1
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Tajbakhsh A, Yousefi F, Farahani N, Savardashtaki A, Reiner Ž, Jamialahmadi T, Sahebkar A. Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives. Curr Med Chem 2024; 31:5898-5917. [PMID: 37497711 DOI: 10.2174/0929867331666230727100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
4
|
Brodeur A, Migneault F, Lanoie M, Beillevaire D, Turgeon J, Karakeussian-Rimbaud A, Thibodeau N, Boilard É, Dieudé M, Hébert MJ. Apoptotic exosome-like vesicles transfer specific and functional mRNAs to endothelial cells by phosphatidylserine-dependent macropinocytosis. Cell Death Dis 2023; 14:449. [PMID: 37474514 PMCID: PMC10359336 DOI: 10.1038/s41419-023-05991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Apoptosis of endothelial cells prompts the release of apoptotic exosome-like vesicles (ApoExos), subtype extracellular vesicles secreted by apoptotic cells after caspase-3 activation. ApoExos are different from both apoptotic bodies and classical exosomes in their protein and nucleic acid contents and functions. In contrast to classical apoptotic bodies, ApoExos induce immunogenic responses that can be maladaptive when not tightly regulated. In the present study, we elucidated the mechanisms by which ApoExos are internalized by endothelial cells, which leads to shared specific and functional mRNAs of importance to endothelial function. Using flow cytometry and confocal microscopy, we revealed that ApoExos were actively internalized by endothelial cells. SiRNA-induced inhibition of classical endocytosis pathways with pharmacological inhibitors showed that ApoExos were internalized via phosphatidylserine-dependent macropinocytosis independently of classical endocytosis pathways. An electron microscopy analysis revealed that ApoExos increased the macropinocytosis rate in endothelial cells, setting in motion a positive feedback loop that increased the amount of internalized ApoExos. Deep sequencing of total RNA revealed that ApoExos possessed a unique protein-coding RNA profile, with PCSK5 being the most abundant mRNA. Internalization of ApoExos by cells led to the transfer of this RNA content from the ApoExos to cells. Specifically, PCSK5 mRNA was transferred to cells that had taken up ApoExos, and these cells subsequently expressed PCSK5. Collectively, our findings suggest that macropinocytosis is an effective entry pathway for the delivery of RNAs carried by ApoExos and that these RNAs are functionally expressed by the endothelial cells that internalize them. As ApoExos express a specific mRNA signature, these results suggest new avenues to understand how ApoExos produced at sites of vascular injury impact vascular function.
Collapse
Affiliation(s)
- Alexandre Brodeur
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Francis Migneault
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
| | - Maude Lanoie
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Déborah Beillevaire
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Julie Turgeon
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
| | - Nicolas Thibodeau
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
| | - Éric Boilard
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Microbiologie et Immunologie, Québec, QC, Canada
| | - Mélanie Dieudé
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Héma-Québec, Québec, QC, Canada
| | - Marie-Josée Hébert
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada.
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada.
- Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Casey LM, Decker JT, Podojil JR, Rad L, Hughes KR, Rose JA, Pearson RM, Miller SD, Shea LD. Nanoparticle dose and antigen loading attenuate antigen-specific T-cell responses. Biotechnol Bioeng 2023; 120:284-296. [PMID: 36221192 PMCID: PMC9999438 DOI: 10.1002/bit.28252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
Immune-mediated hypersensitivities such as autoimmunity, allergy, and allogeneic graft rejection are treated with therapeutics that suppress the immune system, and the lack of specificity is associated with significant side effects. The delivery of disease-relevant antigens (Ags) by carrier systems such as poly(lactide-co-glycolide) nanoparticles (PLG-Ag) and carbodiimide (ECDI)-fixed splenocytes (SP-Ag) has demonstrated Ag-specific tolerance induction in model systems of these diseases. Despite therapeutic outcomes by both platforms, tolerance is conferred with different efficacy. This investigation evaluated Ag loading and total particle dose of PLG-Ag on Ag presentation in a coculture system of dendritic cells (DCs) and Ag-restricted T cells, with SP-Ag employed as a control. CD25 expression was observed in nearly all T cells even at low concentrations of PLG-Ag, indicating efficient presentation of Ag by dendritic cells. However, the secretion of IL-2, Th1, and Th2 cytokines (IFNγ and IL-4, respectively) varied depending on PLG-Ag concentration and Ag loading. Concentration escalation of soluble Ag resulted in an increase in IL-2 and IFNγ and a decrease in IL-4. Treatment with PLG-Ag followed a similar trend but with lower levels of IL-2 and IFNγ secreted. Transcriptional Activity CEll ARrays (TRACER) were employed to measure the real-time transcription factor (TF) activity in Ag-presenting DCs. The kinetics and magnitude of TF activity was dependent on the Ag delivery method, concentration, and Ag loading. Ag positively regulated IRF1 activity and, as carriers, NPs and ECDI-treated SP negatively regulated this signaling. The effect of Ag loading and dose on tolerance induction were corroborated in vivo using the delayed-type hypersensitivity (DTH) and experimental autoimmune encephalomyelitis (EAE) mouse models where a threshold of 8 μg/mg Ag loading and 0.5 mg PLG-Ag dose were required for tolerance. Together, the effect of Ag loading and dosing on in vitro and in vivo immune regulation provide useful insights for translating Ag-carrier systems for the clinical treatment of immune disorders.
Collapse
Affiliation(s)
- Liam M. Casey
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Joseph T. Decker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Joseph R. Podojil
- Department of Microbiology‐Immunology, Feinberg School of MedicineNorthwestern UniversityChicagollinoisUSA
| | - Laila Rad
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin R. Hughes
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Justin A. Rose
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ryan M. Pearson
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Stephen D. Miller
- Department of Microbiology‐Immunology, Feinberg School of MedicineNorthwestern UniversityChicagollinoisUSA
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology Center, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Lonnie D. Shea
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Titus HE, Xu H, Robinson AP, Patel PA, Chen Y, Fantini D, Eaton V, Karl M, Garrison ED, Rose IVL, Chiang MY, Podojil JR, Balabanov R, Liddelow SA, Miller RH, Popko B, Miller SD. Repurposing the cardiac glycoside digoxin to stimulate myelin regeneration in chemically-induced and immune-mediated mouse models of multiple sclerosis. Glia 2022; 70:1950-1970. [PMID: 35809238 PMCID: PMC9378523 DOI: 10.1002/glia.24231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disease characterized by inflammation, demyelination, and neurodegeneration. The ideal MS therapy would both specifically inhibit the underlying autoimmune response and promote repair/regeneration of myelin as well as maintenance of axonal integrity. Currently approved MS therapies consist of non-specific immunosuppressive molecules/antibodies which block activation or CNS homing of autoreactive T cells, but there are no approved therapies for stimulation of remyelination nor maintenance of axonal integrity. In an effort to repurpose an FDA-approved medication for myelin repair, we chose to examine the effectiveness of digoxin, a cardiac glycoside (Na+ /K+ ATPase inhibitor), originally identified as pro-myelinating in an in vitro screen. We found that digoxin regulated multiple genes in oligodendrocyte progenitor cells (OPCs) essential for oligodendrocyte (OL) differentiation in vitro, promoted OL differentiation both in vitro and in vivo in female naïve C57BL/6J (B6) mice, and stimulated recovery of myelinated axons in B6 mice following demyelination in the corpus callosum induced by cuprizone and spinal cord demyelination induced by lysophosphatidylcholine (LPC), respectively. More relevant to treatment of MS, we show that digoxin treatment of mice with established MOG35-55 -induced Th1/Th17-mediated chronic EAE combined with tolerance induced by the i.v. infusion of biodegradable poly(lactide-co-glycolide) nanoparticles coupled with MOG35-55 (PLG-MOG35-55 ) completely ameliorated clinical disease symptoms and stimulated recovery of OL lineage cell numbers. These findings provide critical pre-clinical evidence supporting future clinical trials of myelin-specific tolerance with myelin repair/regeneration drugs, such as digoxin, in MS patients.
Collapse
Affiliation(s)
- Haley E. Titus
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Huan Xu
- NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Andrew P. Robinson
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Priyam A. Patel
- Quantitative Data Science Core Center for Genetic MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yanan Chen
- NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Damiano Fantini
- UrologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Valerie Eaton
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Molly Karl
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Eric D. Garrison
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Indigo V. L. Rose
- Neuroscience Institute and Departments of Neuroscience, & Physiology, and OphthalmologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ming Yi Chiang
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Joseph R. Podojil
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Cour Pharmaceutical Development CompanyNorthbrookIllinoisUSA
| | - Roumen Balabanov
- NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Shane A. Liddelow
- Neuroscience Institute and Departments of Neuroscience, & Physiology, and OphthalmologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Robert H. Miller
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Brian Popko
- NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Stephen D. Miller
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
7
|
Puricelli C, Boggio E, Gigliotti CL, Stoppa I, Sutti S, Rolla R, Dianzani U. Cutting-Edge Delivery Systems and Adjuvants in Tolerogenic Vaccines: A Review. Pharmaceutics 2022; 14:1782. [PMID: 36145531 PMCID: PMC9501480 DOI: 10.3390/pharmaceutics14091782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional therapies for immune-mediated diseases, including autoimmune disorders, transplant reactions, and allergies, have undergone a radical evolution in the last few decades; however, they are still not specific enough to avoid widespread immunosuppression. The idea that vaccine usage could be extended beyond its traditional immunogenic function by encompassing the ability of vaccines to induce antigen-specific tolerance may revolutionize preventive and therapeutic strategies in several clinical fields that deal with immune-mediated disorders. This approach has been supported by improved data relating to the several mechanisms involved in controlling unwanted immune responses and allowing peripheral tolerance. Given these premises, several approaches have been developed to induce peripheral tolerance against the antigens that are involved in the pathological immune response, including allergens, autoantigens, and alloantigens. Technological innovations, such as nucleic acid manipulation and the advent of micro- and nanoparticles, have further supported these novel preventive and therapeutic approaches. This review focuses on the main strategies used in the development of tolerogenic vaccines, including the technological issues used in their design and the role of "inverse adjuvants". Even though most studies are still limited to the preclinical field, the enthusiasm generated by their results has prompted some initial clinical trials, and they show great promise for the future management of immune-mediated pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | | |
Collapse
|
8
|
Klonarakis M, Andrews CN, Raman M, Panaccione R, Ma C. Review article: therapeutic targets for the pharmacologic management of coeliac disease-the future beyond a gluten-free diet. Aliment Pharmacol Ther 2022; 55:1277-1296. [PMID: 35229332 DOI: 10.1111/apt.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coeliac disease (CeD) is an immune-mediated small bowel enteropathy resulting from dietary gluten exposure. Presently, the only effective treatment is adoption of a gluten-free diet (GFD), although strict adherence is challenging to maintain, and inadvertent gluten exposures are inevitable for most patients. Hence, there is substantial interest in drug development in CeD and multiple novel therapies are under investigation. AIMS To review existing and upcoming clinical trial programmes for pharmacologic agents for CeD. METHODS A narrative review was performed, informed by a search of MEDLINE, Embase, the Cochrane CENTRAL Library and clinicaltrials.gov. RESULTS We summarise the pathophysiology of CeD and the specific steps that are potentially amenable to pharmacologic treatment. We evaluate the evidence supporting existing and future drug targets, including trials of peptidases, gluten sequestrants, tight junction regulators, anti-transglutaminase 2 therapies, immune tolerizing agents, advanced biologics and small molecules, and microbiome-targeted strategies. We highlight unique considerations for conducting CeD trials, including identifying appropriate study populations, assessing results in the context of a gluten challenge, and interpreting CeD-specific clinical and histologic outcomes. Understanding these factors is crucial for accurately appraising the evidence. Finally, we outline what the future of CeD therapy may hold with the introduction of pharmacotherapies. CONCLUSIONS There is a need for pharmacologic options for CeD, either used adjunctively with a GFD for accidental or intentional gluten exposures or for refractory disease. Multiple promising agents are in development, and these trials are likely to lead to approvals for the first generation of pharmacologic agents for CeD within the next 5 years.
Collapse
Affiliation(s)
| | - Christopher N Andrews
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Alberta's Collaboration of Excellence for Nutrition in Digestive Diseases, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Hughes KR, Saunders MN, Landers JJ, Janczak KW, Turkistani H, Rad LM, Miller SD, Podojil JR, Shea LD, O'Konek JJ. Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy. FRONTIERS IN ALLERGY 2022; 3:829605. [PMID: 35386645 PMCID: PMC8974743 DOI: 10.3389/falgy.2022.829605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergy is a growing health concern worldwide. Current allergen-specific immunotherapy (AIT) approaches require frequent dosing over extended periods of time and may induce anaphylaxis due to allergen-effector cell interactions. A critical need remains to develop novel approaches that refine AIT for the treatment of food allergies. Previous studies show that poly(lactide-co-glycolide) (PLG) nanoscale particles (NP) effectively suppress Th1- and Th17-driven immune pathologies. However, their ability to suppress the distinct Th2-polarized immune responses driving food allergy are unknown. Herein, we describe the safety and efficacy of NPs containing encapsulated peanut allergen in desensitizing murine models of peanut allergy. Peanut extract encapsulation allowed for the safe intravenous delivery of allergen relative to non-encapsulated approaches. Application of 2–3 doses, without the need for dose escalation, was sufficient to achieve prophylactic and therapeutic efficacy, which correlated with suppression of Th2-mediated disease and reduced mast cell degranulation. Efficacy was associated with strong reductions in a broad panel of Th1, Th2, and Th17 cytokines. These results demonstrate the ability of PLG NPs to suppress allergen-specific immune responses to induce a more tolerogenic phenotype, conferring protection from intragastric allergen challenge. These promising studies represent a step forward in the development of improved immunotherapies for food allergy.
Collapse
Affiliation(s)
- Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michael N. Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- COUR Pharmaceuticals Development Co, Inc., Northbrook, IL, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Lonnie D. Shea
| | - Jessica J. O'Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
- *Correspondence: Jessica J. O'Konek
| |
Collapse
|
11
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Rahiman N, Zamani P, Badiee A, Arabi L, Alavizadeh SH, Jaafari MR. An insight into the role of liposomal therapeutics in the reversion of Multiple Sclerosis. Expert Opin Drug Deliv 2021; 18:1795-1813. [PMID: 34747298 DOI: 10.1080/17425247.2021.2003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS), as an autoimmune disease, has complicated immunopathology, which makes its management relevant to various factors. Novel pharmaceutical vehicles, especially liposomes, can support efficacious handling of this disease both in early detection and prognosis and also in a therapeutic manner. The most well-known trigger of MS onset is the predominance of cellular to humoral immunity and enhancement of inflammatory cytokines level. The installation of liposomes as nanoparticles to control this disease holds great promise up to now. AREAS COVERED Various types of liposomes with different properties and purposes have been formulated and targeted immune cells with their surface manipulations. They may be encapsulated with anti-inflammatory, MS-related therapeutics, or immunodominant myelin-specific peptides for attaining a higher therapeutic efficacy of the drugs or tolerance induction. Cationic liposomes are also highly applicable for gene delivery of the anti-inflammatory cytokines or silencing the inflammatory cytokines. Liposomes have also been used as biotools for comprehending MS pathomechanisms or as diagnostic agents. EXPERT OPINION The efforts to manage MS through nanomedicine, especially liposomal therapeutics, pave a new avenue to a high-throughput medication of this autoimmune disease and their translation to the clinic in the future for overcoming the challenges that MS patients confront.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Aktar N, Chen T, Moudud A, Xu S, Zhou X. Tolerogenic vehicles of antigens in the antigen-specific immunotherapy for autoimmunity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Biologia Futura: Emerging antigen-specific therapies for autoimmune diseases. Biol Futur 2021; 72:15-24. [PMID: 34554499 DOI: 10.1007/s42977-021-00074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/16/2021] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases are caused by breaking the central and/or peripheral tolerance against self, leading to uncontrolled immune response to autoantigens. The incidences of autoimmune diseases have increased significantly worldwide over the last decades; nearly 5% of the world's population is affected. The current treatments aim to reduce pain and inflammation to prevent organ damage and have a general immunosuppressive effect, but they cannot cure the disease. There is a huge unmet need for autoantigen-specific therapy, without affecting the immune response against pathogens. This goal can be achieved by targeting autoantigen-specific T or B cells and by restoring self-tolerance by inducing tolerogenic antigen-presenting cells (APC) and the development of regulatory T (Treg) cells, for example, by using autoantigenic peptides bound to nanoparticles. Transferring in vitro manipulated autologous tolerogenic APC or autologous autoantigen-specific Treg cells to patients is the promising approach to develop cellular therapeutics. Most recently, chimeric autoantibody receptor T cells have been designed to specifically deplete autoreactive B cells. Limitations of these novel autoantigen-specific therapies will also be discussed.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Current therapies for autoimmune disorders often employ broad suppression of the immune system. Antigen-specific immunotherapy (ASI) seeks to overcome the side-effects of immunosuppressive therapy by specifically targeting only disease-related autoreactive T and B cells. Although it has been in development for several decades, ASI still is not in use clinically to treat autoimmunity. Novel ways to deliver antigen may be effective in inducing ASI. Here we review recent innovations in antigen delivery. RECENT FINDINGS New ways to deliver antigen include particle and nonparticle approaches. One main focus has been the targeting of antigen-presenting cells in a tolerogenic context. This technique often results in the induction and/or expansion of regulatory T cells, which has the potential to be effective against a complex, polyclonal immune response. SUMMARY Whether novel delivery approaches can help bring ASI into general clinical use for therapy of autoimmune diseases remains to be seen. However, preclinical work and early results from clinical trials using these new techniques show promising signs.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
16
|
Gan PY, Dick J, O’Sullivan KM, Oudin V, Cao Le A, Koo Yuk Cheong D, Shim R, Alikhan M, Kitching AR, Ooi JD, Holdsworth SR. Anti-CD20 mAb-Induced B Cell Apoptosis Generates T Cell Regulation of Experimental Myeloperoxidase ANCA-Associated Vasculitis. J Am Soc Nephrol 2021; 32:1071-1083. [PMID: 33789951 PMCID: PMC8259682 DOI: 10.1681/asn.2020060834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/31/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Myeloperoxidase ANCA-associated vasculitis is a major cause of ESKD. Efficacy of anti-CD20 mAb treatment was tested in a mouse model of the disease. METHODS MPO immunization induced anti-MPO autoimmunity, and a subnephritogenic dose of sheep anti-mouse GBM globulin triggered GN. RESULTS Anti-CD20 mAb treatment increased the numbers and immunomodulatory capacity of MPO-specific T regulatory cells (Tregs) and attenuated T cell-mediated and humoral anti-MPO autoimmunity and GN. Disabling of Tregs negated the therapeutic benefit of anti-CD20 treatment. The mechanism of enhancement of Treg activity could be attributed to anti-CD20 mAb effects on inducing B cell apoptosis. Administering anti-CD20 mAb-induced apoptotic splenocytes to mice developing anti-MPO GN was as effective as anti-CD20 mAb treatment in inducing Tregs and attenuating both anti-MPO autoimmunity and GN. A nonredundant role for splenic macrophages in mediating the anti-CD20 mAb-induced immunomodulation was demonstrated by showing that administration of anti-CD20 mAb ex vivo-induced apoptotic splenocytes to unmanipulated mice attenuated autoimmunity and GN, whereas deletion of splenic marginal zone macrophages prevented anti-CD20 mAb-induced immunomodulation and treatment efficacy. Six days after administering anti-CD20 mAb to mice with murine anti-MPO GN, cell-mediated anti-MPO responses and GN were attenuated, and Tregs were enhanced, but ANCA levels were unchanged, suggesting humoral autoimmunity was redundant at this time point. CONCLUSIONS Collectively, these data suggest that, as well as reducing humoral autoimmunity, anti-CD20 mAb more rapidly induces protective anti-MPO Treg-mediated immunomodulation by splenic processing of anti-CD20-induced apoptotic B cells.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia,Department of Immunology, Monash Medical Center, Clayton, Victoria, Australia
| | - Jonathan Dick
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Kim M. O’Sullivan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Virginie Oudin
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Anne Cao Le
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Daniel Koo Yuk Cheong
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Raymond Shim
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Maliha Alikhan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - A. Richard Kitching
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia,Department of Nephrology, Monash Medical Center, Clayton, Victoria, Australia,Department of Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Joshua D. Ooi
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen R. Holdsworth
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia,Department of Immunology, Monash Medical Center, Clayton, Victoria, Australia,Department of Nephrology, Monash Medical Center, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
18
|
Tran JQ, Grover D, Zhang M, Stapels M, Brennan R, Bangari DS, Piepenhagen PA, Roberts E, Oliva P, Zubair F, Vela JL, Richards SM, Joseph AM. Expansion of immature, nucleated red blood cells by transient low-dose methotrexate immune tolerance induction in mice. Clin Exp Immunol 2021; 203:409-423. [PMID: 33205401 PMCID: PMC7874831 DOI: 10.1111/cei.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
Biological treatments such as enzyme-replacement therapies (ERT) can generate anti-drug antibodies (ADA), which may reduce drug efficacy and impact patient safety and consequently led to research to mitigate ADA responses. Transient low-dose methotrexate (TLD-MTX) as a prophylactic ITI regimen, when administered concurrently with ERT, induces long-lived reduction of ADA to recombinant human alglucosidase alfa (rhGAA) in mice. In current clinical practice, a prophylactic ITI protocol that includes TLD-MTX, rituximab and intravenous immunoglobulin (optional), successfully induced lasting control of ADA to rhGAA in high-risk, cross-reactive immunological material (CRIM)-negative infantile-onset Pompe disease (IOPD) patients. More recently, evaluation of TLD-MTX demonstrated benefit in CRIM-positive IOPD patients. To more clearly understand the mechanism for the effectiveness of TLD-MTX, non-targeted transcriptional and proteomic screens were conducted and revealed up-regulation of erythropoiesis signatures. Confirmatory studies showed transiently larger spleens by weight, increased spleen cellularity and that following an initial reduction of mature red blood cells (RBCs) in the bone marrow and blood, a significant expansion of Ter-119+ CD71+ immature RBCs was observed in spleen and blood of mice. Histology sections revealed increased nucleated cells, including hematopoietic precursors, in the splenic red pulp of these mice. This study demonstrated that TLD-MTX induced a transient reduction of mature RBCs in the blood and immature RBCs in the bone marrow followed by significant enrichment of immature, nucleated RBCs in the spleen and blood during the time of immune tolerance induction, which suggested modulation of erythropoiesis may be associated with the induction of immune tolerance to rhGAA.
Collapse
Affiliation(s)
- J. Q. Tran
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - D. Grover
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - M. Zhang
- Sanofi Translational Sciences BioinformaticsCambridgeMAUSA
| | - M. Stapels
- Sanofi Biologics DevelopmentCambridgeMAUSA
| | | | | | | | - E. Roberts
- Sanofi Translational In Vivo ModelsCambridgeMAUSA
| | - P. Oliva
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - F. Zubair
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - J. L. Vela
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - S. M. Richards
- Sanofi Translational Medicine and Early DevelopmentCambridgeMAUSA
| | - A. M. Joseph
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| |
Collapse
|
19
|
Tajbakhsh A, Farahani N, Gheibihayat SM, Mirkhabbaz AM, Savardashtaki A, Hamblin MR, Mirzaei H. Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. Int Immunopharmacol 2020; 90:107177. [PMID: 33249046 DOI: 10.1016/j.intimp.2020.107177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Apoptotic cells are tolerogenic and can present self-antigens in the absence of inflammation, to antigen-presenting cells by the process of efferocytosis, resulting in anergy and depletion of immune effector cells. This tolerance is essential to maintain immune homeostasis and prevent systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Consequently, effective efferocytosis can result in the induction of immune tolerance mediated via triggering modulatory lymphocytes and anti-inflammatory responses. Furthermore, several distinct soluble factors, receptors and pathways have been found to be involved in the efferocytosis, which are able to regulate immune tolerance by lessening antigen presentation, inhibition of T-cell proliferation and induction of regulatory T-cells. Some newly developed nanotechnology-based approaches can induce antigen-specific immunological tolerance without any systemic immunosuppression. These strategies have been explored to reverse autoimmune responses induced against various protein antigens in different diseases. In this review, we describe some nanotechnology-based approaches for the maintenance of self-tolerance using the apoptotic cell clearance process (efferocytosis) that may be able to induce immune tolerance and treat autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
20
|
Loaiza Naranjo JD, Bergot AS, Buckle I, Hamilton-Williams EE. A Question of Tolerance-Antigen-Specific Immunotherapy for Type 1 Diabetes. Curr Diab Rep 2020; 20:70. [PMID: 33169191 DOI: 10.1007/s11892-020-01363-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Antigen-specific immunotherapy (ASI) is a long sought-after goal for type 1 diabetes (T1D), with the potential of greater long-term safety than non-specific immunotherapy. We review the most recent advances in identification of target islet epitopes, delivery platforms and the ongoing challenges. RECENT FINDINGS It is now recognised that human proinsulin contains a hotspot of epitopes targeted in people with T1D. Beta-cell neoantigens are also under investigation as ASI target epitopes. Consideration of the predicted HLA-specificity of the target antigen for subject selection is now being incorporated into trial design. Cell-free ASI approaches delivering antigen with or without additional immunomodulatory agents can induce antigen-specific regulatory T cell responses, including in patients and many novel nanoparticle-based platforms are under development. ASI for T1D is rapidly advancing with a number of modalities currently being trialled in patients and many more under development in preclinical models.
Collapse
Affiliation(s)
- Jeniffer D Loaiza Naranjo
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Irina Buckle
- Mater Research Institute UQ, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
21
|
Clough DW, King JL, Li F, Shea LD. Integration of Islet/Beta-Cell Transplants with Host Tissue Using Biomaterial Platforms. Endocrinology 2020; 161:bqaa156. [PMID: 32894299 PMCID: PMC8253249 DOI: 10.1210/endocr/bqaa156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Cell-based therapies are emerging for type I diabetes mellitus (T1D), an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, as a means to provide long-term restoration of glycemic control. Biomaterial scaffolds provide an opportunity to enhance the manufacturing and transplantation of islets or stem cell-derived β-cells. In contrast to encapsulation strategies that prevent host contact with the graft, recent approaches aim to integrate the transplant with the host to facilitate glucose sensing and insulin distribution, while also needing to modulate the immune response. Scaffolds can provide a supportive niche for cells either during the manufacturing process or following transplantation at extrahepatic sites. Scaffolds are being functionalized to deliver oxygen, angiogenic, anti-inflammatory, or trophic factors, and may facilitate cotransplantation of cells that can enhance engraftment or modulate immune responses. This local engineering of the transplant environment can complement systemic approaches for maximizing β-cell function or modulating immune responses leading to rejection. This review discusses the various scaffold platforms and design parameters that have been identified for the manufacture of human pluripotent stem cell-derived β-cells, and the transplantation of islets/β-cells to maintain normal blood glucose levels.
Collapse
Affiliation(s)
- Daniel W Clough
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
23
|
Passerini L, Gregori S. Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Front Immunol 2020; 11:2194. [PMID: 33133064 PMCID: PMC7550404 DOI: 10.3389/fimmu.2020.02194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
The development of novel approaches to control unwanted immune responses represents an ambitious goal in the management of a number of clinical conditions, including autoimmunity, autoinflammatory diseases, allergies and replacement therapies, in which the T cell response to self or non-harmful antigens threatens the physiological function of tissues and organs. Current treatments for these conditions rely on the use of non-specific immunosuppressive agents and supportive therapies, which may efficiently dampen inflammation and compensate for organ dysfunction, but they require lifelong treatments not devoid of side effects. These limitations induced researchers to undertake the development of definitive and specific solutions to these disorders: the underlying principle of the novel approaches relies on the idea that empowering the tolerogenic arm of the immune system would restore the immune homeostasis and control the disease. Researchers effort resulted in the development of cell-free strategies, including gene vaccination, protein-based approaches and nanoparticles, and an increasing number of clinical trials tested the ability of adoptive transfer of regulatory cells, including T and myeloid cells. Here we will provide an overview of the most promising approaches currently under development, and we will discuss their potential advantages and limitations. The field is teaching us that the success of these strategies depends primarily on our ability to dampen antigen-specific responses without impairing protective immunity, and to manipulate directly or indirectly the immunomodulatory properties of antigen presenting cells, the ultimate in vivo mediators of tolerance.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Reversal of Hyperglycemia and Suppression of Type 1 Diabetes in the NOD Mouse with Apoptotic DNA Immunotherapy™ (ADi™), ADi-100. Biomedicines 2020; 8:biomedicines8030053. [PMID: 32143316 PMCID: PMC7148463 DOI: 10.3390/biomedicines8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The antigen-specific apoptotic DNA immunotherapeutic, ADi-100, is designed to suppress type 1 diabetes and consists of two DNA plasmids encoding genetic sequences of the apoptosis-inducing molecule, BAX, and the secreted form of the autoantigen, glutamic acid decarboxylase 65, that is CpG hyper-methylated to avoid inflammatory signaling (msGAD55). Upon a four-day treatment with ADi-100 of young female non-obese diabetic (NOD) mice, the frequency of various tolerogenic dendritic cell populations increased in draining lymph nodes; these cells lost the capacity to stimulate glutamic acid decarboxylase (GAD)-specific CD4+ T lymphocytes and were associated with the previously demonstrated enhancement of GAD-specific regulatory T cells. The efficacy of two ADi-100 formulations containing different proportions of BAX and msGAD55, 1:4 (10/40 µg) and 1:2 (17/33 µg), was evaluated in mildly hyperglycemic pre-diabetic NOD female mice. Both formulations suppressed the incidence of diabetes by 80% in an antigen-specific manner, while all untreated mice developed diabetes. However, treatment of pre-diabetic mice with significantly higher hyperglycemia, denoting progressive disease, showed that ADi-100 1:2 strongly suppressed diabetes incidence by 80% whereas the ADi-100 1:4 was less effective (50%). As an antigen-specific monotherapy, ADi-100 is highly efficacious in reversing elevated hyperglycemia to prevent diabetes, in which increasing apoptosis-inducing BAX content is a promising immune tolerance feature.
Collapse
|
26
|
Abdelbary M, Rafikova O, Gillis EE, Musall JB, Baban B, O'Connor PM, Brands MW, Sullivan JC. Necrosis Contributes to the Development of Hypertension in Male, but Not Female, Spontaneously Hypertensive Rats. Hypertension 2019; 74:1524-1531. [PMID: 31656095 DOI: 10.1161/hypertensionaha.119.13477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Necrosis is a pathological form of cell death that induces an inflammatory response, and immune cell activation contributes to the development and maintenance of hypertension. Necrosis was measured in kidney, spleen, and aorta of 12- to 13-week-old male and female SHRs (spontaneously hypertensive rats); male SHRs had greater renal necrotic cell death than female SHRs. Because male SHRs have a higher blood pressure (BP) and a more proinflammatory T-cell profile than female SHRs, the current studies tested the hypothesis that greater necrotic cell death in male SHRs exacerbates increases in BP and contributes to the proinflammatory T-cell profile. Male and female SHRs were randomized to receive vehicle or Necrox-5-a cell permeable inhibitor of necrosis-from 6 to 12 weeks of age or from 11 to 13 weeks of age. In both studies, Necrox-5 decreased renal necrosis and abolished the sex difference. Treatment with Necrox-5 beginning at 6 weeks of age attenuated maturation-induced increases in BP in male SHR; BP in female SHR was not altered by Necrox-5 treatment. Necrox-5 decreased proinflammatory renal T cells in both sexes, although sex differences were maintained. Administration of Necrox-5 for 2 weeks in SHR with established hypertension resulted in a small but significant decrease in BP in males with no effect in females. These results suggest that greater necrotic cell death in male SHR exacerbates maturation-induced increases in BP with age contributing to sex differences in BP. Moreover, although necrosis is proinflammatory, it is unlikely to explain sex differences in the renal T-cell profile.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| | - Olga Rafikova
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| | - Ellen E Gillis
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| | - Jacqueline B Musall
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| | - Babak Baban
- Department of Oral Biology (B.B.), Augusta University
| | - Paul M O'Connor
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| | - Michael W Brands
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| | - Jennifer C Sullivan
- From the Department of Physiology, Medical College of Georgia (M.A., O.R., E.E.G., J.B.M., P.O., M.W.B., J.C.S.), Augusta University
| |
Collapse
|
27
|
Horwitz DA, Fahmy TM, Piccirillo CA, La Cava A. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases. Trends Immunol 2019; 40:888-908. [PMID: 31601519 DOI: 10.1016/j.it.2019.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
During homeostasis, interactions between tolerogenic dendritic cells (DCs), self-reactive T cells, and T regulatory cells (Tregs) contribute to maintaining mammalian immune tolerance. In response to infection, immunogenic DCs promote the generation of proinflammatory effector T cell subsets. When complex homeostatic mechanisms maintaining the balance between regulatory and effector functions become impaired, autoimmune diseases can develop. We discuss some of the newest advances on the mechanisms of physiopathologic homeostasis that can be employed to develop strategies to restore a dysregulated immune equilibrium. Some of these designs are based on selectively activating regulators of immunity and inflammation instead of broadly suppressing these processes. Promising approaches include the use of nanoparticles (NPs) to restore Treg control over self-reactive cells, aiming to achieve long-term disease remission, and potentially to prevent autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- David A Horwitz
- General Nanotherapeutics, LLC, Santa Monica, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Tarek M Fahmy
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Antonio La Cava
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
28
|
Rizzuto MA, Salvioni L, Rotem R, Colombo M, Zanoni I, Granucci F, Prosperi D. Are nanotechnological approaches the future of treating inflammatory diseases? Nanomedicine (Lond) 2019; 14:2379-2390. [PMID: 31414616 DOI: 10.2217/nnm-2019-0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The current treatments for chronic inflammatory diseases cause severe side effects due to nonspecific drug accumulation. Nanotechnology opens the way to new therapeutic strategies that exploit the ability of immune cells, and especially of phagocytes, to internalize nanoparticles. The cellular uptake of nanoparticles requires specific interactions and is affected by the chemical and physical properties of the carriers. Therefore, optimizing these properties is crucial for designing nanodrugs for immunotherapy. In perspective, we discuss the nanoparticle-based approaches that have been proposed to induce tolerance in autoimmune disorders and lessen the symptoms of inflammatory diseases.
Collapse
Affiliation(s)
- Maria Antonietta Rizzuto
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Rany Rotem
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Miriam Colombo
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Ivan Zanoni
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.,Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Davide Prosperi
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.,Nanomedicine Laboratory, Surgery Department, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
29
|
Gan PY, Godfrey AS, Ooi JD, O'Sullivan KM, Oudin V, Kitching AR, Holdsworth SR. Apoptotic Cell-Induced, Antigen-Specific Immunoregulation to Treat Experimental Antimyeloperoxidase GN. J Am Soc Nephrol 2019; 30:1365-1374. [PMID: 31337690 DOI: 10.1681/asn.2018090955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myeloperoxidase (MPO)-ANCA-associated GN is a significant cause of renal failure. Manipulating autoimmunity by inducing regulatory T cells is potentially a more specific and safer therapeutic option than conventional immunosuppression. METHODS To generate MPO-specific regulatory T cells, we used a modified protein-conjugating compound, 1-ethyl-3-(3'dimethylaminopropyl)-carbodiimide (ECDI), to couple the immunodominant MPO peptide (MPO409-428) or a control ovalbumin peptide (OVA323-339) to splenocytes and induced apoptosis in the conjugated cells. We then administered MPO- and OVA-conjugated apoptotic splenocytes (MPO-Sps and OVA-Sps, respectively) to mice and compared their effects on development and severity of anti-MPO GN. We induced autoimmunity to MPO by immunizing mice with MPO in adjuvant; to trigger GN, we used low-dose antiglomerular basement membrane globulin, which transiently recruits neutrophils that deposit MPO in glomeruli. We also compared the effects of transferring CD4+ T cells from mice treated with MPO-Sp or OVA-Sp to recipient mice with established anti-MPO autoimmunity. RESULTS MPO-Sp but not OVA-Sp administration increased MPO-specific, peripherally derived CD4+Foxp3- type 1 regulatory T cells and reduced anti-MPO autoimmunity and GN. However, in mice depleted of regulatory T cells, MPO-Sp administration did not protect from anti-MPO autoimmunity or GN. Mice with established anti-MPO autoimmunity that received CD4+ T cells transferred from mice treated with MPO-Sp (but not CD4+ T cells transferred from mice treated with OVA-Sp) were protected from anti-MPO autoimmunity and GN, confirming the induction of therapeutic antigen-specific regulatory T cells. CONCLUSIONS These findings in a mouse model indicate that administering apoptotic splenocytes conjugated with the immunodominant MPO peptide suppresses anti-MPO GN by inducing antigen-specific tolerance.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of .,Immunology
| | - Andrea S Godfrey
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Joshua D Ooi
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Kim-Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Virginie Oudin
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - A Richard Kitching
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Nephrology, and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Immunology.,Nephrology, and
| |
Collapse
|
30
|
Oakes RS, Froimchuk E, Jewell CM. Engineering Biomaterials to Direct Innate Immunity. ADVANCED THERAPEUTICS 2019; 2:1800157. [PMID: 31236439 PMCID: PMC6590522 DOI: 10.1002/adtp.201800157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Small alterations during early stages of innate immune response can drive large changes in how adaptive immune cells develop and function during protective immunity or disease. Controlling these events creates exciting potential in development of immune engineered vaccines and therapeutics. This progress report discusses recent biomaterial technologies exploiting innate immunity to dissect immune function and to design new vaccines and immunotherapies for infectious diseases, cancer, and autoimmunity. Across these examples, an important idea is the possibility to co-opt innate immune mechanisms to enhance immunity during infection and cancer. During inflammatory or autoimmune disease, some of these same innate immune mechanisms can be manipulated in different ways to control excess inflammation by promotion of immunological tolerance.
Collapse
Affiliation(s)
- R. S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - E. Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - C. M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, Maryland 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
32
|
Zhang L, DeBerge M, Wang J, Dangi A, Zhang X, Schroth S, Zhang Z, Thorp E, Luo X. Receptor tyrosine kinase MerTK suppresses an allogenic type I IFN response to promote transplant tolerance. Am J Transplant 2019; 19:674-685. [PMID: 30133807 PMCID: PMC6393931 DOI: 10.1111/ajt.15087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/25/2023]
Abstract
Recipient infusion of donor apoptotic cells is an emerging strategy for inducing robust transplantation tolerance. Daily clearance of billions of self-apoptotic cells relies on homeostatic engagement of phagocytic receptors, in particular, receptors of the tyrosine kinase family TAM (Tyro3, Axl, and MerTK), to maintain self-tolerance. However, an outstanding question is if allogeneic apoptotic cells trigger the same receptor system for inducing allogeneic tolerance. Here, we employed allogeneic apoptotic splenocytes and discovered that the efferocytic receptor MerTK on recipient phagocytes is a critical mediator for transplantation tolerance induced by this strategy. Our findings indicate that the tolerogenic properties of allogeneic apoptotic splenocytes require MerTK transmission of intracellular signaling to suppress the production of inflammatory cytokine interferon α (IFN-α). We further demonstrate that MerTK is crucial for subsequent expansion of myeloid-derived suppressor cells and for promoting their immunomodulatory function, including maintaining graft-infiltrating CD4+ CD25+ Foxp3+ regulatory T cells. Consequently, recipient MerTK deficiency resulted in failure of tolerance by donor apoptotic cells, and this failure could be effectively rescued by IFN-α receptor blockade. These findings underscore the importance of the efferocytic receptor MerTK in mediating transplantation tolerance by donor apoptotic cells and implicate MerTK agonism as a promising target for promoting transplantation tolerance.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States
| | - Mathew DeBerge
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Jiaojin Wang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha Schroth
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Edward Thorp
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States,Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
33
|
Serra P, Santamaria P. Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol 2019; 37:238-251. [PMID: 30804535 DOI: 10.1038/s41587-019-0015-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The main function of the immune system in health is to protect the host from infection by microbes and parasites. Because immune responses to nonself bear the risk of unleashing accidental immunity against self, evolution has endowed the immune system with central and peripheral mechanisms of tolerance, including regulatory T and B cells. Although the past two decades have witnessed the successful clinical translation of a whole host of novel therapies for the treatment of chronic inflammation, the development of antigen-based approaches capable of selectively blunting autoimmune inflammation without impairing normal immunity has remained elusive. Earlier autoantigen-specific approaches employing peptides or whole antigens have evolved into strategies that seek to preferentially deliver these molecules to autoreactive T cells either indirectly, via antigen-presenting cells, or directly, via major histocompatibility complex molecules, in ways intended to promote clonal deletion and/or immunoregulation. The disease specificity, mechanistic underpinnings, developability and translational potential of many of these strategies remain unclear.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain. .,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Bonnefoy F, Gauthier T, Vallion R, Martin-Rodriguez O, Missey A, Daoui A, Valmary-Degano S, Saas P, Couturier M, Perruche S. Factors Produced by Macrophages Eliminating Apoptotic Cells Demonstrate Pro-Resolutive Properties and Terminate Ongoing Inflammation. Front Immunol 2018; 9:2586. [PMID: 30542342 PMCID: PMC6277856 DOI: 10.3389/fimmu.2018.02586] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022] Open
Abstract
Unresolved inflammation is a common feature in the pathogenesis of chronic inflammatory/autoimmune diseases. The factors produced by macrophages eliminating apoptotic cells during resolution are crucial to terminate inflammation, and for subsequent tissue healing. We demonstrated here that the factors produced by macrophages eliminating apoptotic cells were sufficient to reboot the resolution of inflammation in vivo, and thus definitively terminated ongoing chronic inflammation. These factors were called SuperMApo and revealed pro-resolutive properties and accelerated acute inflammation resolution, as attested by both increased phagocytic capacities of macrophages and enhanced thioglycollate-induced peritonitis resolution. Activated antigen-presenting cells exposed to SuperMApo accelerated their return to homeostasis and demonstrated pro-regulatory T cell properties. In mice with ongoing collagen-induced arthritis, SuperMApo injection resolved and definitively terminated chronic inflammation. The same pro-resolving properties were observed in human settings in addition to xenogeneic colitis and graft-vs.-host disease modulation, highlighting SuperMApo as a new therapeutic opportunity to circumvent inflammatory diseases.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Gauthier
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Romain Vallion
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Omayra Martin-Rodriguez
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Anais Missey
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Anna Daoui
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | | | - Philippe Saas
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Mélanie Couturier
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Sylvain Perruche
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,MED'INN'Pharma, Besançon, France
| |
Collapse
|
35
|
Pearson RM, Podojil JR, Shea LD, King NJC, Miller SD, Getts DR. Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:282-291. [PMID: 30352312 DOI: 10.1016/j.nano.2018.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases, such as celiac disease, multiple sclerosis, and type 1 diabetes, are leading causes of morbidity and mortality in the United States. In these disease states, immune regulatory mechanisms fail that result in T and B cell-mediated destruction of self-tissues. The known role of T cells in mediating autoimmune diseases has led to the emergence of numerous therapies aimed at inactivating T cells, however successful 'tolerance-inducing' strategies have not yet emerged for approved standard-of-care clinical use. In this review, we describe relevant examples of antigen-specific tolerance approaches that have been applied in clinical trials for human diseases. Furthermore, we describe the evolution of biomaterial approaches from cell-based therapies to induce immune tolerance with a focus on the Tolerogenic Immune-Modifying nanoParticle (TIMP) platform. The TIMP platform can be designed to treat various autoimmune conditions and is currently in clinical trials testing its ability to reverse celiac disease.
Collapse
Affiliation(s)
- Ryan M Pearson
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph R Podojil
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lonnie D Shea
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J C King
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Bosch Institute and Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences Sydney Medical School, University of Sydney, Australia
| | - Stephen D Miller
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel R Getts
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
36
|
New Answers to Old Conundrums: What Antibodies, Exosomes and Inflammasomes Bring to the Conversation. Canadian National Transplant Research Program International Summit Report. Transplantation 2018; 102:209-214. [PMID: 28731910 PMCID: PMC5802265 DOI: 10.1097/tp.0000000000001872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibody-mediated injury is a major cause of allograft dysfunction and loss. Antibodies to ABH(O) blood group antigens are classic mediators of ABO-incompatible graft rejection, whereas donor-specific anti-HLA antibodies and, more recently, autoantibodies are appreciated as important contributors to allograft inflammation and dysfunction. In August 2016, the International Summit of the Canadian National Transplant Research Program focused on recent advances in the field of antibody-mediated rejection. Here, we describe work presented and discussed at the meeting, with a focus on 3 major themes: the importance of (1) natural antibodies and autoantibodies, (2) tissue injury-derived exosomes and autoimmunity, (3) inflammasome activation and innate immune responses in regulating allograft inflammation and dysfunction. Finally, we explore novel areas of therapeutic intervention that have recently emerged from these 3 major and overlapping fields of transplantation research.
Collapse
|
37
|
Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology 2018; 112:63-74. [DOI: 10.1016/j.theriogenology.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
|
38
|
Serra P, Santamaria P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur J Immunol 2018; 48:751-756. [PMID: 29427438 DOI: 10.1002/eji.201747059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are caused by antigenically complex immune responses of the adaptive and innate immune system against specific cells, tissues or organs. Antigen-specific approaches for induction of immune tolerance in autoimmunity, based on the use of antigenic peptides or proteins, have failed to deliver the desired therapeutic results in clinical trials. These approaches, which are largely relying on triggering clonal anergy and/or deletion of defined autoreactive specificities, do not address the overwhelming antigenic, molecular, and cellular complexity of most autoimmune diseases, which involve various immune cells and ever-growing repertoires of antigenic epitopes on numerous self-antigens. Advances in the field of regulatory T-cell (Treg) biology have suggested that Treg cells might be able to afford dominant tolerance provided they are properly activated and expanded in vivo. More recently, nanotechnology has introduced novel technical advances capable of modulating immune responses. Here, we review nanoparticle-based approaches designed to induce immune tolerance, ranging from approaches that primarily trigger clonal T-cell anergy or deletion to approaches that trigger Treg cell formation and expansion from autoreactive T-cell effectors. We will also highlight the therapeutic potential and positive outcomes in numerous experimental models of autoimmunity.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Abstract
Antigen-specific immune tolerance has been a long-standing goal for immunotherapy for the treatment of autoimmune diseases and allergies and for the prevention of allograft rejection and anti-drug antibodies directed against biologic therapies. Nanoparticles have emerged as powerful tools to initiate and modulate immune responses due to their inherent capacity to target antigen-presenting cells (APCs) and deliver coordinated signals that can elicit an antigen-specific immune response. A wide range of strategies have been described to create tolerogenic nanoparticles (tNPs) that fall into three broad categories. One strategy includes tNPs that provide antigen alone to harness natural tolerogenic processes and environments, such as presentation of antigen in the absence of costimulatory signals, oral tolerance, the tolerogenic environment of the liver, and apoptotic cell death. A second strategy includes tNPs that carry antigen and simultaneously target tolerogenic receptors, such as pro-tolerogenic cytokine receptors, aryl hydrocarbon receptor, FAS receptor, and the CD22 inhibitory receptor. A third strategy includes tNPs that carry a payload of tolerogenic pharmacological agents that can “lock” APCs into a developmental or metabolic state that favors tolerogenic presentation of antigens. These diverse strategies have led to the development of tNPs that are capable of inducing antigen-specific immunological tolerance, not just immunosuppression, in animal models. These novel tNP technologies herald a promising approach to specifically prevent and treat unwanted immune reactions in humans. The first tNP, SEL-212, a biodegradable synthetic vaccine particle encapsulating rapamycin, has reached the clinic and is currently in Phase 2 clinical trials.
Collapse
|
40
|
Baekkeskov S, Hubbell JA, Phelps EA. Bioengineering strategies for inducing tolerance in autoimmune diabetes. Adv Drug Deliv Rev 2017. [PMID: 28625830 DOI: 10.1016/j.addr.2017.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease marked by the destruction of insulin-producing beta cells in the pancreatic islets. Strategies to delay onset or prevent the autoimmune recognition of beta cell antigens or T cell-mediated killing of beta cells have mainly focused on systemic immunomodulation and antigen-specific immunotherapy. To bridge the fields of type 1 diabetes immunology and biomaterials engineering, this article will review recent trends in the etiology of type 1 diabetes immunopathology and will focus on the contributions of emerging bioengineered strategies in the fight against beta cell autoimmunity in type 1 diabetes.
Collapse
Affiliation(s)
- Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; Departments of Medicine and Microbiology/Immunology, Diabetes Center, 513 Parnassus Ave, 20159, Box 0534, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60615, USA
| | - Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
42
|
Elbadry MI, Espinoza JL, Nakao S. Induced pluripotent stem cell technology: A window for studying the pathogenesis of acquired aplastic anemia and possible applications. Exp Hematol 2017; 49:9-18. [DOI: 10.1016/j.exphem.2016.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023]
|
43
|
|
44
|
Mingomataj EÇ, Bakiri AH. Regulator Versus Effector Paradigm: Interleukin-10 as Indicator of the Switching Response. Clin Rev Allergy Immunol 2016; 50:97-113. [PMID: 26450621 DOI: 10.1007/s12016-015-8514-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interleukin-10 (IL-10) is generally considered as the most important cytokine with anti-inflammatory properties and one of the key cytokines preventing inflammation-mediated tissue damage. In this respect, IL-10 producing cells play a crucial role in the outcome of infections, allergy, autoimmune reactions, tumor development, and transplant tolerance. Based on recent findings with regard to the mentioned clinical conditions, this review attempts to shed some light on the IL-10 functions, considering this cytokine as inherent inducer of the switching immunity. While acute infections and vaccinations are associated by IL-10 enhanced during few weeks, chronic parasitoses, tumor diseases, allergen-specific immunotherapy, transplants, and use of immune-suppressor drugs show an increased IL-10 level along months or years. With regard to autoimmune pathologies, the IL-10 increase is prevalently observed during early stages, whereas the successive stages are characterized by reaching of immune equilibrium independently to disease's activity. Together, these findings indicate that IL-10 is mainly produced during transient immune conditions and the persistent IL-10-related effect is the indication/prediction (and maybe effectuation) of the switching immunity. Actual knowledge emphasizes that any manipulation of the IL-10 response for treatment purposes should be considered very cautiously due to its potential hazards to the immune system. Probably, the IL-10 as potential switcher of immunity response should be used in association with co-stimulatory immune effectors that are necessary to determine the appropriate deviation during treatment of respective pathologies. Hopefully, further findings would open new avenues to study the biology of this "master switch" cytokine and its therapeutic potential.
Collapse
Affiliation(s)
- Ervin Ç Mingomataj
- Department of Allergy & Clinical Immunology, "Mother Theresa" School of Medicine, Tirana, Albania. .,Faculty of Technical Medical Sciences, Department of Preclinical Disciplines, University of Medicine, Tirana, Albania.
| | - Alketa H Bakiri
- Hygeia Hospital Tirana, Outpatients Service, Allergology Consulting Room, Tirana, Albania.,Faculty of Medical Sciences, Department of Preclinical Disciplines, Albanian University, Tirana, Albania
| |
Collapse
|
45
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
46
|
Knob CD, Silva M, Gasparoto TH, Oliveira CE, Amôr NG, Arakawa NS, Costa FB, Campanelli AP. Effects of budlein A on human neutrophils and lymphocytes. J Appl Oral Sci 2016; 24:271-7. [PMID: 27383709 PMCID: PMC5022217 DOI: 10.1590/1678-775720150540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE In this study, we evaluated whether budlein A modulates the activation of innate and adaptive immune cells such as neutrophils and lymphocytes. MATERIAL AND METHODS Our research group has investigated several plant species and several compounds have been isolated, identified, and their medical potential evaluated. Budlein A is a SL isolated from the species Aldama buddlejiformis and A. robusta (Asteraceae) and shows anti-inflammatory and anti-nociceptive activities. Advances in understanding how plant-derived substances modulate the activation of innate and adaptive immune cells have led to the development of new therapies for human diseases. RESULTS Budlein A inhibited MPO activity, IL-6, CXCL8, IL-10, and IL-12 production and induces neutrophil apoptosis. In contrast, budlein A inhibited lymphocyte proliferation and IL-2, IL-10, TGF-β, and IFN-γ production, but it did not lead to cell death. CONCLUSIONS Collectively, our results indicate that budlein A shows distinct immunomodulatory effects on immune cells.
Collapse
Affiliation(s)
- Carollinie Dias Knob
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Milena Silva
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Thaís Helena Gasparoto
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Carine Ervolino Oliveira
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nádia Ghinelli Amôr
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | - Fernando Batista Costa
- - Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Farmacognosia, Ribeirão Preto, SP, Brasil
| | - Ana Paula Campanelli
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
47
|
Northrup L, Christopher MA, Sullivan BP, Berkland C. Combining antigen and immunomodulators: Emerging trends in antigen-specific immunotherapy for autoimmunity. Adv Drug Deliv Rev 2016; 98:86-98. [PMID: 26546466 DOI: 10.1016/j.addr.2015.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A majority of current therapies for autoimmune diseases are general immunosuppressants, which can compromise patient response to opportunistic infection and lead to adverse events. Using antigen-specific immunotherapy (ASIT) to selectively disarm autoimmune diseases, without suppressing the global immune response, would be a transformative therapy for patients. ASIT has been used historically in allergy hyposensitization therapy to induce tolerance to an allergen. Similar strategies to induce immune tolerance toward autoantigens responsible for autoimmune disease have been attempted but have yielded limited clinical success. Recent studies of ASIT for autoimmunity have explored combination therapy, combining the disease-causing autoantigen with an immunomodulatory compound. ASIT combination therapy may direct the immune response in an antigen-specific manner, potentially reversing the root cause of autoimmunity while limiting side effects. This review analyzes recent advances in ASIT applied to autoimmune diseases, emphasizing current combination therapies and future strategies.
Collapse
Affiliation(s)
- Laura Northrup
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Matthew A Christopher
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Bradley P Sullivan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
48
|
Abstract
The undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Division of Nephrology and Hypertension.,Comprehensive Cancer Center, and
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; ,
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
49
|
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ. The 20
S
proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 2015; 7:318ra200. [DOI: 10.1126/scitranslmed.aac9816] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Sande OJ, Karim AF, Li Q, Ding X, Harding CV, Rojas RE, Boom WH. Mannose-Capped Lipoarabinomannan from Mycobacterium tuberculosis Induces CD4+ T Cell Anergy via GRAIL. THE JOURNAL OF IMMUNOLOGY 2015; 196:691-702. [PMID: 26667170 DOI: 10.4049/jimmunol.1500710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/06/2015] [Indexed: 01/20/2023]
Abstract
Mycobacterium tuberculosis cell wall glycolipid, lipoarabinomannan, can inhibit CD4(+) T cell activation by downregulating the phosphorylation of key proximal TCR signaling molecules: Lck, CD3ζ, ZAP70, and LAT. Inhibition of proximal TCR signaling can result in T cell anergy, in which T cells are inactivated following an Ag encounter, yet remain viable and hyporesponsive. We tested whether mannose-capped lipoarabinomannan (LAM)-induced inhibition of CD4(+) T cell activation resulted in CD4(+) T cell anergy. The presence of LAM during primary stimulation of P25 TCR-transgenic murine CD4(+) T cells with M. tuberculosis Ag85B peptide resulted in decreased proliferation and IL-2 production. P25 TCR-transgenic CD4(+) T cells primed in the presence of LAM also exhibited decreased response upon restimulation with Ag85B. The T cell anergic state persisted after the removal of LAM. Hyporesponsiveness to restimulation was not due to apoptosis, generation of Foxp3-positive regulatory T cells, or inhibitory cytokines. Acquisition of the anergic phenotype correlated with upregulation of gene related to anergy in lymphocytes (GRAIL) protein in CD4(+) T cells. Inhibition of human CD4(+) T cell activation by LAM also was associated with increased GRAIL expression. Small interfering RNA-mediated knockdown of GRAIL before LAM treatment abrogated LAM-induced hyporesponsiveness. In addition, exogenous IL-2 reversed defective proliferation by downregulating GRAIL expression. These results demonstrate that LAM upregulates GRAIL to induce anergy in Ag-reactive CD4(+) T cells. Induction of CD4(+) T cell anergy by LAM may represent one mechanism by which M. tuberculosis evades T cell recognition.
Collapse
Affiliation(s)
- Obondo J Sande
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106; Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Ahmad F Karim
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106; Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Qing Li
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Xuedong Ding
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106; Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - Clifford V Harding
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Roxana E Rojas
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106; Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and
| | - W Henry Boom
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106; Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; and Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|