1
|
Kerbert AJC, Engelmann C, Habtesion A, Kumar P, Hassan M, Qi T, Volkert I, Otto T, Hall A, Khetan VU, Olde Damink S, Aguilar F, Chollet C, Brunet L, Clària J, Moreau R, Arroyo V, Coenraad MJ, Mehta G, Castelli F, Trautwein C, Fenaille F, Andreola F, Jalan R. Hyperammonemia induces programmed liver cell death. SCIENCE ADVANCES 2025; 11:eado1648. [PMID: 40053595 PMCID: PMC11887801 DOI: 10.1126/sciadv.ado1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Hyperammonemia is common in liver cirrhosis and causally associated with hepatic encephalopathy development. Little is known about its hepatotoxic effects, which we aimed to characterize in this study. In a mouse model of chronic hyperammonemia without preexisting liver disease, we observed development of liver fibrogenesis and necroptotic cell death. Hyperammonemia also induced dysregulation of its main metabolic pathway, the urea cycle, as reflected by down-regulation of urea cycle enzyme protein expression and accumulation of its metabolites. Inhibition of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and its upstream inducer Toll-like receptor 4 (TLR4) protected against liver injury and further hyperammonemia. In clinically relevant rodent models of hyperammonemia (genetic ornithine transcarbamylase deficiency and bile duct ligation-induced cirrhosis), TLR4 inhibition reduced circulating ammonia. In conclusion, hyperammonemia induces liver fibrogenesis and RIPK1-mediated cell death, which is associated with urea cycle dysfunction. Inhibition of RIPK1 and TLR4 protects against hyperammonemia-induced liver injury and are potential therapeutic targets for hyperammonemia and chronic liver disease progression.
Collapse
Affiliation(s)
- Annarein J. C. Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Pavitra Kumar
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohsin Hassan
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Berlin, Germany
- Department of CardioMetabolic Disease Research, Boehringer Ingelheim, Biberach, Germany
| | - Tingting Qi
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ines Volkert
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Otto
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Andrew Hall
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Varun U. Khetan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Steven Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Céline Chollet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Ludovic Brunet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
- Inserm and Université de Paris, Centre de Recherche sur l’Inflammation (CRI), UMRS1149 Paris, France
- Service d’Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Minneke J. Coenraad
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Gautam Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Florence Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- IFADO, Department of Toxicology, TU Dortmund, Dortmund, Germany
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB-IDF, 91191 Gif-sur-Yvette, France
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| |
Collapse
|
2
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Ye Q, Li D, Zou Y, Yuan Y. The Role and Treatment Strategies of Ammonia-Related Metabolism in Tumor Microenvironment. Curr Gene Ther 2025; 25:199-209. [PMID: 38860905 DOI: 10.2174/0115665232301222240603100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Tumor cells achieve their adaptability through various metabolic reprogramming processes. Among them, ammonia, as a traditional metabolic waste, plays an increasingly important role in the tumor microenvironment along with its associated metabolites. Other cells in the microenvironment can also reshape the immune status of the microenvironment by regulating ammonia- related metabolism, and targeting this metabolic aspect has emerged as a potential strategy for tumor treatment. In this study, we have systematically reviewed the source and destination of ammonia in tumor cells, as well as the links between ammonia and other biological processes. We have also analyzed the ammonia-related metabolic regulation of other cells (including T cells, macrophages, dendritic cells, natural killer cells, myeloid-derived suppressor cells, and stromal cells) in the tumor microenvironment, and summarized the tumor treatment methods that target this metabolism. Through ammonia-related metabolic reprogramming, tumor cells obtain the energy they need for rapid growth and proliferation. Multiple immune cells and stromal cells in the microenvironment also interact with each other through this metabolic regulation, ultimately leading to immune suppression. Despite the heterogeneity of tumors and the complexity of cellular functions, further research into therapeutic interventions targeting ammonia-related metabolism is warranted. This review has focused on the role and regulation of ammonia-related metabolism in tumor cells and other cells in the microenvironment, and highlighted the efficacy and prospects of targeted ammonia- related metabolism therapy.
Collapse
Affiliation(s)
- Qizhen Ye
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dan Li
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi Zou
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009, China
- Cancer Center of Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Ballester MP, Durmazer EN, Qi T, Jalan R. The Value of Ammonia as a Biomarker in Patients with Cirrhosis. Semin Liver Dis 2024; 44:356-368. [PMID: 39095029 PMCID: PMC11449525 DOI: 10.1055/a-2378-8942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with cirrhosis and plays a pivotal role in the pathogenesis of hepatic encephalopathy (HE). Despite being one of the main drivers of brain dysfunction, for many years international societies stated that increased blood ammonia does not add any diagnostic, staging, or prognostic value for HE in patients with cirrhosis. Nonetheless, in the last decades, evidence is emerging that supports the utility of ammonia for risk stratification, but its role in guiding HE diagnosis, staging, and treatment is unclear and there is equipoise in its use in clinical practice. This review provides the latest evidence on the value of ammonia as a biomarker in patients with cirrhosis. Although correct measurement of ammonia requires disciplined sample collection, it provides extremely useful clinical guidance for the diagnosis of HE, offers prognostic information, and it defines a therapeutic target.
Collapse
Affiliation(s)
- Maria Pilar Ballester
- Hepatology Unit, Digestive Disease Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Department of Gastroenterology and Hepatology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Esra Nur Durmazer
- Department of Internal Medicine, Ege University Faculty of Medicine, Izmir, Turkey
| | - Tingting Qi
- Hepatology Unit, Department of Infectious Disease, Southern Medical University, Nanfang Hospital, Guangzhou, China
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| |
Collapse
|
5
|
Anand AC, Acharya SK. The Story of Ammonia in Liver Disease: An Unraveling Continuum. J Clin Exp Hepatol 2024; 14:101361. [PMID: 38444405 PMCID: PMC10910335 DOI: 10.1016/j.jceh.2024.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Hyperammonemia and liver disease are closely linked. Most of the ammonia in our body is produced by transamination and deamination activities involving amino acid, purine, pyrimidines, and biogenic amines, and from the intestine by bacterial splitting of urea. The only way of excretion from the body is by hepatic conversion of ammonia to urea. Hyperammonemia is associated with widespread toxicities such as cerebral edema, hepatic encephalopathy, immune dysfunction, promoting fibrosis, and carcinogenesis. Over the past two decades, it has been increasingly utilized for prognostication of cirrhosis, acute liver failure as well as acute on chronic liver failure. The laboratory assessment of hyperammonemia has certain limitations, despite which its value in the assessment of various forms of liver disease cannot be negated. It may soon become an important tool to make therapeutic decisions about the use of prophylactic and definitive treatment in various forms of liver disease.
Collapse
|
6
|
Artru F, McPhail MJ. Immunopathogenesis of acute on chronic liver failure. Am J Transplant 2024; 24:724-732. [PMID: 38346497 DOI: 10.1016/j.ajt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Acute-on-chronic liver failure is a well-established description of a high-mortality syndrome of chronic liver disease (usually cirrhosis) with organ failure. While the exact definition is under refinement, the accepted understanding of this entity is in patients with chronic liver disease and various organs in failure and where systemic inflammation is a major component of the pathobiology. There are limited therapies for a disease with such a poor prognosis, and while improvements in the critical care management and for very few patients, liver transplantation, mean 50% can survive to hospital discharge, rapid application of new therapies is required. Here we explain the current understanding of the immunologic abnormalities seen in acute-on-chronic liver failure across the innate and adaptive immune systems, the role of the hepatic cell death and the gut-liver axis, and recommendations for future research and treatment paradigms.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom; Liver department and NUMECAN institute, Rennes University Hospital and Rennes University, France
| | - Mark J McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom; Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
7
|
Katayama K, Kakita N. Possible pathogenetic role of ammonia in liver cirrhosis without hyperammonemia of venous blood: The so-called latency period of abnormal ammonia metabolism. Hepatol Res 2024; 54:235-243. [PMID: 38323701 DOI: 10.1111/hepr.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Ammonia plays a crucial role in the pathogenesis of hepatic encephalopathy. Ammonia is also involved in many other pathological conditions seen in cirrhosis, such as sarcopenia, liver fibrosis, hepatocellular injury, immune dysfunction, and hyperammonemia. Furthermore, the ammonia level of the veins is a useful prognostic factor for cirrhosis. In cirrhosis without hyperammonemia of the vein, however, covert hepatic encephalopathy has been reported. This discrepancy is because of the anatomical features of ammonia metabolism. There are two systems in the body for detoxifying ammonia: one is the urea cycle in the liver, and the other is the glutamine synthesis pathway in skeletal muscle and other tissues. The blood processed in the liver's urea cycle is then transported via arteries to various organs. Further processing occurs in the brain and skeletal muscle's glutamine synthesis pathway before entering the veins. When the urea cycle function decreases in cirrhosis, the ammonia levels in the artery increase. In response, the glutamine synthesis pathway compensates by increasing the capacity to process ammonia. Therefore, the ammonia concentration in the veins downstream of skeletal muscles does not increase immediately. However, the brain and skeletal muscles, which receive arterial blood, might be exposed to high ammonia concentrations. In addition, branched-chain amino acids in venous blood decrease. This period is the transition phase from early- to late-phase cirrhosis, and understanding the pathophysiology during this stage is extremely important for preventing the progression of cirrhosis.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Department of Gastroenterology and Hepatology, Kaizuka City Hospital, Kaizuka, Osaka, Japan
| | | |
Collapse
|
8
|
Peng J, Liu T, Meng P, Luo Y, Zhu S, Wang Y, Ma M, Han J, Zhou J, Su X, Li S, Ho CT, Lu C. Gallic acid ameliorates colitis by trapping deleterious metabolite ammonia and improving gut microbiota dysbiosis. mBio 2024; 15:e0275223. [PMID: 38126747 PMCID: PMC10865988 DOI: 10.1128/mbio.02752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Gut microbiota dysbiosis is causally related to inflammatory bowel disease (IBD), and increased levels of the gut metabolite ammonia have been proposed to contribute to IBD development. In this study, we aimed to clarify the anti-colitis mechanism of gallic acid (GA) based on its ability to trap the deleterious metabolite ammonia and improve gut microbiota. Aminated product was detected in the fecal samples of mice after oral gavage of gallic acid (GA) and identified as 4-amino-substituted gallic acid (4-NH2-GA), thus confirming the ability of GA to trap ammonia in vivo. Then, we compared the beneficial effects of GA and 4-NH2-GA on dextran sulfate sodium (DSS)-induced colitis mouse and found that both compounds managed to alleviate colitis phenotypes, indicating ammonia trapping had no adverse effect on the original anti-colitis activity of GA. In addition, both GA and 4-NH2-GA improved the gut microbiota dysbiosis induced by DSS, and fecal microbiota transplantation was subsequently performed, which further revealed that the gut microbiota mediated the anti-colitis activity of both GA and 4-NH2-GA. In summary, this study clarified that GA alleviated colitis by targeting both the symptoms and root causes: it directly reduced the deleterious metabolite ammonia by forming aminated metabolites without compromising the original anti-colitis activity, and it also improved gut microbiota dysbiosis, which in turn contributed to the alleviation of colitis. Since the GA structure is presented in various polyphenols as a common building block, the novel anti-colitis mechanism obtained from GA may also apply to other complex polyphenols.IMPORTANCEThe dysbiosis of the gut microbiota and its metabolism directly cause the emergence of IBD. In this study, we aimed to clarify the anti-colitis mechanism of GA in sight of gut microbiota and its metabolite ammonia. We discovered that GA directly captured and reduced the harmful metabolite ammonia in vivo to produce the aminated metabolite 4-NH2-GA, while the amination of GA had no adverse effect on its initial anti-colitis activity. In addition, both GA and its aminated metabolite improved the gut microbiota in colitis mice, and the modified gut microbiota, in turn, helped to relieve colitis. Since the GA structure is presented in diverse polyphenols as a common building block, the novel anti-colitis mechanism targeting the symptoms and root causes might also apply to other complex polyphenols.
Collapse
Affiliation(s)
- Jie Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Tong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Pengfei Meng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yue Luo
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Siyue Zhu
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huangang, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
9
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
10
|
Thomsen KL, Eriksen PL, Kerbert AJC, De Chiara F, Jalan R, Vilstrup H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep 2023; 5:100780. [PMID: 37425212 PMCID: PMC10326708 DOI: 10.1016/j.jhepr.2023.100780] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease (NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea synthesis is an exclusive hepatic function and is the body's only on-demand and definitive pathway to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in both animal models and patients with NAFLD. The problem may be augmented by parallel changes in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflammation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an important mechanism for the transition of bland steatosis to steatohepatitis and further to cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative effects on other organs. Best known are the cerebral consequences that manifest as cognitive disturbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a negative muscle protein balance leading to sarcopenia, compromised immune function and increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle activity but there are promising animal and human reports of ammonia-lowering strategies correcting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-lowering strategies to control the symptoms and prevent the progression of NAFLD should be explored in clinical trials.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Annarein JC. Kerbert
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Francesco De Chiara
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| |
Collapse
|
11
|
Deutsch-Link S, Moon AM. The Ongoing Debate of Serum Ammonia Levels in Cirrhosis: the Good, the Bad, and the Ugly. Am J Gastroenterol 2023; 118:10-13. [PMID: 36001400 PMCID: PMC9822843 DOI: 10.14309/ajg.0000000000001966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 02/04/2023]
Abstract
Serum ammonia testing in hepatic encephalopathy (HE) has been long debated in the field of hepatology. Although central to the pathophysiology of HE, serum ammonia testing is fraught with complexities that can lead to challenges in laboratory collection and interpretation. Although there is some disagreement across guideline organizations regarding routine testing of ammonia in HE, all acknowledge that normal values, although possible in HE, may warrant reconsideration of the diagnosis. In this study, we propose a nuanced approach to ammonia testing in HE. Serum ammonia testing provides little additional benefit in clinical scenarios with a high or low pretest probability for HE. However, if the pretest probability for HE is uncertain, a low ammonia level may reduce the posttest probability of HE. In this scenario, other etiologies of altered mental status should be explored. Future research should focus on developing a standardized approach to serum ammonia collection, processing, and interpretation.
Collapse
Affiliation(s)
- Sasha Deutsch-Link
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
12
|
Liu Y, Zhang X, Wang W, Liu T, Ren J, Chen S, Lu T, Tie Y, Yuan X, Mo F, Yang J, Wei Y, Wei X. Ammonia promotes the proliferation of bone marrow-derived mesenchymal stem cells by regulating the Akt/mTOR/S6k pathway. Bone Res 2022; 10:57. [PMID: 36028500 PMCID: PMC9418171 DOI: 10.1038/s41413-022-00215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022] Open
Abstract
Ammonia plays an important role in cellular metabolism. However, ammonia is considered a toxic product. In bone marrow-derived mesenchymal stem cells, multipotent stem cells with high expression of glutamine synthetase (GS) in bone marrow, ammonia and glutamate can be converted to glutamine via glutamine synthetase activity to support the proliferation of MSCs. As a major nutritional amino acid for biosynthesis, glutamine can activate the Akt/mTOR/S6k pathway to stimulate cell proliferation. The activation of mTOR can promote cell entry into S phase, thereby enhancing DNA synthesis and cell proliferation. Our studies demonstrated that mesenchymal stem cells can convert the toxic waste product ammonia into nutritional glutamine via GS activity. Then, the Akt/mTOR/S6k pathway is activated to promote bone marrow-derived mesenchymal stem cell proliferation. These results suggest a new therapeutic strategy and potential target for the treatment of diseases involving hyperammonemia.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Ting Liu
- Department of Clinical Laboratory, The West China Second University Hospital of Sichuan University (WCSUH-SCU), Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jun Ren
- Department of Prenatal Diagnosis Center, The West China Second University Hospital of Sichuan University (WCSUH-SCU), Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
13
|
Silvera-Ruiz SM, Gemperle C, Peano N, Olivero V, Becerra A, Häberle J, Gruppi A, Larovere LE, Motrich RD. Immune Alterations in a Patient With Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome: A Case Report. Front Immunol 2022; 13:861516. [PMID: 35711415 PMCID: PMC9196877 DOI: 10.3389/fimmu.2022.861516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the SLC25A15 gene. Besides the well-known metabolic complications, patients often present intercurrent infections associated with acute hyperammonemia and metabolic decompensation. However, it is currently unknown whether intercurrent infections are associated with immunological alterations besides the known metabolic imbalances. Herein, we describe the case of a 3-years-old girl affected by the HHH syndrome caused by two novel SLC25A15 gene mutations associated with immune phenotypic and functional alterations. She was admitted to the hospital with an episode of recurrent otitis, somnolence, confusion, and lethargy. Laboratory tests revealed severe hyperammonemia, elevated serum levels of liver transaminases, hemostasis alterations, hyperglutaminemia and strikingly increased orotic aciduria. Noteworthy, serum protein electrophoresis showed a reduction in the gamma globulin fraction. Direct sequencing of the SLC25A15 gene revealed two heterozygous non-conservative substitutions in the exon 5: c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly). In silico analysis indicated that both mutations significantly impair protein structure and function and are consistent with the patient clinical status confirming the diagnosis of HHH syndrome. In addition, the immune analysis revealed reduced levels of serum IgG and striking phenotypic and functional alterations in the T and B cell immune compartments. Our study has identified two non-previously described mutations in the SLC25A15 gene underlying the HHH syndrome. Moreover, we are reporting for the first time functional and phenotypic immunologic alterations in this rare inborn error of metabolism that would render the patient immunocompromised and might be related to the high frequency of intercurrent infections observed in patients bearing urea cycle disorders. Our results point out the importance of a comprehensive analysis to gain further insights into the underlying pathophysiology of the disease that would allow better patient care and quality of life.
Collapse
Affiliation(s)
- Silene M Silvera-Ruiz
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Hospital de Niños de la Santísima Trinidad, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Corinne Gemperle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Natalia Peano
- Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | | | - Adriana Becerra
- División de Enfermedades Metabólicas, Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura E Larovere
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Hospital de Niños de la Santísima Trinidad, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Serum Ammonia in Cirrhosis: Clinical Impact of Hyperammonemia, Utility of Testing, and National Testing Trends. Clin Ther 2022; 44:e45-e57. [DOI: 10.1016/j.clinthera.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
|
15
|
Kinoshita T, Sayem MA, Yaguchi T, Kharma B, Morii K, Kato D, Ohta S, Mashima Y, Asamura H, Kawakami Y. Inhibition of vascular adhesion protein-1 enhances the anti-tumor effects of immune checkpoint inhibitors. Cancer Sci 2021; 112:1390-1401. [PMID: 33453147 PMCID: PMC8019209 DOI: 10.1111/cas.14812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Modulation of the immunosuppressive tumor microenvironment (TME) is essential for enhancing the anti‐tumor effects of immune checkpoint inhibitors (ICIs). Adhesion molecules and enzymes such as vascular adhesion protein‐1 (VAP‐1), which are expressed in some cancers and tumor vascular endothelial cells, may be involved in the generation of an immunosuppressive TME. In this study, the role of VAP‐1 in TME was investigated in 2 murine colon cancer models and human cancer cells. Intraperitoneal administration of the VAP‐1‐specific inhibitor U‐V296 inhibited murine tumor growth by enhancing IFN‐γ‐producing tumor antigen‐specific CD8+ T cells. U‐V296 exhibited significant synergistic anti‐tumor effects with ICIs. In the TME of mice treated with U‐V296, the expression of genes associated with M2‐like macrophages, Th2 cells (Il4, Retnla, and Irf4), angiogenesis (Pecam1), and fibrosis (Acta2, Loxl2) were significantly decreased, and the Th1/Th2 balance was increased. H2O2, an enzymatic product of VAP‐1, which promoted the production of IL‐4 by mouse Th2 and inhibited IFN‐γ by mouse Th1 and human tumor‐infiltrating lymphocytes, was decreased in tumors and CD31+ tumor vascular endothelial cells in the TMEs of mice treated with VAP‐1 inhibitor. TCGA database analysis showed that VAP‐1 expression was a negative prognostic factor in human cancers, exhibiting a significant positive correlation with IL‐4, IL4R, and IL‐13 expression and a negative correlation with IFN‐γ expression. These results indicated that VAP‐1 is involved in the immunosuppressive TMEs through H2O2‐associated Th2/M2 conditions and may be an attractive target for the development of combination cancer immunotherapy with ICIs.
Collapse
Affiliation(s)
- Tomonari Kinoshita
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Abu Sayem
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Budiman Kharma
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Morii
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Daiki Kato
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiko Mashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
16
|
Kim H, Song E, Lee J, Gautam R, Shin S, Cho A, Kim Y, Yang S, Jo J, Acharya M, Maharjan A, Kim C, Heo Y, Kim H. Dysregulation of murine immune functions on inhalational exposure to ammonia, dimethyl disulfide, 3-methylindole, or propionic acid. Toxicol Ind Health 2021; 37:219-228. [PMID: 33663293 DOI: 10.1177/0748233721996559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal husbandry workers are exposed to various malodorous compounds in the workplace. Although these compounds cause severe nuisance, no systemic investigation of their effects on the immune system has been conducted. To address this issue, we evaluated the effects of inhalational exposure to ammonia, dimethyl disulfide, 3-methylindole (3-MI), and propionic acid (PA), representing four major groups of malodorous compounds, on humoral and cellular immunity in mice. Mice were exposed to the substances (low dose: 10 µL and high dose: 200 µL) for 10 min/day for 4 weeks in a modified standard mouse cage. Neutrophil% and splenic cytotoxic T cell% were significantly lower in the high-dose ammonia group than in the vehicle control. Exposure to ammonia and 3-MI increased immature thymic T lymphocyte% relative to control and concomitantly decreased both mature helper and cytotoxic T-cell populations in the thymus. In the ammonia exposure group, levels of serum immunoglobulin E and immunoglobulin A were elevated, and the IgG2a:IgG1 ratio in the serum was reduced in a dose-dependent manner. Splenic natural killer cell activity was significantly less in the PA exposure group than in the control. Overall, our findings suggest that inhalational exposure to these malodorous substances disturbs immune homeostasis in vivo.
Collapse
Affiliation(s)
- HyeonJi Kim
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - EunSeob Song
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JaeHee Lee
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Ravi Gautam
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - SoJung Shin
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - AhRang Cho
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - YeonGyeong Kim
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - ChangYul Kim
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio-Medical Sciences, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea.,Department of Toxicity Assessment, Graduate School of Medical Health and Science, 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, 37128College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
17
|
Hennig-Pauka I, Sudendey C, Kleinschmidt S, Ruppitsch W, Loncaric I, Spergser J. Swine Conjunctivitis Associated with a Novel Mycoplasma Species Closely Related to Mycoplasma hyorhinis. Pathogens 2020; 10:pathogens10010013. [PMID: 33375690 PMCID: PMC7824142 DOI: 10.3390/pathogens10010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Conjunctivitis in swine is a common finding, usually considered to be a secondary symptom of respiratory or viral systemic disease, or a result of irritation by dust or ammonia, or of local infections with Mycoplasma (M.) hyorhinis or chlamydia. In three unrelated swine farms in Germany with a high prevalence of conjunctivitis, a novel mycoplasma species, tentatively named Mycoplasma sp. 1654_15, was isolated from conjunctival swabs taken from affected pigs. Although 16S rRNA gene sequences shared highest nucleotide similarities with M. hyorhinis, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, partial rpoB sequencing, and comparative whole genome analyses indicated the identification of a novel species within genus Mycoplasma. Noticeable differences between Mycoplasma sp. 1654_15 and M. hyorhinis were the lack of a vlp locus and the presence of a myo-inositol pathway in the genome of strain 1654_15. Since myo-inositol might be used as an alternative energy source by this pathogen on the conjunctival surface, robust colonization by outcompeting other bacteria could be the consequence. In summary, abundant isolation of Mycoplasma sp. 1654_15 from the conjunctiva of affected pigs, its close relationship to M. hyorhinis, and identification of a panel of coding sequences (CDSs) potentially associated with virulence and pathogenicity suggested a local eye disease caused by a so far unknown, highly specialized mycoplasma species.
Collapse
Affiliation(s)
- Isabel Hennig-Pauka
- Field Station for Epidemiology in Bakum, University of Veterinary Medicine Hannover, 49456 Bakum, Germany;
| | | | - Sven Kleinschmidt
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, 30173 Hannover, Germany;
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1096 Vienna, Austria;
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| |
Collapse
|
18
|
Shah SWA, Chen D, Zhang J, Liu Y, Ishfaq M, Tang Y, Teng X. The effect of ammonia exposure on energy metabolism and mitochondrial dynamic proteins in chicken thymus: Through oxidative stress, apoptosis, and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111413. [PMID: 33022443 DOI: 10.1016/j.ecoenv.2020.111413] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3) gas is an atmospheric pollutant, produced from different sources. In poultry houses NH3 is produced from the biological process of liter, manure, and protein composition. It has been well documented that NH3 adversely effects the health of chickens. However, the underlying mechanism of NH3 toxicity on chicken thymus is still unknown. Thymus is an important immune organ, which play a critical role in eliciting protective immune responses to ensure healing process and elimination of harmful stimuli. The results showed that NH3 exposure reduced antioxidant activities and induced oxidative stress in thymus tissues. Histological observation showed normal morphology of chicken thymus in control group. In contrast, increased number of nuclear debris, vacuoles, and cristae break were seen in NH3 affected chickens. Ultrastructural analysis indicated mitochondrial breakdown, disappearance, vacuoles, and chromatin condensation in NH3 treated groups. The mRNA and protein expression of apoptosis related genes were significantly enhanced in the chicken thymus of NH3 affected chickens compared to control group. Moreover, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay results suggested that NH3 exposure increased positive stained nuclei in the chicken thymus. Meanwhile, NH3 exposure reduced the number of CD8+ T-lymphocytes, decreased the adenosine triphosphate (ATPase) activities. The mRNA and protein expression of autophagy, energy metabolism, and mitochondrial dynamics proteins were altered by NH3 exposure. In summary, these results showed that NH3 induced oxidative stress, apoptosis and autophagic cell death (ACD), which could be the possible causes of immune damage and structural impairment in chicken thymus.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| | - Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Yuanlong Liu
- Heilongjiang Animal Husbandry Station, Harbin 150069, China.
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Chang jiang Road, Xiang Fang District, Harbin 150030, China.
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Ali Shah SW, Zhang S, Ishfaq M, Tang Y, Teng X. PTEN/AKT/mTOR pathway involvement in autophagy, mediated by miR-99a-3p and energy metabolism in ammonia-exposed chicken bursal lymphocytes. Poult Sci 2020; 100:553-564. [PMID: 33518108 PMCID: PMC7858094 DOI: 10.1016/j.psj.2020.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Emission of atmospheric ammonia (NH3) is an environmental challenge because of its harmful effects on humans and animals including birds. Among all organisms, NH3 is highly sensitive to birds. Autophagy plays a critical role in Bursa of fabricius (BF)-mediated immune responses against various hazardous substances. Therefore, we designed our work to demonstrate whether NH3 can induce autophagy in broiler chicken BF. In this study, the downregulated levels of mammalian target of rapamycin and light chain-3 (LC-Ⅰ), as well as the upregulated levels of phosphate and tensin homology (PTEN), protein kinase B (AKT), autophagy related-5, light chain-3 (LC3-Ⅱ), Becline-1, and Dynein, were found. Our results of transmission electron microscopy displayed signs of autophagosomes/autophagic lysosomes, and immunofluorescence assay displayed that NH3 exposure reduced the relative amount of CD8+ B-lymphocyte in chicken BF. Exposure of NH3 led to energy metabolism disturbance by decreasing mRNA levels of glucose metabolism factors aconitase-2, hexokinase-1, hexokinase-2, lactate dehydrogenase-A, lactate dehydrogenase-B, pyruvate kinase, phosphofructokinase and succinate dehydrogenase complex unit-B, and adenosine triphosphates (ATPase) activities (Na+/K+ ATPase, Ca2+ ATPase, Mg2+ ATPase, and Ca/Mg2+ ATPase). Moreover, phosphate and tensin homology was found as target gene of microRNA-99a-3p which confirmed that high concentration of NH3 caused autophagy in chicken BF. In summary, these findings suggested that ammonia induced autophagy via miR-99a-3p, the reduction of ATPase activity, and the alteration of autophagy-related factors, and energy metabolism mediation in BF. Our findings provide information to assess the harmful effects of NH3 on chicken and clues for human health pathophysiology.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
20
|
Multhoff G, Vaupel P. Hypoxia Compromises Anti-Cancer Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:131-143. [PMID: 31893404 DOI: 10.1007/978-3-030-34461-0_18] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia, one of the hallmarks of cancer, is caused by an insufficient oxygen supply, mostly due to a chaotic, deficient tumor microcirculation. Apart from a hypoxia-mediated resistance to standard therapies, modulated gene and protein expression, genetic instability and malignant progression, hypoxia also plays a pivotal role in anti-cancer immune responses by (a) reducing survival, cytolytic and migratory activity of effector cells such as CD4+ cells, CD8+ cytotoxic T cells, natural killer-like T cells and natural killer cells, (b) reducing the production and release of effector cytokines, (c) supporting immunosuppressive cells such as regulatory T cells, myeloid-derived suppressor cells and M2 macrophages, (d) increasing the production and release of immunosuppressive cytokines, and (e) inducing the expression of immune checkpoint inhibitors. In this minireview, immunosuppressive effects of hypoxia- and HIF-1a-driven traits in cancers are described.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, TU Munich (TUM), München, Germany.
| | - Peter Vaupel
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München (TUM), München, Germany
| |
Collapse
|
21
|
Hennig-Pauka I, Menzel A, Boehme TR, Schierbaum H, Ganter M, Schulz J. Haptoglobin and C-Reactive Protein-Non-specific Markers for Nursery Conditions in Swine. Front Vet Sci 2019; 6:92. [PMID: 31001544 PMCID: PMC6455069 DOI: 10.3389/fvets.2019.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
A quality concept for production in the pork market includes granting a good health status of pigs from birth to slaughter. This concept is a precondition for animal welfare as well as reducing antibiotic usage in farm animals. The demand for fighting bacterial antimicrobial resistance in humans, animals, and in the environment is one driving force for the development of innovative technical solutions to improve husbandry. Maintenance of a good health status in pigs depends on early detection of a disturbance in homeostasis in critical phases of life. This can be measured by non-specific biomarkers as acute phase proteins. In this project, husbandry conditions and health status in nursery pigs were monitored in an autumn and winter nursery period from weaning to the end of nursery in two compartments with 180 pigs each. It was investigated whether a slight modification in indoor climate achieved by a new ammonia sensory technology coupled with the electronic control unit of the forced ventilation system ensuring ammonia levels lower than 5 ± 3 ppm in one compartment led to a better health status in piglets in comparison to the control compartment. In the examined nursery periods in different seasons, ammonia concentrations in the experimental compartment were significantly lower than in the control compartment, thus proving the functionality and efficacy of the technical system. Production parameters as feed conversion rate and average daily weight gain were slightly improved in the experimental compartment without implementing other measures. Multifactorial analysis of variance resulted in a significant influence of season, daily quarter, and compartment on ammonia concentration. The challenge to preserve a high health status of piglets also during suboptimal outside climate in the transitional season was reflected by an increase in the acute-phase proteins haptoglobin (Hp) and C-reactive protein (CRP) in autumn compared to winter. The seasonal influence on concentrations of CRP and Hp superimposed potential influences of the climate modification. New technological concepts to reduce noxious gases and dust in the animal environment as well as emissions, which in parallel guarantee optimal temperatures also during extreme weather conditions, can be evaluated by clinical data in combination with biomarkers.
Collapse
Affiliation(s)
- Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany.,University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Anne Menzel
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Martin Ganter
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| |
Collapse
|
22
|
He L, Cai X, Cheng S, Zhou H, Zhang Z, Ren J, Ren F, Yang Q, Tao N, Chen J. Ornithine transcarbamylase downregulation is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 2019; 17:5030-5038. [PMID: 31186714 PMCID: PMC6507468 DOI: 10.3892/ol.2019.10174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortalities worldwide. The role of ornithine transcarbamylase (OTC) in HCC remains unclear. In the present study, the expression of OTC in HCC was analyzed based on datasets from the Gene Expression Omnibus database of the National Center for Biotechnology Information and further confirmed by immunohistochemistry, western blotting analysis and reverse transcription-quantitative polymerase chain reaction assays on clinical samples and cell lines. Furthermore, the associations between OTC expression and clinicopathological parameters as well as clinical outcome, including the overall and disease-free survival rates were analyzed. Finally, the effect of OTC on HCC cells was measured using proliferation, bromodeoxyuridine and colony-formation assays. Lower OTC expression was observed in HCC cells and tissues compared with primary human hepatocytes. Further investigation demonstrated that low expression of OTC in HCC was associated with larger tumor size and advanced grade. A Kaplan-Meier analysis revealed that patients with lower levels of OTC exhibited shorter overall and disease-free survival times. Notably, OTC silencing with RNA interference facilitated cell proliferation in HCC SK-Hep-1 and Huh-7 cells. However, overexpression of OTC led to inhibition of cell proliferation. In conclusion, the present study identified a novel role of OTC in HCC development, providing a potential novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengtao Cheng
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongzhong Zhou
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jihua Ren
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Ren
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiuxia Yang
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nana Tao
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
23
|
Saladini S, Aventaggiato M, Barreca F, Morgante E, Sansone L, Russo MA, Tafani M. Metformin Impairs Glutamine Metabolism and Autophagy in Tumour Cells. Cells 2019; 8:cells8010049. [PMID: 30646605 PMCID: PMC6356289 DOI: 10.3390/cells8010049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin is used as adjuvant drug to increase the efficacy of cisplatin-based neoadjuvant chemotherapy, we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and autophagy and could be used to improve the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Serena Saladini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Emanuela Morgante
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Luigi Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy.
| | - Matteo A Russo
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy.
- MEBIC Consortium, San Raffaele Rome Open University, 00166 Rome, Italy.
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
24
|
Huang A, Ma J, Huang L, Yang F, Cheng P. Mechanisms for enhanced antitumor immune responses induced by irradiated hepatocellular carcinoma cells engineered to express hepatitis B virus X protein. Oncol Lett 2018; 15:8505-8515. [PMID: 29928322 PMCID: PMC6004658 DOI: 10.3892/ol.2018.8430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
Tumor associated antigen (TAA) induces both humoral immunity and cellular immunity. The T cell-mediated immune response has an important role in the immune response induced by TAA. The hepatitis B virus X protein (HBx) sequence is mapped with Custer of differentiation (CD)8+ T cell (CTL) epitopes, while a large number of studies have indicated that HBx may enhance the autophagy. In our previous study, a novel hepatocellular carcinoma vaccine was designed that was an irradiated HBx modified hepatocellular carcinoma cell vaccine in autophagic form, which significantly induced antitumor immune responses in vivo. However, the mechanism by which this vaccine contributes to enhancing antitumor immune responses have yet to be fully elucidated. In the present study, we examined how autophagy was induced by this vaccine's influence on the generation of the ‘danger signal’ by hepatoma tumor cells and the subsequent activation of the immunoresponse. The data showed that the vaccine induced phenotypic maturation of DCs, which leads to efficient cross-presentation and a specific response. Both CD8+ and CD4+ T lymphocytes were involved in the antitumor immune response, as reflected by IFN-γ secretion. In addition, damage-associated molecular pattern molecules (DAMPs) were significantly elevated in the vaccine, and the elevation of DAMPs was autophagy-dependent. Furthermore, the antitumor activity was achieved by adoptive transfer of lymphocytes but not serum. The present findings indicated that this vaccine enhanced antitumor immune responses, which was in accordance with our previous study.
Collapse
Affiliation(s)
- Anliang Huang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhu Ma
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liyan Huang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fan Yang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Cheng
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
25
|
Liu XM, Peyton KJ, Durante W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 2017; 102:37-46. [PMID: 27867098 PMCID: PMC5209302 DOI: 10.1016/j.freeradbiomed.2016.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Although endothelial cells produce substantial quantities of ammonia during cell metabolism, the physiologic role of this gas in these cells is not known. In this study, we investigated if ammonia regulates the expression of heme oxygenase-1 (HO-1), and if this enzyme influences the biological actions of ammonia on endothelial cells. Exogenously administered ammonia, given as ammonium chloride or ammonium hydroxide, or endogenously generated ammonia stimulated HO-1 protein expression in cultured human and murine endothelial cells. Dietary supplementation of ammonia also induced HO-1 protein expression in murine arteries. The increase in HO-1 protein by ammonia in endothelial cells was first detected 4h after ammonia exposure and was associated with the induction of HO-1 mRNA, enhanced production of reactive oxygen species (ROS), and increased expression and activity of NF-E2-related factor-2 (Nrf2). Ammonia also activated the HO-1 promoter and this was blocked by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. The induction of HO-1 expression by ammonia was dependent on ROS formation and prevented by N-acetylcysteine or rotenone. Finally, prior treatment of endothelial cells with ammonia inhibited tumor necrosis factor-α-stimulated cell death. However, silencing HO-1 expression abrogated the protective action of ammonia and this was reversed by the administration of carbon monoxide but not bilirubin or iron. In conclusion, this study demonstrates that ammonia stimulates the expression of HO-1 in endothelial cells via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cytoprotective action of ammonia by generating carbon monoxide. Moreover, it identifies ammonia as a potentially important signaling gas in the vasculature that promotes endothelial cell survival.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
26
|
Wang N, Zhen Y, Jin Y, Wang X, Li N, Jiang S, Wang T. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release 2016; 246:12-29. [PMID: 27986552 DOI: 10.1016/j.jconrel.2016.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
To develop effective mucosal vaccines, two types of multifunctional liposomes, the mannosylated lipid A-liposomes (MLLs) with a size of 200nm and the stealth lipid A-liposomes (SLLs) of 50nm, both loaded with a model antigen and NH4HCO3, were fabricated together into microneedles, forming the proSLL/MLL-constituted microneedle array (proSMMA), which upon rehydration dissolved rapidly recovering the initial MLLs and SLLs. Mice vaccinated with proSMMAs by vaginal mucosa patching other than conventional intradermal administration established robust antigen-specific humoral and cellular immunity at both systemic and mucosal levels, especially, in the reproductive and intestinal ducts. Further exploration demonstrated that the MLLs reconstituted from the administered proSMMAs were mostly taken up by vaginal mucosal dendritic cells, whereas the recovered SLLs trafficked directly to draining lymph nodes wherein to be picked up by macrophages. Moreover, the antigens delivered by either liposomes were also cross-presented for MHC-I displaying by APCs thanks to lysosome escape and ROS (reactive oxygen species) stimulation, both of which occurred when lysosomal acidifying the liposome-released NH4HCO3 into CO2 and NH4+/NH3 to rupture lysosomes by gas expansion and to cause ROS production by excessive ammonia induction, resulting in a mixed Th1/Th2 type response which was also promoted by liposomal lipid A via activation of TLR4. In addition, vaginal vaccination of the engineered HSV2 antigen gD-loaded proSMMAs successfully protected mice from the virus challenge. Thus, the proSMMAs are in fact a vaccine adjuvant-dual delivery system capable of eliciting robust humoral and cellular immunity against the invading pathogens, especially, the sexually transmitted ones.
Collapse
Affiliation(s)
- Ning Wang
- School of Biological and Medical Engineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Li
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Shaohong Jiang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
27
|
Abusneina A, Gauthier ER. Ammonium ions improve the survival of glutamine-starved hybridoma cells. Cell Biosci 2016; 6:23. [PMID: 27087916 PMCID: PMC4832542 DOI: 10.1186/s13578-016-0092-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background As a consequence of a reprogrammed metabolism, cancer cells are dependent on the amino acid l-glutamine for their survival, a phenomenon that currently forms the basis for the generation of new, cancer-specific therapies. In this paper, we report on the role which ammonium ions, a product of glutaminolysis, play on the survival of l-glutamine-deprived Sp2/0-Ag14 mouse hybridoma cells. Results The supplementation of l-glutamine-starved Sp2/0-Ag14 cell cultures with either ammonium acetate or ammonium chloride resulted in a significant increase in viability. This effect did not depend on the ability of cells to synthesize l-glutamine, and was not affected by the co-supplementation with α-ketoglutarate. When we examined the effect of ammonium acetate and ammonium chloride on the induction of apoptosis by glutamine deprivation, we found that ammonium salts did not prevent caspase-3 activation or cytochrome c leakage, indicating that they did not act by modulating core apoptotic processes. However, both ammonium acetate and ammonium chloride caused a significant reduction in the number of l-glutamine-starved cells exhibiting apoptotic nuclear fragmentation and/or condensation. Conclusion All together, our results show that ammonium ions promote the survival of l-glutamine-deprived Sp2/0-Ag14 cells and modulate late-apoptotic events. These findings highlight the complexity of the modulation of cell survival by l-glutamine, and suggest that targeting survival-signaling pathways modulated by ammonium ions should be examined as a potential anti-cancer strategy.
Collapse
Affiliation(s)
| | - Eric R Gauthier
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6 Canada ; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6 Canada ; Department of Biology, Laurentian University, Sudbury, ON P3E 2C6 Canada
| |
Collapse
|
28
|
Brannelly NT, Hamilton-Shield JP, Killard AJ. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit Rev Anal Chem 2016; 46:490-501. [PMID: 26907707 DOI: 10.1080/10408347.2016.1153949] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ammonia is an important component of metabolism and is involved in many physiological processes. During normal physiology, levels of blood ammonia are between 11 and 50 µM. Elevated blood ammonia levels are associated with a variety of pathological conditions such as liver and kidney dysfunction, Reye's syndrome and a variety of inborn errors of metabolism including urea cycle disorders (UCD), organic acidaemias and hyperinsulinism/hyperammonaemia syndrome in which ammonia may reach levels in excess of 1 mM. It is highly neurotoxic and so effective measurement is critical for assessing and monitoring disease severity and treatment. Ammonia is also a potential biomarker in exercise physiology and studies of drug metabolism. Current ammonia testing is based on blood sampling, which is inconvenient and can be subject to significant analytical errors due to the quality of the sample draw, its handling and preparation for analysis. Blood ammonia is in gaseous equilibrium with the lungs. Recent research has demonstrated the potential use of breath ammonia as a non-invasive means of measuring systemic ammonia. This requires measurement of ammonia in real breath samples with associated temperature, humidity and gas characteristics at concentrations between 50 and several thousand parts per billion. This review explores the diagnostic applications of ammonia measurement and the impact that the move from blood to breath analysis could have on how these processes and diseases are studied and managed.
Collapse
Affiliation(s)
- N T Brannelly
- a Department of Biological Biomedical and Analytical Science , University of the West of England , Bristol , UK
| | | | - A J Killard
- a Department of Biological Biomedical and Analytical Science , University of the West of England , Bristol , UK
| |
Collapse
|
29
|
Sun H, Liu P, Nolan LK, Lamont SJ. Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics 2015; 16:690. [PMID: 26369556 PMCID: PMC4570614 DOI: 10.1186/s12864-015-1850-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. Results We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. Conclusion The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1850-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA.
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|