1
|
Mahyari E, Boggy GJ, McElfresh GW, Kaza M, Benjamin S, Varco-Merth B, Ojha S, Feltham S, Goodwin W, Nkoy C, Duell D, Selseth A, Bennett T, Barber-Axthelm A, Smedley JV, Labriola CS, Axthelm MK, Reeves RK, Okoye AA, Hansen SG, Picker LJ, Bimber BN. Enhanced interpretation of immune cell phenotype and function through a rhesus macaque single-cell atlas. CELL GENOMICS 2025; 5:100849. [PMID: 40233746 DOI: 10.1016/j.xgen.2025.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) allows cell classification using genome-wide transcriptional state; however, high-dimensional transcriptomic profiles, and the unsupervised analyses employed to interpret them, provide a systematically different view of biology than well-established functional/lineage definitions of immunocytes. Understanding these differences and limits is essential for accurate interpretation of these rich data. We present the Rhesus Immune Reference Atlas (RIRA), the first immune-focused macaque single-cell multi-tissue atlas. We contrasted transcriptional profiles against immune lineages, using surface protein and marker genes as ground truth. While the pattern of clustering can align with cell type, this is not always true. Especially within T and natural killer (NK) cells, many functionally distinct subsets lack defining markers, and strong shared expression programs, such as cytotoxicity, result in systematic intermingling by unsupervised clustering. We identified gene programs with high discriminatory/diagnostic value, including multi-gene signatures that model T/NK cell maturation. Directly measuring these diagnostic programs complements unsupervised analyses.
Collapse
Affiliation(s)
- Eisa Mahyari
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Gregory J Boggy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - G W McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Maanasa Kaza
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sebastian Benjamin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin Varco-Merth
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shana Feltham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - William Goodwin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Candice Nkoy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Derick Duell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrea Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tyler Bennett
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Aaron Barber-Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Caralyn S Labriola
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Afam A Okoye
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
2
|
Arulraj T, Binder SC, Meyer-Hermann M. Investigating the Mechanism of Germinal Center Shutdown. Front Immunol 2022; 13:922318. [PMID: 35911680 PMCID: PMC9329532 DOI: 10.3389/fimmu.2022.922318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal centers (GCs) are transient structures where affinity maturation of B cells gives rise to high affinity plasma and memory cells. The mechanism of GC shutdown is unclear, despite being an important phenomenon maintaining immune homeostasis. In this study, we used a mathematical model to identify mechanisms that can independently promote contraction of GCs leading to shutdown. We show that GC shutdown can be promoted by antigen consumption by B cells, antigen masking by soluble antibodies, alterations in follicular dendritic cell (FDC) network area, modulation of immune complex cycling rate constants, alterations in T follicular helper signaling, increased terminal differentiation and reduced B cell division capacity. Proposed mechanisms promoted GC contraction by ultimately decreasing the number of B cell divisions and recycling cells. Based on the in-silico predictions, we suggest a combination of experiments that can be potentially employed by future studies to unravel the mechanistic basis of GC shutdown such as measurements of the density of pMHC presentation of B cells, FDC network size per B cell, fraction of cells expressing differentiation markers. We also show that the identified mechanisms differentially affect the efficiency of GC reaction estimated based on the quantity and quality of resulting antibodies.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Meyer-Hermann,
| |
Collapse
|
3
|
Abstract
The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.
Collapse
Affiliation(s)
- Stephanie M Downs-Canner
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeremy Meier
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Bioinformatics and Computational Biology Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Ko S, Lim J, Hong S. Functional characterization of a novel tumor necrosis factor gene (TNF-New) in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104269. [PMID: 34600021 DOI: 10.1016/j.dci.2021.104269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The novel tumor necrosis factor (TNF-New or TNFN) gene has been identified only in teleost such as zebrafish, medaka (Oryzias latipes), fugu (Takifugu rubripes), and rainbow trout (Oncorhynchus mykiss). In this study, a putative TNFN gene in rock bream (named RB-TNFN) was cloned and its functional expression in the immune system was analyzed. Although it was previously reported to share a high degree of homology with mammalian lymphotoxin (LT)-β, in silico analysis revealed that RB-TNFN differed slightly from mammalian LT-β in its genomic structure, phylogenetic relationship, and predicted protein tertiary structure, whereas the genomic location of TNFN (immediately behind TNF-α) was the same as that of LT-β. In healthy rock bream, RB-TNFN gene expression was the highest in the liver and the lowest in the head kidney. In vitro, it was significantly upregulated in head kidney cells following polyinosinic:polycytidylic acid, concanavalin A, phytohemagglutinin, or calcium ionophore (CI) stimulation and in spleen cells by lipopolysaccharide (LPS), CI, and rock bream iridovirus (RBIV). In vivo, it was upregulated in the spleen, liver, and gut on day 1 and in the blood on day 3 following LPS injection, and in the blood, head kidney, and liver following RBIV vaccination. Post-RBIV infection, the vaccinated group showed a significantly higher TNFN gene expression in the head kidney and blood than the unvaccinated group. Treatment with recombinant TNFN protein (RB-rTNFN) resulted in significantly upregulated interleukin-1β expression in the head kidney, spleen, blood, liver, and peritoneal cells. It also enhanced IL-8 gene expression in the head kidney, blood, and peritoneal cells, and interferon γ gene expression in the gut and gills on day 1. TNFN and cyclo-oxygenase-2 gene expression was upregulated in peritoneal cells on day 3. Flow cytometry analysis revealed a significant increase in the peritoneal lymphocyte population after the intraperitoneal (i.p.) injection of RB-rTNFN. These results suggest that RB-TNFN mediated innate and adaptive immunity in rock bream.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jongwon Lim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- East Coast Research institute of Life Science, Gangneung-Wonju National University, South Korea.
| |
Collapse
|
5
|
Feng Y, Li C, Stewart JA, Barbulescu P, Seija Desivo N, Álvarez-Quilón A, Pezo RC, Perera MLW, Chan K, Tong AHY, Mohamad-Ramshan R, Berru M, Nakib D, Li G, Kardar GA, Carlyle JR, Moffat J, Durocher D, Di Noia JM, Bhagwat AS, Martin A. FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature 2021; 600:324-328. [PMID: 34819670 PMCID: PMC9425297 DOI: 10.1038/s41586-021-04144-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Noé Seija Desivo
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alejandro Álvarez-Quilón
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Rossanna C Pezo
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Nakib
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Durocher
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Javier M Di Noia
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Poirot J, Medvedovic J, Trichot C, Soumelis V. Compartmentalized multicellular crosstalk in lymph nodes coordinates the generation of potent cellular and humoral immune responses. Eur J Immunol 2021; 51:3146-3160. [PMID: 34606627 PMCID: PMC9298410 DOI: 10.1002/eji.202048977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Distributed throughout the body, lymph nodes (LNs) constitute an important crossroad where resident and migratory immune cells interact to initiate antigen‐specific immune responses supported by a dynamic 3‐dimensional network of stromal cells, that is, endothelial cells and fibroblastic reticular cells (FRCs). LNs are organized into four major subanatomically separated compartments: the subcapsular sinus (SSC), the paracortex, the cortex, and the medulla. Each compartment is underpinned by particular FRC subsets that physically support LN architecture and delineate functional immune niches by appropriately providing environmental cues, nutrients, and survival factors to the immune cell subsets they interact with. In this review, we discuss how FRCs drive the structural and functional organization of each compartment to give rise to prosperous interactions and coordinate immune cell activities. We also discuss how reciprocal communication makes FRCs and immune cells perfect compatible partners for the generation of potent cellular and humoral immune responses.
Collapse
Affiliation(s)
- Justine Poirot
- Université de Paris, INSERM U976, Paris, France.,Université Paris-Saclay, Saint Aubin, France
| | | | | | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France
| |
Collapse
|
7
|
Li L, Wu J, Abdi R, Jewell CM, Bromberg JS. Lymph node fibroblastic reticular cells steer immune responses. Trends Immunol 2021; 42:723-734. [PMID: 34256989 PMCID: PMC8324561 DOI: 10.1016/j.it.2021.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Lymph nodes (LNs), where immune responses are initiated, are organized into distinctive compartments by fibroblastic reticular cells (FRCs). FRCs imprint immune responses by supporting LN architecture, recruiting immune cells, coordinating immune cell crosstalk, and presenting antigens. Recent high-resolution transcriptional and histological analyses have enriched our knowledge of LN FRC genetic and spatial heterogeneities. Here, we summarize updated anatomic, phenotypic, and functional identities of FRC subsets, delve into topological and transcriptional remodeling of FRCs in inflammation, and illustrate the crosstalk between FRCs and immune cells. Discussing FRC functions in immunity and tolerance, we highlight state-of-the-art FRC-based therapeutic approaches for maintaining physiological homeostasis, steering protective immunity, inducing transplantation tolerance, and treating diverse immune-related diseases.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jing Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
Rana M, La Bella A, Lederman R, Volpe BT, Sherry B, Diamond B. Follicular dendritic cell dysfunction contributes to impaired antigen-specific humoral responses in sepsis-surviving mice. J Clin Invest 2021; 131:146776. [PMID: 33956665 PMCID: PMC8203464 DOI: 10.1172/jci146776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis survivors exhibit impaired responsiveness to antigen (Ag) challenge associated with increased mortality from infection. The contribution of follicular dendritic cells (FDCs) in the impaired humoral response in sepsis-surviving mice is investigated in this study. We demonstrated that mice subjected to sepsis from cecal ligation and puncture (CLP mice) have reduced NP-specific high-affinity class-switched Ig antibodies (Abs) compared with sham-operated control mice following immunization with the T cell-dependent Ag, NP-CGG. NP-specific germinal center (GC) B cells in CLP mice exhibited reduced TNF-α and AID mRNA expression compared with sham-operated mice. CLP mice showed a reduction in FDC clusters, a reduced binding of immune complexes on FDCs, and reduced mRNA expression of CR2, ICAM-1, VCAM-1, FcγRIIB, TNFR1, IKK2, and LTβR compared with sham-operated mice. Adoptive transfer studies showed that there was no B cell-intrinsic defect. In summary, our data suggest that the reduced Ag-specific Ab response in CLP mice is secondary to a disruption in FDC and GC B cell function.
Collapse
Affiliation(s)
- Minakshi Rana
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| | - Andrea La Bella
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| | - Rivka Lederman
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| | | | - Barbara Sherry
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, New York, New York, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| |
Collapse
|
10
|
Li C, Lam E, Perez-Shibayama C, Ward LA, Zhang J, Lee D, Nguyen A, Ahmed M, Brownlie E, Korneev KV, Rojas O, Sun T, Navarre W, He HH, Liao S, Martin A, Ludewig B, Gommerman JL. Early-life programming of mesenteric lymph node stromal cell identity by the lymphotoxin pathway regulates adult mucosal immunity. Sci Immunol 2020; 4:4/42/eaax1027. [PMID: 31862865 DOI: 10.1126/sciimmunol.aax1027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Redundant mechanisms support immunoglobulin A (IgA) responses to intestinal antigens. These include multiple priming sites [mesenteric lymph nodes (MLNs), Peyer's patches, and isolated lymphoid follicles] and various cytokines that promote class switch to IgA, even in the absence of T cells. Despite these backup mechanisms, vaccination against enteric pathogens such as rotavirus has limited success in some populations. Genetic and environmental signals experienced during early life are known to influence mucosal immunity, yet the mechanisms for how these exposures operate remain unclear. Here, we used rotavirus infection to follow antigen-specific IgA responses through time and in different gut compartments. Using genetic and pharmacological approaches, we tested the role of the lymphotoxin (LT) pathway-known to support IgA responses-at different developmental stages. We found that LT-β receptor (LTβR) signaling in early life programs intestinal IgA responses in adulthood by affecting antibody class switch recombination to IgA and subsequent generation of IgA antibody-secreting cells within an intact MLN. In addition, early-life LTβR signaling dictates the phenotype and function of MLN stromal cells to support IgA responses in the adult. Collectively, our studies uncover new mechanistic insights into how early-life LTβR signaling affects mucosal immune responses during adulthood.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Lam
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianbo Zhang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Musaddeque Ahmed
- Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Emma Brownlie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Department of Immunology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tian Sun
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - William Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | |
Collapse
|
11
|
Zhang J, Kodali S, Chen M, Wang J. Maintenance of Germinal Center B Cells by Caspase-9 through Promotion of Apoptosis and Inhibition of Necroptosis. THE JOURNAL OF IMMUNOLOGY 2020; 205:113-120. [PMID: 32434938 DOI: 10.4049/jimmunol.2000359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
In response to T cell-dependent Ag encounter, naive B cells develop into germinal center (GC) B cells, which can further differentiate into Ab-secreting plasma cells or memory B cells. GC B cells are short lived and are prone to caspase-mediated apoptosis. However, how apoptotic caspases regulate GC B cell fate has not been fully characterized. In this study, we show that mice with B cell-specific knockout of caspase-9 had decreases in GC B cells and Ab production after immunization. Caspase-9-deficient B cells displayed defects in caspase-dependent apoptosis but increases in necroptosis signaling. Additional deletion of Ripk3 restored GC B cells and Ab production in mice with B cell-specific knockout of caspase-9. Our results indicate that caspase-9 plays an important role in the maintenance of Ab responses by promoting apoptosis and inhibiting necroptosis in B cells.
Collapse
Affiliation(s)
- Jingting Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030
| | - Srikanth Kodali
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Min Chen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030; and
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030; .,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
12
|
Aradottir Pind AA, Dubik M, Thorsdottir S, Meinke A, Harandi AM, Holmgren J, Del Giudice G, Jonsdottir I, Bjarnarson SP. Adjuvants Enhance the Induction of Germinal Center and Antibody Secreting Cells in Spleen and Their Persistence in Bone Marrow of Neonatal Mice. Front Immunol 2019; 10:2214. [PMID: 31616417 PMCID: PMC6775194 DOI: 10.3389/fimmu.2019.02214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Immaturity of the immune system contributes to poor vaccine responses in early life. Germinal center (GC) activation is limited due to poorly developed follicular dendritic cells (FDC), causing generation of few antibody-secreting cells (ASCs) with limited survival and transient antibody responses. Herein, we compared the potential of five adjuvants, namely LT-K63, mmCT, MF59, IC31, and alum to overcome limitations of the neonatal immune system and to enhance and prolong responses of neonatal mice to a pneumococcal conjugate vaccine Pnc1-TT. The adjuvants LT-K63, mmCT, MF59, and IC31 significantly enhanced GC formation and FDC maturation in neonatal mice when co-administered with Pnc1-TT. This enhanced GC induction correlated with significantly enhanced vaccine-specific ASCs by LT-K63, mmCT, and MF59 in spleen 14 days after immunization. Furthermore, mmCT, MF59, and IC31 prolonged the induction of vaccine-specific ASCs in spleen and increased their persistence in bone marrow up to 9 weeks after immunization, as previously shown for LT-K63. Accordingly, serum Abs persisted above protective levels against pneumococcal bacteremia and pneumonia. In contrast, alum only enhanced the primary induction of vaccine-specific IgG Abs, which was transient. Our comparative study demonstrated that, in contrast to alum, LT-K63, mmCT, MF59, and IC31 can overcome limitations of the neonatal immune system and enhance both induction and persistence of protective immune response when administered with Pnc1-TT. These adjuvants are promising candidates for early life vaccination.
Collapse
Affiliation(s)
- Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magdalena Dubik
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Thorsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Vaccine Evaluation Center, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jan Holmgren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,deCODE Genetics/Amgen, Reykjavík, Iceland
| | - Stefania P Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
13
|
Perez-Shibayama C, Gil-Cruz C, Cheng HW, Onder L, Printz A, Mörbe U, Novkovic M, Li C, Lopez-Macias C, Buechler MB, Turley SJ, Mack M, Soneson C, Robinson MD, Scandella E, Gommerman J, Ludewig B. Fibroblastic reticular cells initiate immune responses in visceral adipose tissues and secure peritoneal immunity. Sci Immunol 2018; 3:3/26/eaar4539. [DOI: 10.1126/sciimmunol.aar4539] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
|
14
|
Hutloff A. T Follicular Helper-Like Cells in Inflamed Non-Lymphoid Tissues. Front Immunol 2018; 9:1707. [PMID: 30083164 PMCID: PMC6064731 DOI: 10.3389/fimmu.2018.01707] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
T and B cell cooperation normally takes place in secondary lymphoid organs (SLO). However, both cell types are also frequently found in inflamed non-lymphoid tissues. Under certain conditions, these infiltrates develop into ectopic lymphoid structures, also known as tertiary lymphoid tissues, which structurally and functionally fully resemble germinal centers (GCs) in SLO. However, tertiary lymphoid tissue is uncommon in most human autoimmune conditions; instead, relatively unstructured T and B cell infiltrates are found. Recent studies have demonstrated that active T and B cell cooperation can also take place in such unstructured aggregates. The infiltrating cells contain a population of T follicular helper (Tfh)-like cells (also designated "peripheral T helper cells") lacking prototypic Tfh markers like CXCR5 and Bcl-6 but nevertheless expressing high levels of molecules important for B cell help like IL-21 and CD40L. Moreover, Tfh-like cells isolated from inflamed tissues can drive the differentiation of B cells into antibody-secreting cells in vitro. These findings are not restricted to experimental animal models but have been reproduced in rheumatoid arthritis and breast cancer patients. At this point, it is unclear whether T and B cell cooperation outside the ordered structure of the GC fully mirrors the reactions in SLO. However, Tfh-like cells in inflamed tissues are certainly important for the local differentiation of B cells into antibody-secreting cells, and should be considered as an important target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Andreas Hutloff
- Chronic Immune Reactions, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| |
Collapse
|
15
|
Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, Garaud S, Noël G, Dang Chi VL, Lodewyckx JN, Naveaux C, Duvillier H, Goriely S, Larsimont D, Willard-Gallo K. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017; 2:91487. [PMID: 28570278 DOI: 10.1172/jci.insight.91487] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5-) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment.
Collapse
Affiliation(s)
| | | | - Laurence Buisseret
- Molecular Immunology Unit.,Breast Cancer Translational Research Laboratory
| | | | | | | | | | | | | | | | - Hugues Duvillier
- Flow Cytometry Core Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Goriely
- Welbio and Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
16
|
Heesters BA, van der Poel CE, Das A, Carroll MC. Antigen Presentation to B Cells. Trends Immunol 2016; 37:844-854. [PMID: 27793570 DOI: 10.1016/j.it.2016.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Unlike T cells that recognize digested peptides, B cells recognize their cognate antigen in its native form. The B cell receptor used in recognition can also be secreted to bind to antigens and initiate multiple effector functions such as phagocytosis, complement activation, or neutralization of receptors. While B cells can interact with soluble antigens, it is now clear that the presentation of membrane-bound antigen plays a crucial role in B cell activation, and in particular during affinity-maturation, the process during which high-affinity B cells are selected. In this review we discuss how native antigen is presented to B cells and its impact at several stages of B cell responses.
Collapse
Affiliation(s)
- Balthasar A Heesters
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Current address: Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Das
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Cremasco V, Woodruff MC, Onder L, Cupovic J, Nieves-Bonilla JM, Schildberg FA, Chang J, Cremasco F, Harvey CJ, Wucherpfennig K, Ludewig B, Carroll MC, Turley SJ. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol 2014; 15:973-81. [PMID: 25151489 PMCID: PMC4205585 DOI: 10.1038/ni.2965] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/16/2014] [Indexed: 12/12/2022]
Abstract
Naive B and T cells exist in discrete zones in lymph nodes. Turley and colleagues demonstrate that a distinct subset of fibroblastic reticular cells reside in B cell zones, where they sustain B cell survival by providing BAFF. Fibroblastic reticular cells (FRCs) are known to inhabit T cell–rich areas of lymphoid organs, where they function to facilitate interactions between T cells and dendritic cells. However, in vivo manipulation of FRCs has been limited by a dearth of genetic tools that target this lineage. Here, using a mouse model to conditionally ablate FRCs, we demonstrated their indispensable role in antiviral T cell responses. Unexpectedly, loss of FRCs also attenuated humoral immunity due to impaired B cell viability and follicular organization. Follicle-resident FRCs established a favorable niche for B lymphocytes via production of the cytokine BAFF. Thus, our study indicates that adaptive immunity requires an intact FRC network and identifies a subset of FRCs that control B cell homeostasis and follicle identity.
Collapse
Affiliation(s)
- Viviana Cremasco
- 1] Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Matthew C Woodruff
- 1] Program in Cellular and Molecular Medicine, Children's Hospital, Boston, Massachusetts, USA. [2] Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA. [3]
| | - Lucas Onder
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Janice M Nieves-Bonilla
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frank A Schildberg
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jonathan Chang
- 1] Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA. [2] Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Floriana Cremasco
- 1] Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Pharmacology, University of Milan, Milan, Italy
| | - Christopher J Harvey
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Michael C Carroll
- 1] Program in Cellular and Molecular Medicine, Children's Hospital, Boston, Massachusetts, USA. [2] Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon J Turley
- 1] Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA. [3]
| |
Collapse
|
18
|
Yusuf I, Stern J, McCaughtry TM, Gallagher S, Sun H, Gao C, Tedder T, Carlesso G, Carter L, Herbst R, Wang Y. Germinal center B cell depletion diminishes CD4+ follicular T helper cells in autoimmune mice. PLoS One 2014; 9:e102791. [PMID: 25101629 PMCID: PMC4125140 DOI: 10.1371/journal.pone.0102791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background Continuous support from follicular CD4+ T helper (Tfh) cells drives germinal center (GC) responses, which last for several weeks to produce high affinity memory B cells and plasma cells. In autoimmune Sle1 and NZB/W F1 mice, elevated numbers of Tfh cells persist, promoting the expansion of self-reactive B cells. Expansion of circulating Tfh like cells have also been described in several autoimmune diseases. Although, the signals required for Tfh differentiation have now been well described, the mechanisms that sustain the maintenance of fully differentiated Tfh are less understood. Recent data demonstrate a role for GC B cells for Tfh maintenance after protein immunization. Methods and Finding Given the pathogenic role Tfh play in autoimmune disease, we explored whether B cells are required for maintenance of autoreactive Tfh. Our data suggest that the number of mature autoreactive Tfh cells is controlled by GC B cells. Depletion of B cells in Sle1 autoimmune mice leads to a dramatic reduction in Tfh cells. In NZB/W F1 autoimmune mice, similar to the SRBC immunization model, GC B cells support the maintenance of mature Tfh, which is dependent mainly on ICOS. The CD28-associated pathway is dispensable for Tfh maintenance in SRBC immunized mice, but is required in the spontaneous NZB/W F1 model. Conclusion These data suggest that mature Tfh cells require signals from GC B cells to sustain their optimal numbers and function in both autoimmune and immunization models. Thus, immunotherapies targeting B cells in autoimmune disease may affect pathogenic Tfh cells.
Collapse
Affiliation(s)
- Isharat Yusuf
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Jessica Stern
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Tom M McCaughtry
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Sandra Gallagher
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Hong Sun
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Changshou Gao
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Thomas Tedder
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gianluca Carlesso
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Laura Carter
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Ronald Herbst
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Yue Wang
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| |
Collapse
|
19
|
Abstract
Follicular dendritic cells (FDCs) are essential for high-affinity antibody production and for the development of B cell memory. Historically, FDCs have been characterized as 'accessory' cells that passively support germinal centre (GC) responses. However, recent observations suggest that FDCs actively shape humoral immunity. In this Review, we discuss recent findings concerning the antigen acquisition and retention functions of FDCs, and relevant implications for protective immunity. Furthermore, we describe the roles of FDCs within GCs in secondary lymphoid organs and discuss FDC development within this dynamic environment. Finally, we discuss how a better understanding of FDCs could facilitate the design of next-generation vaccines.
Collapse
|
20
|
Donius LR, Weis JJ, Weis JH. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation. Immunobiology 2014; 219:440-9. [PMID: 24636730 DOI: 10.1016/j.imbio.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/16/2014] [Indexed: 11/18/2022]
Abstract
Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC.
Collapse
Affiliation(s)
- Luke R Donius
- Division of Microbiology and Immunology, Department of Pathology, The University of Utah School of Medicine, Salt Lake City, UT 84112, United States
| | - Janis J Weis
- Division of Microbiology and Immunology, Department of Pathology, The University of Utah School of Medicine, Salt Lake City, UT 84112, United States
| | - John H Weis
- Division of Microbiology and Immunology, Department of Pathology, The University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
21
|
Paradis M, Mindt BC, Duerr CU, Rojas OL, Ng D, Boulianne B, McCarthy DD, Yu MD, Summers deLuca LE, Ward LA, Waldron JB, Philpott DJ, Gommerman JL, Fritz JH. A TNF-α–CCL20–CCR6 Axis Regulates Nod1-Induced B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2014; 192:2787-99. [DOI: 10.4049/jimmunol.1203310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|