1
|
Muckenhuber M, Mengrelis K, Weijler AM, Steiner R, Kainz V, Buresch M, Regele H, Derdak S, Kubetz A, Wekerle T. IL-6 inhibition prevents costimulation blockade-resistant allograft rejection in T cell-depleted recipients by promoting intragraft immune regulation in mice. Nat Commun 2024; 15:4309. [PMID: 38830846 PMCID: PMC11148062 DOI: 10.1038/s41467-024-48574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marlena Buresch
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Abstract
Memory T cells that are specific for alloantigen can arise from a variety of stimuli, ranging from direct allogeneic sensitization from prior transplantation, blood transfusion, or pregnancy to the elicitation of pathogen-specific T cells that are cross-reactive with alloantigen. Regardless of the mechanism by which they arise, alloreactive memory T cells possess key metabolic, phenotypic, and functional properties that render them distinct from naive T cells. These properties affect the immune response to transplantation in 2 important ways: first, they can alter the speed, location, and effector mechanisms with which alloreactive T cells mediate allograft rejection, and second, they can alter T-cell susceptibility to immunosuppression. In this review, we discuss recent developments in understanding these properties of memory T cells and their implications for transplantation.
Collapse
Affiliation(s)
| | - Mandy L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Fathi M, Razavi SM, Sojoodi M, Ahmadi A, Ebrahimi F, Namdar A, Hojjat-Farsangi M, Gholamin S, Jadidi-Niaragh F. Targeting the CTLA-4/B7 axes in glioblastoma: preclinical evidence and clinical interventions. Expert Opin Ther Targets 2022; 26:949-961. [PMID: 36527817 DOI: 10.1080/14728222.2022.2160703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Glioblastoma Multiforme (GBM) is one of the fatal cancers of the Central Nervous System (CNS). A variety of reasons exist for why previous immunotherapy strategies, especially Immune Checkpoint Blockers (ICBs), did not work in treating GBM patients. The cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a key immune checkpoint receptor. Its overexpression in cancer and immune cells causes tumor cell progression. CTLA-4 suppresses anti-tumor responses inside the GBM tumor-immune microenvironment. AREAS COVERED It has been attempted to explain the immunobiology of CTLA-4 as well as its interaction with different immune cells and cancer cells that lead to GBM progression. Additionally, CTLA-4 targeting studies have been reviewed and CTLA-4 combination therapy, as a promising therapeutic target and strategy for GBM immunotherapy, is recommended. EXPERT OPINION CTLA-4 could be a possible supplement for future cancer immunotherapies of GBM. However, many challenges remain such as the high toxicity of CTLA-4 blockers, and the unresponsiveness of most patients to immunotherapy. For the future clinical success of CTLA-4 blocker therapy, combination approaches with other targeted treatments would be a potentially effective strategy. Going forward, predictive biomarkers can be used to reduce trial timelines and increase the chance of success.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed-Mostafa Razavi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, AL, USA
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Sharareh Gholamin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Abstract
The presence of immune cells is a morphological hallmark of rapidly progressive glomerulonephritis, a disease group that includes anti-glomerular basement membrane glomerulonephritis, lupus nephritis, and anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. The cellular infiltrates include cells from both the innate and the adaptive immune responses. The latter includes CD4+ and CD8+ T cells. In the past, CD4+ T cell subsets were viewed as terminally differentiated lineages with limited flexibility. However, it is now clear that Th17 cells can in fact have a high degree of plasticity and convert, for example, into pro-inflammatory Th1 cells or anti-inflammatory Tr1 cells. Interestingly, Th17 cells in experimental GN display limited spontaneous plasticity. Here we review the literature of CD4+ T cell plasticity focusing on immune-mediated kidney disease. We point out the key findings of the past decade, in particular that targeting pathogenic Th17 cells by anti-CD3 injection can be a tool to modulate the CD4+ T cell response. This anti-CD3 treatment can trigger a regulatory phenotype in Th17 cells and transdifferentiation of Th17 cells into immunosuppressive IL-10-expressing Tr1 cells (Tr1exTh17 cells). Thus, targeting Th17 cell plasticity could be envisaged as a new therapeutic approach in patients with glomerulonephritis.
Collapse
|
5
|
Papadopoulou G, Xanthou G. Metabolic rewiring: a new master of Th17 cell plasticity and heterogeneity. FEBS J 2021; 289:2448-2466. [PMID: 33794075 DOI: 10.1111/febs.15853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
T helper type 17 (Th17) cells are characterized by inherent plasticity and heterogeneity displaying both pathogenic and tissue-protective functions. Emerging evidence has illuminated a pivotal role for metabolic reprogramming in shaping Th17 cell fate determination. Metabolic responses are regulated by a constellation of factors and environmental triggers, including cytokines, nutrients, oxygen levels, and metabolites. Dysregulation of metabolic pathways not only influences Th17 cell plasticity and effector function but also affects the outcome of Th17-linked autoimmune, inflammatory, and antitumor responses. Understanding the molecular mechanisms underpinning metabolic reprogramming can allow the enhancement of protective Th17 cell-mediated responses during infections and cancer, concomitant with the suppression of detrimental Th17 processes during autoimmune and inflammatory diseases. In the present review, we describe major metabolic pathways underlying the differentiation of Th17 cells and their crosstalk with intracellular signaling mediators, we discuss how metabolic reprogramming affects Th17 cell plasticity and functions, and, finally, we outline current advances in the exploitation of metabolic checkpoints for the development of novel therapeutic interventions for the management of tissue inflammation, autoimmune disorders, and cancer.
Collapse
Affiliation(s)
- Gina Papadopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
6
|
Kim DH, Kim HY, Cho S, Yoo SJ, Kim WJ, Yeon HR, Choi K, Choi JM, Kang SW, Lee WW. Induction of the IL-1RII decoy receptor by NFAT/FOXP3 blocks IL-1β-dependent response of Th17 cells. eLife 2021; 10:61841. [PMID: 33507149 PMCID: PMC7872515 DOI: 10.7554/elife.61841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Derived from a common precursor cell, the balance between Th17 and Treg cells must be maintained within immune system to prevent autoimmune diseases. IL-1β-mediated IL-1 receptor (IL-1R) signaling is essential for Th17-cell biology. Fine-tuning of IL-1R signaling is controlled by two receptors, IL-1RI and IL-RII, IL-1R accessory protein, and IL-1R antagonist. We demonstrate that the decoy receptor, IL-1RII, is important for regulating IL-17 responses in TCR-stimulated CD4+ T cells expressing functional IL-1RI via limiting IL-1β responsiveness. IL-1RII expression is regulated by NFAT via its interaction with Foxp3. The NFAT/FOXP3 complex binds to the IL-1RII promoter and is critical for its transcription. Additionally, IL-1RII expression is dysregulated in CD4+ T cells from patients with rheumatoid arthritis. Thus, differential expression of IL-1Rs on activated CD4+ T cells defines unique immunological features and a novel molecular mechanism underlies IL-1RII expression. These findings shed light on the modulatory effects of IL-1RII on Th17 responses.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunjung Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hye Ran Yeon
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine; Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
7
|
Sprenger M, Brunke S, Hube B, Kasper L. A TRP1-marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in Candida glabrata. FEMS Yeast Res 2020; 20:6027539. [PMID: 33289831 PMCID: PMC7787354 DOI: 10.1093/femsyr/foaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 01/14/2023] Open
Abstract
Although less prevalent than its relative Candida albicans, the yeast Candida glabrata is a successful pathogen of humans, which causes life-threatening candidiasis. It is thus vital to understand the pathogenicity mechanisms and contributing genes in C. glabrata. However, gene complementation as a tool for restoring the function of a previously deleted gene is not standardized in C. glabrata, and it is less frequently used than in C. albicans. In this study, we established a gene complementation strategy using genomic integration at the TRP1 locus. We prove that our approach can not only be used for integration of complementation cassettes, but also for overexpression of markers like fluorescent proteins and the antigen ovalbumin, or of potential pathogenicity-related factors like the biotin transporter gene VHT1. With urea amidolyase Dur1,2 as an example, we demonstrate the application of the gene complementation approach for the expression of sequence-modified genes. With this approach, we found that a lysine-to-arginine mutation in the biotinylation motif of Dur1,2 impairs urea-dependent growth of C. glabrata and C. albicans. Taken together, the TRP1-based gene complementation approach is a valuable tool for investigating novel gene functions and for elucidating their role in the pathobiology of C. glabrata.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
8
|
Morris AB, Pinelli DF, Liu D, Wagener M, Ford ML. Memory T cell-mediated rejection is mitigated by FcγRIIB expression on CD8 + T cells. Am J Transplant 2020; 20:2206-2215. [PMID: 32154641 PMCID: PMC7395896 DOI: 10.1111/ajt.15837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/19/2020] [Accepted: 02/08/2020] [Indexed: 01/25/2023]
Abstract
Donor-reactive memory T cells generated via heterologous immunity represent a potent barrier to long-term graft survival following transplantation because of their increased precursor frequency, rapid effector function, altered trafficking patterns, and reduced reliance on costimulation signals for activation. Thus, the identification of pathways that control memory T cell survival and secondary recall potential may provide new opportunities for therapeutic intervention. Here, we discovered that donor-specific effector/memory CD8+ T cell populations generated via exposure to acute vs latent vs chronic infections contain differential frequencies of CD8+ T cells expressing the inhibitory Fc receptor FcγRIIB. Results indicated that frequencies of FcγRIIB-expressing CD8+ donor-reactive memory T cells inversely correlated with allograft rejection. Furthermore, adoptive T cell transfer of Fcgr2b-/- CD8+ T cells resulted in an accumulation of donor-specific CD8+ memory T cells and enhanced recall responses, indicating that FcγRIIB functions intrinsically to limit T cell CD8+ survival in vivo. Lastly, we show that deletion of FcγRIIB on donor-specific CD8+ memory T cells precipitated costimulation blockade-resistant rejection. These data therefore identify a novel cell-intrinsic inhibitory pathway that functions to limit the risk of memory T cell-mediated rejection following transplantation and suggest that therapeutic manipulation of this pathway could improve outcomes in sensitized patients.
Collapse
Affiliation(s)
- Anna B Morris
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - David F Pinelli
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Danya Liu
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Maylene Wagener
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Mandy L Ford
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
9
|
Krummey SM, Hartigan CR, Liu D, Ford ML. CD28-Dependent CTLA-4 Expression Fine-Tunes the Activation of Human Th17 Cells. iScience 2020; 23:100912. [PMID: 32203908 PMCID: PMC7096747 DOI: 10.1016/j.isci.2020.100912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/26/2019] [Accepted: 02/10/2020] [Indexed: 01/05/2023] Open
Abstract
Previous work has demonstrated that Th17 memory cells but not Th1 cells are resistant to CD28/CTLA-4 blockade with CTLA-4 Ig, leading us to investigate the individual roles of the CD28 and CTLA-4 cosignaling pathways on Th1 versus Th17 cells. We found that selective CD28 blockade with a domain antibody (dAb) inhibited Th1 cells but surprisingly augmented Th17 responses. CD28 agonism resulted in a profound increase in CTLA-4 expression in Th17 cells as compared with Th1 cells. Consistent with these findings, inhibition of the CD28 signaling protein AKT revealed that CTLA-4 expression on Th17 cells was more significantly reduced by AKT inhibition relative to CTLA-4 expression on Th17 cells. Finally, we found that FOXO1 and FOXO3 overexpression restrained high expression of CTLA-4 on Th17 cells but not Th1 cells. This study demonstrates that the heterogeneity of the CD4+ T cell compartment has implications for the immunomodulation of pathologic T cell responses. CD28 blockade resulted in augmentation of human Th17 cells relative to Th1 cells Th17 polarized mice exhibited graft rejection in the presence of CD28 blockade A significant portion of Th17 cell CTLA-4 expression was induced by CD28 ligation Overexpression of FOXO1 or FOXO3 inhibited Th17 cell CTLA-4 expression
Collapse
Affiliation(s)
- Scott M Krummey
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina R Hartigan
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Danya Liu
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Hartigan CR, Sun H, Ford ML. Memory T‐cell exhaustion and tolerance in transplantation. Immunol Rev 2019; 292:225-242. [DOI: 10.1111/imr.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - He Sun
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
- Department of Hepatobiliary Surgery and Transplantation The First Hospital of China Medical University Shenyang China
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
| |
Collapse
|
11
|
Selective Costimulation Blockade With Antagonist Anti-CD28 Therapeutics in Transplantation. Transplantation 2019; 103:1783-1789. [DOI: 10.1097/tp.0000000000002740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Eades CP, Armstrong-James DPH. Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Med Mycol 2019; 57:S307-S317. [DOI: 10.1093/mmy/myy136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractThe use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.
Collapse
Affiliation(s)
- Christopher P Eades
- Department of Clinical Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Darius P H Armstrong-James
- National Heart and Lung Institute, Imperial College London, UK
- Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): A versatile receptor for immune-based therapy. Semin Immunol 2019; 42:101298. [DOI: 10.1016/j.smim.2019.101298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
|
14
|
|
15
|
Nguyen TNY, Padungros P, Wongsrisupphakul P, Sa-Ard-Iam N, Mahanonda R, Matangkasombut O, Choo MK, Ritprajak P. Cell wall mannan of Candida krusei mediates dendritic cell apoptosis and orchestrates Th17 polarization via TLR-2/MyD88-dependent pathway. Sci Rep 2018; 8:17123. [PMID: 30459422 PMCID: PMC6244250 DOI: 10.1038/s41598-018-35101-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) abundantly express diverse receptors to recognize mannans in the outer surface of Candida cell wall, and these interactions dictate the host immune responses that determine disease outcomes. C. krusei prevalence in candidiasis worldwide has increased since this pathogen has developed multidrug resistance. However, little is known how the immune system responds to C. krusei. Particularly, the molecular mechanisms of the interplay between C. krusei mannan and DCs remain to be elucidated. We investigated how C. krusei mannan affected DC responses in comparison to C. albicans, C. tropicalis and C. glabrata mannan. Our results showed that only C. krusei mannan induced massive cytokine responses in DCs, and led to apoptosis. Although C. krusei mannan-activated DCs underwent apoptosis, they were still capable of initiating Th17 response. C. krusei mannan-mediated DC apoptosis was obligated to the TLR2 and MyD88 pathway. These pathways also controlled Th1/Th17 switching possibly by virtue of the production of the polarizing cytokines IL-12 and IL-6 by the C. krusei mannan activated-DCs. Our study suggests that TLR2 and MyD88 pathway in DCs are dominant for C. krusei mannan recognition, which differs from the previous reports showing a crucial role of C-type lectin receptors in Candida mannan sensing.
Collapse
Affiliation(s)
- Thu Ngoc Yen Nguyen
- Graduate program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panuwat Padungros
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Panachai Wongsrisupphakul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rangsini Mahanonda
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Patcharee Ritprajak
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
16
|
Checkpoint inhibitors and aspergillosis in AML: the double hit hypothesis. Lancet Oncol 2018; 18:1571-1573. [PMID: 29208429 DOI: 10.1016/s1470-2045(17)30852-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
|
17
|
Laurie SJ, Liu D, Wagener ME, Stark PC, Terhorst C, Ford ML. 2B4 Mediates Inhibition of CD8 + T Cell Responses via Attenuation of Glycolysis and Cell Division. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1536-1548. [PMID: 30012849 PMCID: PMC6103805 DOI: 10.4049/jimmunol.1701240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
We recently showed that 2B4 expression on memory T cells in human renal transplant recipients was associated with reduced rates of rejection. To investigate whether 2B4 functionally underlies graft acceptance during transplantation, we established an experimental model in which 2B4 was retrogenically expressed on donor-reactive murine CD8+ T cells (2B4rg), which were then transferred into naive recipients prior to skin transplantation. We found that constitutive 2B4 expression resulted in significantly reduced accumulation of donor-reactive CD8+ T cells following transplantation and significantly prolonged graft survival following transplantation. This marked reduction in alloreactivity was due to reduced proliferation of CD8+ Thy1.1+ 2B4rg cells as compared with control cells, underpinned by extracellular flux analyses demonstrating that 2B4-deficient (2B4KO) CD8+ cells activated in vitro exhibited increased glycolytic capacity and upregulation of gene expression profiles consistent with enhanced glycolytic machinery as compared with wild type controls. Furthermore, 2B4KO CD8+ T cells primed in vivo exhibited significantly enhanced ex vivo uptake of a fluorescent glucose analogue. Finally, the proliferative advantage associated with 2B4 deficiency was only observed in the setting of glucose sufficiency; in glucose-poor conditions, 2B4KO CD8+ T cells lost their proliferative advantage. Together, these data indicate that 2B4 signals function to alter T cell glucose metabolism, thereby limiting the proliferation and accumulation of CD8+ T cells. Targeting 2B4 may therefore represent a novel therapeutic strategy to attenuate unwanted CD8+ T cell responses.
Collapse
Affiliation(s)
| | - Danya Liu
- Emory Transplant Center, Atlanta, GA 30322; and
| | | | | | - Cox Terhorst
- Beth Israel Deaconess Medical Center, Boston, MA 02215
| | | |
Collapse
|
18
|
Vanhove B, Poirier N, Fakhouri F, Laurent L, 't Hart B, Papotto PH, Rizzo LV, Zaitsu M, Issa F, Wood K, Soulillou JP, Blancho G. Antagonist Anti-CD28 Therapeutics for the Treatment of Autoimmune Disorders. Antibodies (Basel) 2017; 6:antib6040019. [PMID: 31548534 PMCID: PMC6698823 DOI: 10.3390/antib6040019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022] Open
Abstract
The effector functions of T lymphocytes are responsible for most autoimmune disorders and act by directly damaging tissues or by indirectly promoting inflammation and antibody responses. Co-stimulatory and co-inhibitory T cell receptor molecules are the primary pharmacological targets that enable interference with immune-mediated diseases. Among these, selective CD28 antagonists have drawn special interest, since they tip the co-stimulation/co-inhibition balance towards efficiently inhibiting effector T cells while promoting suppression by pre-existing regulatory T-cells. After having demonstrated outstanding therapeutic efficacy in multiple models of autoimmunity, inflammation and transplantation, and safety in phase-I studies in humans, selective CD28 antagonists are currently in early clinical development for the treatment of systemic lupus erythematous and rheumatoid arthritis. Here, we review the available proof of concept studies for CD28 antagonists in autoimmunity, with a special focus on the mechanisms of action.
Collapse
Affiliation(s)
- Bernard Vanhove
- OSE Immunotherapeutics, 44200 Nantes, France.
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, 44035 Nantes, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France.
| | - Nicolas Poirier
- OSE Immunotherapeutics, 44200 Nantes, France.
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, 44035 Nantes, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, 44035 Nantes, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France.
| | - Laetitia Laurent
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, 44035 Nantes, France.
| | - Bert 't Hart
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands.
- Department Neuroscience, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands.
| | - Pedro H Papotto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal.
| | - Luiz V Rizzo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627-701, 2-SS Bloco A, 05651-901 São Paulo, Brazil.
| | - Masaaki Zaitsu
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, 44035 Nantes, France.
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, 44035 Nantes, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France.
| |
Collapse
|
19
|
Adams AB, Ford ML, Larsen CP. Costimulation Blockade in Autoimmunity and Transplantation: The CD28 Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2045-50. [PMID: 27591335 DOI: 10.4049/jimmunol.1601135] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. TCR signaling in the absence of costimulatory signals can lead to an abortive attempt at activation and subsequent anergy. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. The development of the fusion protein CTLA-4-Ig as an experimental and subsequent therapeutic tool is one of the major success stories in modern immunology. Abatacept and belatacept are clinically approved agents for the treatment of rheumatoid arthritis and renal transplantation, respectively. Future interventions may include selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4.
Collapse
Affiliation(s)
- Andrew B Adams
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Christian P Larsen
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
20
|
Crepeau RL, Ford ML. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opin Biol Ther 2017; 17:1001-1012. [PMID: 28525959 DOI: 10.1080/14712598.2017.1333595] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. Areas covered: This review discusses past, current and future biological therapies that have been utilized to block the CD28/CTLA-4 cosignaling pathway in the settings of autoimmunity and transplantation, as well the challenges facing successful implementation of these therapies. Expert opinion: The development of CD28 blockers Abatacept and Belatacept provided a more targeted therapy approach for transplant rejection and autoimmune disease relative to calcineurin inhibitors and anti-proliferatives, but overall efficacy may be limited due to their collateral effect of simultaneously blocking CTLA-4 coinhibitory signals. As such, current investigations into the potential of selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4 are promising. However, as selective CD28 blockade inhibits the activity of both effector and regulatory T cells, an important goal for the future is the design of therapies that will maximize the attenuation of effector responses while preserving the suppressive function of T regulatory cells.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- a Emory Transplant Center and Department of Surgery , Emory University , Atlanta , GA , USA
| | - Mandy L Ford
- a Emory Transplant Center and Department of Surgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
21
|
Khiew SH, Yang J, Young JS, Chen J, Wang Q, Yin D, Vu V, Miller ML, Sciammas R, Alegre ML, Chong AS. CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients. JCI Insight 2017; 2:92033. [PMID: 28469082 PMCID: PMC5414557 DOI: 10.1172/jci.insight.92033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Despite recent evidence of improved graft outcomes and safety, the high incidence of early acute cellular rejection with belatacept, a high-affinity CTLA4-Ig, has limited its use in clinical transplantation. Here we define how the incomplete control of endogenous donor-reactive memory T cells results in belatacept-resistant rejection in an experimental model of BALB/c.2W-OVA donor heart transplantation into C57BL/6 recipients presensitized to donor splenocytes. These sensitized mice harbored modestly elevated numbers of endogenous donor-specific memory T cells and alloantibodies compared with naive recipients. Continuous CTLA4-Ig treatment was unexpectedly efficacious at inhibiting endogenous graft-reactive T cell expansion but was unable to inhibit late CD4+ and CD8+ T cell infiltration into the allografts, and rejection was observed in 50% of recipients by day 35 after transplantation. When CTLA4-Ig was combined with the sphingosine 1-phosphate receptor-1 (S1PR1) functional antagonist FTY720, alloantibody production was inhibited and donor-specific IFN-γ-producing T cells were reduced to levels approaching nonsensitized tolerant recipients. Late T cell recruitment into the graft was also restrained, and graft survival improved with this combination therapy. These observations suggest that a rational strategy consisting of inhibiting memory T cell expansion and trafficking into the allograft with CTLA4-Ig and FTY720 can promote allograft survival in allosensitized recipients.
Collapse
Affiliation(s)
| | - Jinghui Yang
- Section of Transplantation, Department of Surgery
| | | | - Jianjun Chen
- Section of Transplantation, Department of Surgery
| | - Qiang Wang
- Section of Transplantation, Department of Surgery
| | - Dengping Yin
- Section of Transplantation, Department of Surgery
| | - Vinh Vu
- Section of Transplantation, Department of Surgery
| | - Michelle L. Miller
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Roger Sciammas
- Center for Comparative Medicine, University of California, Davis, California, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
22
|
Ansari AW, Khan MA, Schmidt RE, Broering DC. Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunol Lett 2017; 183:8-16. [PMID: 28119073 DOI: 10.1016/j.imlet.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Alloantigen-specific T-cell triggered immunopathological events are responsible for rapid allograft rejection. The co-signaling pathways orchestrated by co-stimulatory and co-inhibitory molecules are critical for optimal T-cell effector function. Therefore, selective blockade of pathways that control T-cell immunity may offer an attractive therapeutic strategy to manipulate cell mediated allogenic responses. For example, CD28, CTLA-4 and CD154 receptor blockade have proven beneficial in maintaining T-cell tolerance against transplanted organs in experimental animal models as well as in clinical trials. Conversely, induction of co-inhibitory molecules may result in suppressed effector function. There are several other potential molecules that are known to induce immune tolerance are currently under consideration for clinical studies. In this review, we provide a comprehensive and updated analysis of co-stimulatory and co-inhibitory molecules, their therapeutic potential to prevent graft rejection, and to further improve their long-term survival.
Collapse
Affiliation(s)
- Abdul W Ansari
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| | - Mohammad A Khan
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg Str.1, D-30625 Hannover, Germany
| | - Dieter C Broering
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
23
|
Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in Fungal Diseases. Microorganisms 2016; 4:microorganisms4040047. [PMID: 27973396 PMCID: PMC5192530 DOI: 10.3390/microorganisms4040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
This review addresses specific regulatory mechanisms involved in the host immune response to fungal organisms. We focus on key cells and regulatory pathways involved in these responses, including a brief overview of their broader function preceding a discussion of their specific relevance to fungal disease. Important cell types discussed include dendritic cells and regulatory T cells, with a focus on specific studies relating to their effects on immune responses to fungi. We highlight the interleukin-10, programmed cell death 1, and cytotoxic T lymphocyte-associated protein 4 signaling pathways and emphasize interrelationships between these pathways and the regulatory functions of dendritic cells and regulatory T cells. Throughout our discussion, we identify selected studies best illustrating the role of these cells and pathways in response to specific fungal pathogens to provide a contextual understanding of the tightly-controlled network of regulatory mechanisms critical to determining the outcome of exposure to fungal pathogens. Lastly, we discuss two unique phenomena relating to immunoregulation, protective tolerance and immune reactivation inflammatory syndrome. These two clinically-relevant conditions provide perspective as to the range of immunoregulatory mechanisms active in response to fungi.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Ville S, Poirier N, Branchereau J, Charpy V, Pengam S, Nerriere-Daguin V, Le Bas-Bernardet S, Coulon F, Mary C, Chenouard A, Hervouet J, Minault D, Nedellec S, Renaudin K, Vanhove B, Blancho G. Anti-CD28 Antibody and Belatacept Exert Differential Effects on Mechanisms of Renal Allograft Rejection. J Am Soc Nephrol 2016; 27:3577-3588. [PMID: 27160407 DOI: 10.1681/asn.2015070774] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022] Open
Abstract
Belatacept is a biologic that targets CD80/86 and prevents its interaction with CD28 and its alternative ligand, cytotoxic T lymphocyte antigen 4 (CTLA-4). Clinical experience in kidney transplantation has revealed a high incidence of rejection with belatacept, especially with intensive regimens, suggesting that blocking CTLA-4 is deleterious. We performed a head to head assessment of FR104 (n=5), a selective pegylated Fab' antibody fragment antagonist of CD28 that does not block the CTLA-4 pathway, and belatacept (n=5) in kidney allotransplantation in baboons. The biologics were supplemented with an initial 1-month treatment with low-dose tacrolimus. In cases of acute rejection, animals also received steroids. In the belatacept group, four of five recipients developed severe, steroid-resistant acute cellular rejection, whereas FR104-treated animals did not. Assessment of regulatory T cell-specific demethylated region methylation status in 1-month biopsy samples revealed a nonsignificant trend for higher regulatory T cell frequencies in FR104-treated animals. Transcriptional analysis did not reveal significant differences in Th17 cytokines but did reveal higher levels of IL-21, the main cytokine secreted by CD4 T follicular helper (Tfh) cells, in belatacept-treated animals. In vitro, FR104 controlled the proliferative response of human preexisting Tfh cells more efficiently than belatacept. In mice, selective CD28 blockade also controlled Tfh memory cell responses to KLH stimulation more efficiently than CD80/86 blockade. Our data reveal that selective CD28 blockade and belatacept exert different effects on mechanisms of renal allograft rejection, particularly at the level of Tfh cell stimulation.
Collapse
Affiliation(s)
- Simon Ville
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Nicolas Poirier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Julien Branchereau
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | | | - Sabrina Pengam
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Véronique Nerriere-Daguin
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Flora Coulon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Caroline Mary
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Alexis Chenouard
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Jeremy Hervouet
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - David Minault
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France
| | - Steven Nedellec
- MicroPiCell Facility, Structure Fédérative de Recherche (SFR) Bonamy, Structure Fedérative de recherche (FED) 4203, Unité Mixte de Service (UMS) 016, Nantes, France
| | - Karine Renaudin
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| | - Bernard Vanhove
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Effimune, Nantes, France; and
| | - Gilles Blancho
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1064, Nantes, France; .,Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire, Nantes, France
| |
Collapse
|
25
|
Modjeski K, Levy S, Ture S, Field D, Shi G, Ko K, Zhu Q, Morrell C. Glutamate Receptor Interacting Protein 1 Regulates CD4(+) CTLA-4 Expression and Transplant Rejection. Am J Transplant 2016; 16:1383-93. [PMID: 26601915 PMCID: PMC5672809 DOI: 10.1111/ajt.13623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 01/25/2023]
Abstract
PDZ domains are common 80- to 90-amino-acid regions named after the first three proteins discovered to share these domains: postsynaptic density 95, discs large, and zonula occludens. PDZ domain-containing proteins typically interact with the C-terminus of membrane receptors. Glutamate receptor interacting protein 1 (GRIP1), a seven-PDZ domain protein scaffold, regulates glutamate receptor surface expression and trafficking in neurons. We have found that human and mouse T cells also express GRIP1. T cell-specific GRIP1(-/-) mice >11 weeks old had prolonged cardiac allograft survival. Compared with wild-type T cells, in vitro stimulated GRIP1(-/-) T cells had decreased expression of activation markers and increased apoptotic surface marker expression. Surface expression of the strong T cell inhibitory molecule cytotoxic T lymphocyte antigen-4 (CTLA-4) was increased on GRIP1(-/-) T cells from mice >11 weeks old. CTLA-4 increases with T cell stimulation and its surface expression on GRIP1(-/-) T cells remained high after stimulation was removed, indicating a possible internalization defect in GRIP1-deficient T cells. CTLA-4-blocking antibody treatment following heart transplantation led to complete rejection in T cell GRIP1(-/-) mice, indicating that increased CTLA-4 surface expression contributed to the extended graft survival. Our data indicate that GRIP1 regulates T cell activation by regulating CTLA-4 surface expression.
Collapse
Affiliation(s)
- K.L. Modjeski
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA,Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S.C. Levy
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S.K. Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - D.J. Field
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - G. Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - K. Ko
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Q. Zhu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA,Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C.N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
26
|
Poirier N, Chevalier M, Mary C, Hervouet J, Minault D, Baker P, Ville S, Le Bas-Bernardet S, Dilek N, Belarif L, Cassagnau E, Scobie L, Blancho G, Vanhove B. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2015; 196:274-83. [PMID: 26597009 DOI: 10.4049/jimmunol.1501810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation.
Collapse
Affiliation(s)
- Nicolas Poirier
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | - Melanie Chevalier
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Centre Hospitalier Universitaire, 44000 Nantes, France; and
| | - Caroline Mary
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | - Jeremy Hervouet
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France
| | - David Minault
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France
| | - Paul Baker
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Simon Ville
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France
| | - Stephanie Le Bas-Bernardet
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Centre Hospitalier Universitaire, 44000 Nantes, France; and
| | - Nahzli Dilek
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | - Lyssia Belarif
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France
| | | | - Linda Scobie
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Gilles Blancho
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Centre Hospitalier Universitaire, 44000 Nantes, France; and
| | - Bernard Vanhove
- INSERM UMR 1064, Institut de Transplantation Urologie Néphrologie, Université de Nantes, 44000 Nantes, France; Effimune, 44000 Nantes, France;
| |
Collapse
|
27
|
Ville S, Poirier N, Blancho G, Vanhove B. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells? Front Immunol 2015; 6:411. [PMID: 26322044 PMCID: PMC4532816 DOI: 10.3389/fimmu.2015.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses.
Collapse
Affiliation(s)
- Simon Ville
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Nicolas Poirier
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| | - Gilles Blancho
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Bernard Vanhove
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Stimulatory and inhibitory receptor signaling (cosignaling) on T cells is a critical component of T-cell responses that mediate graft rejection. The blockade of cosignaling pathways is an attractive strategy for preventing allogeneic T-cell responses. Here, we review the new studies that provide critical insight into the well studied CD28-CTLA-4 and CD40-CD40L cosignaling pathways, as well as the identification of novel cosignaling receptors that play a role in allogeneic T-cell responses. RECENT FINDINGS Recently, it has been appreciated that the CD28-CTLA-4 pathway has unique roles on specific T-cell subsets, particularly on forkhead box P3 (FoxP3)+ regulatory T cell (Treg) and T helper 17 (Th17) cells. New insight has been provided into the mechanism by which CD40-CD154 blockade elicits FoxP3+ Treg conversion and memory T cells elicit CD40-independent alloantibody responses. Finally, several novel cosignaling pathways have been demonstrated to be important to graft-specific T cells, including CD160, signaling lymphocytic activation molecule family member 2B4, T-cell Ig mucin 4, and the Notch receptor. SUMMARY Recent work has provided more granular understanding of the CD28-CTLA-4 and CD40-CD154 pathways on T-cell subsets, and provided important insight into the generation and maintenance of FoxP3+ Treg. This information, as well as the characterization of novel transplantation-relevant cosignaling pathways, has implications for the modulation of alloreactive T-cell responses.
Collapse
|
29
|
Krummey SM, Ford ML. Braking bad: novel mechanisms of CTLA-4 inhibition of T cell responses. Am J Transplant 2014; 14:2685-90. [PMID: 25387592 PMCID: PMC4364523 DOI: 10.1111/ajt.12938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 01/25/2023]
Abstract
The coinhibitory receptor cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a master regulator of T cell responses and its function is critical in models of transplant tolerance. The CD28/CTLA-4 pathway is also an important therapeutic target, as the costimulation blocker belatacept was recently approved for use following renal transplantation. While the traditional model of CTLA-4 coinhibition focuses on its ability to directly counteract CD28 costimulation, recently this paradigm has significantly broadened. Recent work has uncovered the ability of CTLA-4 to act as a cell-extrinsic coinhibitory molecule on CD4(+) T cell effectors. While it has been appreciated that CTLA-4 is required for FoxP3(+) regulatory T cell (Treg) suppression, current studies have elucidated important differences in the function of CTLA-4 on Tregs compared to effectors. CTLA-4 expression patterns also differ by T cell subset, with Th17 cells expressing significantly higher levels of CTLA-4. Thus, in contrast to the traditional model of CTLA-4 as a negative receptor to counter CD28 costimulation, recent work has begun to define CTLA-4 as a global regulator of T cell responses with subset-specific functions. Future studies must continue to uncover the molecular mechanisms that govern CTLA-4 function. These novel findings have implications for novel strategies to maximize the regulatory potential of CTLA-4 during allogeneic T cell responses.
Collapse
|