1
|
Olsthoorn SEM, van Krimpen A, Hendriks RW, Stadhouders R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunol Rev 2025; 330:e70010. [PMID: 40016948 PMCID: PMC11868696 DOI: 10.1111/imr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Asthma is a common chronic inflammatory disease of the airways. A substantial number of patients present with severe and therapy-resistant asthma, for which the underlying biological mechanisms remain poorly understood. In most asthma patients, airway inflammation is characterized by chronic activation of type 2 immunity. CD4+ T helper 2 (Th2) cells are the canonical producers of the cytokines that fuel type 2 inflammation: interleukin (IL)-4, IL-5, IL-9, and IL-13. However, more recent findings have shown that other lymphocyte subsets, in particular group 2 innate lymphoid cells (ILC2s) and type 2 CD8+ cytotoxic T (Tc2) cells, can also produce large amounts of type 2 cytokines. Importantly, a substantial number of severe therapy-resistant asthma patients present with chronic type 2 inflammation, despite the high sensitivity of Th2 cells for suppression by corticosteroids-the mainstay drugs for asthma. Emerging evidence indicates that ILC2s and Tc2 cells are more abundant in severe asthma patients and can adopt corticosteroid-resistance states. Moreover, many severe asthma patients do not present with overt type 2 airway inflammation, implicating non-type 2 immunity as a driver of disease. In this review, we will discuss asthma pathophysiology and focus on the roles played by ILC2s, Tc2 cells, and non-type 2 lymphocytes, placing special emphasis on severe disease forms.
Collapse
Affiliation(s)
- Simone E. M. Olsthoorn
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
2
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
3
|
da Costa AL, Prieto-Oliveira P, Duarte-Barbosa M, Andreata-Santos R, Peter CM, Prolo de Brito T, Antoneli F, Durães-Carvalho R, Briones MRS, Maricato JT, Zanotto PMA, Jacob Machado D, Janini LMR. The Relationship between HERV, Interleukin, and Transcription Factor Expression in ZIKV Infected versus Uninfected Trophoblastic Cells. Cells 2024; 13:1491. [PMID: 39273061 PMCID: PMC11394337 DOI: 10.3390/cells13171491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian-Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24-72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta.
Collapse
Affiliation(s)
- Anderson Luís da Costa
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
| | - Paula Prieto-Oliveira
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA; (P.P.-O.); (D.J.M.)
- Computational Intelligence to Predict Health and Environmental Risks Center, University of North Carolina at Charlotte, 9201 University City BLVD, Charlotte, NC 28223, USA
| | - Márcia Duarte-Barbosa
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
| | - Robert Andreata-Santos
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Cristina M. Peter
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Thamires Prolo de Brito
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Fernando Antoneli
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Ricardo Durães-Carvalho
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Juliana T. Maricato
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Paolo M. A. Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA; (P.P.-O.); (D.J.M.)
- Computational Intelligence to Predict Health and Environmental Risks Center, University of North Carolina at Charlotte, 9201 University City BLVD, Charlotte, NC 28223, USA
| | - Luiz M. R. Janini
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| |
Collapse
|
4
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
5
|
Ibusuki A, Kawai K, Nitahara-Takeuchi A, Argüello RJ, Kanekura T. TCR signaling and cellular metabolism regulate the capacity of murine epidermal γδ T cells to rapidly produce IL-13 but not IFN-γ. Front Immunol 2024; 15:1361139. [PMID: 38482017 PMCID: PMC10933099 DOI: 10.3389/fimmu.2024.1361139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024] Open
Abstract
Resident epidermal T cells of murine skin, called dendritic epidermal T cells (DETCs), express an invariant γδ TCR that recognizes an unidentified self-ligand expressed on epidermal keratinocytes. Although their fetal thymic precursors are preprogrammed to produce IFN-γ, DETCs in the adult epidermis rapidly produce IL-13 but not IFN-γ early after activation. Here, we show that preprogrammed IFN-γ-producing DETC precursors differentiate into rapid IL-13 producers in the perinatal epidermis. The addition of various inhibitors of signaling pathways downstream of TCR to the in vitro differentiation model of neonatal DETCs revealed that TCR signaling through the p38 MAPK pathway is essential for the functional differentiation of neonatal DETCs. Constitutive TCR signaling at steady state was also shown to be needed for the maintenance of the rapid IL-13-producing capacity of adult DETCs because in vivo treatment with the p38 MAPK inhibitor decreased adult DETCs with the rapid IL-13-producing capacity. Adult DETCs under steady-state conditions had lower glycolytic capacity than proliferating neonatal DETCs. TCR stimulation of adult DETCs induced high glycolytic capacity and IFN-γ production during the late phase of activation. Inhibition of glycolysis decreased IFN-γ but not IL-13 production by adult DETCs during the late phase of activation. These results demonstrate that TCR signaling promotes the differentiation of IL-13-producing DETCs in the perinatal epidermis and is needed for maintaining the rapid IL-13-producing capacity of adult DETCs. The low glycolytic capacity of adult DETCs at steady state also regulates the rapid IL-13 response and delayed IFN-γ production after activation.
Collapse
Affiliation(s)
- Atsuko Ibusuki
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiro Kawai
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Dermatology, Kido Hospital, Niigata, Japan
| | - Ayano Nitahara-Takeuchi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rafael J. Argüello
- Aix Marseille Université, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
6
|
Tanaka Y, Yamagishi M, Motomura Y, Kamatani T, Oguchi Y, Suzuki N, Kiniwa T, Kabata H, Irie M, Tsunoda T, Miya F, Goda K, Ohara O, Funatsu T, Fukunaga K, Moro K, Uemura S, Shirasaki Y. Time-dependent cell-state selection identifies transiently expressed genes regulating ILC2 activation. Commun Biol 2023; 6:915. [PMID: 37673922 PMCID: PMC10482971 DOI: 10.1038/s42003-023-05297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
The decision of whether cells are activated or not is controlled through dynamic intracellular molecular networks. However, the low population of cells during the transition state of activation renders the analysis of the transcriptome of this state technically challenging. To address this issue, we have developed the Time-Dependent Cell-State Selection (TDCSS) technique, which employs live-cell imaging of secretion activity to detect an index of the transition state, followed by the simultaneous recovery of indexed cells for subsequent transcriptome analysis. In this study, we used the TDCSS technique to investigate the transition state of group 2 innate lymphoid cells (ILC2s) activation, which is indexed by the onset of interleukin (IL)-13 secretion. The TDCSS approach allowed us to identify time-dependent genes, including transiently induced genes (TIGs). Our findings of IL4 and MIR155HG as TIGs have shown a regulatory function in ILC2s activation.
Collapse
Affiliation(s)
- Yumiko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mai Yamagishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Live Cell Diagnosis, Ltd, Saitama, Japan
| | - Yasutaka Motomura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kamatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Oguchi
- PRESTO, JST, Saitama, Japan
- RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Nobutake Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Kiniwa
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Misato Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | | | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Calafiore M, Fu YY, Vinci P, Arnhold V, Chang WY, Jansen SA, Egorova A, Takashima S, Kuttiyara J, Ito T, Serody J, Nakae S, Turnquist H, van Es J, Clevers H, Lindemans CA, Blazar BR, Hanash AM. A tissue-intrinsic IL-33/EGF circuit promotes epithelial regeneration after intestinal injury. Nat Commun 2023; 14:5411. [PMID: 37669929 PMCID: PMC10480426 DOI: 10.1038/s41467-023-40993-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Intestinal stem cells (ISCs) maintain the epithelial lining of the intestines, but mechanisms regulating ISCs and their niche after damage remain poorly understood. Utilizing radiation injury to model intestinal pathology, we report here that the Interleukin-33 (IL-33)/ST2 axis, an immunomodulatory pathway monitored clinically as an intestinal injury biomarker, regulates intrinsic epithelial regeneration by inducing production of epidermal growth factor (EGF). Three-dimensional imaging and lineage-specific RiboTag induction within the stem cell compartment indicated that ISCs expressed IL-33 in response to radiation injury. Neighboring Paneth cells responded to IL-33 by augmenting production of EGF, which promoted ISC recovery and epithelial regeneration. These findings reveal an unknown pathway of niche regulation and crypt regeneration whereby the niche responds dynamically upon injury and the stem cells orchestrate regeneration by regulating their niche. This regenerative circuit also highlights the breadth of IL-33 activity beyond immunomodulation and the therapeutic potential of EGF administration for treatment of intestinal injury.
Collapse
Affiliation(s)
- Marco Calafiore
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ya-Yuan Fu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Paola Vinci
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viktor Arnhold
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Winston Y Chang
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Suze A Jansen
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, Netherlands
| | - Anastasiya Egorova
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shuichiro Takashima
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, 810-8563, Japan
| | - Jason Kuttiyara
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Takahiro Ito
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jonathan Serody
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, 739-0046, Japan
| | - Heth Turnquist
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT, Utrecht, the Netherlands
- Roche Pharma Research and Early Development, Basel, Switzerland
| | - Caroline A Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, Netherlands
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alan M Hanash
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
9
|
Irie M, Kabata H, Sasahara K, Kurihara M, Shirasaki Y, Kamatani T, Baba R, Matsusaka M, Koga S, Masaki K, Miyata J, Araki Y, Kikawada T, Kabe Y, Suematsu M, Yamagishi M, Uemura S, Moro K, Fukunaga K. Annexin A1 is a cell-intrinsic metalloregulator of zinc in human ILC2s. Cell Rep 2023; 42:112610. [PMID: 37294636 DOI: 10.1016/j.celrep.2023.112610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) produce large amounts of type 2 cytokines including interleukin-5 (IL-5) and IL-13 in response to various stimuli, causing allergic and eosinophilic diseases. However, the cell-intrinsic regulatory mechanisms of human ILC2s remain unclear. Here, we analyze human ILC2s derived from different tissues and pathological conditions and identify ANXA1, encoding annexin A1, as a commonly highly expressed gene in non-activated ILC2s. The expression of ANXA1 decreases when ILC2s activate, but it increases autonomously as the activation subsides. Lentiviral vector-based gene transfer experiments show that ANXA1 suppresses the activation of human ILC2s. Mechanistically, ANXA1 regulates the expression of the metallothionein family genes, including MT2A, which modulate intracellular zinc homeostasis. Furthermore, increased intracellular zinc levels play an essential role in the activation of human ILC2s by promoting the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and GATA3 expression. Thus, the ANXA1/MT2A/zinc pathway is identified as a cell-intrinsic metalloregulatory mechanism for human ILC2s.
Collapse
Affiliation(s)
- Misato Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kotaro Sasahara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Momoko Kurihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; Division of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo 113-8519, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutomo Araki
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Toru Kikawada
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- WPI Bio2Q Research Center, Keio University and Central Institute for Experimental Medicine, Kawasaki, Kanagawa 210-0821, Japan
| | - Mai Yamagishi
- Live Cell Diagnosis, Ltd., Asaka, Saitama 351-0022, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, Suita, Osaka 565-0871, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Ma RX, Hu JQ, Fu W, Zhong J, Cao C, Wang CC, Qi SQ, Zhang XL, Liu GH, Gao YD. Intermittent fasting protects against food allergy in a murine model via regulating gut microbiota. Front Immunol 2023; 14:1167562. [PMID: 37228621 PMCID: PMC10205017 DOI: 10.3389/fimmu.2023.1167562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background The prevalence of food allergy (FA) is increasing. Decreases in the diversity of gut microbiota may contribute to the pathogenesis of FA by regulating IgE production of B cells. Intermittent fasting (IF) is a popular diet with the potential to regulate glucose metabolism, boosting immune memory and optimizing gut microbiota. The potential effect of long-term IF on the prevention and treatment of FA is still unknown. Methods Two IF protocols (16 h fasting/8 h feeding and 24 h fasting/24 h feeding) were conducted on mice for 56 days, while the control mice were free to intake food (free diet group, FrD). To construct the FA model, all mice were sensitized and intragastrical challenged with ovalbumin (OVA) during the second half of IF (day 28 to day 56). Rectal temperature reduction and diarrhea were recorded to evaluate the symptoms of FA. Levels of serum IgE, IgG1, Th1/Th2 cytokines, mRNA expression of spleen T cell related transcriptional factors, and cytokines were examined. H&E, immunofluorescence, and toluidine blue staining were used to assess the structural changes of ileum villi. The composition and abundance of gut microbiota were analyzed by 16srRNA sequencing in cecum feces. Results The diarrhea score and rectal temperature reduction were lower in the two fasting groups compared to the FrD groups. Fasting was associated with lower levels of serum OVA-sIgE, OVA-sIgG1, interleukin (IL)-4 and IL-5, and mRNA expression of IL-4, IL-5, and IL-10 in the spleen. While no significant association was observed in interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-2 levels. Less mast cell infiltration in ileum was observed in the 16h/8h fasting group compared to the FrD group. ZO-1 expression in the ileum of the two fasting groups was higher in IF mice. The 24h/24h fasting reshaped the gut microbiota, with a higher abundance of Alistipes and Rikenellaceae strains compared to the other groups. Conclusion In an OVA-induced mice FA model, long-term IF may attenuate FA by reducing Th2 inflammation, maintaining the integrity of the intestinal epithelial barrier, and preventing gut dysbiosis.
Collapse
Affiliation(s)
- Ru-xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| | - Guang-hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Nagashima R, Ishikawa H, Kuno Y, Kohda C, Iyoda M. HIF-PHD inhibitor regulates the function of group2 innate lymphoid cells and polarization of M2 macrophages. Sci Rep 2023; 13:1867. [PMID: 36725898 PMCID: PMC9892566 DOI: 10.1038/s41598-023-29161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) inhibitors are therapeutic agents for renal anemia that work through HIF2-mediated upregulation of erythropoietin (EPO) and have also been reported to suppress renal fibrosis. Group 2 innate lymphoid cells (ILC2s) have been proven to be involved in the pathogenesis of fibrosis in various organs, including the kidney. However, the relationship between the HIF pathway, renal fibrosis, and kidney ILC2s remains unclear. In the present study, we found that HIF activation by HIF-PHD inhibitors suppressed type 2 cytokine production from kidney ILC2s. The enhanced HIF pathway downregulated the IL-33 receptor ST2L on ILC2s, and phosphorylation of downstream p38 MAPK was attenuated. M2 macrophages that promote renal fibrosis were polarized by ILC2 supernatants, but reduced cytokine production from ILC2s treated with HIF-PHD inhibitors suppressed this polarization. Our findings suggest that HIF-PHD inhibitors are potential therapeutic agents for renal fibrosis that are mediated by the alteration of ILC2 function.
Collapse
Affiliation(s)
- Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.,Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.,Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Yashiro T, Moro K. Crossing the valley of death: Toward translational research regarding ILC2. Allergol Int 2023; 72:187-193. [PMID: 36646561 DOI: 10.1016/j.alit.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/16/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident innate lymphoid cells that express the transcription factor GATA3 as a master regulator, which leads to the production of large amounts of type 2 cytokines, such as IL-5 and IL-13. ILC2s are activated by epithelial cell-derived cytokines, including IL-33 and IL-25, and play a key role in parasite expulsion, allergic responses, tissue repair, and metabolism. In the first five years after the discovery of ILC2s, research mainly focused on their function through cytokine receptors. However, in recent years, their regulatory mechanisms through not only cytokine receptors but also lipids, neuropeptides, and hormones have become a hot topic. For ILC2s that do not recognize foreign antigens, receptor expression of such endogenous factors is important, and the diverse expression patterns create the individuality of ILC2s in each organ. By considering the mechanisms of differentiation and regulation of ILC2s and their role in disease while taking into account spatio-temporal information, it is expected that new therapeutic strategies targeting ILC2s will be developed. Herein, we summarize the current understanding of ILC2s in lung homeostasis and pathology and provide valuable insights that will help to guide the future development of therapeutic methods for ILC2-mediated lung diseases.
Collapse
Affiliation(s)
- Takuya Yashiro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan.
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan; Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan; Laboratory for Innate Immune Systems, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan.
| |
Collapse
|
13
|
Montauti E, Weinberg SE, Chu P, Chaudhuri S, Mani NL, Iyer R, Zhou Y, Zhang Y, Liu C, Xin C, Gregory S, Wei J, Zhang Y, Chen W, Sun Z, Yan M, Fang D. A deubiquitination module essential for T reg fitness in the tumor microenvironment. SCIENCE ADVANCES 2022; 8:eabo4116. [PMID: 36427305 PMCID: PMC9699683 DOI: 10.1126/sciadv.abo4116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-β (TGF-β), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-β, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.
Collapse
Affiliation(s)
- Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nikita L. Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yuanzhang Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Changhong Liu
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Chen Xin
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Shana Gregory
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Wantao Chen
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaolin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ming Yan
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Emerging Effects of IL-33 on COVID-19. Int J Mol Sci 2022; 23:ijms232113656. [PMID: 36362440 PMCID: PMC9658128 DOI: 10.3390/ijms232113656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Collapse
|
15
|
Yu H, Jacquelot N, Belz GT. Metabolic features of innate lymphoid cells. J Exp Med 2022; 219:e20221140. [PMID: 36301303 PMCID: PMC9617479 DOI: 10.1084/jem.20221140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Huiyang Yu
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T. Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Jarick KJ, Topczewska PM, Jakob MO, Yano H, Arifuzzaman M, Gao X, Boulekou S, Stokic-Trtica V, Leclère PS, Preußer A, Rompe ZA, Stamm A, Tsou AM, Chu C, Heinrich FR, Guerra GM, Durek P, Ivanov A, Beule D, Helfrich S, Duerr CU, Kühl AA, Stehle C, Romagnani C, Mashreghi MF, Diefenbach A, Artis D, Klose CSN. Non-redundant functions of group 2 innate lymphoid cells. Nature 2022; 611:794-800. [PMID: 36323785 PMCID: PMC7614745 DOI: 10.1038/s41586-022-05395-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.
Collapse
Affiliation(s)
- Katja J Jarick
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrycja M Topczewska
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xuemei Gao
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sotiria Boulekou
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vladislava Stokic-Trtica
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pierre S Leclère
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandra Preußer
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zoe A Rompe
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton Stamm
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Frederik R Heinrich
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Gabriela M Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia Helfrich
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia U Duerr
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin - Core Unit of the Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203, Berlin, Germany
- Leibniz-Science Campus Chronic Inflammation, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
18
|
Badrani JH, Strohm AN, Lacasa L, Civello B, Cavagnero K, Haung YA, Amadeo M, Naji LH, Lund SJ, Leng A, Kim H, Baum RE, Khorram N, Mondal M, Seumois G, Pilotte J, Vanderklish PW, McGee HM, Doherty TA. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13:4435. [PMID: 35908044 PMCID: PMC9338970 DOI: 10.1038/s41467-022-32176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.
Collapse
Affiliation(s)
- Jana H. Badrani
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Allyssa N. Strohm
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| | - Lee Lacasa
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Blake Civello
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kellen Cavagnero
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Yung-An Haung
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.145695.a0000 0004 1798 0922Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael Amadeo
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Luay H. Naji
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Sean J. Lund
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthea Leng
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hyojoung Kim
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Rachel E. Baum
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Naseem Khorram
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Monalisa Mondal
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Grégory Seumois
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Julie Pilotte
- grid.214007.00000000122199231The Scripps Research Institute, La Jolla, CA USA
| | | | - Heather M. McGee
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.250671.70000 0001 0662 7144NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA USA ,grid.410425.60000 0004 0421 8357Departments of Radiation Oncology and Immuno-Oncology, City of Hope, Duarte, CA USA ,Department of Molecular Medicine, La Jolla, CA USA
| | - Taylor A. Doherty
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| |
Collapse
|
19
|
Sunaga S, Tsunoda J, Teratani T, Mikami Y, Kanai T. Heterogeneity of ILC2s in the Intestine; Homeostasis and Pathology. Front Immunol 2022; 13:867351. [PMID: 35707544 PMCID: PMC9190760 DOI: 10.3389/fimmu.2022.867351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were identified in 2010 as a novel lymphocyte subset lacking antigen receptors, such as T-cell or B-cell receptors. ILC2s induce local immune responses characterized by producing type 2 cytokines and play essential roles for maintaining tissue homeostasis. ILC2s are distributed across various organs, including the intestine where immune cells are continuously exposed to external antigens. Followed by luminal antigen stimulation, intestinal epithelial cells produce alarmins, such as IL-25, IL-33, and thymic stromal lymphopoietin, and activate ILC2s to expand and produce cytokines. In the context of parasite infection, the tuft cell lining in the epithelium has been revealed as a dominant source of intestinal IL-25 and possesses the capability to regulate ILC2 homeostasis. Neuronal systems also regulate ILC2s through neuropeptides and neurotransmitters, and interact with ILC2s bidirectionally, a process termed “neuro-immune crosstalk”. Activated ILC2s produce type 2 cytokines, which contribute to epithelial barrier function, clearance of luminal antigens and tissue repair, while ILC2s are also involved in chronic inflammation and tissue fibrosis. Recent studies have shed light on the contribution of ILC2s to inflammatory bowel diseases, mainly comprising ulcerative colitis and Crohn’s disease, as defined by chronic immune activation and inflammation. Modern single-cell analysis techniques provide a tissue-specific picture of ILC2s and their roles in regulating homeostasis in each organ. Particularly, single-cell analysis helps our understanding of the uniqueness and commonness of ILC2s across tissues and opens the novel research area of ILC2 heterogeneity. ILC2s are classified into different phenotypes depending on tissue and phase of inflammation, mainly inflammatory and natural ILC2 cells. ILC2s can also switch phenotype to ILC1- or ILC3-like subsets. Hence, recent studies have revealed the heterogeneity and plasticity of ILC2, which indicate dynamicity of inflammation and the immune system. In this review, we describe the regulatory mechanisms, function, and pathological roles of ILC2s in the intestine.
Collapse
Affiliation(s)
- Shogo Sunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| |
Collapse
|
20
|
Irie M, Sasahara K, Artis D, Kabata H. Current overview of the role of neuropeptides in ILC2s and future directions. Allergol Int 2022; 71:294-300. [PMID: 35367135 DOI: 10.1016/j.alit.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
The neural and immune systems are closely connected, and recently, their molecular mechanisms and relationships with diseases have attracted substantial attention. Particularly, it has been increasingly reported that ILC2s, which produce type 2 cytokines independent of acquired immunity, are regulated by neuropeptides such as catecholamines, acetylcholine, vasoactive intestinal peptide, neuromedins, and calcitonin gene-related peptide. However, the regulatory mechanisms in this regard are only partially understood, implying that further studies are still needed to clarify the complete mechanisms and processes. In this review, we summarize current reports on the regulatory effect of neuropeptides on ILC2s, some of which have conflicting results, possibly owing to the complexity of G-protein coupled receptors. By summarizing the current evidence, we hope to be able to identify what is currently unknown as well as what needs to be clarified in the future.
Collapse
|
21
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
22
|
TLR3-driven IFN-β antagonizes STAT5-activating cytokines and suppresses innate type 2 response in the lung. J Allergy Clin Immunol 2022; 149:1044-1059.e5. [PMID: 34428519 PMCID: PMC8859010 DOI: 10.1016/j.jaci.2021.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are involved in type 2 immune responses in mucosal organs and are associated with various allergic diseases in humans. Studies are needed to understand the molecules and pathways that control ILC2s. OBJECTIVE The aims of this study were to develop a mouse model that limits the innate type 2 immune response in the lung and to investigate the immunologic mechanisms involved in regulation of lung ILC2s. METHODS Naive BALB/c mice were administered various Toll-like receptor agonists and exposed intranasally to the fungal allergen Alternaria alternata. The mechanisms were investigated using gene knockout mice as well as cultures of lung cells and isolated lung ILC2s. RESULTS Polyinosinic-polycytidylic acid, or poly (I:C), effectively inhibited innate type 2 response to A alternata. Poly (I:C) promoted production of IFNα, -β, and -γ, and its inhibitory effects were dependent on the IFN-α/β receptor pathway. IFN-β was 100 times more potent than IFN-α at inhibiting type 2 cytokine production by lung ILC2s. Signal transducer and activator of transcription 5 (STAT5)-activating cytokines, including IL-2, IL-7, and thymic stromal lymphopoietin, but not IL-33, promoted survival and proliferation of lung ILC2s in vitro, while IFN-β blocked these effects. Expression of the transcription factor GATA3, which is critical for differentiation and maintenance of ILC2s, was inhibited by IFN-β. CONCLUSIONS IFN-β blocks the effects of STAT5-activating cytokines on lung ILC2s and inhibits their survival and effector functions. Administration of IFN-β may provide a new strategy to treat diseases involving ILC2s.
Collapse
|
23
|
Zhang L, Meng W, Chen X, Ning Y, Sun M, Wang R. MiR-150-5p regulates the functions of type 2 innate lymphoid cells via the ICAM-1/p38 MAPK axis in allergic rhinitis. Mol Cell Biochem 2022; 477:1009-1022. [PMID: 34988856 DOI: 10.1007/s11010-021-04346-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Type 2 innate lymphoid cells (ILC2s) exert an increasingly important influence on the pathological process of allergic rhinitis (AR), which is affected by microRNAs-mediated post-transcriptional regulation. This study aims to investigate the function of miR-150-5p in AR patients and the mouse model of AR. The mouse model of AR was established using the OVA challenge. The expressions of miR-150-5p, ICAM-1, p-p38 and p-GATA-3 were evaluated via RT-qPCR and western blot analysis. The level of ILC2s was examined with flow cytometry. Concentrations of OVA-specific IgE, IL-13 and IL-5 in serum were evaluated using ELISA. Histopathological examination was conducted through H&E staining. The interplay between ICAM-1 and miR-150-5p was determined through the DLR assay. The decreased miR-150-5p expression and increased ICAM-1, p-p38 and p-GATA-3 expressions and ILC2s levels were detected in AR patients and AR mice compared with controls. Treatment with miR-150-5p lentivirus alleviated AR symptoms (sneezing, rubbing, mucosa inflammation, serum type 2 cytokines and OVA-specific IgE) and lowered the ILC2s level in AR mice. MiR-150-5p was found to directly bind to 3'-UTR of ICAM-1 and downregulate ICAM-1 expression, thereby descending the level of p-p38, p-GATA-3 and suppressing ILC2s function to alleviate AR symptoms. Treatment with Lenti-ICAM-1 counteracted these protective effects of miR-150-5p. Upregulation of miR-150-5p repressed the ICAM-1/p38 axis which was vital to ILC2s development and function, thereby alleviating allergic symptoms of AR.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Wei Meng
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Xiangjing Chen
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Yunhong Ning
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Meng Sun
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Renzhong Wang
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China.
| |
Collapse
|
24
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Hikichi Y, Motomura Y, Takeuchi O, Moro K. Posttranscriptional regulation of ILC2 homeostatic function via tristetraprolin. J Exp Med 2021; 218:e20210181. [PMID: 34709349 PMCID: PMC8558840 DOI: 10.1084/jem.20210181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are unique in their ability to produce low levels of type 2 cytokines at steady state, and their production capacity is dramatically increased upon stimulation with IL-33. However, it is unknown how constitutive cytokine production is regulated in the steady state. Here, we found that tristetraprolin (TTP/Zfp36), an RNA-binding protein that induces mRNA degradation, was highly expressed in naive ILC2s and was downregulated following IL-33 stimulation. In ILC2s from Zfp36-/- mice, constitutive IL-5 production was elevated owing to the stabilization of its mRNA and resulted in an increased number of eosinophils in the intestine. Luciferase assay demonstrated that TTP directly regulates Il5 mRNA stability, and overexpression of TTP markedly suppressed IL-5 production by ILC2s, even under IL-33 stimulation. Collectively, TTP-mediated posttranscriptional regulation acts as a deterrent of excessive cytokine production in steady-state ILC2s to maintain body homeostasis, and downregulation of TTP may contribute to massive cytokine production under IL-33 stimulation.
Collapse
Affiliation(s)
- Yuki Hikichi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, Suita, Osaka, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, Suita, Osaka, Japan
| |
Collapse
|
26
|
Tezuka T, Azuma M, Ogawa H, Kondo M, Uehara H, Aono Y, Hanibuchi M, Nishioka Y. A RAS inhibitor reduces allergic airway remodeling via regulating IL-33-derived type 2 innate lymphoid cells. Exp Lung Res 2021; 47:451-463. [PMID: 34739349 DOI: 10.1080/01902148.2021.1999536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose: IL-33 is known to induce corticosteroid-resistant eosinophilic inflammation and airway remodeling by activating type 2 innate lymphoid cells (ILC2s). Although the RAS signal pathway plays an important role in IL-33-induced ILC2s activation and airway remodeling, it is not known if RAS inhibitors are effective against refractory asthma. We examined the effects of the RAS inhibitor XRP44X in refractory asthma. Methods: RAS activity were examined by BAL fluid and T-cells isolated from spleen cells in Dermatophagoides pteronyssinus (Dp)-sensitized/challenged acute allergic airway inflammation model. A chronic allergic airway inflammation mouse model was generated by challenged with Dp. XRP44X and/or fluticasone were administrated nasally to different experimental groups. The effects of nasal simultaneous administration of XRP44X or fluticasone were assessed in mice administrated with IL-33 or Dp. Results: RAS activity in CD4+ T cells stimulated by Dp were suppressed by XRP44X. Although fluticasone and XRP44X only improved allergic airway inflammation in mice, XRP44X in combination with fluticasone produced further improvement in not only eosinophilic inflammation but also bronchial subepithelial thickness. XRP44X suppressed IL-5 and IL-13 production from ILC2s, although this effect was not suppressed by fluticasone. IL-33-induced airway inflammation resistant to fluticasone was ameliorated by XRP44X via regulating the accumulation of lung ILC2s. Conclusion: The RAS signal pathway plays a crucial role in allergen-induced airway remodeling associated with ILC2s. XRP44X may have therapeutic potential for refractory asthma.
Collapse
Affiliation(s)
- Toshifumi Tezuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Medical Education, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mayo Kondo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hisanori Uehara
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshinori Aono
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masaki Hanibuchi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
27
|
Kasal DN, Liang Z, Hollinger MK, O'Leary CY, Lisicka W, Sperling AI, Bendelac A. A Gata3 enhancer necessary for ILC2 development and function. Proc Natl Acad Sci U S A 2021; 118:e2106311118. [PMID: 34353913 PMCID: PMC8364216 DOI: 10.1073/pnas.2106311118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 2 helper effector program is driven by the master transcription factor GATA3 and can be expressed by subsets of both innate lymphoid cells (ILCs) and adaptive CD4+ T helper (Th) cells. While ILC2s and Th2 cells acquire their type 2 differentiation program under very different contexts, the distinct regulatory mechanisms governing this common program are only partially understood. Here we show that the differentiation of ILC2s, and their concomitant high level of GATA3 expression, are controlled by a Gata3 enhancer, Gata3 +674/762, that plays only a minimal role in Th2 cell differentiation. Mice lacking this enhancer exhibited defects in several but not all type 2 inflammatory responses, depending on the respective degree of ILC2 and Th2 cell involvement. Our study provides molecular insights into the different gene regulatory pathways leading to the acquisition of the GATA3-driven type 2 helper effector program in innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Zhitao Liang
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Maile K Hollinger
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | | | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637
| | - Anne I Sperling
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637;
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
28
|
Hosokawa H, Koizumi M, Masuhara K, Romero-Wolf M, Tanaka T, Nakayama T, Rothenberg EV. Stage-specific action of Runx1 and GATA3 controls silencing of PU.1 expression in mouse pro-T cells. J Exp Med 2021; 218:e20202648. [PMID: 34180951 PMCID: PMC8241539 DOI: 10.1084/jem.20202648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/01/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
PU.1 (encoded by Spi1), an ETS-family transcription factor with many hematopoietic roles, is highly expressed in the earliest intrathymic T cell progenitors but must be down-regulated during T lineage commitment. The transcription factors Runx1 and GATA3 have been implicated in this Spi1 repression, but the basis of the timing was unknown. We show that increasing Runx1 and/or GATA3 down-regulates Spi1 expression in pro-T cells, while deletion of these factors after Spi1 down-regulation reactivates its expression. Leveraging the stage specificities of repression and transcription factor binding revealed an unconventional but functional site in Spi1 intron 2. Acute Cas9-mediated deletion or disruption of the Runx and GATA motifs in this element reactivates silenced Spi1 expression in a pro-T cell line, substantially more than disruption of other candidate elements, and counteracts the repression of Spi1 in primary pro-T cells during commitment. Thus, Runx1 and GATA3 work stage specifically through an intronic silencing element in mouse Spi1 to control strength and maintenance of Spi1 repression during T lineage commitment.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
29
|
Kurosaka H, Mushiake J, Mithun S, Wu Y, Wang Q, Kikuchi M, Nakaya A, Yamamoto S, Inubushi T, Koga S, Sandell LL, Trainor P, Yamashiro T. Synergistic role of retinoic acid signaling and Gata3 during primitive choanae formation. Hum Mol Genet 2021; 30:2383-2392. [PMID: 34272563 DOI: 10.1093/hmg/ddab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Developmental defects of primitive choanae, an anatomical path to connect the embryonic nasal and oral cavity, result in disorders called choanal atresia, which are associated with many congenital diseases and require immediate clinical intervention after birth. Previous studies revealed that reduced retinoid signaling underlies the etiology of choanal atresia. In the present study, by using multiple mouse models which conditionally deleted Rdh10 and Gata3 during embryogenesis, we showed that Gata3 expression is regulated by retinoid signaling during embryonic craniofacial development and plays crucial roles for development of the primitive choanae. Interestingly, Gata3 loss of function is known to cause hypoparathyroidism, sensorineural deafness and renal disease (HDR) syndrome, which exhibits choanal atresia as one of the phenotypes in humans. Our model partially phenocopies HDR syndrome with choanal atresia, and is thus a useful tool for investigating the molecular and cellular mechanisms of HDR syndrome. We further uncovered critical synergy of Gata3 and retinoid signaling during embryonic development, which will shed light on novel molecular and cellular etiology of congenital defects in primitive choanae formation.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Jin Mushiake
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Saha Mithun
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Yanran Wu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University.,Laboratory of Genome Data Science Graduate School of Frontier Sciences, The University of Tokyo
| | - Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry
| | - Paul Trainor
- Stowers Institute for Medical Research.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
| |
Collapse
|
30
|
de Lucía Finkel P, Sherwood C, Saranchova I, Xia W, Munro L, Pfeifer CG, Piret JM, Jefferies WA. Serum free culture for the expansion and study of type 2 innate lymphoid cells. Sci Rep 2021; 11:12233. [PMID: 34112824 PMCID: PMC8192527 DOI: 10.1038/s41598-021-91500-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) were discovered approximately ten years ago and their clinical relevance is gaining greater importance. However, their successful isolation from mammalian tissues and in vitro culture and expansion continues to pose challenges. This is partly due to their scarcity compared to other leukocyte populations, but also because our current knowledge of ILC2 biology is incomplete. This study is focused on ST2+ IL-25Rlo lung resident ILC2s and demonstrate for the first time a methodology allowing mouse type 2 innate lymphoid cells to be cultured, and their numbers expanded in serum-free medium supplemented with Interleukins IL-33, IL-2, IL-7 and TSLP. The procedures described methods to isolate ILC2s and support their growth for up to a week while maintaining their phenotype. During this time, they significantly expand from low to high cell concentrations. Furthermore, for the first time, sub-cultures of primary ILC2 purifications in larger 24- and 6-well plates were undertaken in order to compare their growth in other media. In culture, ILC2s had doubling times of 21 h, a growth rate of 0.032 h−1 and could be sub-cultured in early or late phases of exponential growth. These studies form the basis for expanding ILC2 populations that will facilitate the study and potential applications of these rare cells under defined, serum-free conditions.
Collapse
Affiliation(s)
- Pablo de Lucía Finkel
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher Sherwood
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - James M Piret
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.,School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada. .,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada. .,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada. .,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada. .,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada. .,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
31
|
Wang X, Xu S, Huang L, Wang L, Wu N. Systematic identification of the cancer pathways and molecules related with breast cancer immunogenicity. Med Oncol 2021; 38:79. [PMID: 34086106 DOI: 10.1007/s12032-021-01515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
To identify molecular features related to immunogenic activity in breast cancer (BC) and provide new targets and directions for BC immunotherapy, we firstly used ESTIMATE to evaluate the degree of immune cell infiltration of the BC patients in TCGA and METABRIC, and explore the relationship between the degree of immune cell infiltration and prognosis of BC patients. Then, we identified the cancer pathways, proteins and miRNAs related to BC immunogenicity, predicted the target genes of these miRNAs, and identified the pathways related to these target genes with KEGG pathway enrichment analysis. We also explored the correlation between PD-L1 expression level and cancer pathways and found that PD-L1 expression showed a positive association with cancer-related pathways. In this article we have successfully identified several cancer-related pathways, proteins, miRNAs, and their target genes, which provided promising new targets for BC immunotherapy. And PD-L1 blockade therapy may be more effective in BC patients with the activation of some cancer-related pathways.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Medicine, Jiangsu Cancer Hospital and Jiangsu Institution of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Silu Xu
- Department of Medicine, Jiangsu Cancer Hospital and Jiangsu Institution of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Lingli Huang
- Department of Medicine, Jiangsu Cancer Hospital and Jiangsu Institution of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Lei Wang
- Department of Medicine, Jiangsu Cancer Hospital and Jiangsu Institution of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Nan Wu
- Department of Medicine, Jiangsu Cancer Hospital and Jiangsu Institution of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
32
|
NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Mol Aspects Med 2021; 80:100967. [PMID: 33941383 DOI: 10.1016/j.mam.2021.100967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) and tissue-resident natural killer (NK) cells ensure immunity at environmental interfaces and help maintain barrier integrity of the intestinal tract. This wide range of innate lymphocytes is able to provide fast and potent inflammatory responses that, when deregulated, have been associated with pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the presence of tumor-infiltrating NK cells is generally associated with a favorable outcome in CRC patients, emerging evidence reveals distinct roles for ILCs in regulating CRC pathogenesis and progression. Advances in next generation sequencing technology, and in particular of single-cell RNA-seq approaches, along with multidimensional flow cytometry analysis, have helped to deconvolute the complexity and heterogeneity of the ILC system both in homeostatic and pathological contexts. In this review, we discuss the protective and detrimental roles of NK cells and ILCs in the pathogenesis of CRC, focusing on the phenotypic and transcriptional modifications these cells undergo during CRC development and progression.
Collapse
|
33
|
Mathä L, Martinez-Gonzalez I, Steer CA, Takei F. The Fate of Activated Group 2 Innate Lymphoid Cells. Front Immunol 2021; 12:671966. [PMID: 33968080 PMCID: PMC8100346 DOI: 10.3389/fimmu.2021.671966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in both mucosal and non-mucosal tissues and play critical roles in the first line of defense against parasites and irritants such as allergens. Upon activation by cytokines released from epithelial and stromal cells during tissue damage or stimulation, ILC2s produce copious amounts of IL-5 and IL-13, leading to type 2 inflammation. Over the past 10 years, ILC2 involvement in a variety of human diseases has been unveiled. However, questions remain as to the fate of ILC2s after activation and how that might impact their role in chronic inflammatory diseases such as asthma and fibrosis. Here, we review studies that have revealed novel properties of post-activation ILC2s including the generation of immunological memory, exhausted-like phenotype, transdifferentiation and activation-induced migration.
Collapse
Affiliation(s)
- Laura Mathä
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | | | - Catherine A Steer
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Tumor-Derived Lactic Acid Contributes to the Paucity of Intratumoral ILC2s. Cell Rep 2021; 30:2743-2757.e5. [PMID: 32101749 DOI: 10.1016/j.celrep.2020.01.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/18/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are abundant in non-lymphoid tissues and increase following infectious and inflammatory insults. In solid tumors, however, ILC2s constitute a relatively small proportion of immune cells. Here, we show, using melanoma as a model, that while the IL-33/IL C2/eosinophil axis suppresses tumor growth, tumor-derived lactate attenuates the function and survival of ILC2s. Melanomas with reduced lactate production (LDHAlow) are growth delayed and typified by an increased number of ILC2s compared with control tumors. Upon IL-33 stimulation, ILC2s accompanied by eosinophils more effectively restrain the growth of LDHAlow tumors than control melanomas. Furthermore, database analysis reveals a negative correlation between the expression of LDHA and markers associated with ILC2s and the association of high expression of IL33 and an eosinophil marker SIGLEC8 with better overall survival in human cutaneous melanoma patients. This work demonstrates that the balance between the IL-33/ILC2/eosinophil axis and lactate production by tumor cells regulates melanoma growth.
Collapse
|
35
|
Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol 2021; 21:162-176. [PMID: 32918063 PMCID: PMC7933071 DOI: 10.1038/s41577-020-00426-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence has elucidated how multipotent blood progenitors transform their identities in the thymus and undergo commitment to become T cells. Together with environmental signals, a core group of transcription factors have essential roles in this process by directly activating and repressing specific genes. Many of these transcription factors also function in later T cell development, but control different genes. Here, we review how these transcription factors work to change the activities of specific genomic loci during early intrathymic development to establish T cell lineage identity. We introduce the key regulators and highlight newly emergent insights into the rules that govern their actions. Whole-genome deep sequencing-based analysis has revealed unexpectedly rich relationships between inherited epigenetic states, transcription factor-DNA binding affinity thresholds and influences of given transcription factors on the activities of other factors in the same cells. Together, these mechanisms determine T cell identity and make the lineage choice irreversible.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
36
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
37
|
Hsu CY, Fu SH, Chien MW, Liu YW, Chen SJ, Sytwu HK. Post-Translational Modifications of Transcription Factors Harnessing the Etiology and Pathophysiology in Colonic Diseases. Int J Mol Sci 2020; 21:ijms21093207. [PMID: 32369982 PMCID: PMC7246881 DOI: 10.3390/ijms21093207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Defects in mucosal immune balance can lead to colonic diseases such as inflammatory bowel diseases and colorectal cancer. With the advancement of understanding for the immunological and molecular basis of colonic disease, therapies targeting transcription factors have become a potential approach for the treatment of colonic disease. To date, the biomedical significance of unique post-translational modifications on transcription factors has been identified, including phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. This review focuses on our current understanding and the emerging evidence of how post-translational regulations modify transcription factors involved in the etiology and pathophysiology of colonic disease as well as the implications of these findings for new therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Chao-Yuan Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Shin-Huei Fu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Molecular Cell Biology, Taiwan International Graduate Program, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shyi-Jou Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18539); Fax: +886-2-8792-1774
| |
Collapse
|
38
|
p38 MAPK signalling regulates cytokine production in IL-33 stimulated Type 2 Innate Lymphoid cells. Sci Rep 2020; 10:3479. [PMID: 32103032 PMCID: PMC7044202 DOI: 10.1038/s41598-020-60089-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Type 2 Innate lymphoid cells (ILC2s) are implicated in helminth infections and asthma where they play a role in the production of Th2-type cytokines. ILC2s express the IL-33 receptor and are a major cell type thought to mediate the effects of this cytokine in vivo. To study the signalling pathways that mediate IL-33 induced cytokine production, a culture system was set up to obtain pure populations of ILC2s from mice. Inhibitors of the p38α/β and ERK1/2 MAPK pathways reduced the production of IL-5, IL-6, IL-9, IL-13 and GM-CSF by ILC2 in response to IL-33, with inhibition of p38 having the greatest effect. MK2 and 3 are kinases activated by p38α; MK2/3 inhibitors or knockout of MK2/3 in mice reduced the production of IL-6 and IL-13 (two cytokines implicated in asthma) but not IL-5, IL-9 or GM-CSF in response to IL-33. MK2/3 inhibition also suppressed IL-6 and IL-13 production by human ILC2s. MK2/3 were required for maximal S6 phosphorylation, suggesting an input from the p38α-MK2/3 pathway to mTOR1 activation in ILC2s. The mTORC1 inhibitor rapamycin also reduced IL-6 and IL-13 production, which would be consistent with a model in which MK2/3 regulate IL-6 and IL-13 via mTORC1 activation in ILC2s.
Collapse
|
39
|
Zhong C, Zheng M, Cui K, Martins AJ, Hu G, Li D, Tessarollo L, Kozlov S, Keller JR, Tsang JS, Zhao K, Zhu J. Differential Expression of the Transcription Factor GATA3 Specifies Lineage and Functions of Innate Lymphoid Cells. Immunity 2020; 52:83-95.e4. [PMID: 31882362 PMCID: PMC6962539 DOI: 10.1016/j.immuni.2019.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/18/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Lymphoid tissue inducer (LTi) cells are regarded as a subset of innate lymphoid cells (ILCs). However, these cells are not derived from the ILC common progenitor, which generates other ILC subsets and is defined by the expression of the transcription factor PLZF. Here, we examined transcription factor(s) determining the fate of LTi progenitors versus non-LTi ILC progenitors. Conditional deletion of Gata3 resulted in the loss of PLZF+ non-LTi progenitors but not the LTi progenitors that expressed the transcription factor RORγt. Consistently, PLZF+ non-LTi progenitors expressed high amounts of GATA3, whereas GATA3 expression was low in RORγt+ LTi progenitors. The generation of both progenitors required the transcriptional regulator Id2, which defines the common helper-like innate lymphoid progenitor (ChILP), but not cytokine signaling. Nevertheless, low GATA3 expression was necessary for the generation of functionally mature LTi cells. Thus, differential expression of GATA3 determines the fates and functions of distinct ILC progenitors.
Collapse
Affiliation(s)
- Chao Zhong
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, PRC.
| | - Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Dan Li
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PRC; Department of Clinical Laboratory, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PRC
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - John S Tsang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
ILC2s in High Definition: Decoding the Logic of Tissue-Based Immunity. Trends Immunol 2020; 41:7-16. [DOI: 10.1016/j.it.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|
41
|
Abstract
Natural killer (NK) cells are important innate effectors for their defense against pathogens and tumors without the need of prior sensitization. Along with the growing understanding of basic NK cell biology, it has been widely accepted that NK cells are a heterogeneous population of innate lymphoid cell (ILC) family. Apart from the conventional NK cell (cNK) subset that circulates throughout the body, some non-lymphoid tissues contain tissue-resident NK (trNK) cell subsets, and the composition of NK cell subsets varies greatly with different locations. Except for cNK cells, other ILCs are known as tissue-resident cells. In this review, we summarize the unique properties of trNK cells, discuss their lineage relationship with other ILCs, and highlight recent advances in our understanding of the functions of trNK cells and other ILCs.
Collapse
|
42
|
Lo BC, Canals Hernaez D, Scott RW, Hughes MR, Shin SB, Underhill TM, Takei F, McNagny KM. The Transcription Factor RORα Preserves ILC3 Lineage Identity and Function during Chronic Intestinal Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:3209-3215. [PMID: 31676672 DOI: 10.4049/jimmunol.1900781] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Innate lymphoid cells (ILCs) are critical for host defense and tissue repair but can also contribute to chronic inflammatory diseases. The transcription factor RORα is required for ILC2 development but is also highly expressed by other ILC subsets where its function remains poorly defined. We previously reported that Rorasg/sg bone marrow chimeric mice (C57BL/6J) were protected from Salmonella-induced intestinal fibrosis due to defective ILC3 responses. In this study, single-cell RNA analysis of ILCs isolated from inflamed tissues indicates that RORα perturbation led to a reduction in ILC3 lineages. Furthermore, residual Rorasg/sg ILC3s have decreased expression of key signature genes, including Rorc and activating cytokine receptors. Collectively, our data suggest that RORα plays a key role in preserving functional ILC3s by modulating their ability to integrate environmental cues to efficiently produce cytokines.
Collapse
Affiliation(s)
- Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - R Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Samuel B Shin
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - T Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Fumio Takei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| |
Collapse
|
43
|
Jiang M, Tao S, Zhang S, Wang J, Zhang F, Li F, Ding J. Type 2 innate lymphoid cells participate in IL-33-stimulated Th2-associated immune response in chronic obstructive pulmonary disease. Exp Ther Med 2019; 18:3109-3116. [PMID: 31572551 DOI: 10.3892/etm.2019.7924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the roles of type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) in chronic obstructive pulmonary disease (COPD). Serum and peripheral blood mononuclear cells (PBMCs) were isolated from healthy controls and COPD patients. ILC2 cells from the peripheral blood of COPD patients were stimulated with IL-33 or neutralizing ST2 antibody+IL-33 in vitro. The cell viability was assessed using a Cell Counting Kit-8 assay. ELISA was used to detect serum IL-33 and the levels of IL-4, IL-5, IL-6, IL-13 and soluble ST2 (sST2) in the culture supernatant. The percentage of ILC2 cells was measured by flow cytometry. The mRNA expression levels of GATA binding protein 3 (GATA3), RAR-related orphan receptor (ROR)α, ST2 and prostaglandin D2 receptor 2 (CRTH2) were detected by reverse transcription-quantitative PCR. It was revealed that IL-33, IL-5, IL-6 and IL-13 were significantly elevated in peripheral blood of patients with COPD. The proportion of ILC2s in peripheral blood of COPD patients was significantly increased, and the expression of RORA and CRTH2 was increased. The proportion of ST2+ ILC2 cells was significantly increased. After 48 h of IL-33 stimulation in vitro, the ratio of linage-CD45+CD127+CRTH2+ cells reached a maximum. In addition, the viability of ILC2 cells, the expression levels of RORA, GATA3, ST2 and CRTH2 mRNA and the cytokines IL-4, IL-6, IL-5, IL-13 and sST2 were significantly increased. These effects were abrogated by treatment with anti-ST2. In conclusion, IL-33 is upregulated in the serum of patients with COPD and the proportion of ILC2s among the PBMCs is increased. IL-33 may promote the proliferation of ILC2 cells and secrete type 2 T-helper cell cytokines to participate in the immune response in COPD.
Collapse
Affiliation(s)
- Min Jiang
- National Traditional Chinese Medicine Clinical Research Base, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinjiang Laboratory of Respiratory Disease Research, Urumqi, Xinjiang 830011, P.R. China
| | - Simin Tao
- National Traditional Chinese Medicine Clinical Research Base, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinjiang Laboratory of Respiratory Disease Research, Urumqi, Xinjiang 830011, P.R. China
| | - Shaohua Zhang
- National Traditional Chinese Medicine Clinical Research Base, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinjiang Laboratory of Respiratory Disease Research, Urumqi, Xinjiang 830011, P.R. China
| | - Jing Wang
- National Traditional Chinese Medicine Clinical Research Base, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinjiang Laboratory of Respiratory Disease Research, Urumqi, Xinjiang 830011, P.R. China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Fengsen Li
- National Traditional Chinese Medicine Clinical Research Base, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinjiang Laboratory of Respiratory Disease Research, Urumqi, Xinjiang 830011, P.R. China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
44
|
Nagashima H, Mahlakõiv T, Shih HY, Davis FP, Meylan F, Huang Y, Harrison OJ, Yao C, Mikami Y, Urban JF, Caron KM, Belkaid Y, Kanno Y, Artis D, O'Shea JJ. Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity 2019; 51:682-695.e6. [PMID: 31353223 PMCID: PMC6801073 DOI: 10.1016/j.immuni.2019.06.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023]
Abstract
Innate lymphocytes maintain tissue homeostasis at mucosal barriers, with group 2 innate lymphoid cells (ILC2s) producing type 2 cytokines and controlling helminth infection. While the molecular understanding of ILC2 responses has advanced, the complexity of microenvironmental factors impacting ILC2s is becoming increasingly apparent. Herein, we used single-cell analysis to explore the diversity of gene expression among lung lymphocytes during helminth infection. Following infection, we identified a subset of ILC2s that preferentially expressed Il5-encoding interleukin (IL)-5, together with Calca-encoding calcitonin gene-related peptide (CGRP) and its cognate receptor components. CGRP in concert with IL-33 and neuromedin U (NMU) supported IL-5 but constrained IL-13 expression and ILC2 proliferation. Without CGRP signaling, ILC2 responses and worm expulsion were enhanced. Collectively, these data point to CGRP as a context-dependent negative regulatory factor that shapes innate lymphocyte responses to alarmins and neuropeptides during type 2 innate immune responses.
Collapse
Affiliation(s)
- Hiroyuki Nagashima
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Tanel Mahlakõiv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Han-Yu Shih
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Fred P Davis
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Francoise Meylan
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Yuefeng Huang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Oliver J Harrison
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen Yao
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Yohei Mikami
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD 20705-2350, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Sasaki T, Moro K, Kubota T, Kubota N, Kato T, Ohno H, Nakae S, Saito H, Koyasu S. Innate Lymphoid Cells in the Induction of Obesity. Cell Rep 2019; 28:202-217.e7. [DOI: 10.1016/j.celrep.2019.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 04/16/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
|
46
|
Branzk N, Gronke K, Diefenbach A. Innate lymphoid cells, mediators of tissue homeostasis, adaptation and disease tolerance. Immunol Rev 2019; 286:86-101. [PMID: 30294961 DOI: 10.1111/imr.12718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILC) are a recently identified group of tissue-resident innate lymphocytes. Available data support the view that ILC or their progenitors are deposited and retained in tissues early during ontogeny. Thereby, ILC become an integral cellular component of tissues and organs. Here, we will review the intriguing relationships between ILC and basic developmental and homeostatic processes within tissues. Studying ILC has already led to the appreciation of the integral roles of immune cells in tissue homeostasis, morphogenesis, metabolism, regeneration, and growth. This area of immunology has not yet been studied in-depth but is likely to reveal important networks contributing to disease tolerance and may be harnessed for future therapeutic approaches.
Collapse
Affiliation(s)
- Nora Branzk
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Konrad Gronke
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| |
Collapse
|
47
|
Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev 2019; 286:37-52. [PMID: 30294963 DOI: 10.1111/imr.12706] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) play critical roles in the induction of type 2 inflammation, response to parasite infection, metabolic homeostasis, and tissue repair. These multifunctional roles of ILC2s are tightly controlled by complex regulatory systems in the local microenvironment, the disruption of which may cause various health problems. This review summarizes up-to-date knowledge regarding positive and negative regulators for ILC2s based on their function and signaling pathways, including activating cytokines (IL-33, IL-25; MAPK, NF-κB pathways), co-stimulatory cytokines (IL-2, IL-7, IL-9, TSLP; STAT5, IL-4; STAT6, TNF superfamily; MAPK, NF-κB pathways), suppressive cytokines (type1 IFNs, IFN-γ, IL-27; STAT1, IL-10, TGF-β), transdifferentiation cytokines (IL-12; STAT4, IL-1β, IL-18), lipid mediators (LTC4, LTD4, LTE4, PGD2; Ca2+ -NFAT pathways, PGE2, PGI2; AC/cAMP/PKA pathways, LXA4, LTB4), neuropeptides (NMU; Ca2+ -NFAT, MAPK pathways, VIP, CGRP, catecholamine, acetylcholine), sex hormones (androgen, estrogen), nutrients (butyrate; HDAC inhibitors, vitamins), and cell-to-cell interactions (ICOSL-ICOS; STAT5, B7-H6-NKp30, E-cadherin-KLRG1). This comprehensive review affords a better understanding of the regulatory network system for ILC2s, providing impetus to develop new treatment strategies for ILC2-related health problems.
Collapse
Affiliation(s)
- Hiroki Kabata
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H. Innate Lymphoid Cells: 10 Years On. Cell 2019; 174:1054-1066. [PMID: 30142344 DOI: 10.1016/j.cell.2018.07.017] [Citation(s) in RCA: 1491] [Impact Index Per Article: 248.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells and are deeply integrated into the fabric of tissues. The discovery and investigation of ILCs over the past decade has changed our perception of immune regulation and how the immune system contributes to the maintenance of tissue homeostasis. We now know that cytokine-producing ILCs contribute to multiple immune pathways by, for example, sustaining appropriate immune responses to commensals and pathogens at mucosal barriers, potentiating adaptive immunity, and regulating tissue inflammation. Critically, the biology of ILCs also extends beyond classical immunology to metabolic homeostasis, tissue remodeling, and dialog with the nervous system. The last 10 years have also contributed to our greater understanding of the transcriptional networks that regulate lymphocyte commitment and delineation. This, in conjunction with the recent advances in our understanding of the influence of local tissue microenvironments on the plasticity and function of ILCs, has led to a re-evaluation of their existing categorization. In this review, we distill the advances in ILC biology over the past decade to refine the nomenclature of ILCs and highlight the importance of ILCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.
Collapse
Affiliation(s)
- Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France; Aix Marseille University, CNRS, INSERM, APHM, CIML, Hôpital de la Timone, Immunologie, Marseille-Immunopole, Marseille, France.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine and Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité - Universitätsmedizin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France; Inserm U1223, Paris, France
| | - Gérard Eberl
- Microenvironment & Immunity Unit, Institut Pasteur, Paris, France; INSERM U1224, Paris, France
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Richard M Locksley
- HHMI and Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hergen Spits
- Department of Experimental Immunology Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Thio CLP, Lai ACY, Chi PY, Webster G, Chang YJ. Toll-like receptor 9-dependent interferon production prevents group 2 innate lymphoid cell-driven airway hyperreactivity. J Allergy Clin Immunol 2019; 144:682-697.e9. [PMID: 30914379 DOI: 10.1016/j.jaci.2019.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are important mediators of allergic asthma. Bacterial components, such as unmethylated CpG DNA, a Toll-like receptor (TLR) 9 agonist, are known to possess beneficial immunomodulatory effects in patients with T cell-mediated chronic asthma. However, their roles in regulating ILC2s remain unclear. OBJECTIVE We sought to determine the role of TLR9 activation in regulating ILC2 function and to evaluate the therapeutic utility of an immunomodulatory microparticle containing natural TLR9 ligand (MIS416). METHODS We evaluated the immunomodulatory effects of CpG A in IL-33-induced airway hyperreactivity (AHR) and airway inflammation. The roles of interferons were examined in vivo and in vitro by using signal transducer and activator of transcription 1 (Stat1)-/- mice and neutralizing antibodies against IFN-γ and IFN-α/β receptor subunit 1, and their cellular sources were identified. The therapeutic utility of MIS416 was investigated in the Alternaria alternata model of allergic asthma and in humanized NSG mice. RESULTS We show that TLR9 activation by CpG A suppresses IL-33-mediated AHR and airway inflammation through inhibition of ILC2s. Activation of TLR9 leads to production of IFN-α, which drives IFN-γ production by natural killer cells. Importantly, IFN-γ is essential for TLR9-driven suppression, and IFN-α cannot compensate for impaired IFN-γ signaling. We further show that IFN-γ directly inhibits ILC2 function through a STAT1-dependent mechanism. Finally, we demonstrate the therapeutic potential of MIS416 in A alternata-induced airway inflammation and validated these findings in human subjects. CONCLUSION TLR9 activation alleviates ILC2-driven AHR and airway inflammation through direct suppression of cell function. Microparticle-based delivery of TLR9 ligands might serve as a therapeutic strategy for asthma treatment.
Collapse
Affiliation(s)
| | | | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Gill Webster
- Innate Immunotherapeutics, Auckland, New Zealand
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
50
|
T-bet controls intestinal mucosa immune responses via repression of type 2 innate lymphoid cell function. Mucosal Immunol 2019; 12:51-63. [PMID: 30356098 PMCID: PMC6548562 DOI: 10.1038/s41385-018-0092-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) play an important role in regulating immune responses at mucosal surfaces. The transcription factor T-bet is crucial for the function of ILC1s and NCR+ ILC3s and constitutive deletion of T-bet prevents the development of these subsets. Lack of T-bet in the absence of an adaptive immune system causes microbiota-dependent colitis to occur due to aberrant ILC3 responses. Thus, T-bet expression in the innate immune system has been considered to dampen pathogenic immune responses. Here, we show that T-bet plays an unexpected role in negatively regulating innate type 2 responses, in the context of an otherwise intact immune system. Selective loss of T-bet in ILCs leads to the expansion and increased activity of ILC2s, which has a functionally important impact on mucosal immunity, including enhanced protection from Trichinella spiralis infection and inflammatory colitis. Mechanistically, we show that T-bet controls the intestinal ILC pool through regulation of IL-7 receptor signalling. These data demonstrate that T-bet expression in ILCs acts as the key transcriptional checkpoint in regulating pathogenic vs. protective mucosal immune responses, which has significant implications for the understanding of the pathogenesis of inflammatory bowel diseases and intestinal infections.
Collapse
|