2. RESULTS YAP, HIF-1α, and miR-182 were upregulated but EGR2 was downregulated in human and mouse peripheral blood mononuclear cells from the asthma group. Abundant expression of YAP and HIF-1α promoted miR-182 expression and then inhibited EGR2, a target of miR-182, thus enhancing Th17 differentiation and deteriorating asthma and lipid metabolism dysfunction. In addition, in vivo overexpression of EGR2 countered the promoting effect of the YAP/HIF-1α/miR-182 axis on asthma and lipid metabolism dysfunction. CONCLUSION These results indicate that activation of the YAP/HIF-1α/miR-182/EGR2 axis may promote Th17 cell differentiation, exacerbate asthma development, and aggravate lipid metabolism dysfunction, thus suggesting a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Ning Zhang
- Department of Imaging, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Caiju Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China
| | - Fei Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Street, Donghu District, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
13
|
Han S, Zhu T, Ding S, Wen J, Lin Z, Lu G, Zhang Y, Xiao W, Ding Y, Jia X, Chen H, Gong W. Early growth response genes 2 and 3 induced by AP-1 and NF-κB modulate TGF-β1 transcription in NK1.1 - CD4 + NKG2D + T cells. Cell Signal 2020; 76:109800. [PMID: 33011290 DOI: 10.1016/j.cellsig.2020.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
NK1.1- CD4+ NKG2D+ T cells are a subpopulation of regulatory T cells that downregulate the functions of CD4+ T, CD8+ T, natural killer (NK) cells, and macrophages through TGF-β1 production. Early growth response genes 2 (Egr2) and 3 (Egr3) maintain immune homeostasis by modulating T lymphocyte development, inhibiting effector T cell function, and promoting the induction of regulatory T cells. Whether Egr2 and Egr3 directly regulate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells remains elusive. The expression levels of Egr2 and Egr3 were higher in NK1.1- CD4+ NKG2D+ T cells than in NK1.1- CD4+ NKG2D- T cells. Egr2 and Egr3 expression were remarkably increased after stimulating NK1.1- CD4+ NKG2D+ T cells with sRAE or α-CD3/sRAE. The ectopic expression of Egr2 or Egr3 resulted in the enhancement of TGF-β1 expression, while knockdown of Egr2 or Egr3 led to the decreased expression of TGF-β1 in NK1.1- CD4+ NKG2D+ T cells. Egr2 and Egr3 directly bound with the TGF-β1 promoter as demonstrated by the electrophoretic mobility shift assay and dual-luciferase gene reporter assay. Furthermore, the Egr2 and Egr3 expression of NK1.1- CD4+ NKG2D+ T cells could be induced by the AP-1 and NF-κB transcriptional factors, but had no involvement with the activation of NF-AT and STAT3. In conclusion, Egr2 and Egr3 induced by AP-1 and NF-κB directly initiate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells. This study indicates that manipulating Egr2 and Egr3 expression would potentiate or alleviate the regulatory function of NK1.1- CD4+ NKG2D+ T cells and this strategy could be used in the therapy for patients with autoimmune diseases or tumor.
Collapse
Affiliation(s)
- Sen Han
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Tao Zhu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Shizhen Ding
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Jianqiang Wen
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Zhijie Lin
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Guotao Lu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
14
|
Symonds AL, Zheng W, Miao T, Wang H, Wang T, Kiome R, Hou X, Li S, Wang P. Egr2 and 3 control inflammation, but maintain homeostasis, of PD-1 high memory phenotype CD4 T cells. Life Sci Alliance 2020; 3:3/9/e202000766. [PMID: 32709717 PMCID: PMC7391068 DOI: 10.26508/lsa.202000766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
PD-1high memory CD4 T cells are pathogenic in autoimmune disease; here they show their expression of Egr2 is defective in rheumatoid arthritis and Egr2 & 3 control their inflammation and homeostasis. The transcription factors Egr2 and 3 are essential for controlling inflammatory autoimmune responses of memory phenotype (MP) CD4 T cells. However, the mechanism is still unclear. We have now found that the Egr2+ subset (PD-1high MP) of MP CD4 T cells expresses high levels of checkpoint molecules (PD-1 and Lag3) and also markers of effector T cells (CXCR3 and ICAM-1). Egr2/3 are not required for PD-1high MP CD4 cell development but mediate a unique transcriptional programme that effectively controls their inflammatory responses, while promoting homeostatic proliferation and adaptive responses. Egr2 negative PD-1high MP CD4 T cells are impaired in homeostatic proliferation and adaptive responses against viral infection but display inflammatory responses to innate stimulation such as IL-12. PD-1high MP CD4 T cells have recently been implicated in rheumatoid arthritis pathogenesis, and we have now found that Egr2 expression is reduced in PD-1high MP CD4 T cells from patients with active rheumatoid arthritis compared with healthy controls. These findings demonstrate that Egr2/3 control the inflammatory responses of PD-1high MP CD4 T cells and maintain their adaptive immune fitness.
Collapse
Affiliation(s)
- Alistair Lj Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wei Zheng
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haiyu Wang
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - TieShang Wang
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruth Kiome
- Bioscience, Brunel University, Uxbridge, UK
| | - Xiujuan Hou
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Suling Li
- Bioscience, Brunel University, Uxbridge, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Dai R, Heid B, Xu X, Xie H, Reilly CM, Ahmed SA. EGR2 is elevated and positively regulates inflammatory IFNγ production in lupus CD4 + T cells. BMC Immunol 2020; 21:41. [PMID: 32646370 PMCID: PMC7346656 DOI: 10.1186/s12865-020-00370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Background Recent studies have shown that early growth response 2 (EGR2) is highly induced in activated T cells and regulates T cell functions. In normal C57BL/6 (B6) mice, deletion of EGR2 in lymphocytes results in the development of lupus-like systemic autoimmune disease, which implies indirectly an autoimmune protective role of EGR2. Conversely, increased EGR2 gene expression is suggested to link with high risk of human lupus. In the present studies we sought to clarify the expression and inflammation regulatory role of EGR2 in murine lupus T cells directly. Results We performed RT-qPCR analysis and found a significant increase of EGR2 mRNA expression in human lupus PBMCs and in CD4+ T cells from three different murine lupus models including MRL-lpr, B6-lpr, and B6.sle123 mice at diseased stage when compared to age-matched control MRL or B6 mice. By performing intracellular flow cytometry analysis, we found that EGR2 protein expression was significantly increased in resting lupus (either MRL-lpr or B6.sle123) CD4+ T cells when compared to CD4+ T cells from their respective non-autoimmune controls. However, there was no difference of EGR2 protein expression in anti-CD3 and anti-CD28 stimulated control and lupus CD4+ T cells since there was a stronger induction of EGR2 in activated control CD4+ T cells. EGR2 expression was significantly increased in MRL-lpr mice at an age when lupus is manifested. To understand further the function of elevated EGR2 in lupus CD4+ T cells, we inhibited EGR2 with a specific siRNA in vitro in splenocytes from MRL-lpr and control MRL mice at 15 weeks-of-age. We found that EGR2 inhibition significantly reduced IFNγ production in PMA and ionomycin activated MRL-lpr lupus CD4+ T cells, but not control MRL CD4+ T cells. We also found that inhibition of EGR2 in vitro suppressed the Th1 differentiation in both MRL and MRL-lpr naïve CD4+ T cells. Conclusions EGR2 is highly upregulated in human and murine lupus cells. Our in vitro data suggest a positive role of EGR2 in the regulation of Th1 differentiation and IFNγ production in lupus effector CD4+ T cells.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xiguang Xu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA, USA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA, USA
| | - Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Lavon I, Leykin I, Charbit H, Binyamin O, Brill L, Ovadia H, Vaknin-Dembinsky A. QKI-V5 is downregulated in CNS inflammatory demyelinating diseases. Mult Scler Relat Disord 2019; 39:101881. [PMID: 31835207 DOI: 10.1016/j.msard.2019.101881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuromyelitis-optica (NMO) and multiple-sclerosis (MS) are inflammatory- demyelinating-diseases of the central-nervous-system (CNS). In a previous study, we identified 17 miRNAs that were significantly upregulated in the peripheral blood of patients with NMO, relative to healthy controls (HCs). Target gene analysis have demonstrated that QKI is targeted by 70% of the upregulated miRNAs. QKI gene encodes for a RNA-binding-protein that plays a central role in myelination. QKI variants 5, 6, 7 (QKI-V5, QKI-V6, QKI-V7) are generated via alternative splicing. Given the role played by QKI in myelination we aimed to study the expression levels of QKI variants in the circulation of patients with NMO and MS and in the circulation and brain tissue of mice-model to CNS-inflammatory-demyelinating-disease. METHODS RNA and protein expression levels of QKI variants QKI-V5, QKI-V6 and QKI-V7 were determined in the blood of patients with NMO (n = 23) or MS (n = 13). The effect of sera from patients on the expression of QKI in normal peripheral-blood-mononuclear-cells (PBMCs) or glial cells was explored. The mog-experimental-autoimmune-encephalomyelitis (EAE) mouse model was used to study the correlation between the changes in the expression levels of QKI in the blood to those in the brain. RESULTS RNA and protein expression of QKI-V5 was decreased in the peripheral blood of patients with NMO and multiple-sclerosis. Incubation of normal peripheral-blood-mononuclear-cells or glial cells with sera of patients significantly reduced the expression of QKI-V5. The blood and brain of EAE mice exhibited a corresponding decrease in QKI-V5 expression. CONCLUSION The downregulation in the expression of QKI-V5 in the blood of patients with CNS-inflammatory-demyelinating-diseases and in the brain and blood of EAE mice is likely caused by a circulating factor and might promote re-myelination by regulation of myelin-associated genes. Key words: QKI variants, Multiple sclerosis (MS), Neuromyelitis optica (NMO), Astrocytes, Demyelination.
Collapse
Affiliation(s)
- Iris Lavon
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Jerusalem, Israel.
| | - Ina Leykin
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Jerusalem, Israel
| | - Hanna Charbit
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| | - Livnat Brill
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| | - Haim Ovadia
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
17
|
Cai XY, Cheng L, Yu CX, Wu YY, Fang L, Zheng XD, Zhou FS, Sheng YJ, Zhu J, Zheng J, Wu YY, Xiao FL. GWAS Follow-up Study Discovers a Novel Genetic Signal on 10q21.2 for Atopic Dermatitis in Chinese Han Population. Front Genet 2019; 10:174. [PMID: 30915103 PMCID: PMC6422937 DOI: 10.3389/fgene.2019.00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease with high heritability. Two susceptibility loci have been confirmed in our previous AD genome-wide association study (GWAS). To look for additional genetic factors in Chinese Han ethnicity, we performed a large-scale GWAS follow-up study. Forty-nine top single nucleotide polymorphisms (SNPs) that had never been reported previously were genotyped using Sequenom Massarray system in an independent cohort, which consist of northern Chinese (1634 cases and 1263 controls) and southern Chinese (2985 cases and 9526 controls). Association analyses were performed using PLINK 2 software. Three SNPs in northern and ten SNPs in southern were found exhibiting association evidence with AD (P < 0.05). Finally, SNP rs224108 on 10q21.2 showed high significance for AD in joint analysis of GWAS and replication study (Pmeta = 4.55 × 10−9, OR = 1.21), and was confirmed as an independent genetic marker by Linkage disequilibrium calculation and conditional logistic regression analysis. Bioinformatics analysis strongly suggested that rs224108 may have the potential to alter the target gene expression through non-coding epigenetic regulation effects. Meanwhile, SNP rs11150780 on 17q25.3 was also found suggestive association with AD (Pmeta = 7.64 × 10−7, OR = 1.18). Our findings confirmed a novel susceptibility signal on 10q21.2 for AD in Chinese Han population and advanced the understanding of the genetic contribution to AD.
Collapse
Affiliation(s)
- Xin-Ying Cai
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Lu Cheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Chong-Xian Yu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Yan-Yan Wu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Ling Fang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Xiao-Dong Zheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Fu-Sheng Zhou
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Yu-Jun Sheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Jun Zhu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Jie Zheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Feng-Li Xiao
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Chen LY, Fan XP, Fan YC, Zhao J, Gao S, Li F, Qi ZX, Wang K. BATF Interference Blocks Th17 Cell Differentiation and Inflammatory Response in Hepatitis B Virus Transgenic Mice. Dig Dis Sci 2019; 64:773-780. [PMID: 30498928 DOI: 10.1007/s10620-018-5392-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/22/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND B cell-activating transcription factor (BATF) contributes to Th17 cell differentiation and pathological inflammatory responses. AIMS This study explored BATF as a regulator of Th17 differentiation in normal and hepatitis B virus (HBV) transgenic mice. METHODS Normal mice were divided into control, short hairpin RNA (shRNA) scramble, and shRNA BATF groups. HBV transgenic mice were divided into control, entecavir, shRNA scramble, entecavir + vector control, entecavir + shRNA scramble, shRNA BATF, and entecavir + shRNA BATF groups. Serum concentrations of AST, ALT, HBV-DNA, BATF, IL-17, and IL-22 and Th17 cell frequencies in the liver were compared among the groups. Correlations of serum HBV surface antigen (HBsAg), e-antigen (HBeAg), and core antigen (HBcAg) concentrations with BATF mRNA expression and the proportion of Th17 cells in the livers of HBV transgenic mice were also analyzed. RESULTS Serum AST, ALT, BATF, IL-17, and IL-22 concentrations and Th17 cell proportions were higher in HBV transgenic mice relative to normal controls. Positive correlations of the HBcAg concentration with BATF mRNA and the proportion of Th17 cells were observed in HBV transgenic mice. BATF interference reduced the proportion of Th17 cells and serum IL-17 and IL-22 concentrations and led to obvious downregulation of AST, ALT, BATF, IL-17, and IL-22 expression and a reduced proportion of Th17 cells when combined with entecavir. CONCLUSION HBV markedly upregulated BATF expression and promoted Th17 cell activation. By contrast, BATF interference significantly impeded the proliferation of Th17 cells and secretion of IL-17 and IL-22 while alleviating hepatic lesions.
Collapse
Affiliation(s)
- Long-Yan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Xia Qi
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
| |
Collapse
|
19
|
Hsueh PT, Lin HH, Wang HH, Liu CL, Ni WF, Liu JK, Chang HH, Sun DS, Chen YS, Chen YL. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. GENES BRAIN AND BEHAVIOR 2018; 17:e12479. [PMID: 29656594 DOI: 10.1111/gbb.12479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/27/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring.
Collapse
Affiliation(s)
- P-T Hsueh
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - H-H Lin
- Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan.,Section of Infectious Disease, Department of Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - H-H Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - C-L Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - W-F Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - J-K Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - H-H Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - D-S Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Y-S Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Y-L Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Wang LY, Fan YC, Zhao J, Ji XF, Wang K. Increased BATF expression is associated with the severity of liver damage in patients with chronic hepatitis B. Clin Exp Med 2018; 18:263-272. [PMID: 29164410 DOI: 10.1007/s10238-017-0480-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
T helper (Th) 17 cells have a critical role in the pathogenesis of chronic hepatitis B virus (HBV) infection, and basic leucine zipper transcription factor, ATF-like (BATF) is a newly identified transcriptional factor regulating the differentiation of Th17 cells. However, its precise role in patients with chronic hepatitis B remains unclear. Sixty chronic hepatitis B (CHB) patients, twenty-two acute-on-chronic hepatitis B liver failure (ACHBLF) patients and seventeen healthy controls were included in our study. Both peripheral and intrahepatic expressions of BATF were analyzed by flow cytometry, quantitative real-time polymerase chain reaction and immunohistochemical staining. Peripheral BATF mRNA and protein expression levels were higher in CHB patients than those in healthy controls. Particularly in ACHBLF patients, the BATF mRNA and protein levels were further increased over those in CHB patients. Intrahepatic BATF-positive infiltrating cells were enriched in portal area of CHB patients, and more positive cells were found in patients with higher inflammation grade. Peripheral BATF expression was positively correlated with serum parameters of liver injury and plasma HBV DNA load. Furthermore, a positive correlation was found between the frequency of BATF-positive CD3+ T cells and the increased Th17 response in chronic HBV-infected patients. BATF over-expression might augment Th17 cell response and relate to the disease progression of CHB.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
| |
Collapse
|
21
|
Okamura T, Yamamoto K, Fujio K. Early Growth Response Gene 2-Expressing CD4 +LAG3 + Regulatory T Cells: The Therapeutic Potential for Treating Autoimmune Diseases. Front Immunol 2018. [PMID: 29535721 PMCID: PMC5834469 DOI: 10.3389/fimmu.2018.00340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Regulatory T cells (Tregs) are necessary for the maintenance of immune tolerance. Tregs are divided into two major populations: one is thymus derived and the other develops in the periphery. Among these Tregs, CD4+CD25+ Tregs, which mainly originate in the thymus, have been extensively studied. Transcription factor Foxp3 is well known as a master regulatory gene for the development and function of CD4+CD25+ Tregs. On the other hand, peripheral Tregs consist of distinct cell subsets including Foxp3-dependent extrathymically developed Tregs and interleukin (IL)-10-producing type I regulatory T (Tr1) cells. Lymphocyte activation gene 3 (LAG3) and CD49b are reliable cell surface markers for Tr1 cells. CD4+CD25−LAG3+ Tregs (LAG3+ Tregs) develop in the periphery and produce a large amount of IL-10. LAG3+ Tregs characteristically express the early growth response gene 2 (Egr2), a zinc-finger transcription factor, and exhibit its suppressive activity in a Foxp3-independent manner. Although Egr2 was known to be essential for hindbrain development and myelination of the peripheral nervous system, recent studies revealed that Egr2 plays vital roles in the induction of T cell anergy and also the suppressive activities of LAG3+ Tregs. Intriguingly, forced expression of Egr2 converts naive CD4+ T cells into IL-10-producing Tregs that highly express LAG3. Among the four Egr gene family members, Egr3 is thought to compensate for the function of Egr2. Recently, we reported that LAG3+ Tregs suppress humoral immune responses via transforming growth factor β3 production in an Egr2- and Egr3-dependent manner. In this review, we focus on the role of Egr2 in Tregs and also discuss its therapeutic potential for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan.,Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Ma Z, Shen Y, Zeng Q, Liu J, Yang L, Fu R, Hu G. MiR-150-5p regulates EGR2 to promote the development of chronic rhinosinusitis via the DC-Th axis. Int Immunopharmacol 2017; 54:188-197. [PMID: 29153954 DOI: 10.1016/j.intimp.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/28/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Accumulating studies indicate that miR-150-5p might play a significant role in dendritic cells (DCs) of peripheral blood in chronic rhinosinusitis (CRS) patients. We sought to investigate the effects and mechanism of miR-150-5p, which regulates early growth response 2 (EGR2) to promote the development of CRS via the DC-Th axis. METHODS The upregulated expression of miR-150-5p in DCs of CRS was assayed by real-time quantitative polymerase chain reaction (qRT-PCR), and IL-17 cytokines in the supernatants of DC-naïve T cells co-cultures were analysed by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to evaluate T cell proliferations. EGR2 was also identified as a direct target of miR-150-5p by establishing a miRNA-mRNA network, and this target was validated with a Dual-Luciferase® Reporter Assay System and Western blot. RESULTS MiR-150-5p was up-regulated in DCs in peripheral blood from CRS patients, and this expression was down-regulated by EGR2 expression via the DC-Th axis. Up-regulated miR-150-5p Regulates DCs, and DCs Promote Naïve T Cells Proliferation. MiR-150-5p Further Regulates EGR2 and Inhibits DCs, Which Makes the DC-Th Axis Abnormal in the Peripheral Blood of Patients with CRS. CONCLUSION MiR-150-5p and its identified target, EGR2, are involved in the development of CRS. DCs can promote T cell proliferations of peripheral blood in CRS.
Collapse
Affiliation(s)
- Zuxia Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China; Department of Otorhinolaryngology, Zunyi First People's Hospital, Zunyi, China
| | - Yang Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China
| | - Quan Zeng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China
| | - Jie Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China
| | - Li Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China
| | - Ran Fu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,Chongqing, China.
| |
Collapse
|
24
|
The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017; 9:v9100303. [PMID: 29048384 PMCID: PMC5691654 DOI: 10.3390/v9100303] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
The T helper 17 (Th17) cells represent a subset of CD4+ T-cells with unique effector functions, developmental plasticity, and stem-cell features. Th17 cells bridge innate and adaptive immunity against fungal and bacterial infections at skin and mucosal barrier surfaces. Although Th17 cells have been extensively studied in the context of autoimmunity, their role in various other pathologies is underexplored and remains an area of open investigation. This review summarizes the history of Th17 cell discovery and the current knowledge relative to the beneficial role of Th17 cells in maintaining mucosal immunity homeostasis. We further discuss the concept of Th17 pathogenicity in the context of autoimmunity, cancer, and HIV infection, and we review the most recent discoveries on molecular mechanisms regulating HIV replication/persistence in pathogenic Th17 cells. Finally, we stress the need for novel fundamental research discovery-based Th17-specific therapeutic interventions to treat pathogenic conditions associated with Th17 abnormalities, including HIV infection.
Collapse
|
25
|
Early growth response 2 and Egr3 are unique regulators in immune system. Cent Eur J Immunol 2017; 42:205-209. [PMID: 28860938 PMCID: PMC5573894 DOI: 10.5114/ceji.2017.69363] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Collapse
|
26
|
Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Shapiro VS. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1. Sci Rep 2017; 7:7018. [PMID: 28765611 PMCID: PMC5539328 DOI: 10.1038/s41598-017-07365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
iNKT cells are a unique lineage of T cells that recognize glycolipid presented by CD1d. In the thymus, they differentiate into iNKT1, iNKT2 and iNKT17 effector subsets, characterized by preferential expression of Tbet, Gata3 and ROR-γt and production of IFN-γ, IL-4 and IL-17, respectively. We demonstrate that the transcriptional regulator Runx1 is essential for the generation of ROR-γt expressing iNKT17 cells. PLZF-cre Runx1 cKO mice lack iNKT17 cells in the thymus, spleen and liver. Runx1-deficient iNKT cells have altered expression of several genes important for iNKT17 differentiation, including decreased expression of IL-7Rα, BATF and c-Maf and increased expression of Bcl11b and Lef1. However, reduction of Lef1 expression or introduction of an IL-7Rα transgene is not sufficient to correct the defect in iNKT17 differentiation, demonstrating that Runx1 is a key regulator of several genes required for iNKT17 differentiation. Loss of Runx1 leads to a severe decrease in iNKT cell numbers in the thymus, spleen and liver. The decrease in cell number is due to a combined decrease in proliferation at Stage 1 during thymic development and increased apoptosis. Thus, we describe a novel role of Runx1 in iNKT cell development and differentiation, particularly in orchestrating iNKT17 differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bryce Manso
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sinibaldo Romera Arocha
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd Iowa City, IA, 52242, USA
| | - Derek B Sant' Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Virginia Smith Shapiro
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, Frenkian M, Pitha J, de Baets M, Servais L, Berrih-Aknin S, Miller A. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun 2017; 82:62-73. [PMID: 28549776 DOI: 10.1016/j.jaut.2017.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify novel genetic and epigenetic factors associated with Myasthenia gravis (MG) using an identical twins experimental study design. METHODS The transcriptome and methylome of peripheral monocytes were compared between monozygotic (MZ) twins discordant and concordant for MG, as well as with MG singletons and healthy controls, all females. Sets of differentially expressed genes and differentially methylated CpGs were validated using RT-PCR for expression and target bisulfite sequencing for methylation on additional samples. RESULTS >100 differentially expressed genes and ∼1800 differentially methylated CpGs were detected in peripheral monocytes between MG patients and controls. Several transcripts associated with immune homeostasis and inflammation resolution were reduced in MG patients. Only a relatively few genes differed between the discordant healthy and MG co-twins, and both their expression and methylation profiles demonstrated very high similarity. INTERPRETATION This is the first study to characterize the DNA methylation profile in MG, and the expression profile of immune cells in MZ twins with MG. Results suggest that numerous small changes in gene expression or methylation might together contribute to disease. Impaired monocyte function in MG and decreased expression of genes associated with inflammation resolution could contribute to the chronicity of the disease. Findings may serve as potential new predictive biomarkers for disease and disease activity, as well as potential future targets for therapy development. The high similarity between the healthy and the MG discordant twins, suggests that a molecular signature might precede a clinical phenotype, and that genetic predisposition may have a stronger contribution to disease than previously assumed.
Collapse
Affiliation(s)
- Shimrat Mamrut
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Frédérique Truffault
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, 75013, France
| | - Mélinée Frenkian
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Jiri Pitha
- Department of Neurology and Clinical Neuroscience Center, 1st Faculty of Medicine, Charles University and General Teaching Hospital, Prague, Czech Republic
| | - Marc de Baets
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Laurent Servais
- Institute of Myology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, Sorbonne Universités, UPMC Universités Paris 06, INSERM, Paris, 75013, France
| | - Sonia Berrih-Aknin
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel; Division of Neuroimmunology, Lady Davis Carmel Medical Center, Haifa, 34362, Israel.
| |
Collapse
|
28
|
Singh R, Miao T, Symonds ALJ, Omodho B, Li S, Wang P. Egr2 and 3 Inhibit T-bet-Mediated IFN-γ Production in T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4394-4402. [PMID: 28455436 PMCID: PMC5439026 DOI: 10.4049/jimmunol.1602010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/26/2017] [Indexed: 12/31/2022]
Abstract
T-bet is important for differentiation of cytotoxic CD8 and Th1 CD4 T cells. We have discovered that Egr2 and 3 are potent inhibitors of T-bet function in CD4 and CD8 effector T cells. Egr2 and 3 were essential to suppress Th1 differentiation in Th2 and Th17 conditions in vitro and also to control IFN-γ–producing CD4 and CD8 T cells in response to virus infection. Together with Egr2 and 3, T-bet is induced in naive T cells by Ag stimulation, but Egr2 and 3 expression was inhibited by Th1–inducing cytokines. We found that Egr2 and 3 physically interact with the T-box domain of T-bet, blocking T-bet DNA binding and inhibiting T-bet–mediated production of IFN-γ. Thus, Egr2 and 3 are antagonists of T-bet function in effector T cells and are important for the control of inflammatory responses of T cells.
Collapse
Affiliation(s)
- Randeep Singh
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and.,Bioscience, Brunel University London, London UB8 3PH, United Kingdom
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and
| | - Alistair L J Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and
| | - Becky Omodho
- Bioscience, Brunel University London, London UB8 3PH, United Kingdom
| | - Suling Li
- Bioscience, Brunel University London, London UB8 3PH, United Kingdom
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and
| |
Collapse
|
29
|
Kozela E, Juknat A, Gao F, Kaushansky N, Coppola G, Vogel Z. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J Neuroinflammation 2016; 13:136. [PMID: 27256343 PMCID: PMC4891926 DOI: 10.1186/s12974-016-0603-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background Our previous studies showed that the non-psychoactive cannabinoid, cannabidiol (CBD), ameliorates the clinical symptoms in mouse myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis model of multiple sclerosis (MS) as well as decreases the memory MOG35-55-specific T cell (TMOG) proliferation and cytokine secretion including IL-17, a key autoimmune factor. The mechanisms of these activities are currently poorly understood. Methods Herein, using microarray-based gene expression profiling, we describe gene networks and intracellular pathways involved in CBD-induced suppression of these activated memory TMOG cells. Encephalitogenic TMOG cells were stimulated with MOG35-55 in the presence of spleen-derived antigen presenting cells (APC) with or without CBD. mRNA of purified TMOG was then subjected to Illumina microarray analysis followed by ingenuity pathway analysis (IPA), weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) elucidation of gene interactions. Results were validated using qPCR and ELISA assays. Results Gene profiling showed that the CBD treatment suppresses the transcription of a large number of proinflammatory genes in activated TMOG. These include cytokines (Xcl1, Il3, Il12a, Il1b), cytokine receptors (Cxcr1, Ifngr1), transcription factors (Ier3, Atf3, Nr4a3, Crem), and TNF superfamily signaling molecules (Tnfsf11, Tnfsf14, Tnfrsf9, Tnfrsf18). “IL-17 differentiation” and “IL-6 and IL-10-signaling” were identified among the top processes affected by CBD. CBD increases a number of IFN-dependent transcripts (Rgs16, Mx2, Rsad2, Irf4, Ifit2, Ephx1, Ets2) known to execute anti-proliferative activities in T cells. Interestingly, certain MOG35-55 up-regulated transcripts were maintained at high levels in the presence of CBD, including transcription factors (Egr2, Egr1, Tbx21), cytokines (Csf2, Tnf, Ifng), and chemokines (Ccl3, Ccl4, Cxcl10) suggesting that CBD may promote exhaustion of memory TMOG cells. In addition, CBD enhanced the transcription of T cell co-inhibitory molecules (Btla, Lag3, Trat1, and CD69) known to interfere with T/APC interactions. Furthermore, CBD enhanced the transcription of oxidative stress modulators with potent anti-inflammatory activity that are controlled by Nfe2l2/Nrf2 (Mt1, Mt2a, Slc30a1, Hmox1). Conclusions Microarray-based gene expression profiling demonstrated that CBD exerts its immunoregulatory effects in activated memory TMOG cells via (a) suppressing proinflammatory Th17-related transcription, (b) by promoting T cell exhaustion/tolerance, (c) enhancing IFN-dependent anti-proliferative program, (d) hampering antigen presentation, and (d) inducing antioxidant milieu resolving inflammation. These findings put forward mechanism by which CBD exerts its anti-inflammatory effects as well as explain the beneficial role of CBD in pathological memory T cells and in autoimmune diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0603-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Ana Juknat
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fuying Gao
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Nathali Kaushansky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Zvi Vogel
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
30
|
Abstract
Being a member of the early growth response (Egr) family of transcription factors, Egr-2 is expressed in a variety of cell types of the immune system. Recent findings imply that Egr-2 is important in the development and function of T helper (Th) 17 cell, regulatory T (Treg) cell, as well as dendritic cell (DC). Although these cells perform significantly in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and systemic sclerosis, the roles of Egr-2 in the pathogenesis of autoimmune diseases can not be neglected. In this article, we will discuss recent findings about the important roles of Egr-2 in immune cells and the possible pathological roles of Egr-2 in autoimmune diseases.
Collapse
|
31
|
Ren W, Yin J, Duan J, Liu G, Tan B, Yang G, Wu G, Bazer FW, Peng Y, Yin Y. mTORC1 signaling and IL-17 expression: Defining pathways and possible therapeutic targets. Eur J Immunol 2016; 46:291-299. [PMID: 26558536 DOI: 10.1002/eji.201545886] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022]
Abstract
IL-17 mediates immune responses against extracellular pathogens, and it is associated with the development and pathogenesis of various autoimmune diseases. The expression of IL-17 is regulated by various intracellular signaling cascades. Recently, it has been shown that mechanistic target of rapamycin (mTOR) signaling, comprised mainly of mTORC1 signaling, plays a critical role in IL-17 expression. Here, we review the current knowledge regarding mechanisms by which mTORC1 regulates IL-17 expression. mTORC1 positively modulates IL-17 expression through several pathways, i.e. STAT3, -HIF-1α, -S6K1, and -S6K2. Amino acids (AAs) also regulate IL-17 expression by being the energy source for Th17 cells, and by activating mTORC1 signaling. Altogether, the AA-mTORC1-IL-17 axis has broad therapeutic implications for IL-17-associated diseases, such as EAE, allergies, and colitis.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Jielin Duan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, TAMU, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, TAMU, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage and Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| |
Collapse
|
32
|
Zheng Z, Zheng F. Immune Cells and Inflammation in Diabetic Nephropathy. J Diabetes Res 2016; 2016:1841690. [PMID: 26824038 PMCID: PMC4707326 DOI: 10.1155/2016/1841690] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles.
Collapse
Affiliation(s)
- Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Feng Zheng
- Department of Nephrology, Advanced Institute for Medical Sciences, Second Hospital, Dalian Medical University, Dalian 116023, China
- Department of Nephrology and Basic Science Laboratory, Fujian Medical University, Fuzhou 350002, China
- *Feng Zheng:
| |
Collapse
|
33
|
Regulation of Interleukin-17 Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:139-166. [DOI: 10.1007/978-94-024-0921-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Doncel-Pérez E, Mateos-Hernández L, Pareja E, García-Forcada Á, Villar M, Tobes R, Romero Ganuza F, Vila del Sol V, Ramos R, Fernández de Mera IG, de la Fuente J. Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain–Barré Syndrome. THE JOURNAL OF IMMUNOLOGY 2015; 196:1102-7. [DOI: 10.4049/jimmunol.1502100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/21/2015] [Indexed: 11/19/2022]
|
35
|
Karlsson H, Svensson E, Gigg C, Jarvius M, Olsson-Strömberg U, Savoldo B, Dotti G, Loskog A. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors. PLoS One 2015; 10:e0144787. [PMID: 26700307 PMCID: PMC4689545 DOI: 10.1371/journal.pone.0144787] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/22/2015] [Indexed: 01/22/2023] Open
Abstract
CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.
Collapse
MESH Headings
- Animals
- CD28 Antigens/immunology
- Case-Control Studies
- Flow Cytometry
- Healthy Volunteers
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen/immunology
- Signal Transduction
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Hannah Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Svensson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Camilla Gigg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Barbara Savoldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
36
|
Guerreiro-Cacais AO, Laaksonen H, Flytzani S, N'diaye M, Olsson T, Jagodic M. Translational utility of experimental autoimmune encephalomyelitis: recent developments. J Inflamm Res 2015; 8:211-25. [PMID: 26622189 PMCID: PMC4654535 DOI: 10.2147/jir.s76707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune condition with firmly established genetic and environmental components. Genome-wide association studies (GWAS) have revealed a large number of genetic polymorphisms in the vicinity of, and within, genes that associate to disease. However, the significance of these single-nucleotide polymorphisms in disease and possible mechanisms of action remain, with a few exceptions, to be established. While the animal model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in understanding immunity in general and mechanisms of MS disease in particular, much of the translational information gathered from the model in terms of treatment development (glatiramer acetate and natalizumab) has been extensively summarized. In this review, we would thus like to cover the work done in EAE from a GWAS perspective, highlighting the research that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. Understanding the contribution of these pathways to disease might allow for the stratification of disease subphenotypes in patients and in turn open the possibility for new and individualized treatment approaches in the future.
Collapse
Affiliation(s)
- Andre Ortlieb Guerreiro-Cacais
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Laaksonen
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sevasti Flytzani
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie N'diaye
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Tang H, Jiang H, Zheng J, Li J, Wei Y, Xu G, Li H. MicroRNA-106b regulates pro-allergic properties of dendritic cells and Th2 polarisation by targeting early growth response-2 in vitro. Int Immunopharmacol 2015; 28:866-74. [DOI: 10.1016/j.intimp.2015.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/31/2015] [Indexed: 01/07/2023]
|
38
|
Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015; 6:236. [PMID: 26236331 PMCID: PMC4500956 DOI: 10.3389/fgene.2015.00236] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022] Open
Abstract
In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
39
|
Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z. Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J Neuroinflammation 2015; 12:52. [PMID: 25880134 PMCID: PMC4363052 DOI: 10.1186/s12974-015-0273-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background Cannabidiol (CBD), the main non-psychoactive cannabinoid, has been previously shown by us to ameliorate clinical symptoms and to decrease inflammation in myelin oligodendrocyte glycoprotein (MOG)35-55-induced mouse experimental autoimmune encephalomyelitis model of multiple sclerosis as well as to decrease MOG35-55-induced T cell proliferation and IL-17 secretion. However, the mechanisms of CBD anti-inflammatory activities are unclear. Methods Here we analyzed the effects of CBD on splenocytes (source of accessory T cells and antigen presenting cells (APC)) co-cultured with MOG35-55-specific T cells (TMOG) and stimulated with MOG35-55. Using flow cytometry, we evaluated the expression of surface activation markers and inhibitory molecules on T cells and B cells. TMOG cells were purified using CD4 positive microbead selection and submitted for quantitative PCR and microarray of mRNA transcript analyzes. Cell signaling studies in purified TMOG were carried out using immunoblotting. Results We found that CBD leads to upregulation of CD69 and lymphocyte-activation gene 3 (LAG3) regulatory molecules on CD4+CD25− accessory T cells. This subtype of CD4+CD25−CD69+LAG3+ T cells has been recognized as induced regulatory phenotype promoting anergy in activated T cells. Indeed, we observed that CBD treatment results in upregulation of EGR2 (a key T cell anergy inducer) mRNA transcription in stimulated TMOG cells. This was accompanied by elevated levels of anergy promoting genes such as IL-10 (anti-inflammatory cytokine), STAT5 (regulatory factor), and LAG3 mRNAs, as well as of several enhancers of cell cycle arrest (such as Nfatc1, Casp4, Cdkn1a, and Icos). Moreover, CBD exposure leads to a decrease in STAT3 and to an increase in STAT5 phosphorylation in TMOG cells, positive and negative regulators of Th17 activity, respectively. In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19+ B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions. Conclusions Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4+CD25−CD69+LAG3+ cells in MOG35-55-activated APC/TMOG co-cultures. This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ana Juknat
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nathali Kaushansky
- Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Avraham Ben-Nun
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Zvi Vogel
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
41
|
Raine T, Liu JZ, Anderson CA, Parkes M, Kaser A. Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut 2015; 64:250-9. [PMID: 24799394 PMCID: PMC4316924 DOI: 10.1136/gutjnl-2013-306657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/25/2014] [Accepted: 04/06/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified genetic variants within multiple risk loci as predisposing to intestinal inflammatory diseases, including Crohn's disease, ulcerative colitis and coeliac disease. Most risk variants affect regulation of transcription, but a critical challenge is to identify which genes and which cell types these variants affect. We aimed to characterise whole transcriptomes for each common T lymphocyte subset resident within the gut mucosa, and use these to infer biological insights and highlight candidate genes of interest within GWAS risk loci. DESIGN We isolated the four major intestinal T cell populations from pinch biopsies from healthy subjects and generated transcriptomes for each. We computationally integrated these transcriptomes with GWAS data from immune-related diseases. RESULTS Robust, high quality transcriptomic data were generated from 1 ng of RNA from precisely sorted cell subsets. Gene expression patterns clearly differentiated intestinal T cells from counterparts in peripheral blood and revealed distinct signalling pathways for each intestinal T cell subset. Intestinal-specific T cell transcripts were enriched in GWAS risk loci for Crohn's disease, ulcerative colitis and coeliac disease, but also specific extraintestinal immune-mediated diseases, allowing prediction of novel candidate genes. CONCLUSIONS This is the first report of transcriptomes for minimally manipulated intestinal T lymphocyte subsets in humans. We have demonstrated that careful processing of mucosal biopsies allows the generation of transcriptomes from as few as 1000 highly purified cells with minimal interindividual variation. Bioinformatic integration of transcriptomic data with recent GWAS data identified specific candidate genes and cell types for inflammatory pathologies.
Collapse
Affiliation(s)
- Tim Raine
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jimmy Z Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Carl A Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Miles Parkes
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Arthur Kaser
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
EGR2 is critical for peripheral naïve T-cell differentiation and the T-cell response to influenza. Proc Natl Acad Sci U S A 2014; 111:16484-9. [PMID: 25368162 DOI: 10.1073/pnas.1417215111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early growth response 2 (EGR2) transcription factor negatively regulates T-cell activation, in contrast to the positive regulation of this process by EGR1. Here, we unexpectedly found that EGR2 promotes peripheral naïve T-cell differentiation, with delayed T-cell receptor-induced proliferation in naïve T cells from Egr2 conditional knockout (CKO) mice and decreased production of IFN-γ, IL-4, IL-9, and IL-17A in cells subjected to T-helper differentiation. Moreover, genes that promote T-cell activation, including Tbx21 and Notch1, had decreased expression in Egr2 CKO T cells and are direct EGR2 target genes. Following influenza infection, Egr2 CKO mice had delayed viral clearance, more weight loss, and more severe pathological changes in the lung than did WT and Egr1 KO mice, with decreased production of effector cytokines, increased infiltration of antigen-specific memory-precursor CD8(+) T cells, and lower numbers of lung-resident memory CD8(+) T cells. Thus, unexpectedly, EGR2 can function as a positive regulator that is essential for naïve T-cell differentiation and in vivo T-cell responses to a viral infection.
Collapse
|
43
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
44
|
Abstract
The CNS is considered an immune privileged site because its repertoire of highly immunogenic molecules remains unseen by the immune system under normal conditions. However, the mechanism underlying the inhibition of immune reactions within the CNS environment is not known, particularly in regions containing myelin, which contains several potent proteins and lipids that are invariably recognized as foreign by immune system cells. Sulfatides constitute a major component of myelin glycolipids and are known to be capable of raising an immune response. In this study, the effect of sulfatides on mouse T cell function and differentiation was analyzed in vitro and in vivo. We found profound inhibition of sulfatide-dependent T cell proliferation which was particularly pronounced in naive T helper (Th) cells. The inhibitory effect of sulfatides on T cell function was CD1d-independent and was not related to apoptosis or necrosis but did involve the induction of anergy as confirmed by the upregulation of early growth response 2 transcription factor. A glycolipid 3-sulfate group was essential for the T cell suppression, and the T cell inhibition was galectin-4-dependent. Sulfatide stimulation in vitro led to prominent suppression of Th17 differentiation, and this was related to a decrease in susceptibility to disease in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. Thus, we have defined a novel mechanism of negative regulation of T cell function by endogenous brain-derived glycolipids, a family of molecules traditionally deemphasized in favor of myelin proteins in studies of CNS autoimmunity.
Collapse
|
45
|
Tatano Y, Shimizu T, Tomioka H. Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Sci Rep 2014; 4:4146. [PMID: 24553452 PMCID: PMC3930092 DOI: 10.1038/srep04146] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/05/2014] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial infection induces suppressor macrophages (MΦs), causing disease exacerbation. There are two major MΦ subsets (M1 and M2 MΦs) that are phenotypically and functionally different. Here, we examined which of the MΦ subsets the mycobacterial infection-induced suppressor MΦs (MIS-MΦs) belong to. MIS-MΦs down-regulated T cell production of Th1 and Th2 cytokines but markedly increased production of interleukin (IL)-17A and IL-22 through up-regulation of Th17 cell expansion. In this phenomenon, a novel MΦ population, which is functionally distinguishable from M1 and M2 MΦ subsets and possesses unique phenotypes (IL-12(+), IL-1β(high), IL-6(+), tumor necrosis factor (TNF)-α(+), nitric oxide synthase (NOS) 2(+), CCR7(high), IL-10(high), arginase (Arg)-1(-), mannose receptor (MR)(low), Ym1(high), Fizz(low), and CD163(high)), played central roles through the action of IL-6 and transforming growth factor (TGF)-β but not IL-21 and IL-23. This new type of MΦ population was induced in infected mice and actively supported the in vivo expansion of Th17 cells.
Collapse
Affiliation(s)
- Yutaka Tatano
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Toshiaki Shimizu
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Haruaki Tomioka
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
46
|
Interleukin-17A in lipid metabolism and atherosclerosis. Clin Chim Acta 2014; 431:33-9. [PMID: 24508995 DOI: 10.1016/j.cca.2014.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
Interleukin-17 (IL-17) A, the most important cytokine of the IL-17 family predominantly secreted by T helper 17 (Th17) cells, plays a critical role in the development of inflammatory diseases. Its receptor is an obligate heterodimer composed of IL-17 receptor (IL-17R) A and C, the main members of the IL-17R family. Binding of IL-17A to the IL-17RA/C complex can activate a variety of downstream signaling pathways such as nuclear factor kappa-B (NF-κB), activator protein 1 (AP1) and CCAAT/enhancer-binding protein (C/EBP) to induce the expression of proinflammatory cytokines and chemokines. IL-17A also promotes mRNA stability. Growing evidence shows that IL-17A is involved in lipid metabolism and the pathogenesis of atherosclerosis, a chronic inflammatory arterial disease driven by both innate and adaptive immune responses to modified lipoproteins. In the current review, we describe recent progress on regulation and signaling of IL-17A, and highlight its impacts on lipid metabolism and atherosclerosis.
Collapse
|
47
|
Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013; 33:12105-21. [PMID: 23864696 DOI: 10.1523/jneurosci.5369-12.2013] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.
Collapse
|
48
|
Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci U S A 2013; 110:11964-9. [PMID: 23818645 DOI: 10.1073/pnas.1311087110] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) plays critical roles in various autoimmune diseases such as multiple sclerosis by controlling interleukin-17 (IL-17)-producing T-helper (TH17) and regulatory T cells. Although various transcription factors and cytokines have been identified as key participants in TH17 generation, the role of microRNAs in this process is poorly understood. In this study, we found that expression of the microRNA (miR)-132/212 cluster is up-regulated by AHR activation under TH17-inducing, but not regulatory T-inducing conditions. Deficiency of the miR-132/212 cluster prevented the enhancement of TH17 differentiation by AHR activation. We also identified B-cell lymphoma 6, a negative regulator of TH17 differentiation, as a potential target of the miR-212. Finally, we investigated the roles of the miR-132/212 cluster in experimental autoimmune encephalomyelitis, a murine model of multiple sclerosis. Mice deficient in the miR-132/212 cluster exhibited significantly higher resistance to the development of experimental autoimmune encephalomyelitis and lower frequencies of both TH1 and TH17 cells in draining lymph nodes. Our findings reveal a unique mechanism of AHR-dependent TH17 differentiation that depends on the miR-132/212 cluster.
Collapse
|
49
|
Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Nat Rev Immunol 2013; 13:499-509. [PMID: 23787991 DOI: 10.1038/nri3470] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basic leucine zipper transcription factor ATF-like (BATF), BATF2 and BATF3 belong to the activator protein 1 (AP-1) family of transcription factors, which regulate numerous cellular processes. Initially, BATF family members were thought to function only as inhibitors of AP-1-driven transcription, but recent studies have uncovered that these factors have unique, non-redundant and positive transcriptional activities in dendritic cells, B cells and T cells. The question of how BATF and BATF3 - which lack a transcriptional activation domain, unlike the AP-1 factors FOS and JUN - can exert unique positive transcriptional specificity has now been answered by the discovery that BATF molecules interact with members of the interferon-regulatory factor (IRF) family. The capacity of the BATF leucine zipper regions to mediate dimerization with AP-1 factors and also to define cooperative interactions with heterologous factors explains both the positive transcriptional activity of BATF proteins and how they activate distinct sets of target genes compared with FOS.
Collapse
|