1
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
4
|
Gatti DM, Gauthier CM, Moeller BE, FitzPatrick RD, Kennedy MHE, Pluzhnikova V, Conway KME, Smazynski J, Chow RL, Reynolds LA. MHCII+CD80+ thymic eosinophils increase in abundance during neonatal development in mice and their accumulation is microbiota dependent. J Leukoc Biol 2023; 114:223-236. [PMID: 37227004 DOI: 10.1093/jleuko/qiad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Eosinophils are present in the thymus of mammals, yet their function at this site during homeostatic development is unknown. We used flow cytometry to determine the abundance and phenotype of eosinophils (here defined as SSchigh SiglecF+ CD11b+ CD45+ cells) in the thymus of mice during the neonatal period, the later postnatal period, and into adulthood. We show that both the total number of thymic eosinophils and their frequency among leukocytes increase over the first 2 wk of life and that their accumulation in the thymus is dependent on the presence of an intact bacterial microbiota. We report that thymic eosinophils express the interleukin-5 receptor (CD125), CD80, and IDO, and that subsets of thymic eosinophils express CD11c and major histocompatibility complex II (MHCII). We found that the frequency of MHCII-expressing thymic eosinophils increases over the first 2 wk of life, and that during this early-life period the highest frequency of MHCII-expressing thymic eosinophils is located in the inner medullary region. These data suggest a temporal and microbiota-dependent regulation of eosinophil abundance and functional capabilities in the thymus.
Collapse
Affiliation(s)
- Dominique M Gatti
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Courtney M Gauthier
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Mia H E Kennedy
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Victoria Pluzhnikova
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Kate M E Conway
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Julian Smazynski
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
- Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, British Columbia, V8R 6VSCanada
| | - Robert L Chow
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
5
|
Antigen-presenting T cells provide critical B7 co-stimulation for thymic iNKT cell development via CD28-dependent trogocytosis. Cell Rep 2022; 41:111731. [PMID: 36450247 PMCID: PMC9805342 DOI: 10.1016/j.celrep.2022.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Invariant natural killer T (iNKT) cell development in the thymus depends on T cell receptor recognition of CD1d ligand on CD4/CD8 double-positive thymocytes. We previously reported that B7-CD28 co-stimulation is required for thymic iNKT cell development, but the cellular and molecular mechanisms underlying this co-stimulatory requirement are not understood. Here we report that CD28 expression on CD1d-expressing antigen-presenting T cells is required for thymic iNKT cell development. Mechanistically, antigen-presenting T cells provide co-stimulation through an unconventional mechanism, acquiring B7 molecules via CD28-dependent trogocytosis from B7-expressing thymic epithelial cells, dendritic cells, and B cells and providing critical B7 co-stimulation to developing iNKT cells. Thus, the present study demonstrates a mechanism of B7 co-stimulation in thymic T cell development by antigen-presenting T cells.
Collapse
|
6
|
Liu P, Li Y, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153:113513. [DOI: 10.1016/j.biopha.2022.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
7
|
Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O'Connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα + dendritic cells to promote clonal deletion. Nat Immunol 2022; 23:1042-1051. [PMID: 35637352 PMCID: PMC10037932 DOI: 10.1038/s41590-022-01218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The thymus contains a diversity of dendritic cells (DCs) that exist in defined locations and have different antigen-processing and -presenting features. This suggests that they play nonredundant roles in mediating thymocyte selection. In an effort to eliminate SIRPα+ classic DC2 subsets, we discovered that a substantial proportion expresses the surface lectin, CD301b, in the thymus. These cells resemble the CD301b+ type 2 immune response promoting DCs that are present in the skin-draining lymph nodes. Transcriptional and phenotypic comparison to other DC subsets in the thymus revealed that thymic CD301b+ cDCs represent an activated state that exhibits enhanced antigen processing and presentation. Furthermore, a CD301b+ cDC2 subset demonstrated a type 2 cytokine signature and required steady-state interleukin-4 receptor signaling. Selective ablation of CD301b+ cDC2 subsets impaired clonal deletion without affecting regulatory T cells (Treg cells). The T cell receptor α repertoire sequencing confirmed that a cDC2 subset promotes deletion of conventional T cells with minimal effect on Treg cell selection. Together, these findings suggest that cytokine-induced activation of DCs in the thymus substantially enforces central tolerance.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Katherine M Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lily Qian
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar C Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Abstract
A high diversity of αβ T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.
Collapse
Affiliation(s)
- Magali Irla
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France;
| |
Collapse
|
9
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Dong M, Chang J, Lebel MÈ, Gervais N, Fournier M, Mallet Gauthier È, Suh WK, Melichar HJ. The ICOS-ICOSL pathway tunes thymic selection. Immunol Cell Biol 2021; 100:205-217. [PMID: 34962663 PMCID: PMC9304562 DOI: 10.1111/imcb.12520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Negative selection of developing T cells plays a significant role in T cell tolerance to self-antigen. This process relies on thymic antigen presenting cells which express both self-antigens as well as co-signaling molecules. Inducible T cell costimulator (ICOS) belongs to the CD28 family of co-signaling molecules and binds to ICOS ligand (ICOSL). The ICOS signaling pathway plays important roles in shaping the immune response to infections, but its role in central tolerance is less well understood. Here we show that ICOSL is expressed by subsets of thymic dendritic cells and medullary thymic epithelial cells as well as thymic B cells. ICOS expression is upregulated as T cells mature in the thymus and correlates with T cell receptor signal strength during thymic selection. We also provide evidence of a role for ICOS signaling in mediating negative selection. Our findings suggest that ICOS may fine-tune T cell receptor signals during thymic selection contributing to the generation of a tolerant T cell population.
Collapse
Affiliation(s)
- Mengqi Dong
- Département de microbiologie, Université de Montréal, infectiologie et immunologie, Montréal, Québec, H3T 1J4, Canada.,Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Jinsam Chang
- Institut de recherches cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Noémie Gervais
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Ève Mallet Gauthier
- Département de microbiologie, Université de Montréal, infectiologie et immunologie, Montréal, Québec, H3T 1J4, Canada.,Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Woong-Kyung Suh
- Département de microbiologie, Université de Montréal, infectiologie et immunologie, Montréal, Québec, H3T 1J4, Canada.,Institut de recherches cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada.,Département de médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
11
|
Haunerdinger V, Moccia MD, Opitz L, Vavassori S, Dave H, Hauri-Hohl MM. Novel Combination of Surface Markers for the Reliable and Comprehensive Identification of Human Thymic Epithelial Cells by Flow Cytometry: Quantitation and Transcriptional Characterization of Thymic Stroma in a Pediatric Cohort. Front Immunol 2021; 12:740047. [PMID: 34659232 PMCID: PMC8514761 DOI: 10.3389/fimmu.2021.740047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Thymic epithelial cells (TECs) are essential in supporting the development of mature T cells from hematopoietic progenitor cells and facilitate their lineage-commitment, proliferation, T-cell receptor repertoire selection and maturation. While animal model systems have greatly aided in elucidating the contribution of stromal cells to these intricate processes, human tissue has been more difficult to study, partly due to a lack of suitable surface markers comprehensively defining human TECs. Here, we conducted a flow cytometry based surface marker screen to reliably identify and quantify human TECs and delineate medullary from cortical subsets. These findings were validated by transcriptomic and histologic means. The combination of EpCAM, podoplanin (pdpn), CD49f and CD200 comprehensively identified human TECs and not only allowed their reliable distinction in medullary and cortical subsets but also their detailed quantitation. Transcriptomic profiling of each subset in comparison to fibroblasts and endothelial cells confirmed the identity of the different stromal cell subsets sorted according to the proposed strategy. Our dataset not only demonstrated transcriptional similarities between TEC and cells of mesenchymal origin but furthermore revealed a subset-specific distribution of a specific set of extracellular matrix-related genes in TECs. This indicates that TECs significantly contribute to the distinct compartmentalization - and thus function - of the human thymus. We applied the strategy to quantify TEC subsets in 31 immunologically healthy children, which revealed sex-specific differences of TEC composition early in life. As the distribution of mature CD4- or CD8-single-positive thymocytes was correspondingly altered, the composition of the thymic epithelial compartment may directly impact on the CD4-CD8-lineage choice of thymocytes. We prove that the plain, reliable strategy proposed here to comprehensively identify human TEC subpopulations by flow cytometry based on surface marker expression is suitable to determine their frequency and phenotype in health and disease and allows sorting of live cells for downstream analysis. Its use reaches from a reliable diagnostic tool for thymic biopsies to improved phenotypic characterization of thymic grafts intended for therapeutic use.
Collapse
Affiliation(s)
- Veronika Haunerdinger
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Maria Domenica Moccia
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology and Children's Research Center, University Children's Hospital, Pediatric Immunology, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Mathias M Hauri-Hohl
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
12
|
Jain R, Zhao K, Sheridan JM, Heinlein M, Kupresanin F, Abeysekera W, Hall C, Rickard J, Bouillet P, Walczak H, Strasser A, Silke J, Gray DHD. Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death Differ 2021; 28:2946-2956. [PMID: 34381167 PMCID: PMC8481470 DOI: 10.1038/s41418-021-00850-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.
Collapse
Affiliation(s)
- Reema Jain
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kelin Zhao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Fiona Kupresanin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- ANZAC Research Institute, Concord, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Rickard
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Borelli A, Irla M. Lymphotoxin: from the physiology to the regeneration of the thymic function. Cell Death Differ 2021; 28:2305-2314. [PMID: 34290396 PMCID: PMC8329281 DOI: 10.1038/s41418-021-00834-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/31/2023] Open
Abstract
The members of the Tumor Necrosis Factor (TNF) superfamily, the ligand lymphotoxin α1β2 (LTα1β2) and its unique receptor lymphotoxin β receptor (LTβR), play a pivotal role in the establishment and regulation of the immune system by allowing a tight communication between lymphocytes and stromal cells. Recent advances using transgenic mice harboring a specific deletion of the Ltbr gene in distinct stromal cells have revealed important roles for LTβR signaling in the thymic function that ensures the generation of a diverse and self-tolerant T-cell repertoire. In this review, we summarize our current knowledge on this signaling axis in the thymic homing of lymphoid progenitors and peripheral antigen-presenting cells, the trafficking and egress of thymocytes, the differentiation of medullary thymic epithelial cells, and the establishment of central tolerance. We also highlight the importance of LTα1β2/LTβR axis in controlling the recovery of the thymic function after myeloablative conditioning regimen, opening novel perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Alexia Borelli
- grid.417850.f0000 0004 0639 5277Aix-Marseille University, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Magali Irla
- grid.417850.f0000 0004 0639 5277Aix-Marseille University, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
14
|
Wang HX, Zhang Q, Zhang J, Luan R, Liang Z, Tan L, Xu Y, Zhang P, Zheng L, Zhao Y, Qiu YR. CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway. FASEB J 2021; 35:e21535. [PMID: 33817835 DOI: 10.1096/fj.202100139r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/11/2022]
Abstract
Thymic epithelial cells (TECs) are indispensable for T cell development, T cell receptor (TCR) repertoire selection, and specific lineage differentiation. Medullary thymic epithelial cells (mTECs), which account for the majority of TECs in adults, are critical for thymocyte selection and self-tolerance. CD74 is a nonpolymorphic transmembrane glycoprotein of major histocompatibility complex class II (MHCII) that is expressed in TECs. However, the exact role of CD74 in regulating the development of mTEC is poorly defined. In this research, we found that loss of CD74 resulted in a significant diminution in the medulla, a selective reduction in the cell number of mature mTECs expressing CD80 molecules, which eventually led to impaired thymic CD4+ T cell development. Moreover, RNA-sequence analysis showed that CD74 deficiency obviously downregulated the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in mTECs. Our results suggest that CD74 positively controls mTEC cellularity and maturation partially by activating the canonical NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong Luan
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanan Xu
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Zhang H, Qin G, Yu H, Han X, Zhu S. Comprehensive genomic and immunophenotypic analysis of CD4 T cell infiltrating human triple-negative breast cancer. Cancer Immunol Immunother 2021; 70:1649-1665. [PMID: 33301062 PMCID: PMC8139937 DOI: 10.1007/s00262-020-02807-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study is to investigate the gene expression module of tumor-infiltrating CD4+T cells and its potential roles in modulating immune cell functions in triple-negative breast cancer. Differentially expressed genes were identified by comparison of the expression profile in CD4+T cells isolated from tumor tissues and peripheral blood of TNBC patients respectively. The differential expression analysis was conducted using R, and then the functional and pathway enrichment of the DEGs were analyzed using GSEA, followed by integrated regulatory network construction and genetic analysis of tumor-infiltrating immune cells based on a scientific deconvolution algorithm. As a result, abundant Treg and exhausted lymphocytes were detected, accompanied by largely decreased of effector/memory and cytotoxic T cells. Immune-related gene correlation analysis showed that the extent of follicular helper T cells gene expression signatures were inversely associated with those of CD4+ naive T cells and CD4+ memory resting T cells, but positively correlated with that of CD4+ memory activated T cells. In addition, we found five core genes including IFNG, CTLA4, FAS, CXCR6, and JUN were significantly over expressed in CD4+ TILs which may contribute to exhaustion of lymphocytes and participate in biological processes associated with regulation of chemotaxis. Study provides a comprehensive understanding of the roles of DEGs associated with the chemotactic and exhausted immunophenotypes of CD4+ TILs that are a valuable resource from which future investigation may be carried out to better understand the mechanisms that promote TNBC progression.
Collapse
Affiliation(s)
- He Zhang
- grid.207374.50000 0001 2189 3846Key Laboratory of Tumor Immunity, Center of Infection and Immunization, Department of Immunology, School of Basic Medical Sciences, Cancer Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Guohui Qin
- grid.412633.1Biotherapy Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
| | - Hui Yu
- Henan Animal Health Supervision Institute, Zhengzhou, 450008 People’s Republic of China
| | - Xu Han
- grid.207374.50000 0001 2189 3846Key Laboratory of Tumor Immunity, Center of Infection and Immunization, Department of Immunology, School of Basic Medical Sciences, Cancer Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Sha Zhu
- Key Laboratory of Tumor Immunity, Center of Infection and Immunization, Department of Immunology, School of Basic Medical Sciences, Cancer Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
16
|
Lucas B, White AJ, Cosway EJ, Parnell SM, James KD, Jones ND, Ohigashi I, Takahama Y, Jenkinson WE, Anderson G. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat Commun 2020; 11:2198. [PMID: 32366944 PMCID: PMC7198500 DOI: 10.1038/s41467-020-16041-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
The thymus supports multiple αβ T cell lineages that are functionally distinct, but mechanisms that control this multifaceted development are poorly understood. Here we examine medullary thymic epithelial cell (mTEC) heterogeneity and its influence on CD1d-restricted iNKT cells. We find three distinct mTEClow subsets distinguished by surface, intracellular and secreted molecules, and identify LTβR as a cell-autonomous controller of their development. Importantly, this mTEC heterogeneity enables the thymus to differentially control iNKT sublineages possessing distinct effector properties. mTEC expression of LTβR is essential for the development thymic tuft cells which regulate NKT2 via IL-25, while LTβR controls CD104+CCL21+ mTEClow that are capable of IL-15-transpresentation for regulating NKT1 and NKT17. Finally, mTECs regulate both iNKT-mediated activation of thymic dendritic cells, and iNKT availability in extrathymic sites. In conclusion, mTEC specialization controls intrathymic iNKT cell development and function, and determines iNKT pool size in peripheral tissues.
Collapse
Affiliation(s)
- Beth Lucas
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea J White
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emilie J Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nick D Jones
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
Xie M, Wei J, Xu J. Inducers, Attractors and Modulators of CD4 + Treg Cells in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:676. [PMID: 32425930 PMCID: PMC7212357 DOI: 10.3389/fimmu.2020.00676] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune escape has been demonstrated to play a key role in the initiation and progression of NSCLC, although the underlying mechanisms are diverse and their puzzling nature is far from being understood. As a critical participant in immune escape, the CD4+ T cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has been implicated in the occurrence of many types of cancers. Additionally, therapies based on Treg blockade have benefited a portion of cancer patients, including those with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved in regulating the proliferation, differentiation, recruitment and suppressive functions of Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted and modulated in the NSCLC milieu will be discussed in this review.
Collapse
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
18
|
Kaneko KB, Tateishi R, Miyao T, Takakura Y, Akiyama N, Yokota R, Akiyama T, Kobayashi TJ. Quantitative analysis reveals reciprocal regulations underlying recovery dynamics of thymocytes and thymic environment in mice. Commun Biol 2019; 2:444. [PMID: 31815199 PMCID: PMC6884561 DOI: 10.1038/s42003-019-0688-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/10/2019] [Indexed: 01/17/2023] Open
Abstract
Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic environment, is relevant for orchestrating appropriate thymocyte development as well as thymic recovery from various exogenous insults. In this work, interactions shaping thymic crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred based on quantitative analysis and modeling of the recovery dynamics induced by irradiation. The analysis identifies regulatory interactions consistent with known molecular evidence and reveals their dynamic roles in the recovery process. Moreover, the analysis also predicts, and a subsequent experiment verifies, a previously unrecognized regulation of CD4+CD8+ double positive thymocytes which temporarily increases their proliferation rate upon the decrease in their population size. Our model establishes a pivotal step towards the dynamic understanding of thymic crosstalk as a regulatory network system.
Collapse
Affiliation(s)
- Kazumasa B. Kaneko
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan
| | - Ryosuke Tateishi
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Takahisa Miyao
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yuki Takakura
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Nobuko Akiyama
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ryo Yokota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505 Japan
| | - Taishin Akiyama
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505 Japan
- PREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
19
|
Zhang P, Liu RT, Du T, Yang CL, Liu YD, Ge MR, Zhang M, Li XL, Li H, Dou YC, Duan RS. Exosomes derived from statin-modified bone marrow dendritic cells increase thymus-derived natural regulatory T cells in experimental autoimmune myasthenia gravis. J Neuroinflammation 2019; 16:202. [PMID: 31679515 PMCID: PMC6825716 DOI: 10.1186/s12974-019-1587-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex). METHODS We evaluated the effects of exosomes on surface co-stimulation markers and Aire expression of different kinds of thymic stromal cells, including cTEC, mTEC, and tDCs, in EAMG rats. The isolated exosomes were examined by western blot and DLS. Immunofluorescence was used to track the exosomes in the thymus. Flow cytometry and western blot were used to analyze the expression of co-stimulatory molecules and Aire in vivo and in vitro. RESULTS We confirmed the effects of statin-Dex in inducing Foxp3+ nTreg cells and found that both statin-Dex and DMSO-Dex could upregulate CD40 but only statin-Dex increased Aire expression in thymic stromal cells in vivo. Furthermore, we found that the role of statin-Dex and DMSO-Dex in the induction of Foxp3+ nTreg cells was dependent on epithelial cells in vitro. CONCLUSIONS We demonstrated that statin-Dex increased expression of Aire in the thymus, which may further promote the Foxp3 expression in the thymus. These findings may provide a new strategy for the treatment of myasthenia gravis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Yu-Dong Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355 People’s Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 People’s Republic of China
| |
Collapse
|
20
|
Cotrim-Sousa L, Freire-Assis A, Pezzi N, Tanaka PP, Oliveira EH, Passos GA. Adhesion between medullary thymic epithelial cells and thymocytes is regulated by miR-181b-5p and miR-30b. Mol Immunol 2019; 114:600-611. [PMID: 31539668 DOI: 10.1016/j.molimm.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
In this work, we demonstrate that adhesion between medullary thymic epithelial cells (mTECs) and thymocytes is controlled by miRNAs. Adhesion between mTECs and developing thymocytes is essential for triggering negative selection (NS) of autoreactive thymocytes that occurs in the thymus. Immune recognition is mediated by the MHC / TCR receptor, whereas adhesion molecules hold cell-cell interaction stability. Indeed, these processes must be finely controlled, if it is not, it may lead to aggressive autoimmunity. Conversely, the precise molecular genetic control of mTEC-thymocyte adhesion is largely unclear. Here, we asked whether miRNAs would be controlling this process through the posttranscriptional regulation of mRNAs that encode adhesion molecules. For this, we used small interfering RNA to knockdown (KD) Dicer mRNA in vitro in a murine mTEC line. A functional assay with fresh murine thymocytes co-cultured with mTECs showed that single-positive (SP) CD4 and CD8 thymocyte adhesion was increased after Dicer KD and most adherent subtype was CD8 SP cells. Analysis of broad mTEC transcriptional expression showed that Dicer KD led to the modulation of 114 miRNAs and 422 mRNAs, including those encoding cell adhesion or extracellular matrix proteins, such as Lgals9, Lgals3pb, Tnc and Cd47. Analysis of miRNA-mRNA networks followed by miRNA mimic transfection showed that these mRNAs are under the control of miR-181b-5p and miR-30b*, which may ultimately control mTEC-thymocyte adhesion. The expression of CD80 surface marker in mTECs was increased after Dicer KD following thymocyte adhesion. This indicates the existence of new mechanisms in mTECs that involve the synergistic action of thymocyte adhesion and regulatory miRNAs.
Collapse
Affiliation(s)
- Larissa Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire-Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; State University of Minas Gerais, Passos, MG, Brazil
| | - Nicole Pezzi
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro Paranhos Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, Shah YM, Omary MB, Liu Y, Qi L, Rui L. Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc Natl Acad Sci U S A 2019; 116:19090-19097. [PMID: 31481626 PMCID: PMC6754592 DOI: 10.1073/pnas.1901056116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant T cell development is a pivotal risk factor for autoimmune disease; however, the underlying molecular mechanism of T cell overactivation is poorly understood. Here, we identified NF-κB-inducing kinase (NIK) and IkB kinase α (IKKα) in thymic epithelial cells (TECs) as essential regulators of T cell development. Mouse TEC-specific ablation of either NIK or IKKα resulted in severe T cell-mediated inflammation, injury, and fibrosis in the liver and lung, leading to premature death within 18 d of age. NIK or IKKα deficiency abrogated medullary TEC development, and led to breakdown of central tolerance, production of autoreactive T cells, and fatal autoimmune destruction in the liver and lung. TEC-specific ablation of NIK or IKKα also impaired thymic T cell development from the double-negative through the double-positive stages and inhibited peripheral B cell development. These results unravel a hitherto unrecognized essential role of TEC-intrinsic NIK and IKKα pathways in autoimmunity and T cell-instigated chronic liver and lung diseases.
Collapse
Affiliation(s)
- Hong Shen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yewei Ji
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yi Xiong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hana Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Xiao Zhong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michelle G Jin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yong Liu
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, 430072 Wuhan, China
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Breed ER, Watanabe M, Hogquist KA. Measuring Thymic Clonal Deletion at the Population Level. THE JOURNAL OF IMMUNOLOGY 2019; 202:3226-3233. [PMID: 31010850 DOI: 10.4049/jimmunol.1900191] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Clonal deletion of T cells specific for self-antigens in the thymus has been widely studied, primarily by approaches that focus on a single receptor (using TCR transgenes) or a single specificity (using peptide-MHC tetramers). However, less is known about clonal deletion at the population level. In this article, we report an assay that measures cleaved caspase 3 to define clonal deletion at the population level. This assay distinguishes clonal deletion from apoptotic events caused by neglect and approximates the anatomic site of deletion using CCR7. This approach showed that 78% of clonal deletion events occur in the cortex in mice. Medullary deletion events were detected at both the semimature and mature stages, although mature events were associated with failed regulatory T cell induction. Using this assay, we showed that bone marrow-derived APC drive approximately half of deletion events at both stages. We also found that both cortical and medullary deletion rely heavily on CD28 costimulation. These findings demonstrate a useful strategy for studying clonal deletion within the polyclonal repertoire.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
23
|
LKB1 expressed in dendritic cells governs the development and expansion of thymus-derived regulatory T cells. Cell Res 2019; 29:406-419. [PMID: 30940876 DOI: 10.1038/s41422-019-0161-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/08/2019] [Indexed: 01/06/2023] Open
Abstract
Liver Kinase B1 (LKB1) plays a key role in cellular metabolism by controlling AMPK activation. However, its function in dendritic cell (DC) biology has not been addressed. Here, we find that LKB1 functions as a critical brake on DC immunogenicity, and when lost, leads to reduced mitochondrial fitness and increased maturation, migration, and T cell priming of peripheral DCs. Concurrently, loss of LKB1 in DCs enhances their capacity to promote output of regulatory T cells (Tregs) from the thymus, which dominates the outcome of peripheral immune responses, as suggested by increased resistance to asthma and higher susceptibility to cancer in CD11cΔLKB1 mice. Mechanistically, we find that loss of LKB1 specifically primes thymic CD11b+ DCs to facilitate thymic Treg development and expansion, which is independent from AMPK signalling, but dependent on mTOR and enhanced phospholipase C β1-driven CD86 expression. Together, our results identify LKB1 as a critical regulator of DC-driven effector T cell and Treg responses both in the periphery and the thymus.
Collapse
|
24
|
Gao Y, Zhao H, Wang P, Wang J, Zou L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol 2018; 88:e12727. [PMID: 30341772 DOI: 10.1111/sji.12727] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Gao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm Sweden
| | - Honglei Zhao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Peng Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Jun Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Lili Zou
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| |
Collapse
|
25
|
Villegas JA, Gradolatto A, Truffault F, Roussin R, Berrih-Aknin S, Le Panse R, Dragin N. Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Front Immunol 2018; 9:1663. [PMID: 30083154 PMCID: PMC6064927 DOI: 10.3389/fimmu.2018.01663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Thymic epithelial cells are one of the main components of the thymic microenvironment required for T-cell development. In this work, we describe an efficient method free of enzymatic and Facs-sorted methods to culture human medullary thymic epithelial cells without affecting the cell phenotypic, physiologic and functional features. Human medulla thymic epithelial cells (mTECs) are obtained by culturing thymic biopsies explants. After 7 days of primo-culture, mTECs keep their ability to express key molecules involved in immune tolerance processes such as autoimmune regulator, tissue-specific antigens, chemokines, and cytokines. In addition, the cells sensor their cultured environment and consequently adjust their gene expression network. Therefore, we describe and provide a human mTEC model that may be used to test the effect of various molecules on thymic epithelial cell homeostasis and physiology. This method should allow the investigations of the specificities and the knowledge of human mTECs in normal or pathological conditions and therefore discontinue the extrapolations done on the murine models.
Collapse
Affiliation(s)
- José A Villegas
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Angeline Gradolatto
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Frédérique Truffault
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | | | - Sonia Berrih-Aknin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Rozen Le Panse
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Nadine Dragin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France.,Inovarion, Paris, France
| |
Collapse
|
26
|
Schwarz C, Mahr B, Muckenhuber M, Wekerle T. Belatacept/CTLA4Ig: an update and critical appraisal of preclinical and clinical results. Expert Rev Clin Immunol 2018; 14:583-592. [PMID: 29874474 DOI: 10.1080/1744666x.2018.1485489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The B7/CD28/CTLA4 signaling cascade is the most thoroughly studied costimulatory pathway and blockade with CTLA4Ig (abatacept) or its derivative belatacept has emerged as a valuable option for pharmacologic immune modulation. Several clinical studies have ultimately led to the approval of belatacept for immunosuppression in kidney transplant recipients. Areas covered: This review will discuss the immunological background of costimulation blockade and recent preclinical data and clinical results of CTLA4Ig/belatacept. Expert commentary: The development of belatacept is a major advance in clinical transplantation. However, in spite of promising results in preclinical and clinical trials, clinical use remains limited at present, in part due to increased rates of acute rejection. Recent efforts showing encouraging progress in refining such protocols might be a step toward harnessing the full potential of costimulation blockade-based immunosuppression.
Collapse
Affiliation(s)
- Christoph Schwarz
- a Division of General Surgery, Department of Surgery , Medical University of Vienna , Vienna , Austria.,b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Benedikt Mahr
- b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Moritz Muckenhuber
- b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Thomas Wekerle
- b Section of Transplantation Immunology, Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
27
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
28
|
Moore AJ, In TS, Trotman-Grant A, Yoganathan K, Montpellier B, Guidos CJ, Zúñiga-Pflücker JC, Anderson MK. A key role for IL-7R in the generation of microenvironments required for thymic dendritic cells. Immunol Cell Biol 2017; 95:933-942. [PMID: 28890536 PMCID: PMC5698111 DOI: 10.1038/icb.2017.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 08/10/2017] [Accepted: 08/24/2017] [Indexed: 11/21/2022]
Abstract
Interleukin-7 receptor (IL-7R) signaling is critical for multiple stages of T-cell development, but a role in the establishment of the mature thymic architecture needed for T-cell development and thymocyte selection has not been established. Crosstalk signals between developing thymocytes and thymic epithelial cell (TEC) precursors are critical for their differentiation into cortical TECs (cTECs) and medullary TECs (mTECs). In addition, mTEC-derived factors have been implicated in the recruitment of thymic dendritic cells (DCs) and intrathymic DC development. We therefore examined corticomedullary structure and DC populations in the thymus of Il7r−/− mice. Analysis of TEC phenotype and spatial organization revealed a striking shift in the mTEC to cTEC ratio, accompanied by disorganized corticomedullary structure. Several of the thymic subsets known to have DC potential were nearly absent, accompanied by reductions in DC cell numbers. We also examined chemokine expression in the Il7r−/− thymus, and found a significant decrease in mTEC-derived CCR7 ligand expression, and high levels of cTEC-derived chemokines, including CCL25 and CXCL12. Although splenic DCs were similarly affected, bone marrow (BM) precursors capable of giving rise to DCs were unperturbed. Finally, BM chimeras showed that there was no intrinsic need for IL-7R signaling in the development or recruitment of thymic DCs, but that the provision of wild-type progenitors enhanced reconstitution of thymic DCs from Il7r−/− progenitors. Our results are therefore supportive of a model in which Il7r-dependent cells are required to set up the microenvironments that allow accumulation of thymic DCs.
Collapse
Affiliation(s)
- Amanda J Moore
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Sh In
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ashton Trotman-Grant
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kogulan Yoganathan
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Bertrand Montpellier
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Holländer GA, Zúñiga-Pflücker JC, Tolar J, Blazar BR. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2017; 2:92056. [PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.
Collapse
Affiliation(s)
- Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Sarah L. Parker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Mitchell
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin C. Osum
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather E. Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Georg A. Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| |
Collapse
|
30
|
Calvo-Asensio I, Barthlott T, von Muenchow L, Lowndes NF, Ceredig R. Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage. Front Immunol 2017; 8:418. [PMID: 28450862 PMCID: PMC5389985 DOI: 10.3389/fimmu.2017.00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/23/2017] [Indexed: 01/28/2023] Open
Abstract
Thymic epithelial cells (TECs) are the main components of the thymic stroma that support and control T-cell development. Preparative regimens using DNA-damaging agents, such as total body irradiation and/or chemotherapeutic drugs, that are necessary prior to bone marrow transplantation (BMT) have profound deleterious effects on the hematopoietic system, including the thymic stroma, which may be one of the main causes for the prolonged periods of T-cell deficiency and the inefficient T cell reconstitution that are common following BMT. The DNA damage response (DDR) is a complex signaling network that allows cells to respond to all sorts of genotoxic insults. Hypoxia is known to modulate the DDR and play a role affecting the survival capacity of different cell types. In this study, we have characterized in detail the DDR of cortical and medullary TEC lines and their response to ionizing radiation, as well as the effects of hypoxia on their DDR. Although both mTECs and cTECs display relatively high radio-resistance, mTEC cells have an increased survival capacity to ionizing radiation (IR)-induced DNA damage, and hypoxia specifically decreases the radio-resistance of mTECs by upregulating the expression of the pro-apoptotic factor Bim. Analysis of the expression of TEC functional factors by primary mouse TECs showed a marked decrease of highly important genes for TEC function and confirmed cTECs as the most affected cell type by IR. These findings have important implications for improving the outcomes of BMT and promoting successful T cell reconstitution.
Collapse
Affiliation(s)
- Irene Calvo-Asensio
- Regenerative Medicine Institute, School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Thomas Barthlott
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital (UKBB) and University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Noel F Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rhodri Ceredig
- Regenerative Medicine Institute, School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
31
|
Hendrawan K, Whittington CM, Brandley MC, Belov K, Thompson MB. The Regulation of Uterine Proinflammatory Gene Expression during Pregnancy in the Live‐Bearing Lizard,
Pseudemoia entrecasteauxii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:334-346. [DOI: 10.1002/jez.b.22733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Kevin Hendrawan
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences University of Sydney Sydney Australia
- Sydney School of Veterinary Science, Faculty of Science The University of Sydney Sydney Australia
| | - Matthew C Brandley
- School of Life and Environmental Sciences University of Sydney Sydney Australia
- New York University – Sydney The Rocks Australia
| | - Katherine Belov
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Michael B Thompson
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| |
Collapse
|
32
|
Haljasorg U, Dooley J, Laan M, Kisand K, Bichele R, Liston A, Peterson P. Irf4 Expression in Thymic Epithelium Is Critical for Thymic Regulatory T Cell Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1952-1960. [DOI: 10.4049/jimmunol.1601698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
|
33
|
Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G. Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 2016; 271:23-37. [PMID: 27088905 PMCID: PMC4982089 DOI: 10.1111/imr.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thymus is a primary lymphoid tissue that supports the generation of αβT cells. In this review, we describe the processes that give rise to the thymus medulla, a site that nurtures self-tolerant T-cell generation following positive selection events that take place in the cortex. To summarize the developmental pathways that generate medullary thymic epithelial cells (mTEC) from their immature progenitors, we describe work on both the initial emergence of the medulla during embryogenesis, and the maintenance of the medulla during postnatal stages. We also investigate the varying roles that receptors belonging to the tumor necrosis factor receptor superfamily have on thymus medulla development and formation, and highlight the impact that T-cell development has on thymus medulla formation. Finally, we examine the evidence that the thymic medulla plays an important role during the intrathymic generation of distinct αβT-cell subtypes. Collectively, these studies provide new insight into the development and functional importance of medullary microenvironments during self-tolerant T-cell production in the thymus.
Collapse
Affiliation(s)
- Beth Lucas
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Nicholas I. McCarthy
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Song Baik
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Emilie Cosway
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Kieran D. James
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - William E. Jenkinson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Graham Anderson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| |
Collapse
|
34
|
Perry JSA, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016; 271:141-55. [PMID: 27088912 PMCID: PMC4837647 DOI: 10.1111/imr.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of T-cell self-tolerance in the thymus is important for establishing immune homeostasis and preventing autoimmunity. Here, we review the components of T-cell tolerance, which includes T-cell receptor (TCR) self-reactivity, costimulation, cytokines, and antigen presentation by a variety of antigen-presenting cells (APCs) subsets. We discuss the current evidence on the process of regulatory T (Treg) cell and negative selection and the importance of TCR signaling. We then examine recent evidence showing unique roles for bone marrow (BM)-derived APCs and medullary thymic epithelial cells (mTECs) on the conventional and Treg TCR repertoire, as well as emerging data on the role of B cells in tolerance. Finally, we review the accumulating data that suggest that cooperative antigen presentation is a prominent component of T -ell tolerance. With the development of tools to interrogate the function of individual APC subsets in the medulla, we have gained greater understanding of the complex cellular and molecular events that determine T-cell tolerance.
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
35
|
Nitta T, Suzuki H. Thymic stromal cell subsets for T cell development. Cell Mol Life Sci 2016; 73:1021-37. [PMID: 26825337 PMCID: PMC11108406 DOI: 10.1007/s00018-015-2107-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| |
Collapse
|
36
|
Satoh R, Kakugawa K, Yasuda T, Yoshida H, Sibilia M, Katsura Y, Levi B, Abramson J, Koseki Y, Koseki H, van Ewijk W, Hollander GA, Kawamoto H. Requirement of Stat3 Signaling in the Postnatal Development of Thymic Medullary Epithelial Cells. PLoS Genet 2016; 12:e1005776. [PMID: 26789017 PMCID: PMC4720355 DOI: 10.1371/journal.pgen.1005776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/08/2015] [Indexed: 01/20/2023] Open
Abstract
Thymic medullary regions are formed in neonatal mice as islet-like structures, which increase in size over time and eventually fuse a few weeks after birth into a continuous structure. The development of medullary thymic epithelial cells (TEC) is dependent on NF-κB associated signaling though other signaling pathways may contribute. Here, we demonstrate that Stat3-mediated signals determine medullary TEC cellularity, architectural organization and hence the size of the medulla. Deleting Stat3 expression selectively in thymic epithelia precludes the postnatal enlargement of the medulla retaining a neonatal architecture of small separate medullary islets. In contrast, loss of Stat3 expression in cortical TEC neither affects the cellularity or organization of the epithelia. Activation of Stat3 is mainly positioned downstream of EGF-R as its ablation in TEC phenocopies the loss of Stat3 expression in these cells. These results indicate that Stat3 meditated signal via EGF-R is required for the postnatal development of thymic medullary regions. Thymic medulla is known to be an essential site for the deletion of auto-reactive T cells. Whereas it has been well documented that the development of medullary thymic epithelial cells (mTECs) depends on NF-κB associated signaling, it remained unclear whether other signaling pathways are also involved. In this context, it had been reported that conditional deletion of Stat3 alleles in TECs using cytokeratin-5 (CK5) promoter controlled Cre expression results in a profound impairment in TEC development. However, a detailed analysis of phenotypes in mTECs remained unstudied. In the present study, we show that thymic medullary regions remain as small islets when Stat3 is conditionally deleted in thymic epithelial cells, while they normal fuse to form continuous structures during postnatal development. Furthermore, we identified EGF-R mediated signal to be placed upstream of Stat3 activation, as its ablation phenocopied the loss of Stat3 expression in TECs. Thus, the present study revealed that Stat3 is required for the postnatal development of medullary regions.
Collapse
Affiliation(s)
- Rumi Satoh
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takuwa Yasuda
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokoham, Japan
| | - Hisahiro Yoshida
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokoham, Japan
| | - Maria Sibilia
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Yoshimoto Katsura
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Ben Levi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Willem van Ewijk
- Department of Molecular Cell Biology and Department of Immunology, Leiden University Medical Center, RA Leiden, the Netherlands
| | - Georg A. Hollander
- Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel, and the University Children’s Hospital, Basel, Switzerland
- Laboratory of Developmental Immunology Weatherall Institute of Molecular Medicine and Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
37
|
Lomada D, Jain M, Bolner M, Reeh KAG, Kang R, Reddy MC, DiGiovanni J, Richie ER. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells. PLoS Genet 2016; 12:e1005777. [PMID: 26789196 PMCID: PMC4720390 DOI: 10.1371/journal.pgen.1005777] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. T cells, an essential component of the immune system, generate protective immune responses against pathogenic organisms and cancer cells. T cells are produced in the thymus, which provides a unique microenvironment required for T cell development. Distinct subsets of thymic epithelial cells (TECs) in the outer cortex and inner medulla provide signals required for the survival and differentiation of immature T cells, referred to as thymocytes. Medullary TECs (mTECs) play a critical role in preventing autoimmunity because they have the unique ability to express peptides found in other organs throughout the body. Presentation of self-peptides to thymocytes causes deletion of cells that express high affinity self-reactive receptors. Numerous studies have established that a major signaling pathway mediated by NFκB family members is indispensable for mTEC development. However, whether other signaling pathways are also required has remained an open question. Here, we use gain- and loss-of-function genetic approaches to demonstrate that another pathway, mediated by Stat3 signaling, plays an important role in mTEC development and homeostasis. We show that constitutive Stat3 activation enhances the survival of immature mTECs and bypasses the requirement for thymocyte-derived signals in medullary region formation. In contrast, Stat3 depletion reduces mTEC cellularity and impairs medullary region formation.
Collapse
Affiliation(s)
- Dakshayani Lomada
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Manju Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Michelle Bolner
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Epigenetics and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences Houston, Texas, United States of America
| | - Kaitlin A. G. Reeh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Epigenetics and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences Houston, Texas, United States of America
| | - Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Madhava C. Reddy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Belharazem D, Schalke B, Gold R, Nix W, Vitacolonna M, Hohenberger P, Roessner E, Schulze TJ, Saruhan-Direskeneli G, Yilmaz V, Ott G, Ströbel P, Marx A. cFLIP overexpression in T cells in thymoma-associated myasthenia gravis. Ann Clin Transl Neurol 2015; 2:894-905. [PMID: 26401511 PMCID: PMC4574807 DOI: 10.1002/acn3.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/02/2022] Open
Abstract
Objective The capacity of thymomas to generate mature CD4+ effector T cells from immature precursors inside the tumor and export them to the blood is associated with thymoma-associated myasthenia gravis (TAMG). Why TAMG(+) thymomas generate and export more mature CD4+ T cells than MG(−) thymomas is unknown. Methods Unfixed thymoma tissue, thymocytes derived thereof, peripheral blood mononuclear cells (PBMCs), T-cell subsets and B cells were analysed using qRT-PCR and western blotting. Survival of PBMCs was measured by MTT assay. FAS-mediated apoptosis in PBMCs was quantified by flow cytometry. NF-κB in PBMCs was inhibited by the NF-κB-Inhibitor, EF24 prior to FAS-Ligand (FASLG) treatment for apoptosis induction. Results Expression levels of the apoptosis inhibitor cellular FLICE-like inhibitory protein (c-FLIP) in blood T cells and intratumorous thymocytes were higher in TAMG(+) than in MG(−) thymomas and non-neoplastic thymic remnants. Thymocytes and PBMCs of TAMG patients showed nuclear NF-κB accumulation and apoptosis resistance to FASLG stimulation that was sensitive to NF-κB blockade. Thymoma removal reduced cFLIP expression in PBMCs. Interpretation We conclude that thymomas induce cFLIP overexpression in thymocytes and their progeny, blood T cells. We suggest that the stronger cFLIP overexpression in TAMG(+) compared to MG(−) thymomas allows for the more efficient generation of mature CD4+ T cells in TAMG(+) thymomas. cFLIP overexpression in thymocytes and exported CD4+ T cells of patients with TAMG might contribute to the pathogenesis of TAMG by impairing central and peripheral T-cell tolerance.
Collapse
Affiliation(s)
- Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg Regensburg, Germany
| | - Ralf Gold
- Department of Neurology, University of Bochum Bochum, Germany
| | - Wilfred Nix
- Department of Neurology, University of Mainz Mainz, Germany
| | - Mario Vitacolonna
- Department of Thoracic Surgery, University Medical Centre Mannheim Mannheim, Germany
| | - Peter Hohenberger
- Department of Thoracic Surgery, University Medical Centre Mannheim Mannheim, Germany
| | - Eric Roessner
- Department of Thoracic Surgery, University Medical Centre Mannheim Mannheim, Germany
| | - Torsten J Schulze
- Institute for Transfusion Medicine and Immunology, German Red Cross Blood Service, University Medical Centre Mannheim Mannheim, Germany
| | | | - Vuslat Yilmaz
- Department of Physiology, School of Medicine, Istanbul University Istanbul, Turkey
| | - German Ott
- Department of Pathology, Robert-Bosch Hospital Stuttgart, Germany
| | - Philipp Ströbel
- Institute of Pathology, University of Goettingen Goettingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
39
|
Lopes N, Sergé A, Ferrier P, Irla M. Thymic Crosstalk Coordinates Medulla Organization and T-Cell Tolerance Induction. Front Immunol 2015; 6:365. [PMID: 26257733 PMCID: PMC4507079 DOI: 10.3389/fimmu.2015.00365] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022] Open
Abstract
The thymus ensures the generation of a functional and highly diverse T-cell repertoire. The thymic medulla, which is mainly composed of medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), provides a specialized microenvironment dedicated to the establishment of T-cell tolerance. mTECs play a privileged role in this pivotal process by their unique capacity to express a broad range of peripheral self-antigens that are presented to developing T cells. Reciprocally, developing T cells control mTEC differentiation and organization. These bidirectional interactions are commonly referred to as thymic crosstalk. This review focuses on the relative contributions of mTEC and DC subsets to the deletion of autoreactive T cells and the generation of natural regulatory T cells. We also summarize current knowledge regarding how hematopoietic cells conversely control the composition and complex three-dimensional organization of the thymic medulla.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105 , Marseille , France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| |
Collapse
|
40
|
The expression of molecule CD28 and CD38 on CD4⁺/CD8⁺ T lymphocytes in thymus and spleen elicited by Schistosoma japonicum infection in mice model. Parasitol Res 2015; 114:3047-58. [PMID: 26002824 DOI: 10.1007/s00436-015-4507-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023]
Abstract
Schistosomiasis caused by human schistosomes such as Schistosoma japonicum (S. japonicum) is considered as an immune-related disease. It was demonstrated that specific cytokine antibodies' response elicited by S. japonicum infection was gradually downregulated with the progress of the disease, resulting in a Th1/Th2 polarization and suppression of immune response. CD28 (cluster of differentiation 28) is one of the proteins expressed on T cells that provide co-stimulatory signals required for T cell activation and survival, and CD38 is an activating marker of T lymphocyte with high expression in many acute or chronic infections. The immune signature of CD28null T cells in the peripheral circulation associates with chronic inflammation in many diseases, such as HIV and CMV infection. In the thymus, CD28 expression on developing thymocytes appears to play a role for their selection, and it synergizes with CD38 to induce apoptosis of DP (double-positive) thymocytes. Few reports about CD28 and CD38 have been published in schistosomiasis. Here, we investigated the dynamic patterns of the expression of molecules CD28 and CD38 on CD4(+)/CD8(+) T lymphocytes of the thymus and spleen in mice model with S. japonicum infection. Our data indicated that at an early period of infection, the frequency of CD8(+)CD28(-) T cell in the spleen decreased significantly, but higher at chronic infection than that in control. However, it demonstrated an increasing trend in the thymus with the progression of infection. The frequency of CD4(+)CD28(-) T cells increased from acute infection in the thymus, while from chronic infection in the spleen. The expression of CD38 on CD8(+) T cells began to increase at 4 weeks post infection both in the thymus and spleen; its elevated expression on CD4(+) T cells emerged at 6 weeks post infection in the thymus and at 10 weeks post infection in the spleen. Praziquantel (PZQ) treatment could partially restore the frequency of CD28(+) T cell of CD4(+) T cells and CD38(+) T cell of CD8(+)/CD4(+) T cells in the spleen and CD38(+) T cell in the thymus. We hypothesized that the reactivation of S. japonicum infection may trigger expansion of CD28(-) T cells and hence mediate systemic inflammation. We speculated that CD8(+)CD28(-) T cell might be involved in immune modulation and CD8(+)CD28(-) T cell may be a crucial part in pathogenesis, which can provide further knowledge of the sophisticated mechanism of immuno-downregulation in schistosomiasis and potential treatment target.
Collapse
|
41
|
Williams JA, Tai X, Hodes RJ. CD28-CD80/86 and CD40-CD40L Interactions Promote Thymic Tolerance by Regulating Medullary Epithelial Cell and Thymocyte Development. Crit Rev Immunol 2015; 35:59-76. [PMID: 25746048 DOI: 10.1615/critrevimmunol.2015012501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development and central tolerance of T lymphocytes in the thymus requires both TCR signals and collaboration with signals generated through costimulatory molecule interactions. In this review, we discuss the importance of CD28-CD80/86 and CD40-CD40L costimulatory interactions in promoting normal thymic development. This discussion includes roles in the generation of a normal thymic medulla, in the development of specific T-cells subsets, including iNKT and T regulatory cells, and in the generation of a tolerant mature T-cell repertoire. We discuss recent contributions to the understanding of CD28-CD80/86 and CD40-CD40L costimulatory interactions in thymic development, and we highlight the ways in which the many important roles mediated by these interactions collaborate to promote normal thymic development.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Fujihara C, Williams JA, Watanabe M, Jeon H, Sharrow SO, Hodes RJ. T cell-B cell thymic cross-talk: maintenance and function of thymic B cells requires cognate CD40-CD40 ligand interaction. THE JOURNAL OF IMMUNOLOGY 2014; 193:5534-44. [PMID: 25344473 DOI: 10.4049/jimmunol.1401655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thymic development requires bidirectional interaction or cross-talk between developing T cells and thymic stromal cells, a relationship that has been best characterized for the interaction between thymocytes and thymic epithelial cells. We have characterized in this article the requirement for similar cross-talk in the maintenance and function of thymic B cells, another population that plays a role in selection of developing thymic T cells. We found that maintenance of thymic B cells is strongly dependent on the presence of mature single-positive thymocytes and on the interactions of these T cells with specific Ag ligand. Maintenance of thymic B cell number is strongly dependent on B cell-autonomous expression of CD40, but not MHC class II, indicating that direct engagement of CD40 on thymic B cells is necessary to support their maintenance and proliferation. Thymic B cells can mediate negative selection of superantigen-specific, self-reactive, single-positive thymocytes, and we show that CD40 expression on B cells is critical for this negative selection. Cross-talk with thymic T cells is thus required to support the thymic B cell population through a pathway that requires cell-autonomous expression of CD40, and that reciprocally functions in negative selection of autoreactive T cells.
Collapse
Affiliation(s)
- Chiharu Fujihara
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hyein Jeon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan O Sharrow
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Abstract
T cell activation is a key event in the adaptive immune response and vital to the generation of both cellular and humoral immunity. Activation is required not only for effective CD4 T cell responses but also to provide help for B cells and the generation of cytotoxic T cell responses. Unsurprisingly, impaired T cell activation results in infectious pathology, whereas dysregulated activation can result in autoimmunity. The decision to activate is therefore tightly regulated and the CD28/CTLA-4 pathway represents this apical decision point at the molecular level. In particular, CTLA-4 (CD152) is an essential checkpoint control for autoimmunity; however, the molecular mechanism(s) by which CTLA-4 achieves its regulatory function are not well understood, especially how it functionally intersects with the CD28 pathway. In this chapter, we review the established molecular and cellular concepts relating to CD28 and CTLA-4 biology, and attempt to integrate these by discussing the transendocytosis of ligands as a new model of CTLA-4 function.
Collapse
Affiliation(s)
- Blagoje Soskic
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Tiezheng Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom.
| |
Collapse
|