1
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
2
|
San Antonio E, Silván J, Sevilla-Montero J, González-Sánchez E, Muñoz-Callejas A, Sánchez-Abad I, Ramos-Manzano A, Muñoz-Calleja C, González-Álvaro I, Tomero EG, García-Pérez J, García-Vicuña R, Vicente-Rabaneda EF, Castañeda S, Urzainqui A. PSGL-1, ADAM8, and selectins as potential biomarkers in the diagnostic process of systemic lupus erythematosus and systemic sclerosis: an observational study. Front Immunol 2024; 15:1403104. [PMID: 39100683 PMCID: PMC11297358 DOI: 10.3389/fimmu.2024.1403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Background Early diagnosis and treatment of Systemic lupus erythematosus (SLE) and Systemic sclerosis (SSc) present significant challenges for clinicians. Although various studies have observed changes in serum levels of selectins between healthy donors and patients with autoimmune diseases, including SLE and SSc, their potential as biomarkers has not been thoroughly explored. We aimed to investigate serum profiles of PSGL-1 (sPSGL-1), ADAM8 (sADAM8) and P-, E- and L-selectins (sP-, sE- and sL-selectins) in defined SLE and SSc patient cohorts to identify disease-associated molecular patterns. Methods We collected blood samples from 64 SLE patients, 58 SSc patients, and 81 healthy donors (HD). Levels of sPSGL-1, sADAM8 and selectins were analyzed by ELISA and leukocyte membrane expression of L-selectin and ADAM8 by flow cytometry. Results Compared to HD, SLE and SSc patients exhibited elevated sE-selectin and reduced sL-selectin levels. Additionally, SLE patients exhibited elevated sPSGL-1 and sADAM8 levels. Compared to SSc, SLE patients had decreased sL-selectin and increased sADAM8 levels. Furthermore, L-selectin membrane expression was lower in SLE and SSc leukocytes than in HD leukocytes, and ADAM8 membrane expression was lower in SLE neutrophils compared to SSc neutrophils. These alterations associated with some clinical characteristics of each disease. Using logistic regression analysis, the sL-selectin/sADAM8 ratio in SLE, and a combination of sL-selectin/sE-selectin and sE-selectin/sPSGL-1 ratios in SSc were identified and cross-validated as potential serum markers to discriminate these patients from HD. Compared to available diagnostic biomarkers for each disease, both sL-selectin/sADAM8 ratio for SLE and combined ratios for SSc provided higher sensitivity (98% SLE and and 67% SSc correctly classified patients). Importantly, the sADAM8/% ADAM8(+) neutrophils ratio discriminated between SSc and SLE patients with the same sensitivity and specificity than current disease-specific biomarkers. Conclusion SLE and SSc present specific profiles of sPSGL-1, sE-, sL-selectins, sADAM8 and neutrophil membrane expression which are potentially relevant to their pathogenesis and might aid in their early diagnosis.
Collapse
Affiliation(s)
- Esther San Antonio
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Javier Sevilla-Montero
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Antonio Muñoz-Callejas
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Inés Sánchez-Abad
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Alejandra Ramos-Manzano
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Eva G. Tomero
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Javier García-Pérez
- Pulmonology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Rosario García-Vicuña
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Esther F. Vicente-Rabaneda
- Medicine Department, School of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Fundacion para la Investigacion Biomedica (FIB)-Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria (IIS)-Princesa, Madrid, Spain
| |
Collapse
|
3
|
Qian Z, Zhang Q, Li P, Li Y, Zhang Y, Li R, Zhao T, Xia M, Chen Y, Hong X. A Disintegrin and Metalloproteinase-8 Protects Against Erastin-Induced Neuronal Ferroptosis via Activating Nrf2/HO-1/FTH1 Signaling Pathway. Mol Neurobiol 2024; 61:3490-3502. [PMID: 37995078 DOI: 10.1007/s12035-023-03782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death caused by the imbalance between oxidants and antioxidants. A disintegrin and metalloproteinase-8 (ADAM8) is a metalloproteinase that mediates cell adhesion, cell migration, and proteolytic activity. However, the molecular mechanism of ADAM8 regulating ferroptosis after neural disorder is unclear, especially in the neuron. In the present study, we identified the protective role of ADAM8 in Erastin-induced ferroptosis in vitro of the HT22 cells. It was found that overexpression of ADAM8 resulted in upregulated expression of GPX4 and FTH1 along with the decreased reactive oxygen species (ROS) production and reduced neuronal death; however, knockdown of ADAM8 resulted in an opposite. Mechanically, using the Nrf2 activator NK-252 and inhibitor nrf2-IN-1, we dmonstrated that ADAM8 regulates Erastin-mediated neuronal ferroptosis via activating the Nrf2/HO-1/FTH1 signaling pathway. In conclusion, the current study suggested that ADAM8 inhibited Erastin-induced neuronal ferroptosis through activating the Nrf2/HO-1/FTH1 signaling pathway, playing a protective role in vitro of the HT22 cell line. ADAM8 may be a promising and feasible target for neuronal survival in diseases of neural disorder.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Qinyang Zhang
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Pengfei Li
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
- Postgraduate School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
- Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, China
| | - Yanan Zhang
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People Hospital, Nanjing Medical University, Taizhou, China
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Mingjie Xia
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, China.
| | - Yongyi Chen
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Hussain M, Liu G. Eosinophilic Asthma: Pathophysiology and Therapeutic Horizons. Cells 2024; 13:384. [PMID: 38474348 PMCID: PMC10931088 DOI: 10.3390/cells13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Asthma is a prevalent chronic non-communicable disease, affecting approximately 300 million people worldwide. It is characterized by significant airway inflammation, hyperresponsiveness, obstruction, and remodeling. Eosinophilic asthma, a subtype of asthma, involves the accumulation of eosinophils in the airways. These eosinophils release mediators and cytokines, contributing to severe airway inflammation and tissue damage. Emerging evidence suggests that targeting eosinophils could reduce airway remodeling and slow the progression of asthma. To achieve this, it is essential to understand the immunopathology of asthma, identify specific eosinophil-associated biomarkers, and categorize patients more accurately based on the clinical characteristics (phenotypes) and underlying pathobiological mechanisms (endotypes). This review delves into the role of eosinophils in exacerbating severe asthma, exploring various phenotypes and endotypes, as well as biomarkers. It also examines the current and emerging biological agents that target eosinophils in eosinophilic asthma. By focusing on these aspects, both researchers and clinicians can advance the development of targeted therapies to combat eosinophilic pathology in severe asthma.
Collapse
Affiliation(s)
- Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Chen K, Tao H, Zhu P, Chu M, Li X, Shi Y, Zhang L, Xu Y, Lv S, Huang L, Huang W, Geng D. ADAM8 silencing suppresses the migration and invasion of fibroblast-like synoviocytes via FSCN1/MAPK cascade in osteoarthritis. Arthritis Res Ther 2024; 26:20. [PMID: 38218854 PMCID: PMC10787439 DOI: 10.1186/s13075-023-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease that affects elderly populations worldwide, causing pain and disability. Alteration of the fibroblast-like synoviocytes (FLSs) phenotype leads to an imbalance in the synovial inflammatory microenvironment, which accelerates the progression of OA. Despite this knowledge, the specific molecular mechanisms of the synovium that affect OA are still unclear. METHODS Both in vitro and in vivo experiments were undertaken to explore the role of ADAM8 playing in the synovial inflammatory of OA. A small interfering RNA (siRNA) was targeting ADAM8 to intervene. High-throughput sequencing was also used. RESULTS Our sequencing analysis revealed significant upregulation of the MAPK signaling cascade and ADAM8 gene expression in IL-1β-induced FLSs. The in vitro results demonstrated that ADAM8 blockade inhibited the invasion and migration of IL-1β-induced FLSs, while also suppressing the expression of related matrix metallomatrix proteinases (MMPs). Furthermore, our study revealed that inhibiting ADAM8 weakened the inflammatory protein secretion and MAPK signaling networks in FLSs. Mechanically, it revealed that inhibiting ADAM8 had a significant effect on the expression of migration-related signaling proteins, specifically FSCN1. When siADAM8 was combined with BDP-13176, a FSCN1 inhibitor, the migration and invasion of FLSs was further inhibited. These results suggest that FSCN1 is a crucial downstream factor of ADAM8 in regulating the biological phenotypes of FLSs. The in vivo experiments demonstrated that ADAM8 inhibition effectively reduced synoviocytes inflammation and alleviated the progression of OA in rats. CONCLUSIONS ADAM8 could be a promising therapeutic target for treating OA by targeting synovial inflammation.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
- Department of Orthopedics, Yixing Peoples's Hospital, Xincheng Road 1588, Yixing, Jiangsu, China
| | - Xueyan Li
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Yi Shi
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Shujun Lv
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China.
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, An'hui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Conrad C, Yildiz D, Cleary SJ, Margraf A, Cook L, Schlomann U, Panaretou B, Bowser JL, Karmouty-Quintana H, Li J, Berg NK, Martin SC, Aljohmani A, Moussavi-Harami SF, Wang KM, Tian JJ, Magnen M, Valet C, Qiu L, Singer JP, Eltzschig HK, Bertrams W, Herold S, Suttorp N, Schmeck B, Ball ZT, Zarbock A, Looney MR, Bartsch JW. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight 2022; 7:e149870. [PMID: 35132956 PMCID: PMC8855804 DOI: 10.1172/jci.insight.149870] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.
Collapse
Affiliation(s)
- Catharina Conrad
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Simon J. Cleary
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lena Cook
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| | - Barry Panaretou
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Jessica L. Bowser
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - S. Farshid Moussavi-Harami
- Department of Pediatrics, Division of Pediatric Critical Care, University of California, San Francisco, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer J. Tian
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mélia Magnen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Colin Valet
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Longhui Qiu
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jonathan P. Singer
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Wilhelm Bertrams
- Institute for Lung Research (iLung), Philipps-University, Marburg, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University Medical Center Giessen and Marburg, Giessen, Germany
- Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schmeck
- Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Marburg, Germany
- German Center for Infectious Disease Research (DZIF), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Mark R. Looney
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jörg W. Bartsch
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| |
Collapse
|
7
|
Wang X, Rojas-Quintero J, Zhang D, Nakajima T, Walker KH, Peh HY, Li Y, Fucci QA, Tesfaigzi Y, Owen CA. A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice. Mucosal Immunol 2021; 14:342-356. [PMID: 32690871 PMCID: PMC8422911 DOI: 10.1038/s41385-020-0325-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
A disintegrin and metalloproteinase domain-15 (ADAM15) is expressed by cells implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), but its contributions to COPD are unknown. To address this gap, ADAM15 levels were measured in samples from cigarette smoke (CS)-versus air-exposed wild-type (WT) mice. CS-induced COPD-like disease was compared in CS-exposed WT, Adam15-/-, and Adam15 bone marrow chimeric mice. CS exposure increased Adam15 expression in lung macrophages and CD8+ T cells and to a lesser extent in airway epithelial cells in WT mice. CS-exposed Adam15-/- mice had greater emphysema, small airway fibrosis, and lung inflammation (macrophages and CD8+ T cells) than WT mice. Adam15 bone marrow chimera studies revealed that Adam15 deficiency in leukocytes led to exaggerated pulmonary inflammation and COPD-like disease in mice. Adam15 deficiency in CD8+ T cells was required for the exaggerated pulmonary inflammation and COPD-like disease in CS-exposed Adam15-/- mice (as assessed by genetically deleting CD8+ T cells in Adam15-/- mice). Adam15 deficiency increased pulmonary inflammation by rendering CD8+ T cells and macrophages resistant to CS-induced activation of the mitochondrial apoptosis pathway by preserving mTOR signaling and intracellular Mcl-1 levels in these cells. These results strongly link ADAM15 deficiency to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Program in Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Takahiro Nakajima
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine H. Walker
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Yuhong Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Comparative analysis of ACE2 protein expression in rodent, non-human primate, and human respiratory tract at baseline and after injury: A conundrum for COVID-19 pathogenesis. PLoS One 2021; 16:e0247510. [PMID: 33626084 PMCID: PMC7904186 DOI: 10.1371/journal.pone.0247510] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is the putative functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current literature on the abundance and distribution of ACE2 protein in the human respiratory tract is controversial. We examined the effect of age and lung injury on ACE2 protein expression in rodent and non-human primate (NHP) models. We also examined ACE2 expression in human tissues with and without coronavirus disease 19 (COVID-19). ACE2 expression was detected at very low levels in preterm, but was absent in full-term and adult NHP lung homogenates. This pattern of ACE2 expression contrasted with that of transmembrane protease serine type 2 (TMPRSS2), which was significantly increased in full-term newborn and adult NHP lungs compared to preterm NHP lungs. ACE2 expression was not detected in NHP lungs with cigarette smoke-induced airway disease or bronchopulmonary dysplasia. Murine lungs lacked basal ACE2 immunoreactivity, but responded to hyperoxia, bacterial infection, and allergen exposure with new ACE2 expression in bronchial epithelial cells. In human specimens, robust ACE2 immunoreactivity was detected in ciliated epithelial cells in paranasal sinus specimens, while ACE2 expression was detected only in rare type 2 alveolar epithelial cells in control lungs. In autopsy specimens from patients with COVID-19 pneumonia, ACE2 was detected in rare ciliated epithelial and endothelial cells in the trachea, but not in the lung. There was robust expression of ACE2 expression in F344/N rat nasal mucosa and lung specimens, which authentically recapitulated the ACE2 expression pattern in human paranasal sinus specimens. Thus, ACE2 protein expression demonstrates a significant gradient between upper and lower respiratory tract in humans and is scarce in the lung. This pattern of ACE2 expression supports the notion of sinonasal epithelium being the main entry site for SARS-CoV-2 but raises further questions on the pathogenesis and cellular targets of SARS-CoV-2 in COVID-19 pneumonia.
Collapse
|
9
|
Liang X, Gupta K, Quintero JR, Cernadas M, Kobzik L, Christou H, Pier GB, Owen CA, Çataltepe S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB J 2019; 33:3562-3574. [PMID: 30462529 PMCID: PMC6988858 DOI: 10.1096/fj.201802002r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 01/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4), an intracellular lipid chaperone and adipokine, is expressed by lung macrophages, but the function of macrophage-FABP4 remains elusive. We investigated the role of FABP4 in host defense in a murine model of Pseudomonas aeruginosa pneumonia. Compared with wild-type (WT) mice, FABP4-deficient (FABP4-/-) mice exhibited decreased bacterial clearance and increased mortality when challenged intranasally with P. aeruginosa. These findings in FABP4-/- mice were associated with a delayed neutrophil recruitment into the lungs and were followed by greater acute lung injury and inflammation. Among leukocytes, only macrophages expressed FABP4 in WT mice with P. aeruginosa pneumonia. Chimeric FABP4-/- mice with WT bone marrow were protected from increased mortality seen in chimeric WT mice with FABP4-/- bone marrow during P. aeruginosa pneumonia, thus confirming the role of macrophages as the main source of protective FABP4 against that infection. There was less production of C-X-C motif chemokine ligand 1 (CXCL1) in FABP4-/- alveolar macrophages and lower airway CXCL1 levels in FABP4-/- mice. Delivering recombinant CXCL1 to the airways protected FABP4-/- mice from increased susceptibility to P. aeruginosa pneumonia. Thus, macrophage-FABP4 has a novel role in pulmonary host defense against P. aeruginosa infection by facilitating crosstalk between macrophages and neutrophils via regulation of macrophage CXCL1 production.-Liang, X., Gupta, K., Rojas Quintero, J., Cernadas, M., Kobzik, L., Christou, H., Pier, G. B., Owen, C. A., Çataltepe, S. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuela Cernadas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Sule Çataltepe
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Rojas-Quintero J, Wang X, Tipper J, Burkett PR, Zuñiga J, Ashtekar AR, Polverino F, Rout A, Yambayev I, Hernández C, Jimenez L, Ramírez G, Harrod KS, Owen CA. Matrix metalloproteinase-9 deficiency protects mice from severe influenza A viral infection. JCI Insight 2018; 3:99022. [PMID: 30568032 DOI: 10.1172/jci.insight.99022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) cleaves various proteins to regulate inflammatory and injury responses. However, MMP-9's activities during influenza A viral (IAV) infections are incompletely understood. Herein, plasma MMP-9 levels were increased in patients with pandemic H1N1 and seasonal IAV infections. MMP-9 lung levels were increased and localized to airway epithelial cells and leukocytes in H1N1-infected WT murine lungs. H1N1-infected Mmp-9-/- mice had lower mortality rates, reduced weight loss, lower lung viral titers, and reduced lung injury, along with lower E-cadherin shedding in bronchoalveolar lavage fluid (BALF) samples than WT mice. H1N1-infected Mmp-9-/- mice had an altered immune response to IAV with lower BALF PMN and macrophage counts, higher Th1-like CD4+ and CD8+ T cell subsets, lower T regulatory cell counts, reduced lung type I interferon levels, and higher lung interferon-γ levels. Mmp-9 bone marrow-chimera studies revealed that Mmp-9 deficiency in lung parenchymal cells protected mice from IAV-induced mortality. H1N1-infected Mmp-9-/- lung epithelial cells had lower viral titers than H1N1-infected WT cells in vitro. Thus, H1N1-infected Mmp-9-/- mice are protected from IAV-induced lung disease due to a more effective adaptive immune response to IAV and reduced epithelial barrier injury due partly to reduced E-cadherin shedding. Thus, we believe that MMP-9 is a novel therapeutic target for IAV infections.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Patrick R Burkett
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Amit Rout
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Ilyas Yambayev
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Hernández
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
| | - Luis Jimenez
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
11
|
Polverino F, Rojas-Quintero J, Wang X, Petersen H, Zhang L, Gai X, Higham A, Zhang D, Gupta K, Rout A, Yambayev I, Pinto-Plata V, Sholl LM, Cunoosamy D, Celli BR, Goldring J, Singh D, Tesfaigzi Y, Wedzicha J, Olsson H, Owen CA. A Disintegrin and Metalloproteinase Domain-8: A Novel Protective Proteinase in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2018; 198:1254-1267. [PMID: 29750543 PMCID: PMC6290938 DOI: 10.1164/rccm.201707-1331oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 05/11/2018] [Indexed: 11/16/2022] Open
Abstract
RATIONALE ADAM8 (a disintegrin and metalloproteinase domain-8) is expressed by leukocytes and epithelial cells in health, but its contribution to the pathogenesis of chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES To determine whether the expression of ADAM8 is increased in the lungs of patients with COPD and cigarette smoke (CS)-exposed mice, and whether ADAM8 promotes the development of COPD. METHODS ADAM8 levels were measured in lung, sputum, plasma, and/or BAL fluid samples from patients with COPD, smokers, and nonsmokers, and wild-type (WT) mice exposed to CS versus air. COPD-like lung pathologies were compared in CS-exposed WT versus Adam8-/- mice. MEASUREMENTS AND MAIN RESULTS ADAM8 immunostaining was reduced in macrophages, and alveolar and bronchial epithelial cells in the lungs of patients with COPD versus control subjects, and CS- versus air-exposed WT mice. ADAM8 levels were similar in plasma, sputum, and BAL fluid samples from patients with COPD and control subjects. CS-exposed Adam8-/- mice had greater airspace enlargement and airway mucus cell metaplasia than WT mice, but similar small airway fibrosis. CS-exposed Adam8-/- mice had higher lung macrophage counts, oxidative stress levels, and alveolar septal cell death rates, but lower alveolar septal cell proliferation rates and soluble epidermal growth factor receptor BAL fluid levels than WT mice. Adam8 deficiency increased lung inflammation by reducing CS-induced activation of the intrinsic apoptosis pathway in macrophages. Human ADAM8 proteolytically shed the epidermal growth factor receptor from bronchial epithelial cells to reduce mucin expression in vitro. Adam8 bone marrow chimera studies revealed that Adam8 deficiency in leukocytes and lung parenchymal cells contributed to the exaggerated COPD-like disease in Adam8-/- mice. CONCLUSIONS Adam8 deficiency increases CS-induced lung inflammation, emphysema, and airway mucus cell metaplasia. Strategies that increase or prolong ADAM8's expression in the lung may have therapeutic efficacy in COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine and
| | - Hans Petersen
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine and
| | - Xiaoyan Gai
- Division of Pulmonary and Critical Care Medicine and
| | - Andrew Higham
- Medicines Evaluation Unit, University of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Duo Zhang
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | | | - Amit Rout
- Division of Pulmonary and Critical Care Medicine and
| | | | | | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Danen Cunoosamy
- Respiratory, Inflammation and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bartolomé R. Celli
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Dave Singh
- Medicines Evaluation Unit, University of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | | | - Jadwiga Wedzicha
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Henric Olsson
- Respiratory, Inflammation and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
12
|
|
13
|
Laucho‐Contreras ME, Polverino F, Rojas‐Quintero J, Wang X, Owen CA. Club cell protein 16 (Cc16) deficiency increases inflamm-aging in the lungs of mice. Physiol Rep 2018; 6:e13797. [PMID: 30084231 PMCID: PMC6079172 DOI: 10.14814/phy2.13797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Low serum CC16 levels are associated with accelerated lung function decline in human population studies, but it is not known whether low serum CC16 levels contribute to lung function decline, or are an epiphenomenon. We tested the hypothesis that unchallenged Cc16-/- mice develop accelerated rates of pulmonary function test abnormalities and pulmonary pathologies over time compared with unchallenged WT mice. Respiratory mechanics, airspace enlargement, and small airway fibrosis were measured in unchallenged wild-type (WT) versus Cc16-/- mice over 6-18 months of age. Lung leukocyte counts and lung levels of metalloproteinases (Mmps), cytokines, oxidative stress, cellular senescence markers (p19 and p21), and lung cell apoptosis, and serum C-reactive protein (CRP) levels were measured in age-matched WT versus Cc16-/- mice. Unchallenged Cc16-/- mice developed greater increases in lung compliance, airspace enlargement, and small airway fibrosis than age-matched WT mice over 6-18 months of age. Cc16-/- mice had greater: (1) lung leukocyte counts; (2) lung levels of Ccl2, Ccl-5, interleukin-10, Mmp-2, and Mmp-9; (3) pulmonary oxidative stress levels, (4) alveolar septal cell apoptosis and staining for p16 and p21; and (5) serum CRP levels. Unchallenged Cc16-/- mice had greater nuclear factor-κB (NF-κB) activation in their lungs than age-matched WT mice, but similar lung levels of secretory phospholipase-A2 activity. Cc16 deficiency in mice leads spontaneously to an accelerated lung aging phenotype with exaggerated pulmonary inflammation and COPD-like lung pathologies associated with increased activation of NF- κB in the lung. CC16 augmentation strategies may reduce lung aging in CC16-deficient individuals.
Collapse
Affiliation(s)
- Maria E. Laucho‐Contreras
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Francesca Polverino
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| | - Joselyn Rojas‐Quintero
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| |
Collapse
|
14
|
Wang X, Polverino F, Rojas-Quintero J, Zhang D, Sánchez J, Yambayev I, Lindqvist E, Virtala R, Djukanovic R, Davies DE, Wilson S, O'Donnell R, Cunoosamy D, Hazon P, Higham A, Singh D, Olsson H, Owen CA. A Disintegrin and A Metalloproteinase-9 (ADAM9): A Novel Proteinase Culprit with Multifarious Contributions to COPD. Am J Respir Crit Care Med 2018; 198:1500-1518. [PMID: 29864380 PMCID: PMC6298633 DOI: 10.1164/rccm.201711-2300oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Proteinases with a disintegrin and a metalloproteinase domain (ADAMs) have not been well studied in COPD. We investigated whether ADAM9 is linked to COPD in humans and mice. METHODS ADAM9 blood and lung levels were measured in COPD patients versus controls, and air- versus cigarette smoke (CS)-exposed wild-type (WT) mice. WT and Adam9-/- mice were exposed to air or CS for 1-6 months, and COPD-like lung pathologies were measured. RESULTS ADAM9 staining was increased in lung epithelial cells and macrophages in smokers and even more so in COPD patients and correlated directly with pack-year smoking history and inversely with airflow obstruction and/or FEV1 % predicted. Bronchial epithelial cell ADAM9 mRNA levels were higher in COPD patients than controls and correlated directly with pack-year smoking history. Plasma, BALF and sputum ADAM9 levels were similar in COPD patients and controls. CS exposure increased Adam9 levels in WT murine lungs. Adam9-/- mice were protected from emphysema development, small airway fibrosis, and airway mucus metaplasia. CS-exposed Adam9-/- mice had reduced lung macrophage counts, alveolar septal cell apoptosis, lung elastin degradation, and shedding of VEGFR2 and EGFR in BALF samples. Recombinant ADAM9 sheds EGF and VEGF receptors from epithelial cells to reduce activation of the Akt pro-survival pathway and increase cellular apoptosis. CONCLUSIONS ADAM9 levels are increased in COPD lungs and linked to key clinical variables. Adam9 promotes emphysema development, and large and small airway disease in mice. Inhibition of ADAM9 could be a therapeutic approach for multiple COPD phenotypes.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Francesca Polverino
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Joselyn Rojas-Quintero
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Duo Zhang
- Boston University, 1846, Boston, Massachusetts, United States
| | - José Sánchez
- AstraZeneca R&D, Quantitative Biology, Discovery Sciences, Gothenburgh, Sweden
| | - Ilyas Yambayev
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Eva Lindqvist
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Robert Virtala
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Ratko Djukanovic
- Southampton University, Clinical and Experimental Sciences and Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Donna E Davies
- Brooke Laboratory, Infection, Inflammation & Repair, Southampton, Hampshire, United Kingdom of Great Britain and Northern Ireland
| | - Susan Wilson
- University of Southampton, 7423, Southampton, United Kingdom of Great Britain and Northern Ireland
| | | | - Danen Cunoosamy
- AstraZeneca, Respiratory, Inflammation and Autoimmune iMed, Molndal, Sweden
| | - Petra Hazon
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Andrew Higham
- University of South Manchester NHS Foundation Trust, Medicines Evaluation Unit, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Dave Singh
- North West Lung Research Centre, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Henric Olsson
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Caroline A Owen
- Brigham and Women's Hospital, Boston, Massachusetts, United States ;
| |
Collapse
|
15
|
Deregulated PSGL-1 Expression in B Cells and Dendritic Cells May Be Implicated in Human Systemic Sclerosis Development. J Invest Dermatol 2018; 138:2123-2132. [PMID: 29689251 DOI: 10.1016/j.jid.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/13/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder with high morbidity and mortality, is difficult to diagnose early, and has no curative treatment. PSGL-1 is a leukocyte receptor whose deficiency in mice promotes an SSc-like disease. ADAM8, a metalloprotease that cleaves PSGL-1, is implicated in inflammatory processes. Our goal was to evaluate whether PSGL-1 and ADAM8 contribute to the pathogenesis of human SSc. We found that patients with SSc presented increased PSGL-1 expression on monocytes, dendritic cells, and T cells and decreased expression of PSGL-1 on B cells. PSGL-1 on monocytes from SSc patients failed to induce Syk phosphorylation or IL-10 production after interaction with P-selectin. Up to 60% of the IL-10-producing B cells expressed PSGL-1, pointing to a regulatory role for PSGL-1 in B cells, and PSGL-1+ B cells from SSc patients had decreased IL-10 production. ADAM8 expression was increased on antigen-presenting cells and T lymphocytes of SSc patients. Patients treated with calcium antagonists had lower levels of ADAM8 on APCs and T lymphocytes. Multivariate analysis indicated that the high percentage of ADAM8-expressing plasmacytoid dendritic cells discriminated patients from healthy donors. High PSGL-1 expression on dendritic cells was associated with the presence of interstitial lung disease.
Collapse
|
16
|
Abstract
Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.
Collapse
|
17
|
Dreymueller D, Pruessmeyer J, Schumacher J, Fellendorf S, Hess FM, Seifert A, Babendreyer A, Bartsch JW, Ludwig A. The metalloproteinase ADAM8 promotes leukocyte recruitment in vitro and in acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 313:L602-L614. [PMID: 28596294 DOI: 10.1152/ajplung.00444.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Alveolar leukocyte recruitment is a hallmark of acute lung inflammation and involves transmigration of leukocytes through endothelial and epithelial layers. The disintegrin and metalloproteinase (ADAM) 8 is expressed on human isolated leukocytic cells and can be further upregulated on cultured endothelial and epithelial cells by proinflammatory cytokines. By shRNA-mediated knockdown we show that leukocytic ADAM8 is required on monocytic THP-1 cells for chemokine-induced chemotaxis as well as transendothelial and transepithelial migration. Furthermore, ADAM8 promotes αL-integrin upregulation and THP-1 cell adhesion to endothelial cells. On endothelial cells ADAM8 enhances transendothelial migration and increases cytokine-induced permeability. On epithelial cells the protease facilitates migration in a wound closure assay but does not affect transepithelial leukocyte migration. Blood leukocytes and bone marrow-derived macrophages (BMDM) from ADAM8-deficient mice show suppressed chemotactic response. Intranasal application of LPS to mice is accompanied with ADAM8 upregulation in the lung. In this model of acute lung inflammation ADAM8-deficient mice are protected against leukocyte infiltration. Finally, transfer experiments of BMDM in mice indicate that ADAM8 exerts a promigratory function predominantly on leukocytes. Our study provides in vitro and in vivo evidence that ADAM8 on leukocytes holds a proinflammatory function in acute lung inflammation by promoting alveolar leukocyte recruitment.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Jessica Pruessmeyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Sandra Fellendorf
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Franz Martin Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, University Hospital Marburg, Marburg, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| |
Collapse
|
18
|
Johansson MW, Khanna M, Bortnov V, Annis DS, Nguyen CL, Mosher DF. IL-5-stimulated eosinophils adherent to periostin undergo stereotypic morphological changes and ADAM8-dependent migration. Clin Exp Allergy 2017; 47:1263-1274. [PMID: 28378503 DOI: 10.1111/cea.12934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/28/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND IL-5 causes suspended eosinophils to polarize with filamentous (F)-actin and granules at one pole and the nucleus in a specialized uropod, the "nucleopod," which is capped with P-selectin glycoprotein ligand-1 (PSGL-1). IL-5 enhances eosinophil adhesion and migration on periostin, an extracellular matrix protein upregulated in asthma by type 2 immunity mediators. OBJECTIVE Determine how the polarized morphology evolves to foster migration of IL-5-stimulated eosinophils on a surface coated with periostin. METHODS Blood eosinophils adhering to adsorbed periostin were imaged at different time points by fluorescent microscopy, and migration of eosinophils on periostin was assayed. RESULTS After 10 minutes in the presence of IL-5, adherent eosinophils were polarized with PSGL-1 at the nucleopod tip and F-actin distributed diffusely at the opposite end. After 30-60 minutes, the nucleopod had dissipated such that PSGL-1 was localized in a crescent or ring away from the cell periphery, and F-actin was found in podosome-like structures. The periostin layer, detected with monoclonal antibody Stiny-1, shown here to recognize the FAS1 4 module, was cleared in wide areas around adherent eosinophils. Clearance was attenuated by metalloproteinase inhibitors or antibodies to disintegrin metalloproteinase 8 (ADAM8), a major eosinophil metalloproteinase previously implicated in asthma pathogenesis. ADAM8 was not found in podosome-like structures, which are associated with proteolytic activity in other cell types. Instead, immunoblotting demonstrated proteoforms of ADAM8 that lack the cytoplasmic tail in the supernatant. Anti-ADAM8 inhibited migration of IL-5-stimulated eosinophils on periostin. CONCLUSIONS AND CLINICAL RELEVANCE Migrating IL-5-activated eosinophils on periostin exhibit loss of nucleopodal features and appearance of prominent podosomes along with clearance of the Stiny-1 periostin epitope. Migration and epitope clearance are both attenuated by inhibitors of ADAM8. We propose, therefore, that eosinophils remodel and migrate on periostin-rich extracellular matrix in the asthmatic airway in an ADAM8-dependent manner, making ADAM8 a possible therapeutic target.
Collapse
Affiliation(s)
- M W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - M Khanna
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - V Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - D S Annis
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - C L Nguyen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - D F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
20
|
Raeven RHM, Brummelman J, van der Maas L, Tilstra W, Pennings JLA, Han WGH, van Els CACM, van Riet E, Kersten GFA, Metz B. Immunological Signatures after Bordetella pertussis Infection Demonstrate Importance of Pulmonary Innate Immune Cells. PLoS One 2016; 11:e0164027. [PMID: 27711188 PMCID: PMC5053408 DOI: 10.1371/journal.pone.0164027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Effective immunity against Bordetella pertussis is currently under discussion following the stacking evidence of pertussis resurgence in the vaccinated population. Natural immunity is more effective than vaccine-induced immunity indicating that knowledge on infection-induced responses may contribute to improve vaccination strategies. We applied a systems biology approach comprising microarray, flow cytometry and multiplex immunoassays to unravel the molecular and cellular signatures in unprotected mice and protected mice with infection-induced immunity, around a B. pertussis challenge. Pre-existing systemic memory Th1/Th17 cells, memory B-cells, and mucosal IgA specific for Ptx, Vag8, Fim2/3 were detected in the protected mice 56 days after an experimental infection. In addition, pre-existing high activity and reactivation of pulmonary innate cells such as alveolar macrophages, M-cells and goblet cells was detected. The pro-inflammatory responses in the lungs and serum, and neutrophil recruitment in the spleen upon an infectious challenge of unprotected mice were absent in protected mice. Instead, fast pulmonary immune responses in protected mice led to efficient bacterial clearance and harbored potential new gene markers that contribute to immunity against B. pertussis. These responses comprised of innate makers, such as Clca3, Retlna, Glycam1, Gp2, and Umod, next to adaptive markers, such as CCR6+ B-cells, CCR6+ Th17 cells and CXCR6+ T-cells as demonstrated by transcriptome analysis. In conclusion, besides effective Th1/Th17 and mucosal IgA responses, the primary infection-induced immunity benefits from activation of pulmonary resident innate immune cells, achieved by local pathogen-recognition. These molecular signatures of primary infection-induced immunity provided potential markers to improve vaccine-induced immunity against B. pertussis.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- * E-mail:
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Jeroen L. A. Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G. H. Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Chen J, Deng L, Dreymüller D, Jiang X, Long J, Duan Y, Wang Y, Luo M, Lin F, Mao L, Müller B, Koller G, Bartsch JW. A novel peptide ADAM8 inhibitor attenuates bronchial hyperresponsiveness and Th2 cytokine mediated inflammation of murine asthmatic models. Sci Rep 2016; 6:30451. [PMID: 27458083 PMCID: PMC4960557 DOI: 10.1038/srep30451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
A disintegrin and metalloproteinase 8 (ADAM8) has been identified as a signature gene associated with moderate and severe asthma. Studies in mice have demonstrated that the severity of asthma can be reduced by either transgenic knock-out or by antibodies blocking ADAM8 function, highlighting ADAM8 as potential drug target for asthma therapy. Here, we examined the therapeutic effect of an ADAM8 inhibitor peptide (BK-1361) that specifically blocks cellular ADAM8 activity in ovalbumin-sensitized and challenged Balb/c mice. We found that BK-1361 (25 μg/g body weight) attenuated airway responsiveness to methacholine stimulation by up to 42%, concomitantly reduced tissue remodeling by 50%, and decreased inflammatory cells (e.g. eosinophils down by 54%)/inflammatory factors (e.g. sCD23 down by 50%)/TH2 cytokines (e.g. IL-5 down by 70%)/ADAM8-positive eosinophils (down by 60%) in the lung. We further verified that BK-1361 specifically targets ADAM8 in vivo as the peptide caused significantly reduced levels of soluble CD23 in wild-type but not in ADAM8-deficient mice. These findings suggest that BK-1361 blocks ADAM8-dependent asthma effects in vivo by inhibiting infiltration of eosinophils and TH2 lymphocytes, thus leading to reduction of TH2-mediated inflammation, tissue remodeling and bronchial hyperresponsiveness. Taken together, pharmacological ADAM8 inhibition appears as promising novel therapeutic strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Jun Chen
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China.,Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China.,Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Daniela Dreymüller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Xuemei Jiang
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jiaoyue Long
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yiyuan Duan
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Feng Lin
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Lizhen Mao
- Jiangsu Asialand Bio-med Technology Co. Ltd., Changzhou, Jiangsu, China
| | - Bernd Müller
- Laboratory of Respiratory Cell Biology, Division of Pneumology, Philipps-University Marburg, Marburg, Germany
| | - Garrit Koller
- KCLDI Biomaterials, Biomimetics and Biophotonics Group. King's College London, London SE1 9RT, United Kingdom.,Department of Neurosurgery, Philipps-University Marburg, Baldinger Str., 35033 Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldinger Str., 35033 Marburg, Germany
| |
Collapse
|
22
|
Ambrosino N, Casaburi R, Chetta A, Clini E, Donner CF, Dreher M, Goldstein R, Jubran A, Nici L, Owen CA, Rochester C, Tobin MJ, Vagheggini G, Vitacca M, ZuWallack R. 8th international conference on management and rehabilitation of chronic respiratory failure: the long summaries – part 1. Multidiscip Respir Med 2015. [PMCID: PMC4595244 DOI: 10.1186/s40248-015-0026-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This paper summarizes the Part 1 of the proceedings of the 8th International Conference on Management and Rehabilitation of Chronic Respiratory Failure, held in Pescara, Italy, on 7 and 8 May, 2015. It summarizes the contributions from numerous experts in the field of chronic respiratory disease and chronic respiratory failure. The outline follows the temporal sequence of presentations. This paper (Part 1) includes sections regarding: Advances in Asthma and COPD Therapy (Novel Therapeutic Targets for Asthma: Proteinases, Blood Biomarker Changes in COPD Patients); The problem of Hospital Re-Admission following Discharge after the COPD Exacerbation (Characteristics of the Hospitalized COPD Patient, Reducing Hospital Readmissions Following COPD Exacerbation).
Collapse
|
23
|
Polverino F, Doyle-Eisele M, McDonald J, Wilder JA, Royer C, Laucho-Contreras M, Kelly EM, Divo M, Pinto-Plata V, Mauderly J, Celli BR, Tesfaigzi Y, Owen CA. A novel nonhuman primate model of cigarette smoke-induced airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:741-55. [PMID: 25542772 DOI: 10.1016/j.ajpath.2014.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Small animal models of chronic obstructive pulmonary disease (COPD) have several limitations for identifying new therapeutic targets and biomarkers for human COPD. These include a pulmonary anatomy that differs from humans, the limited airway pathologies and lymphoid aggregates that develop in smoke-exposed mice, and the challenges associated with serial biological sampling. Thus, we assessed the utility of cigarette smoke (CS)-exposed cynomolgus macaque as a nonhuman primate (NHP) large animal model of COPD. Twenty-eight NHPs were exposed to air or CS 5 days per week for up to 12 weeks. Bronchoalveolar lavage and pulmonary function tests were performed at intervals. After 12 weeks, we measured airway pathologies, pulmonary inflammation, and airspace enlargement. CS-exposed NHPs developed robust mucus metaplasia, submucosal gland hypertrophy and hyperplasia, airway inflammation, peribronchial fibrosis, and increases in bronchial lymphoid aggregates. Although CS-exposed NHPs did not develop emphysema over the study time, they exhibited pathologies that precede emphysema development, including increases in the following: i) matrix metalloproteinase-9 and proinflammatory mediator levels in bronchoalveolar lavage fluid, ii) lung parenchymal leukocyte counts and lymphoid aggregates, iii) lung oxidative stress levels, and iv) alveolar septal cell apoptosis. CS-exposed NHPs can be used as a model of airway disease occurring in COPD patients. Unlike rodents, NHPs can safely undergo longitudinal sampling, which could be useful for assessing novel biomarkers or therapeutics for COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; Pulmonary Department, University of Parma, Parma, Italy
| | | | - Jacob McDonald
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Julie A Wilder
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Christopher Royer
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Emer M Kelly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Joe Mauderly
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Bartolome R Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; The Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
24
|
Nishimura D, Sakai H, Sato T, Sato F, Nishimura S, Toyama-Sorimachi N, Bartsch JW, Sehara-Fujisawa A. Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration. Mech Dev 2014; 135:58-67. [PMID: 25511460 DOI: 10.1016/j.mod.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/15/2022]
Abstract
Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegrin and metalloprotease (ADAM) family. Skeletal muscle of dystrophin-null mice, an animal model for Duchenne Muscular Dystrophy, deteriorates by the lack of ADAM8, which is characterized by increased area of muscle degeneration and increased number of necrotic and calcified muscle fibers. Adam8 is highly expressed in neutrophils. Upon cardiotoxin-induced skeletal muscle injury, neutrophils invade into muscle fibers through the basement membrane and form large clusters in wild type, but not in ADAM8-deficient mice, although neutrophils of the latter infiltrate into interstitial tissues similarly to those of wild type mice. Neutrophils lose their adhesiveness to blood vessels after infiltration, which includes an ectodomain shedding of P-Selectin Glycoprotein Ligand-1 (PSGL-1) on their surface. Expression of PSGL-1 on the surface of neutrophils remains higher in ADAM8-deficient than in wild type mice. These results suggest that ADAM8 mediates an enhanced invasiveness of neutrophils into injured muscle fibers by the removal of their adhesiveness to blood vessels after infiltration into interstitial tissues.
Collapse
Affiliation(s)
- Daigo Nishimura
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Hiroshi Sakai
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Takahiko Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan
| | - Satoshi Nishimura
- Department of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Jörg W Bartsch
- Department of Neurosurgery/Lab, Philipps University Marburg, Baldingerstr., 35033 Marburg, Germany
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kawahara-cho 53, Shogo-in, Kyoto 606-8507, Japan.
| |
Collapse
|
25
|
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2014; 308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Oreo KM, Gibson PG, Simpson JL, Wood LG, McDonald VM, Baines KJ. Sputum ADAM8 expression is increased in severe asthma and COPD. Clin Exp Allergy 2014; 44:342-52. [PMID: 24147597 DOI: 10.1111/cea.12223] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory airway diseases in which the mechanisms are not fully understood. A disintegrin and metalloproteinase domain 8 (ADAM8) is an enzyme expressed on most leucocytes and may be important for facilitating leucocyte migration in respiratory disease. OBJECTIVE To investigate ADAM8 mRNA and protein expression in asthma and COPD and its relationship between asthma severity and inflammatory phenotypes. METHODS Induced sputum was collected from 113 subjects with asthma (severe n = 31, uncontrolled n = 39 and controlled n = 35), 20 subjects with COPD and 21 healthy controls. Sputum ADAM8 mRNA expression was measured by qPCR, and soluble ADAM8 (sADAM8) protein was measured in the sputum supernatant by validated ELISA. RESULTS ADAM8 mRNA correlated with ADAM8 protein levels (r = 0.27, P < 0.01). ADAM8 mRNA (P = 0.004) and sADAM8 protein (P = 0.014) levels were significantly higher in both asthma and COPD compared with healthy controls. ADAM8 mRNA (P = 0.035) and sADAM8 protein (P = 0.002) levels were significantly higher in severe asthma compared with controlled asthma. Total inflammatory cell count (P < 0.01) and neutrophils (P < 0.01) were also elevated in severe asthmatic sputum. Although ADAM8 mRNA was significantly higher in eosinophilic and neutrophilic asthma (P < 0.001), sADAM8 did not differ between asthma inflammatory phenotypes. ADAM8 expression positively correlated with sputum total cell count and sputum neutrophils. CONCLUSIONS AND CLINICAL RELEVANCE ADAM8 expression is increased in both severe asthma and COPD and associated with sputum total cell count and neutrophils. ADAM8 may facilitate neutrophil migration to the airways in severe asthma and COPD.
Collapse
Affiliation(s)
- K M Oreo
- Virus Infections/Immunity Vaccines & Asthma, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Callaghan, NSW, Australia; Severe Asthma Network, Woolcock Institute of Medical Research, Glebe, NSW, Australia; The University of Sydney, Camperdown/Darlington, NSW, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Roychaudhuri R, Hergrueter AH, Polverino F, Laucho-Contreras ME, Gupta K, Borregaard N, Owen CA. ADAM9 is a novel product of polymorphonuclear neutrophils: regulation of expression and contributions to extracellular matrix protein degradation during acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 193:2469-82. [PMID: 25063875 DOI: 10.4049/jimmunol.1303370] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein is stored in the gelatinase and specific granules and the secretory vesicles of human PMNs. Unstimulated PMNs express minimal quantities of surface ADAM9, but activation of PMNs with degranulating agonists rapidly (within 15 min) increases PMN surface ADAM9 levels. Human PMNs produce small quantities of soluble forms of ADAM9. Surprisingly, ADAM9 degrades several extracellular matrix (ECM) proteins, including fibronectin, entactin, laminin, and insoluble elastin, as potently as matrix metalloproteinase-9. However, ADAM9 does not degrade types I, III, or IV collagen or denatured collagens in vitro. To determine whether Adam9 regulates PMN recruitment or ECM protein turnover during inflammatory responses, we compared wild-type and Adam9(-/-) mice in bacterial LPS- and bleomycin-mediated acute lung injury (ALI). Adam9 lung levels increase 10-fold during LPS-mediated ALI in wild-type mice (due to increases in leukocyte-derived Adam9), but Adam9 does not regulate lung PMN (or macrophage) counts during ALI. Adam9 increases mortality, promotes lung injury, reduces lung compliance, and increases degradation of lung elastin during LPS- and/or bleomycin-mediated ALI. Adam9 does not regulate collagen accumulation in the bleomycin-treated lung. Thus, ADAM9 is expressed in an inducible fashion on PMN surfaces where it degrades some ECM proteins, and it promotes alveolar-capillary barrier injury during ALI in mice.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Anja H Hergrueter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115; Lovelace Respiratory Research Institute, Albuquerque, NM 87108; Pulmonary Department, University of Parma, 43100 Parma, Italy; and
| | - Maria E Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Niels Borregaard
- Granulocyte Research Laboratory, Department of Hematology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115; Lovelace Respiratory Research Institute, Albuquerque, NM 87108;
| |
Collapse
|
28
|
Craig VJ, Polverino F, Laucho-Contreras ME, Shi Y, Liu Y, Osorio JC, Tesfaigzi Y, Pinto-Plata V, Gochuico BR, Rosas IO, Owen CA. Mononuclear phagocytes and airway epithelial cells: novel sources of matrix metalloproteinase-8 (MMP-8) in patients with idiopathic pulmonary fibrosis. PLoS One 2014; 9:e97485. [PMID: 24828408 PMCID: PMC4020836 DOI: 10.1371/journal.pone.0097485] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/20/2014] [Indexed: 01/07/2023] Open
Abstract
Objectives Matrix metalloproteinase-8 (MMP-8) promotes lung fibrotic responses to bleomycin in mice. Although prior studies reported that MMP-8 levels are increased in plasma and bronchoalveolar lavage fluid (BALF) samples from IPF patients, neither the bioactive forms nor the cellular sources of MMP-8 in idiopathic pulmonary fibrosis (IPF) patients have been identified. It is not known whether MMP-8 expression is dys-regulated in IPF leukocytes or whether MMP-8 plasma levels correlate with IPF outcomes. Our goal was to address these knowledge gaps. Methods We measured MMP-8 levels and forms in blood and lung samples from IPF patients versus controls using ELISAs, western blotting, and qPCR, and assessed whether MMP-8 plasma levels in 73 IPF patients correlate with rate of lung function decline and mortality. We used immunostaining to localize MMP-8 expression in IPF lungs. We quantified MMP-8 levels and forms in blood leukocytes from IPF patients versus controls. Results IPF patients have increased BALF, whole lung, and plasma levels of soluble MMP-8 protein. Active MMP-8 is the main form elevated in IPF lungs. MMP-8 mRNA levels are increased in monocytes from IPF patients, but IPF patients and controls have similar levels of MMP-8 in PMNs. Surprisingly, macrophages and airway epithelial cells are the main cells expressing MMP-8 in IPF lungs. Plasma and BALF MMP-8 levels do not correlate with decline in lung function and/or mortality in IPF patients. Conclusion Blood and lung MMP-8 levels are increased in IPF patients. Active MMP-8 is the main form elevated in IPF lungs. Surprisingly, blood monocytes, lung macrophages, and airway epithelial cells are the main cells in which MMP-8 is upregulated in IPF patients. Plasma and BALF MMP-8 levels are unlikely to serve as a prognostic biomarker for IPF patients. These results provide new information about the expression patterns of MMP-8 in IPF patients.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Maria E. Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuanyuan Shi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Yushi Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Juan C. Osorio
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yohannes Tesfaigzi
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nyunoya T, Mebratu Y, Contreras A, Delgado M, Chand HS, Tesfaigzi Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am J Respir Cell Mol Biol 2014; 50:471-82. [PMID: 24111585 DOI: 10.1165/rcmb.2013-0348tr] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke contains numerous chemical compounds, including abundant reactive oxygen/nitrogen species and aldehydes, and many other carcinogens. Long-term cigarette smoking significantly increases the risk of various lung diseases, including chronic obstructive pulmonary disease and lung cancer, and contributes to premature death. Many in vitro and in vivo studies have elucidated mechanisms involved in cigarette smoke-induced inflammation, DNA damage, and autophagy, and the subsequent cell fates, including cell death, cellular senescence, and transformation. In this Translational Review, we summarize the known pathways underlying these processes in airway epithelial cells to help reveal future challenges and describe possible directions of research that could lead to better management and treatment of these diseases.
Collapse
Affiliation(s)
- Toru Nyunoya
- 1 Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, and
| | | | | | | | | | | |
Collapse
|
30
|
Chen J, Jiang X, Duan Y, Long J, Bartsch JW, Deng L. ADAM8 in asthma. Friend or foe to airway inflammation? Am J Respir Cell Mol Biol 2014; 49:875-84. [PMID: 23837412 DOI: 10.1165/rcmb.2013-0168tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway inflammation has been suggested as the pathological basis in asthma pathogenesis. Recruitment of leukocytes from the vasculature into airway sites is essential for induction of airway inflammation, a process thought to be mediated by a disintegrin and metalloprotease 8 (ADAM8). However, there is an apparent controversy about whether ADAM8 helps or hampers transmigration of leukocytes through endothelium in airway inflammation of asthma. This review outlines the current contradictory concepts concerning the role of ADAM8 in airway inflammation, particularly focusing on the recruitment of leukocytes during asthma, and attempts to bridge the existing experimental data on the basis of the functional analysis of different domains of ADAM8 and their endogenous processing in vivo. We suggest a possible hypothesis for the specific mechanism by which ADAM8 regulates the transmigration of leukocytes to explain the disparity existing in current studies, and we also raise some questions that require future investigations.
Collapse
Affiliation(s)
- Jun Chen
- 1 Key Lab of Biorheological Science and Technology, Ministry of Education, "National 985 Project" Institute of Biorheology and Gene Regulation, Bioengineering College, Chongqing University, Chongqing, P.R. China
| | | | | | | | | | | |
Collapse
|
31
|
Ilmarinen P, Kankaanranta H. Eosinophil apoptosis as a therapeutic target in allergic asthma. Basic Clin Pharmacol Toxicol 2013; 114:109-17. [PMID: 24148899 DOI: 10.1111/bcpt.12163] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/17/2013] [Indexed: 01/21/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways manifesting in many different phenotypes. Allergic asthma, comprising approximately half of patients with asthma, is characterized by the accumulation of eosinophils into the lungs. Eosinophils release factors that damage the surrounding cells and participate in the maintenance and exacerbation of inflammation. In the absence of any inflammatory survival-prolonging factors, eosinophils die by apoptosis in few days but in inflamed airways, eosinophil survival is thought to be prolonged due to the surrounding pro-inflammatory factors such as IL-5, IL-3 and GM-CSF. Resolution of eosinophilic inflammation is an important goal in the treatment of allergic asthma. Apoptosis is a physiological and non-inflammatory way to eliminate these harmful cells, and development of drugs targeting eosinophil apoptosis is one possible strategy for the therapy of allergic asthma. Importance of this strategy is supported by the fact that promotion of eosinophil apoptosis is a property of many anti-asthmatic agents such as glucocorticoids, the current main anti-inflammatory therapy of asthma, theophylline and leukotriene modifiers. β2 agonists have been shown to modulate eosinophil longevity by increasing survival. Also, anti-IL-5 antibody mesolizumab has shown efficacy in reducing asthma exacerbations in patients with severe eosinophilic asthma. Many potential future anti-asthmatic agents, such as Siglec-8 activating antibody and novel humanized anti-IL-5 antibody MEDI-563, have the property of inducing eosinophil apoptosis. This MiniReview aims to present eosinophil apoptosis as a therapeutic target in the treatment of allergic asthma. We summarize the effects and mechanisms of current and potential future anti-asthmatic drugs on eosinophil apoptosis and additionally, discuss the potential factors that promote eosinophil longevity in the lungs.
Collapse
Affiliation(s)
- Pinja Ilmarinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|