1
|
Castillo-Cruz J, Palacios-Barreto S, Mosso-Pani MA, Serna-Pérez AB, Rodríguez-Tovar AV, Serafin-López J, Castrejón-Jiménez NS, García-Pérez BE. Candida glabrata subverts intracellular trafficking and modulates autophagy to replicate in human epithelial cells. Microb Pathog 2025; 203:107479. [PMID: 40089194 DOI: 10.1016/j.micpath.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
In recent years, Candida glabrata (C. glabrata) has emerged as a pathogen responsible for systemic mortal infections. C. glabrata invades nonphagocytic cells, but the mechanisms involved in its internalization and its intracellular fate in these cells remain poorly understood. Here, it was shown that endocytosis of C. glabrata in epithelial cells partially depends on actin and microtubule rearrangements; importantly, C. glabrata promotes its uptake. The analysis of intracellular fate determined that C. glabrata avoids the fusion of endocytic vacuoles with lysosomes and replicates in epithelial cells. Additionally, C. glabrata downregulates host cell autophagy in the first hour of infection, which correlates with its intracellular replication. Remarkably, the ectopic activation of autophagy contributed to the control of intracellular growth of this yeast. These findings highlight the ability of C. glabrata to manipulate host proteins involved in endocytic processes and intracellular trafficking. Likewise, these results suggest a strong role of host autophagy in controlling fungal pathogens such as C. glabrata.
Collapse
Affiliation(s)
- Juan Castillo-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico; Instituto Politécnico Nacional, Escuela Superior de Medicina, Department of Graduate, México City, Mexico
| | - Samara Palacios-Barreto
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Manuel Alejandro Mosso-Pani
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Amanda Belén Serna-Pérez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Jeanet Serafin-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Immunology, México City, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Santiago Tulantepec de Lugo Guerrero, Hidalgo, Mexico
| | - Blanca Estela García-Pérez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico.
| |
Collapse
|
2
|
van de Veerdonk FL, Carvalho A, Wauters J, Chamilos G, Verweij PE. Aspergillus fumigatus biology, immunopathogenicity and drug resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01180-z. [PMID: 40316713 DOI: 10.1038/s41579-025-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/04/2025]
Abstract
Aspergillus fumigatus is a saprophytic fungus prevalent in the environment and capable of causing severe invasive infection in humans. This organism can use strategies such as molecule masking, immune response manipulation and gene expression alteration to evade host defences. Understanding these mechanisms is essential for developing effective diagnostics and therapies to improve patient outcomes in Aspergillus-related diseases. In this Review, we explore the biology and pathogenesis of A. fumigatus in the context of host biology and disease, highlighting virus-associated pulmonary aspergillosis, a newly identified condition that arises in patients with severe pulmonary viral infections. In the post-pandemic landscape, in which immunotherapy is gaining attention for managing severe infections, we examine the host immune responses that are critical for controlling invasive aspergillosis and how A. fumigatus circumvents these defences. Additionally, we address the emerging issue of azole resistance in A. fumigatus, emphasizing the urgent need for greater understanding in an era marked by increasing antimicrobial resistance. This Review provides timely insights necessary for developing new immunotherapeutic strategies against invasive aspergillosis.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Joost Wauters
- Medical Intensive Care, University Hospitals Leuven and Department for Clinical Infectious and Inflammatory Disorders, University Leuven, Leuven, Belgium
| | - George Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Paul E Verweij
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Freitas-Filho EG, Zaidan I, Fortes-Rocha M, Alzamora-Terrel DL, Bifano C, de Castro PA, Piraine REA, Pinzan CF, de Rezende CP, Boada-Romero E, dos Reis Almeida FB, Goldman GH, Florey O, Cunha LD. RAB5c controls the assembly of non-canonical autophagy machinery to promote phagosome maturation and microbicidal function of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645097. [PMID: 40196584 PMCID: PMC11974809 DOI: 10.1101/2025.03.25.645097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Non-canonical conjugation of ATG8 proteins, including LC3, to single membranes implicates the autophagy machinery in cell functions unrelated to metabolic stress. One such pathway is LC3-associated phagocytosis (LAP), which aids in phagosome maturation and subsequent signaling upon cargo uptake mediated by certain innate immunity-associated receptors. Here, we show that a specific isoform of RAB5 GTPases, the molecular switches controlling early endosome traffic, is necessary for LAP. We demonstrate that RAB5c regulates phagosome recruitment and function of complexes required for phosphatidylinositol-3-phosphate [PI(3)P] and reactive oxygen species (ROS) generation by macrophages. RAB5c facilitates phagosome translocation of the V-ATPase transmembrane core, which is needed for ATG16L1 binding and consequent LC3 conjugation. RAB5c depletion impaired macrophage elimination of the fungal pathogen Aspergillus fumigatus and disruption of the V-ATPase-ATG16L1 axis increased susceptibility in vivo. Therefore, early endosome-to-phagosome traffic is differentially regulated to promote LAP and ROS contributes to resistance against A. fumigatus by effecting LAP.
Collapse
Affiliation(s)
- Edismauro Garcia Freitas-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Isabella Zaidan
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marlon Fortes-Rocha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Daniel Leonardo Alzamora-Terrel
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carolina Bifano
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Patrícia Alves de Castro
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | - Camila Figueiredo Pinzan
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children′s Research Hospital, Memphis, TN, USA
| | | | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Larissa Dias Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Lead contact
| |
Collapse
|
4
|
Ben WB, Pirjo AM. ATG8 in single membranes: Fresh players of endocytosis and acidic organelle quality control in cancer, neurodegeneration, and inflammation. Biochem Biophys Res Commun 2025; 749:151384. [PMID: 39864381 DOI: 10.1016/j.bbrc.2025.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Ubiquitin-like autophagy-related gene ATG8 proteins are typically associated with degradative quality control via canonical double-membrane macro-autophagosomes in the cell. ATG8 proteins have now stepped forward in non-canonical pathways in single membrane organelles. The growing interest in non-canonical ATG8 roles has been stimulated by recent links to human conditions, especially in the regulation of inflammation, neurodegeneration and cancers. Here, we summarize the evidence linking non-canonical ATG8s to human pathologies and the quality control of acidic V-ATPase-regulated organelles in the cell.
Collapse
Affiliation(s)
- Wang B Ben
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Apaja M Pirjo
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; College of Public Health and Medicine, Flinders University, Bedford Park, SA, 5042, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
5
|
Lu T, Li W. Neutrophil Engulfment in Cancer: Friend or Foe? Cancers (Basel) 2025; 17:384. [PMID: 39941753 PMCID: PMC11816126 DOI: 10.3390/cancers17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Neutrophils, the most abundant circulating white blood cells, are essential for the initial immune response to infection and injury. Emerging research reveals a dualistic function of neutrophils in cancer, where they can promote or inhibit tumor progression. This dichotomy is influenced by the tumor microenvironment, with neutrophils capable of remodeling the extracellular matrix, promoting angiogenesis, or alternatively inducing cancer cell death and enhancing immune responses. An intriguing yet poorly understood aspect of neutrophil-cancer interactions is the phenomenon of neutrophil engulfment by cancer cells, which has been observed across various cancers. This process, potentially mediated by LC3-associated phagocytosis (LAP), raises questions about whether it serves as a mechanism for immune evasion or contributes to tumor cell death through pathways like ferroptosis. This review examines current knowledge on neutrophil development, their roles in cancer, and the mechanisms of LAP in neutrophil engulfment by tumor cells. We discuss how manipulating LAP impacts cancer progression and may represent a therapeutic strategy. We also explore neutrophils' potential as delivery vehicles for cancer therapeutic agents. Understanding the complex functions of tumor-associated neutrophils (TANs) and the molecular mechanisms underlying LAP in cancer may open new avenues for effective therapeutic interventions and mitigate potential risks.
Collapse
Affiliation(s)
- Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
7
|
Londema M, Nijsten MWN, Bart J, Wiegersma JS, Sinha BNM, Postma DF. Delayed Diagnosis of Disseminated Invasive Aspergillosis with Purulent Myocarditis in an Immunocompromised Host. Infect Dis Rep 2024; 16:1182-1190. [PMID: 39728015 DOI: 10.3390/idr16060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction: Invasive aspergillosis (IA) is an opportunistic fungal infection that typically occurs in the immunocompromised host and is associated with severe morbidity and mortality. Myocardial abscess formation is seldomly described. Detailed Case Description: We present a case of IA with purulent myocarditis. The patient was on long-term high-dose corticosteroid and mycophenolate mofetil therapy for severe lupus nephritis. After multiple visits to his general practitioner and nephrologist for general malaise, he was admitted to our hospital with visual complaints. Within several days, he developed atrial fibrillation, respiratory insufficiency, and, finally, a decreased level of consciousness. After admission to the intensive care unit, the broncho alveolar lavage (BAL) fluid galactomannan (GM) index was normal, but the serum GM index was severely elevated. Despite initiation of antifungal therapy, the patient passed away shortly thereafter. Autopsy revealed massive intracranial hemorrhage and disseminated IA affecting the lungs, brain, and myocardium, with macroscopic myocardial abscess formation. Discussion: This classic case of diagnostic uncertainty illustrates how invasive fungal infections can progress to disseminated disease while showing nonspecific symptoms only. It emphasizes the importance of vigilance for opportunistic fungal infections in a growing category of immunocompromised patients. Conclusion: Clinicians should have a low threshold of suspicion for fungal infections in patients on combination immunosuppressive medication, such as high-dose corticosteroid therapy in combination with T-cell inhibitors like MMF.
Collapse
Affiliation(s)
- Mark Londema
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Joost Bart
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Janke S Wiegersma
- Department of Internal Medicine and Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Bhanu N M Sinha
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Douwe F Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
8
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U. Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Molly H. Anderson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
9
|
Luan J, Zhang Z, Wang Q, Li C, Zhang H, Zhang Y, Peng X, Zhao G, Lin J. The Role of LC3-Associated Phagocytosis Inhibits the Inflammatory Response in Aspergillus fumigatus Keratitis. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38953845 PMCID: PMC11221612 DOI: 10.1167/iovs.65.8.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/18/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose The purpose of this study was to investigate the role and mechanism of microtubule-associated protein light chain-3 (LC3)-associated phagocytosis (LAP) in the immune response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods The formation of single-membrane phagosomes was visualized in the corneas of healthy or A. fumigatus-infected humans and C57BL/6 mice using transmission electron microscopy (TEM). Rubicon siRNA (si-Rubicon) was used to block Rubicon expression. RAW 264.7 cells or mice corneas were infected with A. fumigatus with or without pretreatment of si-Rubicon and scrambled siRNA. RAW 264.7 cells were pretreated with Dectin-1 antibody or Dectin-1 overexpressed plasmid and then stimulated with A. fumigatus. Flow cytometry was used to label macrophages in normal and infected corneas of mice. In mice with A. fumigatus keratitis, the severity of the disease was assessed using clinical scores. We used lentiviral technology to transfer GV348-Ubi-GFP-LC3-II-SV40-Puro Lentivirus into the mouse cornea. The GFP-LC3 fusion protein was visualized in corneal slices using a fluorescence microscope. We detected the mRNA and protein expressions of the inflammatory factors IL-6, IL-1β, and IL-10 using real-time PCR (RT-PCR) and ELISA. We detected the expression of LAP-related proteins Rubicon, ATG-7, Beclin-1, and LC3-II using Western blot or immunofluorescence. Results Accumulation of single-membrane phagosomes within macrophages was observed in the corneas of patients and mice with A. fumigatus keratitis using TEM. Flow cytometry (FCM) analysis results show that the number of macrophages in the cornea of mice significantly increases after infection with A. fumigatus. LAP-related proteins were significantly elevated in the corneas of mice and RAW 264.7 cells after infection with A. fumigatus. The si-Rubicon treatment elevated the clinical score of mice. In A. fumigatus keratitis mice, the si-Rubicon treated group showed significantly higher expression of IL-6 and IL-1β and lower expression of IL-10 and LC3-II compared to the control group. In RAW 264.7 cells, treatment with the Dectin-1 overexpressed plasmid upregulated the expression of LAP-related proteins, a process that was significantly inhibited by the Dectin-1 antibody. Conclusions LAP participates in the anti-inflammatory immune process of fungal keratitis (FK) and exerts an anti-inflammatory effect. LAP is regulated through the Dectin-1 signaling pathway in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyue Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
- Department of Ophthalmology, Qingdao Central Hospital, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hao Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
11
|
Santos-Ribeiro D, Cunha C, Carvalho A. Humoral pathways of innate immune regulation in granuloma formation. Trends Immunol 2024; 45:419-427. [PMID: 38762333 DOI: 10.1016/j.it.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The humoral arm of mammalian innate immunity regulates several molecular mechanisms involved in resistance to pathogens, inflammation, and tissue repair. Recent studies highlight the crucial role played by humoral mediators in granulomatous inflammation. However the molecular mechanisms linking the function of these soluble molecules to the initiation and maintenance of granulomas remain elusive. We propose that humoral innate immunity coordinates fundamental physiological processes in macrophages which, in turn, initiate activation and transformation events that enable granuloma formation. We discuss the involvement of humoral mediators in processes such as immune activation, phagocytosis, metabolism, and tissue remodeling, and how these can dictate macrophage functionality during granuloma formation. These advances present opportunities for discovering novel disease factors and developing targeted, more effective treatments for granulomatous diseases.
Collapse
Affiliation(s)
- Diana Santos-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
12
|
Boucher MJ, Madhani HD. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol 2024; 32:435-447. [PMID: 37985333 DOI: 10.1016/j.tim.2023.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Invasive fungal infections pose a major threat to human health. Bacterial and protozoan pathogens secrete protein effectors that overcome innate immune barriers to promote microbial colonization, yet few such molecules have been identified in human fungal pathogens. Recent studies have begun to reveal these long-sought effectors and have illuminated how they subvert key cellular pathways, including apoptosis, myeloid cell polarization, Toll-like receptor signaling, and phagosome action. Thus, despite lacking the specialized secretion systems of bacteria and parasites, it is increasingly clear that fungi independently evolved effectors targeting pathways often subverted by other classes of pathogens. These findings demonstrate the remarkable power of convergent evolution to enable diverse microbes to infect humans while also setting the stage for detailed dissection of fungal disease mechanisms.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Yang Z, Wang X, Dong T, Zhao WJ, Li H. Impact of glucocorticoids and rapamycin on autophagy in Candida glabrata-infected macrophages from BALB/c mice. Front Immunol 2024; 15:1367048. [PMID: 38585259 PMCID: PMC10995521 DOI: 10.3389/fimmu.2024.1367048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Objective In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
14
|
Li D, Wang L, Zhao Z, Bai C, Li X. Autophagy and LC3-associated phagocytosis contribute negatively to the killing capability of THP-1-derived macrophages against Candida albicans at the mid-stage. Immunol Lett 2023; 263:25-32. [PMID: 37717912 DOI: 10.1016/j.imlet.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
In innate immunity, macrophages play critical roles in defending against pathogens via the lysosomal degradation function of autophagy. Two distinct autophagy pathways have been identified in decades: canonical autophagy (referred to as autophagy) and LC3-associated phagocytosis (LAP). Since several conflicting findings about the anti-Candida capability of autophagy (or LAP) have been reported, they serve as the foe or friend for Candida survival is still unclearly. The current study showed that the fungicidal process of THP-1-derived macrophages (THP-1-MФ) against Candida albicans is divided into three stages as follows, the early stage (the first 12 h, increasing in the killing capability), the mid-stage (12-24 h, no change in killing capability), and the late stage (24-48 h, decreasing of the killing capability). Autophagic protein LC3B-II reached the peak in THP-1-MФ after 24 h inoculated either with C.albicans or whole glucan particles (WGP). Thus, both anti-Candida roles of autophagy and the LAP pathway have been detected at the mid-stage. For autophagy, after 24 h inoculation with C.albicans, ULK1 increased, but p-ATG13(s318) decreased obviously in THP-1-MФ, and the killing assay showed that autophagy is unhelpful for Candida killing capability. For the LAP pathway, Rubicon and ROS raised significantly in THP-1-MФ after 24 h inoculated with C.albicans; each inhibition would sharply cut down the LC3B-II accumulation, which indicated that LAP had been induced. However, mCherry-GFP-LC3 fluorescent assay exhibited that LAP phago-lysosomal fusion has been blocked, and Rubicon knockdown facilitated the Candida killing activity. These data indicated that autophagy presented as redundant to Candida defense, and LAP phago-lysosomal fusion obstruction impairs the Candida killing capability of THP-1-MФ at the mid-stage. That may explain the no change in Candida killing capability at the mid-stage.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Lin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhihong Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
15
|
Wang K, Espinosa V, Rivera A. Commander-in-chief: monocytes rally the troops for defense against aspergillosis. Curr Opin Immunol 2023; 84:102371. [PMID: 37523967 DOI: 10.1016/j.coi.2023.102371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
The detrimental impact of fungal infections to human health has steadily increased over the past decades. In October of 2022, the World Health Organization published the first ever fungal-pathogen priority list highlighting increased awareness of this problem, and the need for more research in this area. There were four distinct fungal pathogens identified as critical priority groups with Aspergillus fumigatus (Af) being the only mold. Af is a common environmental fungus responsible for over 90% of invasive aspergillosis cases worldwide. Pulmonary protection against Af is critically dependent on innate effector cells with essential roles played by neutrophils and monocytes. In this review, we will summarize our current understanding of how monocytes help orchestrate antifungal defense against Af.
Collapse
Affiliation(s)
- Keyi Wang
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
16
|
King J, Dambuza IM, Reid DM, Yuecel R, Brown GD, Warris A. Detailed characterisation of invasive aspergillosis in a murine model of X-linked chronic granulomatous disease shows new insights in infections caused by Aspergillus fumigatus versus Aspergillus nidulans. Front Cell Infect Microbiol 2023; 13:1241770. [PMID: 37724291 PMCID: PMC10505440 DOI: 10.3389/fcimb.2023.1241770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.
Collapse
Affiliation(s)
- Jill King
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of General Paediatrics, Royal Aberdeen Children’s Hospital, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M. Reid
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytometrics, University of Exeter, Exeter, United Kingdom
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adilia Warris
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
17
|
Guan M, Yao L, Zhen Y, Song Y, Liu X, Liu Y, Chen R, Cui Y, Li S. Sporothrix globosa melanin regulates autophagy via the TLR2 signaling pathway in THP-1 macrophages. PLoS Negl Trop Dis 2023; 17:e0011281. [PMID: 37141335 DOI: 10.1371/journal.pntd.0011281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/19/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Melanin, an important virulence factor of pathogenic fungi, has been shown to suppress host immune responses in multiple ways. Autophagy is a vital cellular mechanism underlying the host's innate immunity against microbial infections. However, the potential influence of melanin on autophagy has not been explored. We investigated the effect of melanin on autophagy in macrophages, which play a key role in controlling Sporothrix spp. infection, as well as the mechanism of melanin interaction with Toll-like receptor (TLR)-induced pathways. Sporothrix globosa conidia (wild-type and melanin-deficient mutant strains) or yeast cells were co-cultured with THP-1 macrophages to demonstrate that, although S. globosa infection led to the activation of autophagy-related proteins and increased autophagic flux, S. globosa melanin suppressed macrophage autophagy. Incubation with S. globosa conidia also increased the expression levels of reactive oxygen species and multiple proinflammatory cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β and interferon-γ) in macrophages. These effects were attenuated as melanin presented. Furthermore, while S. globosa conidia significantly increased the expression of both TLR2 and TLR4 in macrophages, the knockdown of TLR2, but not TLR4, with small interfering RNA suppressed autophagy. Overall, this study revealed the novel immune defense ability of S. globosa melanin to inhibit macrophage functionality by resisting macrophage autophagy through the regulation of TLR2 expression.
Collapse
Affiliation(s)
- Mengqi Guan
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Liu
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Ruili Chen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
- Department of Dermatology and Venereology, Zhuhai People's Hospital, Zhuhai, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Ivanova T, Mariienko Y, Mehterov N, Kazakova M, Sbirkov Y, Todorova K, Hayrabedyan S, Sarafian V. Autophagy and SARS-CoV-2-Old Players in New Games. Int J Mol Sci 2023; 24:7734. [PMID: 37175443 PMCID: PMC10178552 DOI: 10.3390/ijms24097734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
At present it is well-defined that autophagy is a fundamental process essential for cell life but its pro-viral and anti-viral role has been stated out with the COVID pandemic. However, viruses in turn have evolved diverse adaptive strategies to cope with autophagy driven host defense, either by blocking or hijacking the autophagy machinery for their own benefit. The mechanisms underlying autophagy modulation are presented in the current review which summarizes the accumulated knowledge on the crosstalk between autophagy and viral infections, with a particular emphasizes on SARS-CoV-2. The different types of autophagy related to infections and their molecular mechanisms are focused in the context of inflammation. In particular, SARS-CoV-2 entry, replication and disease pathogenesis are discussed. Models to study autophagy and to formulate novel treatment approaches and pharmacological modulation to fight COVID-19 are debated. The SARS-CoV-2-autophagy interplay is presented, revealing the complex dynamics and the molecular machinery of autophagy. The new molecular targets and strategies to treat COVID-19 effectively are envisaged. In conclusion, our finding underline the importance of development new treatment strategies and pharmacological modulation of autophagy to fight COVID-19.
Collapse
Affiliation(s)
- Tsvetomira Ivanova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yuliia Mariienko
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Krassimira Todorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
19
|
Cohen-Kedar S, Shaham Barda E, Rabinowitz KM, Keizer D, Abu-Taha H, Schwartz S, Kaboub K, Baram L, Sadot E, White I, Wasserberg N, Wolff-Bar M, Levy-Barda A, Dotan I. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front Immunol 2023; 14:1142492. [PMID: 36969163 PMCID: PMC10030769 DOI: 10.3389/fimmu.2023.1142492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) are the first to encounter luminal microorganisms and actively participate in intestinal immunity. We reported that IECs express the β-glucan receptor Dectin-1, and respond to commensal fungi and β-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis (LAP) utilizing autophagy components to process extracellular cargo. Dectin-1 can mediate phagocytosis of β-glucan-containing particles by non-phagocytic cells. We aimed to determine whether human IECs phagocytose β-glucan-containing fungal particles via LAP. METHODS Colonic (n=18) and ileal (n=4) organoids from individuals undergoing bowel resection were grown as monolayers. Fluorescent-dye conjugated zymosan (β-glucan particle), heat-killed- and UV inactivated C. albicans were applied to differentiated organoids and to human IEC lines. Confocal microscopy was used for live imaging and immuno-fluorescence. Quantification of phagocytosis was carried out with a fluorescence plate-reader. RESULTS zymosan and C. albicans particles were phagocytosed by monolayers of human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and Rubicon recruitment to phagosomes and lysosomal processing of internalized particles was demonstrated by co-localization with lysosomal dyes and LAMP2. Phagocytosis was significantly diminished by blockade of Dectin-1, actin polymerization and NAPDH oxidases. CONCLUSIONS Our results show that human IECs sense luminal fungal particles and internalize them via LAP. This novel mechanism of luminal sampling suggests that IECs may contribute to the maintenance of mucosal tolerance towards commensal fungi.
Collapse
Affiliation(s)
- Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Masha Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Keizer
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanan Abu-Taha
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Schwartz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liran Baram
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Sadot
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Ian White
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Meirav Wolff-Bar
- Department of Pathology, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Yao H, Sun J, Zhang T, Wang L, Song L. Syk regulates the haemocyte autophagy through inducing the mRNA expressions of autophagy-related genes and the cleavage of CgLC3 in oyster antibacterial immunity. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100085. [PMID: 37065179 PMCID: PMC10102855 DOI: 10.1016/j.fsirep.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is reported to be involved in activating the autophagy. Recently, a homologue of Syk was identified from Pacific oyster Crassostrea gigas (defined as CgSyk). In the present study, the molecular characteristics of CgSyk and its regulation mechanism in autophagy were investigated in oyster C. gigas. The full-length cDNA of CgSyk was of 4566 bp with an open reading frame (ORF) of 1989 bp. CgSyk encoded a polypeptide of 662 amino acids, containing two Src homology 2 (SH2) domains and one tyrosine kinase catalytic (TyrKc) domain. The deduced amino acid sequence of CgSyk shared low similarity with the previously identified Syks from other species. In the phylogenetic tree, CgSyk was first clustered with Crassostrea virginica CvSyk, and then classified into a branch of invertebrate Syks. In CgSyk-RNAi oysters, the mRNA expressions of CgLC3, CgP62, CgBeclin-1 and CgATG5 in haemocytes decreased significantly at 12 h after Vibrio splendidus stimulation. At the same time, the abundance of CgLC3Ⅱ in haemocytes, and the autophagy rate of haemocytes in CgSyk-RNAi oysters decreased significantly at 12 h after V. splendidus stimulation. All the results collectively suggested that CgSyk regulated the autophagy through inducing the mRNA expressions of autophagy-related genes and the cleavage of CgLC3 to defend against bacterial invasion in oysters.
Collapse
Affiliation(s)
- Hongsheng Yao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Corresponding author at: Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China.
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
21
|
Forn-Cuní G, Welvaarts L, Stel FM, van den Hondel CJ, Arentshorst M, Ram AFJ, Meijer AH. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis. Autophagy 2023; 19:324-337. [PMID: 35775203 PMCID: PMC9809955 DOI: 10.1080/15548627.2022.2090727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increasing prevalence of antifungal-resistant human pathogenic fungi, particularly azole-resistant Aspergillus fumigatus, is a life-threatening challenge to the immunocompromised population. Autophagy-related processes such as LC3-associated phagocytosis have been shown to be activated in the host response against fungal infection, but their overall effect on host resistance remains uncertain. To analyze the relevance of these processes in vivo, we used a zebrafish animal model of invasive Aspergillosis. To confirm the validity of this model to test potential treatments for this disease, we confirmed that immunosuppressive treatments or neutropenia rendered zebrafish embryos more susceptible to A. fumigatus. We used GFP-Lc3 transgenic zebrafish to visualize the autophagy-related processes in innate immune phagocytes shortly after phagocytosis of A. fumigatus conidia, and found that both wild-type and melanin-deficient conidia elicited Lc3 recruitment. In macrophages, we observed GFP-Lc3 accumulation in puncta after phagocytosis, as well as short, rapid events of GFP-Lc3 decoration of single and multiple conidia-containing vesicles, while neutrophils covered single conidia-containing vesicles with bright and long-lasting GFP-Lc3 signal. Next, using genetic and pharmacological stimulation of three independent autophagy-inducing pathways, we showed that the antifungal autophagy response improves the host survival against A. fumigatus infection, but only in the presence of phagocytes. Therefore, we provide proof-of-concept that stimulating the (auto)phagolysosomal pathways is a promising approach to develop host-directed therapies against invasive Aspergillosis, and should be explored further either as adjunctive or stand-alone therapy for drug-resistant Aspergillus infections.Abbreviations: DMSO: dimethyl sulfoxide; HR: hazard ratio; HDT: host-directed therapy; Hpf: hours post fertilization; IA: invasive Aspergillosis; LAP: LC3-associated phagocytosis; MTZ: metronidazole; PTU: N-phenylthiourea; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- G Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,CONTACT G Forn-Cuní Institute of Biology Leiden, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - L Welvaarts
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - FM Stel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - CJ van den Hondel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - M Arentshorst
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - AFJ Ram
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - AH Meijer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,AH Meijer Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
22
|
Reid SE, Kolapalli SP, Nielsen TM, Frankel LB. Canonical and non-canonical roles for ATG8 proteins in autophagy and beyond. Front Mol Biosci 2022; 9:1074701. [PMID: 36601581 PMCID: PMC9806848 DOI: 10.3389/fmolb.2022.1074701] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
During autophagy, the ATG8 family proteins have several well-characterized roles in facilitating early, mid, and late steps of autophagy, including autophagosome expansion, cargo recruitment and autophagosome-lysosome fusion. Their discovery has importantly allowed for precise experimental monitoring of the pathway, bringing about a huge expansion of research in the field over the last decades. In this review, we discuss both canonical and non-canonical roles of the autophagic lipidation machinery, with particular focus on the ATG8 proteins, their post-translational modifications and their increasingly uncovered alternative roles mediated through their anchoring at different membranes. These include endosomes, macropinosomes, phagosomes and the plasma membrane, to which ATG8 proteins can bind through canonical or alternative lipidation. Beyond new ATG8 binding partners and cargo types, we also explore several open questions related to alternative outcomes of autophagic machinery engagement beyond degradation. These include their roles in plasma membrane repair and secretion of selected substrates as well as the physiological implications hereof in health and disease.
Collapse
Affiliation(s)
| | | | | | - Lisa B. Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Lisa B. Frankel,
| |
Collapse
|
23
|
Pennington KM, Aversa M, Martinu T, Johnson B, Husain S. Fungal infection and colonization in lung transplant recipients with chronic lung allograft dysfunction. Transpl Infect Dis 2022; 24:e13986. [PMID: 36380578 DOI: 10.1111/tid.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The incidence and impact of de novo fungal airway colonization and infection in lung transplant recipients (LTRs) with known chronic lung allograft dysfunction (CLAD) has not been established. We aimed to determine the 1-year cumulative incidence and risk factors of de novo fungal colonization or infection in LTRs with CLAD and assess the impact of colonization or infection on post-CLAD survival. METHODS Prospectively collected Toronto Lung Transplant Program database and chart review were used for double-LTRs who were diagnosed with CLAD from January 1, 2016 to January 1, 2020 and who were free of airway fungi within 1 year prior to CLAD onset. International Society for Heart and Lung Transplantation definitions were used to define clinical syndromes. Cox-Proportional Hazards Models were used for risk-factor analysis. Survival analysis could not be completed secondary to low number of fungal events; therefore, descriptive statistics were employed for survival outcomes. RESULTS We found 186 LTRs diagnosed with CLAD meeting our inclusion criteria. The 1-year cumulative incidence for any fungal event was 11.8% (7.0% for infection and 4.8% for colonization). Aspergillus fumigatus was a causative pathogen in eight of 13 (61.5%) patients with infection and six of nine (66.7%) patients with colonization. No patients with fungal colonization post-CLAD developed fungal infection. Peri-CLAD diagnosis (3 months prior or 1 month after) methylprednisolone bolus (hazards ratio: 8.84, p = .001) increased the risk of fungal events. Most patients diagnosed with fungal infections (53.8%) died within 1-year of CLAD onset. CONCLUSION De novo IFIs and fungal colonization following CLAD onset were not common. Fungal colonization did not lead to fungal infection. Methylprednisolone bolus was a significant risk factors for post-CLAD fungal events.
Collapse
Affiliation(s)
- Kelly M Pennington
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Meghan Aversa
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Bradley Johnson
- Department of Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahid Husain
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Liu M, Liu K, Cheng D, Zheng B, Li S, Mo Z. The regulatory role of NLRX1 in innate immunity and human disease. Cytokine 2022; 160:156055. [DOI: 10.1016/j.cyto.2022.156055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
|
25
|
Idol RA, Bhattacharya S, Huang G, Song Z, Huttenlocher A, Keller NP, Dinauer MC. Neutrophil and Macrophage NADPH Oxidase 2 Differentially Control Responses to Inflammation and to Aspergillus fumigatus in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1960-1972. [PMID: 36426951 PMCID: PMC9643661 DOI: 10.4049/jimmunol.2200543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Aspergillus fumigatus is an important opportunistic fungal pathogen and causes invasive pulmonary aspergillosis in conditions with compromised innate antifungal immunity, including chronic granulomatous disease, which results from inherited deficiency of the superoxide-generating leukocyte NADPH oxidase 2 (NOX2). Derivative oxidants have both antimicrobial and immunoregulatory activity and, in the context of A. fumigatus, contribute to both fungal killing and dampening inflammation induced by fungal cell walls. As the relative roles of macrophage versus neutrophil NOX2 in the host response to A. fumigatus are incompletely understood, we studied mice with conditional deletion of NOX2. When NOX2 was absent in alveolar macrophages as a result of LysM-Cre-mediated deletion, germination of inhaled A. fumigatus conidia was increased. Reducing NOX2 activity specifically in neutrophils via S100a8 (MRP8)-Cre also increased fungal burden, which was inversely proportional to the level of neutrophil NOX2 activity. Moreover, diminished NOX2 in neutrophils synergized with corticosteroid immunosuppression to impair lung clearance of A. fumigatus. Neutrophil-specific reduction in NOX2 activity also enhanced acute inflammation induced by inhaled sterile fungal cell walls. These results advance understanding into cell-specific roles of NOX2 in the host response to A. fumigatus. We show that alveolar macrophage NOX2 is a nonredundant effector that limits germination of inhaled A. fumigatus conidia. In contrast, reducing NOX2 activity only in neutrophils is sufficient to enhance inflammation to fungal cell walls as well as to promote invasive A. fumigatus. This may be relevant in clinical settings with acquired defects in NOX2 activity due to underlying conditions, which overlap risk factors for invasive aspergillosis.
Collapse
Affiliation(s)
- Rachel A. Idol
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Mary C. Dinauer
- Department of Pediatrics and Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Wang Y, Ramos M, Jefferson M, Zhang W, Beraza N, Carding S, Powell PP, Stewart JP, Mayer U, Wileman T. Control of infection by LC3-associated phagocytosis, CASM, and detection of raised vacuolar pH by the V-ATPase-ATG16L1 axis. SCIENCE ADVANCES 2022; 8:eabn3298. [PMID: 36288298 PMCID: PMC9604538 DOI: 10.1126/sciadv.abn3298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/07/2022] [Indexed: 05/29/2023]
Abstract
The delivery of pathogens to lysosomes for degradation provides an important defense against infection. Degradation is enhanced when LC3 is conjugated to endosomes and phagosomes containing pathogens to facilitate fusion with lysosomes. In phagocytic cells, TLR signaling and Rubicon activate LC3-associated phagocytosis (LAP) where stabilization of the NADPH oxidase leads to sustained ROS production and raised vacuolar pH. Raised pH triggers the assembly of the vacuolar ATPase on the vacuole membrane where it binds ATG16L1 to recruit the core LC3 conjugation complex (ATG16L1:ATG5-12). This V-ATPase-ATG16L1 axis is also activated in nonphagocytic cells to conjugate LC3 to endosomes containing extracellular microbes. Pathogens provide additional signals for recruitment of LC3 when they raise vacuolar pH with pore-forming toxins and proteins, phospholipases, or specialized secretion systems. Many microbes secrete virulence factors to inhibit ROS production and/or the V-ATPase-ATG16L1 axis to slow LC3 recruitment and avoid degradation in lysosomes.
Collapse
Affiliation(s)
- Yingxue Wang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| | - Maria Ramos
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| | | | - Weijiao Zhang
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | - Penny P. Powell
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - James P. Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
- Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
27
|
Peña-Martinez C, Rickman AD, Heckmann BL. Beyond autophagy: LC3-associated phagocytosis and endocytosis. SCIENCE ADVANCES 2022; 8:eabn1702. [PMID: 36288309 PMCID: PMC9604515 DOI: 10.1126/sciadv.abn1702] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 05/08/2023]
Abstract
Noncanonical functions of the autophagy machinery in pathways including LC3-associated phagocytosis and LC3-associated endocytosis have garnered increasing interest in both normal physiology and pathobiology. New discoveries over the past decade of noncanonical uses of the autophagy machinery in these distinct molecular mechanisms have led to robust investigation into the roles of single-membrane LC3 lipidation. Noncanonical autophagy pathways have now been implicated in the regulation of multiple processes ranging from debris clearance, cellular signaling, and immune regulation and inflammation. Accumulating evidence is demonstrating roles in a variety of disease states including host-pathogen responses, autoimmunity, cancer, and neurological and neurodegenerative pathologies. Here, we broadly summarize the differences in the mechanistic regulation between autophagy and LAP and LANDO and highlight some of the key roles of LAP and LANDO in innate immune function, inflammation, and disease pathology.
Collapse
Affiliation(s)
- Carolina Peña-Martinez
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Alexis D. Rickman
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Bradlee L. Heckmann
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| |
Collapse
|
28
|
da Silva-Ferreira S, Duarte-Oliveira C, Antunes D, Barbosa-Matos C, Mendes-Frias A, Torrado E, Costa S, Silvestre R, Cunha C, Carvalho A. Hypoxia inducible-factor 1 alpha regulates neutrophil recruitment during fungal-elicited granulomatous inflammation. Front Cell Infect Microbiol 2022; 12:1005839. [PMID: 36275017 PMCID: PMC9582458 DOI: 10.3389/fcimb.2022.1005839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic pulmonary aspergillosis (CPA) is a devastating disease with increasing prevalence worldwide. The characteristic granulomatous-like inflammation poses as the major setback to effective antifungal therapies by limiting drug access to fungi. These inflammatory lung structures are reported to be severely hypoxic; nevertheless, the underlying mechanisms whereby these processes contribute to fungal persistence remain largely unknown. Hypoxia-inducible factor 1 alpha (HIF-1α), besides being the major cellular response regulator to hypoxia, is a known central immune modulator. Here, we used a model of Aspergillus fumigatus airway infection in myeloid-restricted HIF-1α knock-out (mHif1α-/-) mice to replicate the complex structures resembling fungal granulomas and evaluate the contribution of HIF-1α to antifungal immunity and disease development. We found that fungal-elicited granulomas in mHif1α-/- mice had significantly smaller areas, along with extensive hyphal growth and increased lung fungal burden. This phenotype was associated with defective neutrophil recruitment and an increased neutrophil death, therefore highlighting a central role for HIF-1α-mediated regulation of neutrophil function in the pathogenesis of chronic fungal infection. These results hold the promise of an improved capacity to manage the progression of chronic fungal disease and open new avenues for additional therapeutic targets and niches of intervention.
Collapse
Affiliation(s)
- Sara da Silva-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Daniela Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
- *Correspondence: Agostinho Carvalho,
| |
Collapse
|
29
|
Feys S, Gonçalves SM, Khan M, Choi S, Boeckx B, Chatelain D, Cunha C, Debaveye Y, Hermans G, Hertoghs M, Humblet-Baron S, Jacobs C, Lagrou K, Marcelis L, Maizel J, Meersseman P, Nyga R, Seldeslachts L, Starick MR, Thevissen K, Vandenbriele C, Vanderbeke L, Vande Velde G, Van Regenmortel N, Vanstapel A, Vanmassenhove S, Wilmer A, Van De Veerdonk FL, De Hertogh G, Mombaerts P, Lambrechts D, Carvalho A, Van Weyenbergh J, Wauters J. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1147-1159. [PMID: 36029799 PMCID: PMC9401975 DOI: 10.1016/s2213-2600(22)00259-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1β, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.
Collapse
Affiliation(s)
- Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Bram Boeckx
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Denis Chatelain
- Department of Pathology, CHU Amiens Picardie, Amiens, France
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hermans
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Hertoghs
- Department of Pathology, Network Hospitals GZA-ZNA, Antwerp, Belgium
| | | | - Cato Jacobs
- Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Julien Maizel
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | - Philippe Meersseman
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Rémy Nyga
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | | | | | - Karin Thevissen
- Department of Microbial and Molecular Systems, Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium,Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Niels Van Regenmortel
- Department of Intensive Care Medicine, ZNA Stuivenberg, Antwerp, Belgium,Department of Intensive Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sam Vanmassenhove
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alexander Wilmer
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Gert De Hertogh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Diether Lambrechts
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium,Correspondence to: Dr Joost Wauters, Medical Intensive Care Unit, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
30
|
Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clin Immunol 2022; 244:109093. [PMID: 35944881 PMCID: PMC9356669 DOI: 10.1016/j.clim.2022.109093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.
Collapse
|
31
|
Gonçalves SM, Ferreira AV, Cunha C, Carvalho A. Targeting immunometabolism in host-directed therapies to fungal disease. Clin Exp Immunol 2022; 208:158-166. [PMID: 35641161 PMCID: PMC9188340 DOI: 10.1093/cei/uxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2024] Open
Abstract
Fungal infections affect over a billion people and are responsible for more than 1.5 million deaths each year. Despite progress in diagnostic and therapeutic approaches, the management of severe fungal infections remains a challenge. Recently, the reprogramming of cellular metabolism has emerged as a central mechanism through which the effector functions of immune cells are supported to promote antifungal activity. An improved understanding of the immunometabolic signatures that orchestrate antifungal immunity, together with the dissection of the mechanisms that underlie heterogeneity in individual immune responses, may therefore unveil new targets amenable to adjunctive host-directed therapies. In this review, we highlight recent advances in the metabolic regulation of host-fungus interactions and antifungal immune responses, and outline targetable pathways and mechanisms with promising therapeutic potential.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Anaísa V Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
32
|
Liu Y, Zhou T, Hu J, Jin S, Wu J, Guan X, Wu Y, Cui J. Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Front Microbiol 2022; 13:889835. [PMID: 35572624 PMCID: PMC9096610 DOI: 10.3389/fmicb.2022.889835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
34
|
Zheng Q, Duan L, Zhang Y, Li J, Zhang S, Wang H. A dynamically evolving war between autophagy and pathogenic microorganisms. J Zhejiang Univ Sci B 2022; 23:19-41. [PMID: 35029086 PMCID: PMC8758936 DOI: 10.1631/jzus.b2100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autophagy is an intracellular degradation process that maintains cellular homeostasis. It is essential for protecting organisms from environmental stress. Autophagy can help the host to eliminate invading pathogens, including bacteria, viruses, fungi, and parasites. However, pathogens have evolved multiple strategies to interfere with autophagic signaling pathways or inhibit the fusion of autophagosomes with lysosomes to form autolysosomes. Moreover, host cell matrix degradation by different types of autophagy can be used for the proliferation and reproduction of pathogens. Thus, determining the roles and mechanisms of autophagy during pathogen infections will promote understanding of the mechanisms of pathogen‒host interactions and provide new strategies for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Yang Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaoyang Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shiyu Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China. .,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
35
|
Qiu P, Liu L, Fang J, Zhang M, Wang H, Peng Y, Chen M, Liu J, Wang F, Zhao Q. Identification of Pharmacological Autophagy Regulators of Active Ulcerative Colitis. Front Pharmacol 2021; 12:769718. [PMID: 34925026 PMCID: PMC8672246 DOI: 10.3389/fphar.2021.769718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic recurrent disease of unknown etiology. Recently, it has been reported that autophagy-related gene polymorphism is closely associated with increased risk of UC, and the therapeutic effect of some UC drugs is mediated by regulating autophagy pathways. This study aims to identify pivotal autophagy-related regulators in UC pathogenesis and provide novel molecular targets for the treatment of active UC. Methods: Gene expression profiles and clinical information of active UC patients were obtained from GEO databases. CIBERSORT was adopted to evaluate the immune cell infiltration. We used weighted gene co-expression network analysis (WGCNA) and differential expression analysis to identify the pivotal modules and genes associated with active UC. Subsequently, we conducted validation in the validation set and explored its relationship with commonly used UC therapeutics. Results: 36 healthy controls and 46 active UC patients have been obtained from the training set of GSE53306, GSE87466, and GSE134025. There were 423 differentially expressed genes (DEGs) found, which dramatically enriched in autophagy-related pathways. And more infiltration of mast cells, activated T cells, dendritic cells, and M1 macrophages were observed in the intestinal mucosa of active UC, while more infiltration of resting immune cells and M2 macrophages in healthy controls. WGCNA indicated that the turquoise and blue modules were the critical modules. CASP1, SERPINA1, and CCL2 have been identified as the hub autophagy-related genes of active UC, after combining DEGs and 232 autophagy-related genes from HADb with the genes of turquoise and blue modules, respectively. We further verified that CASP1, SERPINA1, and CCL2 were positively associated with active UC and served as an autophagy-related biomarker for active UC. Moreover, increased SERPINA1 in the involved intestinal mucosa was reduced in patients with active UC who responded to golimumab or glucocorticoid therapy. But, neither CASP1, SERPINA1, and CCL2 were changed by treatment of 5-aminosalicylic acid (5-ASA) and azathioprine. Conclusion: CASP1, SERPINA1, and CCL2 are autophagy-related hub genes of active UC. And SERPINA1 may serve as a new pharmacological autophagy regulator of UC, which provides a new target for the use of small molecules targeting autophagy in the treatment of active UC.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
36
|
Feys S, Almyroudi MP, Braspenning R, Lagrou K, Spriet I, Dimopoulos G, Wauters J. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J Fungi (Basel) 2021; 7:1067. [PMID: 34947049 PMCID: PMC8708864 DOI: 10.3390/jof7121067] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a severe fungal infection complicating critically ill COVID-19 patients. Numerous retrospective and prospective studies have been performed to get a better grasp on this lethal co-infection. We performed a qualitative review and summarized data from 48 studies in which 7047 patients had been included, of whom 820 had CAPA. The pooled incidence of proven, probable or putative CAPA was 15.1% among 2953 ICU-admitted COVID-19 patients included in 18 prospective studies. Incidences showed great variability due to multiple factors such as discrepancies in the rate and depth of the fungal work-up. The pathophysiology and risk factors for CAPA are ill-defined, but therapy with corticosteroids and anti-interleukin-6 therapy potentially confer the biggest risk. Sampling for mycological work-up using bronchoscopy is the cornerstone for diagnosis, as imaging is often aspecific. CAPA is associated with an increased mortality, but we do not have conclusive data whether therapy contributes to an increased survival in these patients. We conclude our review with a comparison between influenza-associated pulmonary aspergillosis (IAPA) and CAPA.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| | - Maria Panagiota Almyroudi
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Reinout Braspenning
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - George Dimopoulos
- ICU of 1st Department of Critical Care, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
37
|
Briard B, Fontaine T, Kanneganti TD, Gow NA, Papon N. Fungal cell wall components modulate our immune system. Cell Surf 2021; 7:100067. [PMID: 34825116 PMCID: PMC8603304 DOI: 10.1016/j.tcsw.2021.100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Invasive fungal infections remain highly problematic for human health. Collectively, they account for more than 1 million deaths a year in addition to more than 100 million mucosal infections and 1 billion skin infections. To be able to make progress it is important to understand the pathobiology of fungal interactions with the immune system. Here, we highlight new advancements pointing out the pivotal role of fungal cell wall components (β-glucan, mannan, galactosaminogalactan and melanin) in modulating host immunity and discuss how these open new opportunities for the development of immunomodulatory strategies to combat deadly fungal infectious diseases.
Collapse
Affiliation(s)
- Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Fontaine
- Unité de Biologie et Pathogénicité Fongiques, Institut Pasteur, Paris, France
| | | | - Neil A.R. Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
38
|
Ergün M, Brüggemann RJM, Alanio A, Dellière S, van Arkel A, Bentvelsen RG, Rijpstra T, van der Sar-van der Brugge S, Lagrou K, Janssen NAF, Buil JB, van Dijk K, Melchers WJG, Reijers MHE, Schouten JA, Wauters J, Cordey A, Soni S, White PL, van de Veerdonk FL, Verweij PE. Aspergillus Test Profiles and Mortality in Critically Ill COVID-19 Patients. J Clin Microbiol 2021; 59:e0122921. [PMID: 34495710 PMCID: PMC8601217 DOI: 10.1128/jcm.01229-21] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
The literature regarding COVID-19-associated pulmonary aspergillosis (CAPA) has shown conflicting observations, including survival of CAPA patients not receiving antifungal therapy and discrepancy between CAPA diagnosis and autopsy findings. To gain insight into the pathophysiology of CAPA, we performed a case-control study in which we compared Aspergillus test profiles in CAPA patients and controls in relation to intensive care unit (ICU) mortality. This was a multinational case-control study in which Aspergillus test results, use of antifungal therapy, and mortality were collected from critically ill COVID-19 patients. Patients were classified using the 2020 European Confederation for Medical Mycology and the International Society for Human and Animal Mycology (ECMM/ISHAM) consensus case definitions. We analyzed 219 critically ill COVID-19 cases, including 1 proven, 38 probable, 19 possible CAPA cases, 21 Aspergillus-colonized patients, 7 patients only positive for serum (1,3)-β-d-glucan (BDG), and 133 cases with no evidence of CAPA. Mortality was 53.8% in CAPA patients compared to 24.1% in patients without CAPA (P = 0.001). Positive serum galactomannan (GM) and BDG were associated with increased mortality compared to serum biomarker-negative CAPA patients (87.5% versus 41.7%, P = 0.046; 90.0% versus 42.1%, P = 0.029, respectively). For each point increase in GM or 10-point BDG serum concentration, the odds of death increased (GM, odds ratio [OR] 10.208, 95% confidence interval [CI], 1.621 to 64.291, P = 0.013; BDG, OR, 1.247, 95% CI, 1.029 to 1.511, P = 0.024). CAPA is a complex disease, probably involving a continuum of respiratory colonization, tissue invasion, and angioinvasion. Serum biomarkers are useful for staging CAPA disease progression and, if positive, indicate angioinvasion and a high probability of mortality. There is need for a biomarker that distinguishes between respiratory tract colonization and tissue-invasive CAPA disease.
Collapse
Affiliation(s)
- Mehmet Ergün
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roger J. M. Brüggemann
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandre Alanio
- Mycology-Parasitology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
- Molecular Mycology Unit, CNRS UMR2000, National Reference Centre for Invasive Mycoses and Antifungals, Institut Pasteur, Université de Paris, Paris, France
| | - Sarah Dellière
- Mycology-Parasitology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
- Molecular Mycology Unit, CNRS UMR2000, National Reference Centre for Invasive Mycoses and Antifungals, Institut Pasteur, Université de Paris, Paris, France
| | - Andreas van Arkel
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, The Netherlands
| | - Robbert G. Bentvelsen
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tom Rijpstra
- Department of Intensive Care Medicine, Amphia Hospital, Breda, The Netherlands
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Nico A. F. Janssen
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jochem B. Buil
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karin van Dijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Willem J. G. Melchers
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique H. E. Reijers
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pulmonology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen A. Schouten
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Scientific Centre for Quality of Healthcare (IQ healthcare), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Wauters
- Department of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Alan Cordey
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, United Kingdom
| | - Shuchita Soni
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, United Kingdom
| | - P. Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, United Kingdom
| | - Frank L. van de Veerdonk
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Dos Santos AR, Fraga-Silva TF, de Fátima Almeida-Donanzam D, Dos Santos RF, Finato AC, Soares CT, Lara VS, Almeida NLM, Andrade MI, de Arruda OS, de Arruda MSP, Venturini J. IFN-γ Mediated Signaling Improves Fungal Clearance in Experimental Pulmonary Mucormycosis. Mycopathologia 2021; 187:15-30. [PMID: 34716549 PMCID: PMC8555725 DOI: 10.1007/s11046-021-00598-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022]
Abstract
We established three immunocompetent murine models of pulmonary mucormycosis to determine the involvement of the adaptive immune response in host resistance in pulmonary mucormycosis, a rapidly fatal disease caused mainly by Rhizopus spp. Immunocompetent inbred (C57BL/6, BALB/c) and outbred (Swiss) strains of mice were inoculated with R. oryzae via the intratracheal route. The inoculation resulted in a disseminated infection that spread to the brain, spleen, kidney, and liver. After 7 and 30 days of R. oryzae infection, BALB/c mice showed the lowest fungal load and highest production of IFN-γ and IL-2 by splenocytes. Swiss mice showed a higher fungal load 30 days p.i. and was associated with a weak development of the Th-1 profile. To confirm our findings, R. oryzae-infected IFN-γ−/− mice were evaluated after 60 days, where the mice still showed viable fungi in the lungs. This study showed, for the first time, that pulmonary mucormycosis in three widely used mouse strains resulted in an acute fungal dissemination without immunosuppression whose outcome varies according to the genetic background of the mice. We also identified the partial role of IFN-γ in the efficient elimination of R. oryzae during pulmonary infection.
Collapse
Affiliation(s)
- Amanda Ribeiro Dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | - Thais Fernanda Fraga-Silva
- Departamento de Bioquimica e Imunologia, Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, São Paulo, SP, 14049-900, Brazil
| | - Débora de Fátima Almeida-Donanzam
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | | | - Angela Carolina Finato
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil
| | | | - Vanessa Soares Lara
- Faculdade de Odontologia de Bauru (FOB), Universidade de São Paulo (USP), Bauru, SP, 17012-901, Brazil
| | | | | | | | | | - James Venturini
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil. .,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
40
|
Dimopoulos G, Almyroudi MP, Myrianthefs P, Rello J. COVID-19-Associated Pulmonary Aspergillosis (CAPA). JOURNAL OF INTENSIVE MEDICINE 2021; 1:71-80. [PMID: 36785564 PMCID: PMC8346330 DOI: 10.1016/j.jointm.2021.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 04/24/2023]
Abstract
Invasive Pulmonary Aspergillosis (IPA) has been recognized as a possible secondary infection complicating Coronavirus disease 2019 (COVID-19) and increasing mortality. The aim of this review was to report and summarize the available data in the literature concerning the incidence, pathophysiology, diagnosis, and treatment of COVID-19-Associated Pulmonary Aspergillosis (CAPA). Currently, the incidence of CAPA is unclear due to different definitions and diagnostic criteria used among the studies. It was estimated that approximately 8.6% (206/2383) of mechanically ventilated patients were diagnosed with either proven, probable, or putative CAPA. Classical host factors of invasive aspergillosis are rarely recognized in patients with CAPA, who are mainly immuno-competent presenting with comorbidities, while the role of steroids warrants further investigation. Direct epithelial injury and diffuse pulmonary micro thrombi in combination with immune dysregulation, hyper inflammatory response, and immunosuppressive treatment may be implicated. Discrimination between two forms of CAPA (e.g., tracheobronchial and parenchymal) is required, whereas radiological signs of aspergillosis are not typically evident in patients with severe COVID-19 pneumonia. In previous studies, the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria, a clinical algorithm to diagnose Invasive Pulmonary Aspergillosis in intensive care unit patients (AspICU algorithm), and influenza-associated pulmonary aspergillosis (IAPA) criteria were used for the diagnosis of proven/probable and putative CAPA, as well as the differentiation from colonization, which can be challenging. Aspergillus fumigatus is the most commonly isolated pathogen in respiratory cultures. Bronchoalveolar lavage (BAL) and serum galactomannan (GM), β-d-glucan (with limited specificity), polymerase chain reaction (PCR), and Aspergillus-specific lateral-flow device test can be included in the diagnostic work-up; however, these approaches are characterized by low sensitivity. Early treatment of CAPA is necessary, and 71.4% (135/189) of patients received antifungal therapy, mainly with voriconazole, isavuconazole, and liposomal amphotericin B . Given the high mortality rate among patients with Aspergillus infection, the administration of prophylactic treatment is debated. In conclusion, different diagnostic strategies are necessary to differentiate colonization from bronchial or parenchymal infection in intubated COVID-19 patients with Aspergillus spp. in their respiratory specimens vs. those not infected with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Following confirmation, voriconazole or isavuconazole should be used for the treatment of CAPA.
Collapse
Affiliation(s)
- George Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens 12462, Greece
- Corresponding authors: Jordi Rello, Universitat Internacional de Catalunya, Barcelona 08035, Spain; George Dimopoulos, Department of Critical Care, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens 12462, Greece. Email addresses: ;
| | - Maria-Panagiota Almyroudi
- Department of Emergency Medicine, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Pavlos Myrianthefs
- Department of Critical Care, Agioi Anargyroi Hospital, National and Kapodistrian University of Athens, Athens 14564, Greece
| | - Jordi Rello
- Universitat Internacional de Catalunya, Barcelona 08035, Spain
- Corresponding authors: Jordi Rello, Universitat Internacional de Catalunya, Barcelona 08035, Spain; George Dimopoulos, Department of Critical Care, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens 12462, Greece. Email addresses: ;
| |
Collapse
|
41
|
Melanin of Sporothrix globosa affects the function of THP-1 macrophages and modulates the expression of TLR2 and TLR4. Microb Pathog 2021; 159:105158. [PMID: 34454025 DOI: 10.1016/j.micpath.2021.105158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Melanin is an important virulence factor for Sporothrix globosa, the causative agent of sporotrichosis, a subcutaneous mycosis that occurs worldwide. Although previous research suggests that melanin is involved in the pathogenesis of sporotrichosis, little is known about its influence on the macrophages that represent the frontline components of innate immunity. OBJECTIVES To evaluate the effects of melanin on phagocytic activity and the expression of Toll-like receptor (TLR)2 and TLR4 during S. globosa infection of macrophages in vitro. METHODS To compare phagocytic activity and survival rates, THP-1 macrophages and primary mouse peritoneal macrophages were co-cultured with a wild-type S. globosa strain (Mel+), an albino mutant strain (Mel-), a tricyclazole-treated Mel + strain (TCZ-Mel+), or melanin ghosts extracted from S. globosa conidia. Reactive oxygen species (ROS), nitric oxide (NO) generation, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were assayed in THP-1 cells infected with S. globosa conidia. Quantitative PCR and western blotting were used to observe the effect of melanin on TLR2 and TLR4 expression. Knockdown of TLR2/4 expression with small interfering RNA was performed to further verify the role of these receptors during infection. RESULTS Macrophages infected with Mel + conidia showed a lower phagocytosis index and a higher survival rate than TCZ-Mel+ and Mel- in vitro. After incubation with S. globosa, the release of ROS, NO, TNF-α and IL-6 by THP-1 were decreased in the presence of melanin. Increased mRNA and protein expression of TLR2 and TLR4 occurred upon S. globosa infection in THP-1, whereas the presence of melanin suppressed TLR2 and TLR4. Moreover, TLR2 or TLR4 knockdown showed a trend toward reducing the pernicious effect of S. globosa conidia on THP-1 cells in vitro. CONCLUSIONS Collectively, our results indicated that melanin inhibits the phagocytosis of S. globosa and guards against macrophage attack by providing protection from oxygen- and nitrogen-derived radicals, as well as suppressing the host pro-inflammatory cytokine response (TNF-α and IL-6). Melanin was also involved in modulating TLR2 and TLR4 receptor expression, weakening the killing efficiency of S. globosa.
Collapse
|
42
|
Sargazi S, Sheervalilou R, Rokni M, Shirvaliloo M, Shahraki O, Rezaei N. The role of autophagy in controlling SARS-CoV-2 infection: An overview on virophagy-mediated molecular drug targets. Cell Biol Int 2021; 45:1599-1612. [PMID: 33818861 PMCID: PMC8251464 DOI: 10.1002/cbin.11609] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
Autophagy-dependent cell death is a prominent mechanism that majorly contributes to homeostasis by maintaining the turnover of organelles under stressful conditions. Several viruses, including coronaviruses (CoVs), take advantage of cellular autophagy to facilitate their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-coronavirus (β-CoVs) that mediates its replication through a dependent or independent ATG5 pathway using specific double-membrane vesicles that can be considered as similar to autophagosomes. With due attention to several mutations in NSP6, a nonstructural protein with a positive regulatory effect on autophagosome formation, a potential correlation between SARS-CoV-2 pathogenesis mechanisms and autophagy can be expected. Certain medications, albeit limited in number, have been indicated to negatively regulate autophagy flux, potentially in a way similar to the inhibitory effect of β-CoVs on the process of autophagy. However, there is no conclusive evidence to support their direct antagonizing effect on CoVs. Off-target accumulation of a major fraction of FDA-approved autophagy modulating drugs may result in adverse effects. Therefore, medications that have modulatory effects on autophagy could be considered as potential lead compounds for the development of new treatments against this virus. This review discusses the role of autophagy/virophagy in controlling SARS-CoV-2, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | | | - Mohsen Rokni
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Milad Shirvaliloo
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Omolbanin Shahraki
- Pharmacology Research CenterZahedan University of Medical SciencesZahedanIran
| | - Nima Rezaei
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
43
|
Akoumianaki T, Vaporidi K, Diamantaki E, Pène F, Beau R, Gresnigt MS, Gkountzinopulou M, Venichaki M, Drakos E, El-Benna J, Samonis G, Le KTT, Kumar V, Georgopoulos D, van de Veerdonk FL, Netea MG, Latge JP, Chamilos G. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe 2021; 29:1277-1293.e6. [PMID: 34214493 DOI: 10.1016/j.chom.2021.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Immune deactivation of phagocytes is a central event in the pathogenesis of sepsis. Herein, we identify a master regulatory role of IL-6 signaling on LC3-associated phagocytosis (LAP) and reveal that uncoupling of these two processes during sepsis induces immunoparalysis in monocytes/macrophages. In particular, we demonstrate that activation of LAP by the human fungal pathogen Aspergillus fumigatus depends on ERK1/2-mediated phosphorylation of p47phox subunit of NADPH oxidase. Physiologically, autocrine IL-6/JAK2/Ninein axis orchestrates microtubule organization and dynamics regulating ERK recruitment to the phagosome and LC3+ phagosome (LAPosome) formation. In sepsis, loss of IL-6 signaling specifically abrogates microtubule-mediated trafficking of ERK, leading to defective activation of LAP and impaired killing of bacterial and fungal pathogens by monocytes/macrophages, which can be selectively restored by IL-6 supplementation. Our work uncovers a molecular pathway linking IL-6 signaling with LAP and provides insight into the mechanisms underlying immunoparalysis in sepsis.
Collapse
Affiliation(s)
- Tonia Akoumianaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Eleni Diamantaki
- Department of Intensive Care Medicine, University Hospital of Heraklion, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Frédéric Pène
- Medical ICU, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique - Hôpitaux de Paris, Institut Cochin INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France
| | - Remi Beau
- Unité des Aspergillus, Institut Pasteur, Paris 75015, France
| | - Mark S Gresnigt
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Marina Gkountzinopulou
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Maria Venichaki
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Elias Drakos
- Department of Pathology, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Jamel El-Benna
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, CNRS-ERL 8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - George Samonis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Kieu T T Le
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Vinod Kumar
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Dimitrios Georgopoulos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine (463) and Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Jean-Paul Latge
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece; Unité des Aspergillus, Institut Pasteur, Paris 75015, France
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Voutes, 71110 Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Crete, Greece.
| |
Collapse
|
44
|
van de Veerdonk FL, Brüggemann RJM, Vos S, De Hertogh G, Wauters J, Reijers MHE, Netea MG, Schouten JA, Verweij PE. COVID-19-associated Aspergillus tracheobronchitis: the interplay between viral tropism, host defence, and fungal invasion. THE LANCET RESPIRATORY MEDICINE 2021; 9:795-802. [PMID: 34051176 PMCID: PMC8153840 DOI: 10.1016/s2213-2600(21)00138-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Invasive pulmonary aspergillosis is emerging as a secondary infection in patients with COVID-19, which can present as alveolar disease, airway disease (ie, invasive Aspergillus tracheobronchitis), or both. Histopathology of invasive Aspergillus tracheobronchitis in patients with severe COVID-19 confirms tracheal ulcers with tissue invasion of Aspergillus hyphae but without angioinvasion, which differs from patients with severe influenza, where early angioinvasion is observed. We argue that aggregation of predisposing factors (eg, factors that are defined by the European Organisation for Research and Treatment of Cancer and Mycoses Study Group Education and Research Consortium or genetic polymorphisms), viral factors (eg, tropism and lytic effects), immune defence factors, and effects of concomitant therapies will determine whether and when the angioinvasion threshold is reached. Management of invasive Aspergillus tracheobronchitis should include reducing viral lytic effects, rebalancing immune dysregulation, and systemic and local antifungal therapy. Future study designs should involve approaches that aim to develop improved diagnostics for tissue invasion and airways involvement and identify the immune status of the patient to guide personalised immunotherapy.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Shoko Vos
- Department of Pathology, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gert De Hertogh
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Monique H E Reijers
- Department of Pulmonology, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jeroen A Schouten
- Department of Intensive Care, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboudumc-CWZ Center of Expertise for Mycology, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
45
|
Kuindersma M, Diaz RR, Spronk PE. Tailored modulation of the inflammatory balance in COVID-19 patients admitted to the ICU?-a viewpoint. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:178. [PMID: 34034789 PMCID: PMC8148399 DOI: 10.1186/s13054-021-03607-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
A growing consensus seems to be emerging that dexamethasone is a crucial component in the treatment of COVID-19-associated oxygen-dependent respiratory failure. Although dexamethasone has an undeniably beneficial effect on the inflammatory response in a subgroup of patients, the potential negative effects of corticosteroids must also be considered. In view of these negative effects, we argue that a one-size-fits-all dexamethasone approach may be potentially harmful in specific subsets of patients with COVID-19-associated ARDS. We propose a different individually tailored treatment strategy based on the patient’s inflammatory response.
Collapse
Affiliation(s)
- Marnix Kuindersma
- Department of Intensive Care Medicine, Gelre Hospitals, Albert Schweiterlaan 31, Apeldoorn, The Netherlands.
| | - Rocio Ramos Diaz
- Department of Medical Microbiology, Gelre Hospitals, Albert Schweiterlaan 31, Apeldoorn, The Netherlands
| | - Peter E Spronk
- Department of Intensive Care Medicine, Gelre Hospitals, Albert Schweiterlaan 31, Apeldoorn, The Netherlands.,Expertise Center for Intensive Care Rehabilitation Apeldoorn (ExpIRA), Apeldoorn, The Netherlands
| |
Collapse
|
46
|
Dewi IM, Janssen NA, Rosati D, Bruno M, Netea MG, Brüggemann RJ, Verweij PE, van de Veerdonk FL. Invasive pulmonary aspergillosis associated with viral pneumonitis. Curr Opin Microbiol 2021; 62:21-27. [PMID: 34034082 DOI: 10.1016/j.mib.2021.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The occurrence of invasive pulmonary aspergillosis (IPA) in critically ill patients with viral pneumonitis has increasingly been reported in recent years. Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are the two most common forms of this fungal infection. These diseases cause high mortality in patients, most of whom were previously immunocompetent. The pathogenesis of IAPA and CAPA is still not fully understood, but involves viral, fungal and host factors. In this article, we discuss several aspects regarding IAPA and CAPA, including their possible pathogenesis, the use of immunotherapy, and future challenges.
Collapse
Affiliation(s)
- Intan Mw Dewi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Nico Af Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Diletta Rosati
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Roger Jm Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands.
| |
Collapse
|
47
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
48
|
Understanding the fundamental role of virulence determinants to combat Aspergillus fumigatus infections: exploring beyond cell wall. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
50
|
Xing Y, Ye Y, Zuo H, Li Y. Progress on the Function and Application of Thymosin β4. Front Endocrinol (Lausanne) 2021; 12:767785. [PMID: 34992578 PMCID: PMC8724243 DOI: 10.3389/fendo.2021.767785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Thymosin β4 (Tβ4) is a multifunctional and widely distributed peptide that plays a pivotal role in several physiological and pathological processes in the body, namely, increasing angiogenesis and proliferation and inhibiting apoptosis and inflammation. Moreover, Tβ4 is effectively utilized for several indications in animal experiments or clinical trials, such as myocardial infarction and myocardial ischemia-reperfusion injury, xerophthalmia, liver and renal fibrosis, ulcerative colitis and colon cancer, and skin trauma. Recent studies have reported the potential application of Tβ4 and its underlying mechanisms. The present study reveals the progress regarding functions and applications of Tβ4.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yumeng Ye
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Academy of Life Sciences, Anhui Medical University, Hefei City, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| |
Collapse
|