1
|
Yong C, Liang Y, Wang M, Jin W, Fan X, Wang Z, Cao K, Wu T, Li Q, Chang C. Alternative splicing: A key regulator in T cell response and cancer immunotherapy. Pharmacol Res 2025; 215:107713. [PMID: 40147681 DOI: 10.1016/j.phrs.2025.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Alternative splicing (AS), a key post-transcriptional regulatory mechanism, is frequently dysregulated in cancer, driving both tumor progression and immune modulation. Aberrant AS influences antigen presentation, T cell activation, immune checkpoint regulation, and cytokine signaling, contributing to immune evasion but also presenting unique therapeutic vulnerabilities. Targeting AS has emerged as a promising strategy in cancer immunotherapy. Splicing-derived neoantigens have been identified as potent inducers of CD8⁺ T cell responses, offering potential for personalized treatment. AS modulators such as PRMT5 inhibitor GSK3326595 enhance immunotherapy efficacy by upregulating MHC class II expression and promoting T cell infiltration, while RBM39 inhibitor indisulam induces tumor-specific neoantigens. Furthermore, combining AS-targeting drugs with immune checkpoint inhibitors (ICIs) has demonstrated synergistic effects, improved response rates and overcoming resistance in preclinical models. Despite these advances, challenges remain in optimizing drug specificity and minimizing toxicity. Future efforts should focus on refining AS-targeting therapies, identifying predictive biomarkers, and integrating these approaches into clinical applications. This review highlights the therapeutic potential of AS modulation in cancer immunotherapy and its implications for advancing precision oncology.
Collapse
Affiliation(s)
- Caiyu Yong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yexin Liang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Minmin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Weiwei Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuefei Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhengwen Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Kui Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tong Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qian Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Cunjie Chang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Vigo M, Placci M, Muro S. Isoform-specific vs. isoform-universal drug targeting: a new targeting paradigm illustrated by new anti-ICAM-1 antibodies. J Drug Target 2025; 33:562-574. [PMID: 39639798 DOI: 10.1080/1061186x.2024.2438884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Drug targeting can be achieved by coupling drugs or their carriers to affinity molecules, mostly antibodies (Abs), which recognise specific protein targets. However, most proteins are not expressed in an exclusive configuration but as various isoforms. Hence, selected targeting molecules may fail to target with enough efficiency in clinical trials, which is overlooked. We illustrate this by targeting intercellular adhesion molecule 1 (ICAM-1), a cell-surface protein overexpressed in many pathologies. Most ICAM-1 targeting studies used Ab R6.5, which binds ICAM-1 domain 2 (D2). Yet, literature and our data show that D2 is frequently absent among ICAM-1 isoforms. We thus produced a battery of five new Abs (B4, B6, B11, C12 and G2) and tested their ability to recognise both full-length and -D2 ICAM-1. In solution, all Abs recognised both ICAM-1 forms (from 5.3 × 1011 to 4.2 × 1012 sum intensity/well). Coating them on nanocarriers (NCs) rendered G2 specific against -D2 ICAM-1 (4.2 × 106 NCs/well) while other Abs kept their dual recognition (from 6.4 × 106 to 2.2 × 107 NCs/well). All Abs induced NC intracellular uptake in respective cells (from 42% to 85%) and displayed good cross-species reactivity (from 4.4 × 1011 to 2.6 × 1012 sum intensity/well). These Abs represent valuable tools to target ICAM-1 and illustrate a new targeting paradigm that may improve classical strategies.
Collapse
Affiliation(s)
- Marco Vigo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Biomedicine Doctorate Program, University of Barcelona, Barcelona, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Biotechnology Doctorate Program, University of Barcelona, Barcelona, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Zhou J, Sun Z, Wang X, Wang S, Jiang W, Tang D, Xia T, Xiao F. Low-temperature cold plasma promotes wound healing by inhibiting skin inflammation and improving skin microbiome. Front Bioeng Biotechnol 2025; 13:1511259. [PMID: 40051835 PMCID: PMC11882593 DOI: 10.3389/fbioe.2025.1511259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Wound healing includes four consecutive and overlapping stages of hemostasis, inflammation, proliferation, and remodeling. Factors such as aging, infection, and chronic diseases can lead to chronic wounds and delayed healing. Low-temperature cold plasma (LTCP) is an emerging physical therapy for wound healing, characterized by its safety, environmental friendliness, and ease of operation. This study utilized a self-developed LTCP device to investigate its biological effects and mechanisms on wound healing in adult and elderly mice. Histopathological studies found that LTCP significantly accelerated the healing rate of skin wounds in mice, with particularly pronounced effects in elderly mice. LTCP can markedly inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and senescence-associated secretory phenotype factors (MMP-3, MMP-9), while significantly increasing the expression of tissue repair-related factors, such as VEGF, bFGF, TGF-β, COL-I, and α-SMA. It also regulated the expression of genes related to cell proliferation and migration (Aqp5, Spint1), inflammation response (Nlrp3, Icam1), and angiogenesis (Ptx3, Thbs1), promoting cell proliferation and inhibit apoptosis. Furthermore, LTCP treatment reduced the relative abundance of harmful bacteria such as Delftia, Stenotrophomonas, Enterococcus, and Enterobacter in skin wounds, while increasing the relative abundance of beneficial bacteria such as Muribaculaceae, Acinetobacter, Lachnospiraceae NK4A136_group, and un_f__Lachnospiraceae, thereby improving the microbial community structure of skin wounds. These research findings are of significant implications for understanding the mechanism of skin wound healing, as well as for the treatment and clinical applications of skin wounds, especially aging skin.
Collapse
Affiliation(s)
- Jie Zhou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Zengkun Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Xiaoru Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Shouguo Wang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Wen Jiang
- Beijing Zhongsu Titanium Alloy Vacuum Plasma Technology Research Institute, Beijing, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Fang Xiao
- Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Amdemicael B, Yang K, Chronister BN, Mackey C, Tu X, Gahagan S, Martinez D, Checkoway H, Jacobs DR, Suarez-Torres J, Hong S, Suarez-Lopez JR. Inflammation biomarkers and neurobehavioral performance in rural adolescents. Brain Behav Immun Health 2025; 43:100912. [PMID: 39686922 PMCID: PMC11648784 DOI: 10.1016/j.bbih.2024.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background Systemic inflammation has been associated with lower neurobehavioral performance in diverse populations, yet the evidence in adolescents remains lacking. Cytokines can alter neural network activity to induce neurocognitive changes. This work seeks to investigate the association between inflammation and neurobehavior in adolescents living in a rural region of Ecuador. Methods We examined 535 adolescents in rural communities of Ecuador (ESPINA study), 508 of which had neurobehavioral assessments (NEPSY-II) and circulating plasma levels of inflammatory markers (CRP, IL-6, TNF-⍺, sICAM-1, sVCAM-1, SAA, and sCD14). Associations between inflammatory biomarker concentrations and neurobehavioral scores were examined using adjusted bivariate semi-parametric models with generalized estimating equations. A partial least squares regression approach was used to create composite variables from multiple inflammation biomarkers and model their association with cognitive outcomes. Results Higher sCD14 and TNF-α concentrations were significantly associated with lower social perception scores, by -0.465 units (95% CI: -0.80, -0.13) and -0.418 units (-0.72, -0.12) for every 50% increase in inflammatory marker concentration, respectively. Similarly, every 50% increase in the inflammation summary score was associated with a significantly lower Social Perception score by -0.112 units (-0.19, -0.03). A greater inflammatory composite variable from seven markers was associated with lower scores in language (β = -0.11, p = 0.043), visuospatial processing (β = -0.15, p = 0.086), and social perception (β = -0.22, p = 0.005) domains. Conclusions Higher levels of inflammation were associated with lower neurobehavioral performance in adolescents, especially with social perception. In addition, using a robust analytic method to examine an association between a composite inflammatory variable integrating seven markers led to additional findings, including the domains of language and visuospatial processing. A longitudinal follow-up of such investigations could unveil potential changes in inflammation-neurobehavior performance links through developmental stages and intervention opportunities.
Collapse
Affiliation(s)
- Beemnet Amdemicael
- School of Medicine, University of California, San Diego, 9500 Gilman Drive #0832, La Jolla, CA, 92093-0832, USA
| | - Kun Yang
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| | - Briana N.C. Chronister
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| | - Caroline Mackey
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| | - Xin Tu
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive #0832, La Jolla, CA, 92093-0832, USA
| | - Danilo Martinez
- Fundación Cimas Del Ecuador, Quito, Ecuador, De Los Olivos E15-18 y Las Minas, Quito, Ecuador
| | - Harvey Checkoway
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Drive, #0949, La Jolla, CA, 92093-0949, USA
| | - David R. Jacobs
- Division of Epidemiology, School of Public Health, University of Minnesota, 1300 S 2nd St NE, Suite 300, Minneapolis, MN, 55454, USA
| | - Jose Suarez-Torres
- Fundación Cimas Del Ecuador, Quito, Ecuador, De Los Olivos E15-18 y Las Minas, Quito, Ecuador
| | - Suzi Hong
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive #0832, La Jolla, CA, 92093-0832, USA
| | - Jose R. Suarez-Lopez
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive #0725, La Jolla, CA, 92024-0725, USA
| |
Collapse
|
5
|
McPeek MK, Gomez JC, Martin JR, Iannone MA, Dang H, Doerschuk CM. Leukocyte kinetics and bacterial clearance during Streptococcus pneumoniae pneumonia and contributions of ICAM-1. Am J Physiol Lung Cell Mol Physiol 2025; 328:L41-L59. [PMID: 39437756 PMCID: PMC11905799 DOI: 10.1152/ajplung.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia. Intercellular adhesion molecule-1 (ICAM-1) is an adhesion molecule that is highly expressed on the pulmonary capillary endothelium, alveolar epithelium, and other cell types within the lung. ICAM-1 plays important roles in leukocyte adhesion, migration, and motility. To determine the contributions of ICAM-1 to bacterial clearance and leukocyte kinetics during pneumonia, mice were inoculated with S. pneumoniae and evaluated 1, 4, and 7 days later. Our results show that Icam1-/- mice have a greater number of viable bacteria within the lung at each time point. The impaired clearance observed in Icam1-/- mice was not due to an impediment in leukocyte recruitment. In fact, Icam1-/- mice had a greater number of neutrophils and recruited inflammatory macrophages in the lung tissue and the alveoli/airways on day 7. In contrast, fewer alveolar macrophages were present in the bronchoalveolar lavage (BAL) of Icam1-/- mice. The loss of body weight and the concentrations of inflammatory mediators in the BAL were also significantly greater in Icam1-/- mice. Mechanistic studies to understand the defect in clearance show that neutrophils and macrophage subpopulations had no defect in phagocytosis or acidification of phagosomes. RNA sequencing reveals many differences in gene expression but no suggestion of a defect in phagocytosis or killing. Thus, ICAM-1 is necessary for the clearance of S. pneumoniae and for the resolution of pneumonia but is not required for the recruitment of neutrophils or inflammatory macrophages into the pneumonic lung parenchyma or the alveoli/airways during S. pneumoniae-induced pneumonia.NEW & NOTEWORTHY Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Our study examined ICAM-1, an adhesion molecule that is expressed on most cell types and plays important roles in leukocyte adhesion, migration, and motility. The data demonstrate that ICAM-1 is necessary for the clearance of S. pneumoniae and for the resolution of pneumonia but is not required for the recruitment of neutrophils or inflammatory macrophages into the pneumonic lung parenchyma or the alveoli/airways.
Collapse
MESH Headings
- Animals
- Intercellular Adhesion Molecule-1/metabolism
- Streptococcus pneumoniae/immunology
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/metabolism
- Pneumonia, Pneumococcal/pathology
- Mice
- Neutrophils/immunology
- Neutrophils/metabolism
- Mice, Inbred C57BL
- Lung/microbiology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Leukocytes/metabolism
- Leukocytes/immunology
- Leukocytes/microbiology
- Mice, Knockout
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Bronchoalveolar Lavage Fluid/immunology
- Bronchoalveolar Lavage Fluid/microbiology
- Kinetics
Collapse
Affiliation(s)
- Matthew K McPeek
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - John C Gomez
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jessica R Martin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Marie Anne Iannone
- Mass Cytometry Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
6
|
Wright SA, Lennon R, Greenhalgh AD. Basement membranes' role in immune cell recruitment to the central nervous system. J Inflamm (Lond) 2024; 21:53. [PMID: 39707430 DOI: 10.1186/s12950-024-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Basement membranes form part of the extracellular matrix (ECM), which is the structural basis for all tissue. Basement membranes are cell-adherent sheets found between cells and vascular endothelia, including those of the central nervous system (CNS). There is exceptional regional specialisation of these structures, both in tissue organisation and regulation of tissue-specific cellular processes. Due to their location, basement membranes perform a key role in immune cell trafficking and therefore are important in inflammatory processes causing or resulting from CNS disease and injury. This review will describe basement membranes in detail, with special focus on the brain. We will cover how genetic changes drive brain pathology, describe basement membranes' role in immune cell recruitment and how they respond to various brain diseases. Understanding how basement membranes form the junction between the immune and central nervous systems will be a major advance in understanding brain disease.
Collapse
Affiliation(s)
- Shaun A Wright
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Lennon
- Cell Matrix Biology & Regenerative Medicine and Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Vigo M, Haro-Martínez E, Ruiz E, Fumadó-Navarro J, Placci M, Muro S. New Cellular Models to Support Preclinical Studies on ICAM-1-Targeted Drug Delivery. J Drug Deliv Sci Technol 2024; 101:106170. [PMID: 39669707 PMCID: PMC11633371 DOI: 10.1016/j.jddst.2024.106170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein actively explored for targeted drug delivery. Anti-ICAM-1 nanocarriers (NCs) target ICAM-1-positive sites after intravenous injection in animal models, but quantitative mechanistic examination of cellular-level transport in vivo is not possible. Prior studies in human cell cultures indicated efficient uptake of these formulations via cell adhesion molecule-(CAM)-mediated endocytosis. However, ICAM-1 sequence differs among species; thus, whether anti-ICAM-1 NCs induce similar behavior in animal cells, key for intracellular drug delivery, is unknown. To begin bridging this gap, we first qualitatively verified intracellular transport of anti-ICAM-1 NCs in vivo and then developed new cellular models expressing ICAM-1 from mouse, dog, pig, and monkey, species relevant to pharmaceutical translation and veterinary medicine. ICAM-1 expression was verified by flow cytometry and confocal microscopy. These cells showed specific targeting compared to IgG NCs or cells treated with anti-ICAM-1 blocker. Anti-ICAM-1 NCs entered cells in a time- and temperature-dependent manner, with kinetics and pathway compatible with CAM-mediated endocytosis. All parameters tested were strikingly similar to those from human cells expressing ICAM-1 endogenously. Therefore, this new cellular platform represents a valuable tool that can be used in parallel to support in vivo studies on ICAM-1-targeted NCs during pharmaceutical translation.
Collapse
Affiliation(s)
- Marco Vigo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biomedicine Doctorate Program, University of Barcelona, 08007, Spain
| | - Elena Haro-Martínez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eloy Ruiz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Josep Fumadó-Navarro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biotechnology Doctorate Program, University of Barcelona, 080007, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute for Bioscience and Biotechnology Research and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Kang JH, Uddin N, Kim S, Zhao Y, Yoo KC, Kim MJ, Hong SA, Bae S, Lee JY, Shin I, Jin YW, O'Hagan HM, Yi JM, Lee SJ. Tumor-intrinsic role of ICAM-1 in driving metastatic progression of triple-negative breast cancer through direct interaction with EGFR. Mol Cancer 2024; 23:230. [PMID: 39415210 PMCID: PMC11481280 DOI: 10.1186/s12943-024-02150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype, presents a critical challenge due to the absence of approved targeted therapies. Hence, there is an urgent need to identify effective therapeutic targets for this condition. While epidermal growth factor receptor (EGFR) is prominently expressed in TNBC and recognized as a therapeutic target, anti-EGFR therapies have yet to gain approval for breast cancer treatment due to their associated side effects and limited efficacy. Here, we discovered that intercellular adhesion molecule-1 (ICAM-1) exhibits elevated expression levels in metastatic breast cancer and serves as a pivotal binding adaptor for EGFR activation, playing a crucial role in malignant progression. The activation of EGFR by tumor-expressed ICAM-1 initiates biased signaling within the JAK1/STAT3 pathway, consequently driving epithelial-to-mesenchymal transition and facilitating heightened metastasis without influencing tumor growth. Remarkably, ICAM-1-neutralizing antibody treatment significantly suppressed cancer metastasis in a breast cancer orthotopic xenograft mouse model. In conclusion, our identification of ICAM-1 as a novel tumor intrinsic regulator of EGFR activation offers valuable insights for the development of TNBC-specific anti-EGFR therapies.
Collapse
Affiliation(s)
- Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Nizam Uddin
- Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Seungmo Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Yi Zhao
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Ki-Chun Yoo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Min-Jung Kim
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea
| | - Sung-Ah Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Incheol Shin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Young Woo Jin
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea
| | - Heather M O'Hagan
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Joo Mi Yi
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
| | - Su-Jae Lee
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea.
| |
Collapse
|
10
|
Amdemicael B, Yang K, Chronister BNC, Mackey C, Tu X, Gahagan S, Martinez D, Checkoway H, Jacobs DR, Suarez-Torres J, Hong S, Suarez-Lopez JR. Inflammation biomarkers and neurobehavioral performance in rural adolescents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.15.24315322. [PMID: 39484278 PMCID: PMC11527087 DOI: 10.1101/2024.10.15.24315322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Systemic inflammation has been associated with lower neurobehavioral performance in diverse populations, yet the evidence in adolescents remains lacking. Cytokines can alter neural network activity to induce neurocognitive changes. This work seeks to investigate the association between inflammation and neurobehavior in adolescents living in a rural region of Ecuador. Methods We examined 535 adolescents in rural communities of Ecuador (ESPINA study), 508 of which had neurobehavioral assessments (NEPSY-II) and circulating plasma levels of inflammatory markers (CRP, IL-6, TNF-⍺, sICAM-1, sVCAM-1, SAA, and sCD14). Associations between inflammatory biomarker concentrations and neurobehavioral scores were examined using adjusted bivariate semi-parametric models with generalized estimating equations. A partial least square regression approach was used to create composite variables from multiple inflammation biomarkers and model their association with cognitive outcomes. Results Higher sCD14 and TNF-α concentrations were significantly associated with lower social perception scores, by -0.47 units (95% CI: -0.80, -0.13) and -0.42 (-0.72, -0.12) for every 50% increase in inflammatory marker concentration, respectively. Similarly, every 50% increase in the inflammation summary score was associated with a significantly lower Social Perception score by -0.11 units (-0.19, -0.03). A unit increase in inflammatory composites of seven markers were associated with lower scores in language (-0.11 units, p=0.04), visuospatial processing (-0.15, p= 0.09), and social perception (-0.22, p=0.005) domains. Conclusions Higher levels of inflammation were associated with lower neurobehavioral performance in adolescents, especially with social perception. In addition, using a robust analytic method to examine an association between a composite inflammatory variable integrating seven markers led to additional findings, including the domains of language and visuospatial processing. A longitudinal follow-up of such investigations could unveil potential changes in inflammation-neurobehavior performance links through developmental stages and intervention opportunities.
Collapse
|
11
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
12
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
13
|
Zhang X, Tan Y, Li T, Tan D, Fu B, Yang M, Chen Y, Cao M, Xuan C, Du Q, Hu R, Wang Q. Intercellular adhesion molecule-1 suppresses TMZ chemosensitivity in acquired TMZ-resistant gliomas by increasing assembly of ABCB1 on the membrane. Drug Resist Updat 2024; 76:101112. [PMID: 38924997 DOI: 10.1016/j.drup.2024.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
AIMS Despite aggressive treatment, the recurrence of glioma is an inevitable occurrence, leading to unsatisfactory clinical outcomes. A plausible explanation for this phenomenon is the phenotypic alterations that glioma cells undergo aggressive therapies, such as TMZ-therapy. However, the underlying mechanisms behind these changes are not well understood. METHODS The TMZ chemotherapy resistance model was employed to assess the expression of intercellular adhesion molecule-1 (ICAM1) in both in vitro and in vivo settings. The potential role of ICAM1 in regulating TMZ chemotherapy resistance was investigated through knockout and overexpression techniques. Furthermore, the mechanism underlying ICAM1-mediated TMZ chemotherapy resistance was examined using diverse molecular biological methods, and the lipid raft protein was subsequently isolated to investigate the cellular subcomponents where ICAM1 operates. RESULTS Acquired TMZ resistant (TMZ-R) glioma models heightened production of intercellular adhesion molecule-1 (ICAM1) in TMZ-R glioma cells. Additionally, we observed a significant suppression of TMZ-R glioma proliferation upon inhibition of ICAM1, which was attributed to the enhanced intracellular accumulation of TMZ. Our findings provide evidence supporting the role of ICAM1, a proinflammatory marker, in promoting the expression of ABCB1 on the cell membrane of TMZ-resistant cells. We have elucidated the mechanistic pathway by which ICAM1 modulates phosphorylated moesin, leading to an increase in ABCB1 expression on the membrane. Furthermore, our research has revealed that the regulation of moesin by ICAM1 was instrumental in facilitating the assembly of ABCB1 exclusively on the lipid raft of the membrane. CONCLUSIONS Our findings suggest that ICAM1 is an important mediator in TMZ-resistant gliomas and targeting ICAM1 may provide a new strategy for enhancing the efficacy of TMZ therapy against glioma.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, PR China; State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Tao Li
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China; General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Dashan Tan
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Bin Fu
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Chenyuan Xuan
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China.
| | - Qing Wang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, PR China.
| |
Collapse
|
14
|
Moser S, Araschmid L, Panagiotou A, Bonati LH, Breidthardt T, Fahrni G, Kaiser C, Jeger R, Trendelenburg M, Osthoff M. Association of Endothelial Cell Activation with Acute Kidney Injury during Coronary Angiography and the Influence of Recombinant Human C1 Inhibitor-A Secondary Analysis of a Randomized, Placebo-Controlled, Double-Blind Trial. Biomedicines 2024; 12:1956. [PMID: 39335470 PMCID: PMC11428207 DOI: 10.3390/biomedicines12091956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) as a result of iodinated contrast media (CM) has been linked to CM-induced renal ischemia and toxic effects on endothelial cells (EC). The recombinant human C1 inhibitor (rhC1INH) has been shown to influence EC activation. METHODS Secondary analysis of 74/77 (96%) participants of a double-blind, randomized, and placebo-controlled study that assessed the effect of rhC1INH on AKI. E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM-1), and CC-chemokin-ligand-5 (CCL5) were determined in frozen blood samples over 48 h and analyzed according to the treatment group and renal outcomes. RESULTS The mean age was 76.7 years, and 37 patients each received rhC1INH and placebo, respectively. In the entire study population, minor differences in median EC activation markers/CCL5 concentrations during the first 48 h compared to baseline were observed (e.g., E-selectin 27.5 ng/mL at baseline vs. 29.7 ng/mL on day 1, CCL5: 17.7 ng/mL at baseline vs. 32.2 ng/mL on day 2). Absolute changes in ICAM-1/E-selectin concentrations correlated with a higher peak change in urinary NGAL concentrations. However, AKI was not associated with significant changes in EC markers/CCL5. Last, no significant differences in serum concentrations of EC activation markers/CCL5 were evident between the placebo and the rhC1INH group. CONCLUSIONS CM administration during coronary angiography only mildly activated ECs within the first 48 h, which does not explain subsequent AKI. The administration of rhC1INH was not associated with a reduction of EC activation or CCL5.
Collapse
Affiliation(s)
- Stephan Moser
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Laura Araschmid
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Anneza Panagiotou
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Leo H. Bonati
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
- Research Department, Reha Rheinfelden, 4310 Rheinfelden, Switzerland
| | - Tobias Breidthardt
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregor Fahrni
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
- Department of Cardiology, Stadtspital Triemli, 8063 Zürich, Switzerland
| | - Christoph Kaiser
- Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Raban Jeger
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
- Department of Cardiology, Stadtspital Triemli, 8063 Zürich, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
- Division of General Internal Medicine, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| |
Collapse
|
15
|
Tinajero-Rodríguez JM, Ramírez-Vidal L, Becerril-Rico J, Alvarado-Ortiz E, Romero-Rodríguez DP, López-Casillas F, Hernández-Sotelo D, Fernández-Ramírez F, Contreras-Paredes A, Ortiz-Sánchez E. ICAM1 (CD54) Contributes to the Metastatic Capacity of Gastric Cancer Stem Cells. Int J Mol Sci 2024; 25:8865. [PMID: 39201551 PMCID: PMC11354656 DOI: 10.3390/ijms25168865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Gastric cancer is the fourth leading cause of cancer deaths worldwide. The presence of chemoresistant cells has been used to explain this high mortality rate. These higher tumorigenic and chemoresistant cells involve cancer stem cells (CSCs), which have the potential for self-renewal, a cell differentiation capacity, and a greater tumorigenic capacity. Our research group identified gastric cancer stem cells (GCSCs) with the CD24+CD44+CD326+ICAM1+ immunophenotype isolated from gastric cancer patients. Interestingly, this GCSC immunophenotype was absent in cells isolated from healthy people, who presented a cell population with a CD24+CD44+CD326+ immunophenotype, lacking ICAM1. We aimed to explore the role of ICAM1 in these GCSCs; for this purpose, we isolated GCSCs from the AGS cell line and generated a GCSC line knockout for ICAM1 using CRISPR/iCas9, which we named GCSC-ICAM1KO. To assess the role of ICAM1 in the GCSCs, we analyzed the migration, invasion, and chemoresistance capabilities of the GCSCs using in vitro assays and evaluated the migratory, invasive, and tumorigenic properties in a zebrafish model. The in vitro analysis showed that ICAM1 regulated STAT3 activation (pSTAT3-ser727) in the GCSCs, which could contribute to the ability of GCSCs to migrate, invade, and metastasize. Interestingly, we demonstrated that the GCSC-ICAM1KO cells lost their capacity to migrate, invade, and metastasize, but they exhibited an increased resistance to a cisplatin treatment compared to their parental GCSCs; the GCSC-ICAM1KO cells also exhibited an increased tumorigenic capability in vivo.
Collapse
Affiliation(s)
- José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Lizbeth Ramírez-Vidal
- Posgrado de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jared Becerril-Rico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.B.-R.); (E.A.-O.)
| | - Eduardo Alvarado-Ortiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.B.-R.); (E.A.-O.)
| | - Dámaris P. Romero-Rodríguez
- Laboratorio Nacional Conahcyt de Investigación y Diagnóstico por Inmunocitofluorometría (LANCIDI), INER, Mexico City 14080, Mexico;
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Daniel Hernández-Sotelo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | | | - Adriana Contreras-Paredes
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
| |
Collapse
|
16
|
Chapman F, de Haan L, Gijzen L, Strijker W, Sticken ET, Pour SJ, Wieczorek R, Haberstroh F, Otte S, Nahde T, Simms L, Stevenson M. Optimisation of an in vitro human cardiovascular model on-a-chip for toxicological assessment of nicotine delivery products. FRONTIERS IN TOXICOLOGY 2024; 6:1395670. [PMID: 38938662 PMCID: PMC11208624 DOI: 10.3389/ftox.2024.1395670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background Smoking cigarettes is a cause of serious diseases in smokers, including cardiovascular disease. Through a pathway of endothelial dysfunction, lipid infiltration, macrophage recruitment and vascular remodeling, atherosclerosis is fundamental in the development of most cardiovascular diseases. There is an increasing number of next-generation products (NGP) which provide potentially reduced harm forms of nicotine delivery to adult smokers. This study aimed to optimise an in vitro cardiovascular model to assess such products. Human Coronary Artery Endothelial Cells (HCAECs) were cultured on an OrganoPlate®2-lane chip (Mimetas BV) combined with THP-1 monocytes under flow conditions. Methods An aqueous aerosol extract from the 1R6F reference cigarette was compared with two categories of NGP, (a heated tobacco product (HTP) and an electronic nicotine delivery system (ENDS)), to assess relative effects on select atherogenic endpoints (oxidative stress, monocyte adhesion, ICAM-1 expression, and inflammatory markers). Following exposure of THP-1 monocytes with the aqueous extracts, the resulting conditioned medium was then added to the HCAEC vessels. Results 1R6F was consistently the most potent test article, eliciting observed responses at 4x lower concentrations than applied for both the HTP and ENDS. The HTP was more potent than the ENDS product across all endpoints, however, all test articles increased monocyte adhesion. ICAM-1 did not appear to be a main driver for monocyte adhesion, however, this could be due to replicate variability. Upon comparison to an extract-only control exposure, THP-1-medium pre-conditioning was an important mediator of the responses observed. Conclusion In conclusion, the data suggests that the NGP extracts, containing primary aerosol chemical constituents exhibit a marked reduction in biological activity in the early key events associated with atherogenesis when compared to a cigarette, adding to the weight of evidence for the tobacco harm reduction potential of such products.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah Jean Pour
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Florian Haberstroh
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Sandra Otte
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Thomas Nahde
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Hamburg, Germany
| | - Liam Simms
- Imperial Brands PLC, Bristol, United Kingdom
| | | |
Collapse
|
17
|
Saha S, Haynes WJ, Del Rio NM, Young EE, Zhang J, Seo J, Huang L, Holm AM, Blashka W, Murphy L, Scholz MJ, Henrichs A, Suresh Babu J, Steill J, Stewart R, Kamp TJ, Brown ME. Diminished Immune Cell Adhesion in Hypoimmune ICAM-1 Knockout Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597791. [PMID: 38895244 PMCID: PMC11185752 DOI: 10.1101/2024.06.07.597791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g., T cell) immune responses, but have largely not addressed the innate immune cells (e.g., monocytes, neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies, we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding, thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases.
Collapse
Affiliation(s)
- Sayandeep Saha
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - W. John Haynes
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Natalia M. Del Rio
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Elizabeth E. Young
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI
| | - Jiwon Seo
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Liupei Huang
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Alexis M. Holm
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Wesley Blashka
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Lydia Murphy
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Merrick J. Scholz
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Abigale Henrichs
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | | | - John Steill
- Morgridge Institute for Research, Madison, WI
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI
| | - Timothy J. Kamp
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medicine, Madison, WI
| | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| |
Collapse
|
18
|
Nakano K, Yokota Y, Vu QV, Lagravinese F, Kataoka T. Structure-Activity Relationship of Oleanane-Type Pentacyclic Triterpenoids on Nuclear Factor κB Activation and Intracellular Trafficking and N-Linked Glycosylation of Intercellular Adhesion Molecule-1. Int J Mol Sci 2024; 25:6026. [PMID: 38892215 PMCID: PMC11173061 DOI: 10.3390/ijms25116026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure-activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,β-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins.
Collapse
Affiliation(s)
- Kaori Nakano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yokota
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Quy Van Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Francesca Lagravinese
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
19
|
Wang Y, Du Y, Huang H, Cao Y, Pan K, Zhou Y, He J, Yao W, Chen S, Gao X. Targeting aberrant glycosylation to modulate microglial response and improve cognition in models of Alzheimer's disease. Pharmacol Res 2024; 202:107133. [PMID: 38458367 DOI: 10.1016/j.phrs.2024.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Altered glycosylation profiles have been correlated with potential drug targets in various diseases, including Alzheimer's disease (AD). In this area, the linkage between bisecting N-acetylglucosamine (GlcNAc), a product of N-acetylglucosaminyltransferase III (GnT-III), and AD has been recognized, however, our understanding of the cause and the causative role of this aberrant glycosylation in AD are far from completion. Moreover, the effects and mechanisms of glycosylation-targeting interventions on memory and cognition, and novel targeting strategies are worth further study. Here, we showed the characteristic amyloid pathology-induced and age-related changes of GnT-III, and identified transcription factor 7-like 2 as the key transcription factor responsible for the abnormal expression of GnT-III in AD. Upregulation of GnT-III aggravated cognitive dysfunction and Alzheimer-like pathologies. In contrast, loss of GnT-III could improve cognition and alleviate pathologies. Furthermore, we found that an increase in bisecting GlcNAc modified ICAM-1 resulted in impairment of microglial responses, and genetic inactivation of GnT-III protected against AD mechanistically by blocking the aberrant glycosylation of ICAM-1 and subsequently modulating microglial responses, including microglial motility, phagocytosis ability, homeostatic/reactive state and neuroinflammation. Moreover, by target-based screening of GnT-III inhibitors from FDA-approved drug library, we identified two compounds, regorafenib and dihydroergocristine mesylate, showing pharmacological potential leading to modulation of aberrant glycosylation and microglial responses, and rescue of memory and cognition deficits.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yixuan Du
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongfei Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Cao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kemeng Pan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yueqian Zhou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiawei He
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
21
|
Xiao X, Han Y, Li Q, Zheng D, Cheng CY, Ni Y. Exploring the evolving function of soluble intercellular adhesion molecule-1 in junction dynamics during spermatogenesis. Front Endocrinol (Lausanne) 2024; 14:1281812. [PMID: 38260159 PMCID: PMC10801026 DOI: 10.3389/fendo.2023.1281812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on immune, endothelial, and epithelial cells. Its ectodomain can be proteolytically cleaved to release a circulating soluble form called sICAM-1. Clinical studies demonstrate sICAM-1 is upregulated in various diseases and associated with disease severity. Research has identified sICAM-1 as a regulator of the blood-testis barrier (BTB) and spermatogenesis. Overexpression of sICAM-1 weakened the BTB in vitro and in vivo, downregulated junction proteins including N-cadherin, γ-catenin, and connexin 43, and caused germ cell loss. This contrasts with barrier-strengthening effects of membrane-bound ICAM-1. sICAM-1 may act as a molecular switch enabling germ cells to open BTB and Sertoli-germ cell adhesion for transport across the seminiferous epithelium. While the mechanism remains unclear, reduced SRC family kinase (SFK) signaling was observed following sICAM-1 overexpression. SRC promotes BTB protein endocytosis and degradation, influences cytoskeletal dynamics, and affects cell polarity. As sICAM-1 overexpression phenocopies SRC inhibition, SRC may operate downstream of sICAM-1 in regulating BTB dynamics and spermatogenesis. Investigating sICAM-1's structure-function regions and downstream targets will elucidate the molecular mechanisms of junction disruption. This knowledge could enable strategies targeting sICAM-1/SRC to modulate BTB permeability and treat male infertility or diseases involving endothelial/epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qin Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| |
Collapse
|
22
|
Rakhimbaeva GS, Abdurakhmonova KBK. ICAM-1 and CRP as biomarkers of 3-month outcome in acute ischaemic stroke. BMJ Neurol Open 2023; 5:e000516. [PMID: 38145240 PMCID: PMC10749038 DOI: 10.1136/bmjno-2023-000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background It is clear that, inflammation deteriorates cerebral injury during the acute phase of stroke. While this process is going on, intercellular adhesion molecule-1 (ICAM-1) has a crucial role to play in mediating migration of immune cells into the damaged area. Furthermore, C reactive protein (CRP) is an essential inflammatory molecule in human organism. This research aims to investigate the association between ICAM-1, highly sensitive CRP(hs-CRP) and the prognosis of acute ischaemic stroke (AIS). Methods 118 patients with AIS who were treated at Tashkent Medical Academy were participants in this research project. Blood samples were collected from patients on an empty stomach within 24 hours of admission. Modified Rankin Scale (mRS) was used in order to assess the functional prognosis in 3 months following the case of stroke in patients. The inadequate prognosis is described as mRS≥3. Each biomarker's potential to predict has also been evaluated with receiver operating characteristic analysis. Results ICAM-1 was identified to be an independent predictor of 3-month outcome (OR 1.05, 95 % CI 0.848 to 1.625; p=0.02) (area under the curve (AUC)=0.82 %). Independent associations with functional outcome were also found to be true for hs-CRP (OR 1.22, 95 % CI 0.78 to 1.86; p=0.03) (AUC=0.74 %). Conclusions The outcomes of a 3-month study carried out on patients with AIS showed ICAM-1 and hs-CRP to be independent predictors.
Collapse
|
23
|
Mehandru S, Colombel JF, Juarez J, Bugni J, Lindsay JO. Understanding the molecular mechanisms of anti-trafficking therapies and their clinical relevance in inflammatory bowel disease. Mucosal Immunol 2023; 16:859-870. [PMID: 37574127 PMCID: PMC11141405 DOI: 10.1016/j.mucimm.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
In patients with inflammatory bowel disease (IBD), a combination of dysbiosis, increased intestinal permeability, and insufficient regulatory responses facilitate the development of chronic inflammation, which is driven by a complex interplay between the mucosal immune system and the environment and sustained by immune priming and ongoing cellular recruitment to the gut. The localization of immune cells is mediated by their expression of chemokine receptors and integrins, which bind to chemokines and adhesion molecules, respectively. In this article, we review the mechanisms of action of anti-trafficking therapies for IBD and consider clinical observations in the context of the different mechanisms of action. Furthermore, we discuss the evolution of molecular resistance to anti-cytokines, in which the composition of immune cells in the gut changes in response to treatment, and the potential implications of this for treatment sequencing. Lastly, we discuss the relevance of mechanism of action to combination therapy for IBD.
Collapse
Affiliation(s)
- Saurabh Mehandru
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julius Juarez
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James Bugni
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James O Lindsay
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Gastroenterology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
24
|
Illes Z, Jørgensen MM, Bæk R, Bente LM, Lauridsen JT, Hyrlov KH, Aboo C, Baumbach J, Kacprowski T, Cotton F, Guttmann CRG, Stensballe A. New Enhancing MRI Lesions Associate with IL-17, Neutrophil Degranulation and Integrin Microparticles: Multi-Omics Combined with Frequent MRI in Multiple Sclerosis. Biomedicines 2023; 11:3170. [PMID: 38137391 PMCID: PMC10740934 DOI: 10.3390/biomedicines11123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Blood-barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and result in the entry of circulating immune cells into the brain. MRI with intravenous gadolinium (Gd) can visualize acute blood-barrier disruption as the initial event of the evolution of new lesions. METHODS Here, weekly MRI with Gd was combined with proteomics, multiplex immunoassay, and endothelial stress-optimized EV array to identify early markers related to BBB disruption. Five patients with RMS with no disease-modifying treatment were monitored weekly using high-resolution 3T MRI scanning with intravenous gadolinium (Gd) for 8 weeks. Patients were then divided into three groups (low, medium, or high MRI activity) defined by the number of new, total, and maximally enhancing Gd-enhancing lesions and the number of new FLAIR lesions. Plasma samples taken at each MRI were analyzed for protein biomarkers of inflammation by quantitative proteomics, and cytokines using multiplex immunoassays. EVs were characterized with an optimized endothelial stress EV array based on exosome surface protein markers for the detection of soluble secreted EVs. RESULTS Proteomics analysis of plasma yielded quantitative information on 208 proteins at each patient time point (n = 40). We observed the highest number of unique dysregulated proteins (DEPs) and the highest functional enrichment in the low vs. high MRI activity comparison. Complement activation and complement/coagulation cascade were also strongly overrepresented in the low vs. high MRI activity comparison. Activation of the alternative complement pathway, pathways of blood coagulation, extracellular matrix organization, and the regulation of TLR and IGF transport were unique for the low vs. high MRI activity comparison as well, with these pathways being overrepresented in the patient with high MRI activity. Principal component analysis indicated the individuality of plasma profiles in patients. IL-17 was upregulated at all time points during 8 weeks in patients with high vs. low MRI activity. Hierarchical clustering of soluble markers in the plasma indicated that all four MRI outcomes clustered together with IL-17, IL-12p70, and IL-1β. MRI outcomes also showed clustering with EV markers CD62E/P, MIC A/B, ICAM-1, and CD42A. The combined cluster of these cytokines, EV markers, and MRI outcomes clustered also with IL-12p40 and IL-7. All four MRI outcomes correlated positively with levels of IL-17 (p < 0.001, respectively), and EV-ICAM-1 (p < 0.0003, respectively). IL-1β levels positively correlated with the number of new Gd-enhancing lesions (p < 0.01), new FLAIR lesions (p < 0.001), and total number of Gd-enhancing lesions (p < 0.05). IL-6 levels positively correlated with the number of new FLAIR lesions (p < 0.05). Random Forests and linear mixed models identified IL-17, CCL17/TARC, CCL3/MIP-1α, and TNF-α as composite biomarkers predicting new lesion evolution. CONCLUSIONS Combination of serial frequent MRI with proteome, neuroinflammation markers, and protein array data of EVs enabled assessment of temporal changes in inflammation and endothelial dysfunction in RMS related to the evolution of new and enhancing lesions. Particularly, the Th17 pathway and IL-1β clustered and correlated with new lesions and Gd enhancement, indicating their importance in BBB disruption and initiating acute brain inflammation in MS. In addition to the Th17 pathway, abundant protein changes between MRI activity groups suggested the role of EVs and the coagulation system along with innate immune responses including acute phase proteins, complement components, and neutrophil degranulation.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, 5230 Odense, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Lisa-Marie Bente
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Jørgen T. Lauridsen
- Department of Business and Economics, University of Southern Denmark, 5230 Odense, Denmark;
| | - Kirsten H. Hyrlov
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Francois Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, France/CREATIS, Université de Lyon, 69007 Lyon, France;
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Clinical Cancer Center, Aalborg University Hospital, 9220 Aalborg, Denmark
| |
Collapse
|
25
|
Chu CH, Chen JS, Chan YL, Lu WJ, Huang YT, Mao PC, Sze CI, Sun HS. TIAM2S-positive microglia enhance inflammation and neurotoxicity through soluble ICAM-1-mediated immune priming. FASEB J 2023; 37:e23242. [PMID: 37801065 DOI: 10.1096/fj.202300462rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
TIAM Rac1-associated GEF 2 short form (TIAM2S) as an oncoprotein alters the immunity of peripheral immune cells to construct an inflammatory tumor microenvironment. However, its role in the activation of microglia, the primary innate immune cells of the brain, and neuroinflammation remains unknown. This study investigated the mechanism underlying TIAM2S shapes immune properties of microglia to facilitate neuron damage. Human microglial clone 3 cell line (HMC3) and human brain samples were applied to determine the presence of TIAM2S in microglia by western blots and double immunostaining. Furthermore, TIAM2S transgenic mice combined with multiple reconstituted primary neuron-glial culture systems and a cytokine array were performed to explore how TIAM2S shaped immune priming of microglia and participated in lipopolysaccharide (LPS)-induced neuron damage. TIAM2S protein was detectable in HMC3 cells and presented in a small portion (~11.1%) of microglia in human brains referred to as TIAM2S-positive microglia. With the property of secreted soluble factor-mediated immune priming, TIAM2S-positive microglia enhanced LPS-induced neuroinflammation and neural damage in vivo and in vitro. The gain- and loss-of-function experiments showed soluble intercellular adhesion molecule-1 (sICAM-1) participated in neurotoxic immune priming of TIAM2S+ microglia. Together, this study demonstrated a novel TIAM2S-positive microglia subpopulation enhances inflammation and neurotoxicity through sICAM-1-mediated immune priming.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Ling Chan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jen Lu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Te Huang
- Department of Geriatrics and Gerontology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Cheng Mao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Herzfeldt AK, Gamez MP, Martin E, Boryn LM, Baskaran P, Huber HJ, Schuler M, Park JE, Swee LK. Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen-specific tumor cell killing by cytotoxic T cells. eLife 2023; 12:e84314. [PMID: 37732732 PMCID: PMC10586807 DOI: 10.7554/elife.84314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/20/2023] [Indexed: 09/22/2023] Open
Abstract
Cytotoxic CD8 +T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits, respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon-γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2 C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.
Collapse
Affiliation(s)
- Ann-Kathrin Herzfeldt
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Marta Puig Gamez
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Eva Martin
- Department of Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | | | - Praveen Baskaran
- Department of Global Computational Biology and Digital Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - Heinrich J Huber
- Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - Michael Schuler
- Department of Drug Discovery Sciences, Boehringer IngelheimBiberach an der RissGermany
| | - John E Park
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| | - Lee Kim Swee
- Department of Cancer Immunology and Immune Modulation, Boehringer IngelheimBiberach an der RissGermany
| |
Collapse
|
27
|
Brishti MA, Raghavan S, Lamar K, Singh UP, Collier DM, Leo MD. Diabetic Endothelial Cell Glycogen Synthase Kinase 3β Activation Induces VCAM1 Ectodomain Shedding. Int J Mol Sci 2023; 24:14105. [PMID: 37762417 PMCID: PMC10531890 DOI: 10.3390/ijms241814105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Soluble cell adhesion molecules (sCAMs) are secreted ectodomain fragments of surface adhesion molecules, ICAM1 and VCAM1. sCAMs have diverse immune functions beyond their primary function, impacting immune cell recruitment and activation. Elevated sVCAM1 levels have been found to be associated with poor cardiovascular disease (CVD) outcomes, supporting VCAM1's role as a potential diagnostic marker and therapeutic target. Inhibiting sVCAM1's release or its interaction with immune cells could offer cardioprotection in conditions such as diabetes. Membrane-bound surface adhesion molecules are widely expressed in a wide variety of cell types with higher expression in endothelial cells (ECs). Still, the source of sCAMs in the circulation is not clear. Hypothesizing that endothelial cells (ECs) could be a potential source of sCAMs, this study investigated whether dysfunctional EC signaling mechanisms during diabetes cause VCAM1 ectodomain shedding. Our results from samples from an inducible diabetic mouse model revealed increased sVCAM1 plasma levels in diabetes. Protein analysis indicated upregulated VCAM1 expression and metalloproteases ADAM10 and ADAM17 in diabetic ECs. ADAMs are known for proteolytic cleavage of adhesion molecules, contributing to inflammation. GSK3β, implicated in EC VCAM1 expression, was found to be activated in diabetic ECs. GSK3β activation in control ECs increased ADAM10/17 and VCAM1. A GSK3β inhibitor reduced active GSK3β and VCAM1 ectodomain shedding. These findings suggest diabetic ECs with elevated GSK3β activity led to VCAM1 upregulation and ADAM10/17-mediated sVCAM1 shedding. This mechanism underscores the potential therapeutic role of GSK3β inhibition in reducing the levels of circulating sVCAM1. The complex roles of sCAMs extend well beyond CVD. Thus, unraveling the intricate involvement of sCAMs in the initiation and progression of vascular disease, particularly in diabetes, holds significant therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Dennis Leo
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.A.B.)
| |
Collapse
|
28
|
Gillan JL, Chokshi M, Hardisty GR, Clohisey Hendry S, Prasca-Chamorro D, Robinson NJ, Lasota B, Clark R, Murphy L, Whyte MK, Baillie JK, Davidson DJ, Bao G, Gray RD. CAGE sequencing reveals CFTR-dependent dysregulation of type I IFN signaling in activated cystic fibrosis macrophages. SCIENCE ADVANCES 2023; 9:eadg5128. [PMID: 37235648 PMCID: PMC10219589 DOI: 10.1126/sciadv.adg5128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
An intense, nonresolving airway inflammatory response leads to destructive lung disease in cystic fibrosis (CF). Dysregulation of macrophage immune function may be a key facet governing the progression of CF lung disease, but the underlying mechanisms are not fully understood. We used 5' end centered transcriptome sequencing to profile P. aeruginosa LPS-activated human CF macrophages, showing that CF and non-CF macrophages deploy substantially distinct transcriptional programs at baseline and following activation. This includes a significantly blunted type I IFN signaling response in activated patient cells relative to healthy controls that was reversible upon in vitro treatment with CFTR modulators in patient cells and by CRISPR-Cas9 gene editing to correct the F508del mutation in patient-derived iPSC macrophages. These findings illustrate a previously unidentified immune defect in human CF macrophages that is CFTR dependent and reversible with CFTR modulators, thus providing new avenues in the search for effective anti-inflammatory interventions in CF.
Collapse
Affiliation(s)
- Jonathan L. Gillan
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mithil Chokshi
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Gareth R. Hardisty
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | - Nicola J. Robinson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Benjamin Lasota
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Moira K. B. Whyte
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | - Donald J. Davidson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Robert D. Gray
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
29
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
30
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
31
|
Lafontaine N, Wilson SG, Walsh JP. DNA Methylation in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2023; 108:604-613. [PMID: 36420742 DOI: 10.1210/clinem/dgac664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Graves disease and Hashimoto disease form part of the spectrum of autoimmune thyroid disease (AITD), to which genetic and environmental factors are recognized contributors. Epigenetics provides a potential link between environmental influences, gene expression, and thyroid autoimmunity. DNA methylation (DNAm) is the best studied epigenetic process, and global hypomethylation of leukocyte DNA is reported in several autoimmune disorders. This review summarizes the current understanding of DNAm in AITD. Targeted DNAm studies of blood samples from AITD patients have reported differential DNAm in the promoter regions of several genes implicated in AITD, including TNF, IFNG, IL2RA, IL6, ICAM1, and PTPN22. In many cases, however, the findings await replication and are unsupported by functional studies to support causal roles in AITD pathogenesis. Furthermore, thyroid hormones affect DNAm, and in many studies confounding by reverse causation has not been considered. Recent studies have shown that DNAm patterns in candidate genes including ITGA6, PRKAA2, and DAPK1 differ between AITD patients from regions with different iodine status, providing a potential mechanism for associations between iodine and AITD. Research focus in the field is moving from candidate gene studies to an epigenome-wide approach. Genome-wide methylation studies of AITD patients have demonstrated multiple differentially methylated positions, including some in immunoregulatory genes such as NOTCH1, HLA-DRB1, TNF, and ICAM1. Large, epigenome-wide studies are required to elucidate the pathophysiological role of DNAm in AITD, with the potential to provide novel diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
32
|
Knisely MR, Yang Q, Stauffer N, Kenney M, Ashley-Koch A, Myers J, Walker JKL, Tanabe PJ, Shah NR. Evaluating Associations between Average Pain Intensity and Genetic Variation in People with Sickle Cell Disease: An Exploratory Study. Pain Manag Nurs 2023; 24:12-18. [PMID: 36096903 PMCID: PMC9925395 DOI: 10.1016/j.pmn.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pain is one of the most common and deleterious symptoms experienced by individuals with sickle cell disease (SCD). There is a paucity of studies identifying potential genetic mechanisms of pain in this population. AIM Examine associations between 11 functional single nucleotide polymorphisms in 9 candidate genes with reports of average pain intensity in individuals with sickle cell disease. METHOD Cross-sectional analyses were performed on data and blood samples collected through the Duke SCD Implementation Consortium Registry. Participants were asked to rate their pain "on the average" using an 11-point numeric rating scale (0 = no pain; 10 = pain as bad as you can imagine). We genotyped 11 single nucleotide polymorphisms in 9 pain-related genes using TaqMan® Genotyping Assays. Associations between each polymorphism and reports of average pain were evaluated. RESULTS The 86 participants (mean age: 28.7 years; 64% female) included in this study reported moderate pain on average (Mean = 4, Standard Deviation = 2.4). ICAM1 rs1799969 was the only genetic polymorphism that was significantly associated with pain (p = .01). Individuals with one or more minor alleles had lower average pain (Mean = 1.25, Standard Deviation = 1.50) than individuals without a minor allele (Mean = 4.13, Standard Deviation = 2.25). The effect size for ICAM1 rs1799969 was 1.30, which is considered large. The effect sizes for all other single nucleotide polymorphisms ranged from small to medium (range: 0-0.3). CONCLUSIONS Our findings provide preliminary evidence that the minor allele in ICAM1 rs1799969 had protective effects against experiencing more severe pain in sickle cell disease.
Collapse
Affiliation(s)
| | - Qing Yang
- Duke University School of Nursing, Durham, North Carolina
| | - Nic Stauffer
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Martha Kenney
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Allison Ashley-Koch
- Departments of Medicine and Biostatistics and Bioinformatics, Duke Molecular Physiology Institute, Durham, North Carolina; Duke University School of Medicine, Durham, North Carolina
| | - John Myers
- Duke University School of Nursing, Durham, North Carolina
| | | | - Paula J Tanabe
- Duke University School of Nursing, Durham, North Carolina
| | - Nirmish R Shah
- Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
33
|
Grönloh MLB, Arts JJG, Palacios Martínez S, van der Veen AA, Kempers L, van Steen ACI, Roelofs JJTH, Nolte MA, Goedhart J, van Buul JD. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM-1. EMBO Rep 2023; 24:e55483. [PMID: 36382783 PMCID: PMC9827561 DOI: 10.15252/embr.202255483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Upon inflammation, leukocytes leave the circulation by crossing the endothelial monolayer at specific transmigration "hotspot" regions. Although these regions support leukocyte transmigration, their functionality is not clear. We found that endothelial hotspots function to limit vascular leakage during transmigration events. Using the photoconvertible probe mEos4b, we traced back and identified original endothelial transmigration hotspots. Using this method, we show that the heterogeneous distribution of ICAM-1 determines the location of the transmigration hotspot. Interestingly, the loss of ICAM-1 heterogeneity either by CRISPR/Cas9-induced knockout of ICAM-1 or equalizing the distribution of ICAM-1 in all endothelial cells results in the loss of TEM hotspots but not necessarily in reduced TEM events. Functionally, the loss of endothelial hotspots results in increased vascular leakage during TEM. Mechanistically, we demonstrate that the 3 extracellular Ig-like domains of ICAM-1 are crucial for hotspot recognition. However, the intracellular tail of ICAM-1 and the 4th Ig-like dimerization domain are not involved, indicating that intracellular signaling or ICAM-1 dimerization is not required for hotspot recognition. Together, we discovered that hotspots function to limit vascular leakage during inflammation-induced extravasation.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sebastián Palacios Martínez
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Amerens A van der Veen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Lanette Kempers
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Abraham C I van Steen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Location AMCAmsterdamThe Netherlands
| | - Martijn A Nolte
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joachim Goedhart
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
34
|
Freda CT, Yin W, Ghebrehiwet B, Rubenstein DA. Complement component C1q initiates extrinsic coagulation via the receptor for the globular head of C1q in adventitial fibroblasts and vascular smooth muscle cells. Immun Inflamm Dis 2023; 11:e769. [PMID: 36705413 PMCID: PMC9868878 DOI: 10.1002/iid3.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Vascular diseases are highly associated with inflammation and thrombosis. Elucidating links between these two processes may provide a clearer understanding of these diseases, allowing for the design of more effective treatments. The activation of complement component 1 (C1) is a crucial contributor to innate immunity and is associated with significant concentrations of circulating C1q. Many pathological pathways initiate when C1q interacts with gC1qR. This interaction plays a major role in inflammation observed during atherosclerosis and the initiation of intrinsic coagulation. However, the effects of C1 and the role of C1q/gC1qR on extrinsic coagulation, which is the more physiologically relevant coagulation arm, has not been studied. We hypothesized that C1q binding to gC1qR enhances the expression of tissue factor (TF) in adventitial fibroblasts and vascular smooth muscle cells, the primary TF bearing cells in the body. METHODS Using an enzyme-linked immunosorbent assay approach, TF expression and the role of gC1qR was observed. Cells were conditioned for 1 h with C1q or a gC1qR blocker and C1q, to assess the role of gC1qR. Additionally, cell growth characteristics were monitored to assess changes in viability and metabolic activity. RESULTS Our results indicate that the expression of TF increased significantly after incubation with C1q as compared with unconditioned cells. Cells conditioned with gC1qR blockers and C1q exhibited no change in TF expression when compared with cells conditioned with the blocking antibodies alone. Our results show no significant differences in metabolic activity or cell viability under these conditions. CONCLUSIONS This indicates that gC1qR association with C1q induces TF expression and may initiate extrinsic coagulation. Overall, this data illustrates a role for C1q in the activation of extrinsic coagulation and that gC1qR activity may link inflammation and thrombosis.
Collapse
Affiliation(s)
- Christopher T. Freda
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | - Wei Yin
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | | | - David A. Rubenstein
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
35
|
Grönloh MLB, Tebbens ME, Kotsi M, Arts JJG, van Buul JD. Intercellular adhesion molecule 2 regulates diapedesis hotspots by allowing neutrophil crawling against the direction of flow. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e230005. [PMID: 37565726 PMCID: PMC10503216 DOI: 10.1530/vb-23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
Intercellular adhesion molecules (ICAMs) are cell surface proteins that play a crucial role in the body's immune response and inflammatory processes. ICAM1 and ICAM2 are two ICAM family members expressed on the surface of various cell types, including endothelial cells. They mediate the interaction between immune cells and endothelial cells, which are critical for the trafficking of leukocytes across the blood vessel wall during inflammation. Although ICAM1 plays a prominent role in the leukocyte extravasation cascade, it is less clear if ICAM2 strengthens ICAM1 function or has a separate function in the cascade. With CRISPR-)Cas9 technology, endothelial cells were depleted for ICAM1,ICAM2, or both, and we found that neutrophils favored ICAM1 over ICAM2 to adhere to. However, the absence of only ICAM2 resulted in neutrophils that were unable to find the transmigration hotspot, i.e. the preferred exit site. Moreover, we found that ICAM2 deficiency prevented neutrophils to migrate against the flow. Due to this deficiency, we concluded that ICAM2 helps neutrophils find the preferred exit sites and thereby contributes to efficient leukocyte extravasation.
Collapse
Affiliation(s)
- Max L B Grönloh
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences, the University of Amsterdam, Amsterdam, the Netherlands
| | - Merel E Tebbens
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marianthi Kotsi
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janine J G Arts
- Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences, the University of Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Molecular Cell Biology Lab, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences, the University of Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Molecular Cell Biology Lab, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Detsika MG, Theochari E, Palamaris K, Gakiopoulou H, Lianos EA. Effect of Heme Oxygenase-1 Depletion on Complement Regulatory Proteins Expression in the Rat. Antioxidants (Basel) 2022; 12:61. [PMID: 36670923 PMCID: PMC9854825 DOI: 10.3390/antiox12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenase has been implicated in the regulation of various immune responses including complement activation. Using a transgenic rat model of HO-1 depletion, the present study assessed the effect of HO-1 absence on the expression of complement regulatory proteins: decay accelerating factor (DAF), CR1-related gene/protein Y (Crry) and CD59, which act to attenuate complement activation. Protein expression was assessed by immunohistochemistry in kidney, liver, lung and spleen tissues. DAF protein was reduced in all tissues retrieved from rats lacking HO-1 (Hmox1-/-) apart from spleen tissue sections. Crry protein was also reduced, but only in Hmox1-/- kidney and liver tissue. C3b staining was augmented in the kidney and spleen from Hmox1-/- rats, suggesting that the decrease of DAF and Crry was sufficient to increase C3b deposition. The observations support an important role of HO-1 as a regulator of the complement system.
Collapse
Affiliation(s)
- Maria G. Detsika
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece
| | - Eirini Theochari
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Kostas Palamaris
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Elias A. Lianos
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, Salem, VA 24153, USA
| |
Collapse
|
37
|
Wang L, Du DD, Zheng ZX, Shang PF, Yang XX, Sun C, Wang XY, Tang YJ, Guo XL. Circulating galectin-3 promotes tumor-endothelium-adhesion by upregulating ICAM-1 in endothelium-derived extracellular vesicles. Front Pharmacol 2022; 13:979474. [PMID: 36386163 PMCID: PMC9642840 DOI: 10.3389/fphar.2022.979474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
The adhesion of tumor cells to vascular endothelial cells is an important process of tumor metastasis. Studies have shown that tumor could educate vascular endothelial cells to promote tumor metastasis through many ways. However, the effect of tumor cells on the functions of vascular endothelial cells-derived extracellular vesicles (H-EVs) and the mechanisms underlying their effects in tumor-endothelium adhesion in metastasis remain mysterious. In this study, we found that H-EVs promoted the adhesion of triple negative breast cancer cell to endothelial cells and cirGal-3 enhanced the adhesion-promoting effects of H-EVs. The underlying mechanism was related to the upregulation of glycolysis in endothelial cells induced by cirGal-3 which led to the increase of the ICAM-1 expression and its transmission to MDA-MB-231 cells by H-EVs. Targeting of cirGal-3 or glycolysis of vascular endothelium in breast cancer therefore represents a promising therapeutic strategy to reduce metastasis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dan-Dan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zong-Xue Zheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng-Fei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Yan Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
38
|
The Mechanisms of Zinc Action as a Potent Anti-Viral Agent: The Clinical Therapeutic Implication in COVID-19. Antioxidants (Basel) 2022; 11:antiox11101862. [PMID: 36290585 PMCID: PMC9598180 DOI: 10.3390/antiox11101862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The pandemic of COVID-19 was caused by a novel coronavirus termed as SARS-CoV2 and is still ongoing with high morbidity and mortality rates in the whole world. The pathogenesis of COVID-19 is highly linked with over-active immune and inflammatory responses, leading to activated cytokine storm, which contribute to ARDS with worsen outcome. Currently, there is no effective therapeutic drug for the treatment of COVID-19. Zinc is known to act as an immune modulator, which plays an important role in immune defense system. Recently, zinc has been widely considered as an anti-inflammatory and anti-oxidant agent. Accumulating numbers of studies have revealed that zinc plays an important role in antiviral immunity in several viral infections. Several early clinical trials clearly indicate that zinc treatment remarkably decreased the severity of the upper respiratory infection of rhinovirus in humans. Currently, zinc has been used for the therapeutic intervention of COVID-19 in many different clinical trials. Several clinical studies reveal that zinc treatment using a combination of HCQ and zinc pronouncedly reduced symptom score and the rates of hospital admission and mortality in COVID-19 patients. These data support that zinc might act as an anti-viral agent in the addition to its anti-inflammatory and anti-oxidant properties for the adjuvant therapeutic intervention of COVID-19.
Collapse
|
39
|
Ross EC, Hoeve ALT, Saeij JPJ, Barragan A. Toxoplasma effector-induced ICAM-1 expression by infected dendritic cells potentiates transmigration across polarised endothelium. Front Immunol 2022; 13:950914. [PMID: 35990682 PMCID: PMC9381734 DOI: 10.3389/fimmu.2022.950914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii makes use of infected leukocytes for systemic dissemination. Yet, how infection impacts the processes of leukocyte diapedesis has remained unresolved. Here, we addressed the effects of T. gondii infection on the trans-endothelial migration (TEM) of dendritic cells (DCs) across polarised brain endothelial monolayers. We report that upregulated expression of leukocyte ICAM-1 is a feature of the enhanced TEM of parasitised DCs. The secreted parasite effector GRA15 induced an elevated expression of ICAM-1 in infected DCs that was associated with enhanced cell adhesion and TEM. Consequently, gene silencing of Icam-1 in primary DCs or deletion of parasite GRA15 reduced TEM. Further, the parasite effector TgWIP, which impacts the regulation of host actin dynamics, facilitated TEM across polarised endothelium. The data highlight that the concerted action of the secreted effectors GRA15 and TgWIP modulate the leukocyte-endothelial interactions of TEM in a parasite genotype-related fashion to promote dissemination. In addition to the canonical roles of endothelial ICAM-1, this study identifies a previously unappreciated role for leukocyte ICAM-1 in infection-related TEM.
Collapse
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, United States
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden,*Correspondence: Antonio Barragan,
| |
Collapse
|
40
|
Cucurbitacin B Down-Regulates TNF Receptor 1 Expression and Inhibits the TNF-α-Dependent Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2022; 23:ijms23137130. [PMID: 35806134 PMCID: PMC9267118 DOI: 10.3390/ijms23137130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway.
Collapse
|
41
|
Buckley KH, Nestor-Kalinoski AL, Pizza FX. Intercellular Adhesion Molecule-1 Enhances Myonuclear Transcription during Injury-Induced Muscle Regeneration. Int J Mol Sci 2022; 23:7028. [PMID: 35806032 PMCID: PMC9267068 DOI: 10.3390/ijms23137028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The local inflammatory environment of injured skeletal muscle contributes to the resolution of the injury by promoting the proliferation of muscle precursor cells during the initial stage of muscle regeneration. However, little is known about the extent to which the inflammatory response influences the later stages of regeneration when newly formed (regenerating myofibers) are accumulating myonuclei and undergoing hypertrophy. Our prior work indicated that the inflammatory molecule ICAM-1 facilitates regenerating myofiber hypertrophy through a process involving myonuclear positioning and/or transcription. The present study tested the hypothesis that ICAM-1 enhances global transcription within regenerating myofibers by augmenting the transcriptional activity of myonuclei positioned in linear arrays (nuclear chains). We found that transcription in regenerating myofibers was ~2-fold higher in wild type compared with ICAM-1-/- mice at 14 and 28 days post-injury. This occurred because the transcriptional activity of individual myonuclei in nuclei chains, nuclear clusters, and a peripheral location were ~2-fold higher in wild type compared with ICAM-1-/- mice during regeneration. ICAM-1's enhancement of transcription in nuclear chains appears to be an important driver of myofiber hypertrophy as it was statistically associated with an increase in myofiber size during regeneration. Taken together, our findings indicate that ICAM-1 facilitates myofiber hypertrophy after injury by enhancing myonuclear transcription.
Collapse
Affiliation(s)
- Kole H. Buckley
- School of Exercise and Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA;
| | | | - Francis X. Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA;
| |
Collapse
|
42
|
Bioactive Evaluation of Ursane-Type Pentacyclic Triterpenoids: β-Boswellic Acid Interferes with the Glycosylation and Transport of Intercellular Adhesion Molecule-1 in Human Lung Adenocarcinoma A549 Cells. Molecules 2022; 27:molecules27103073. [PMID: 35630550 PMCID: PMC9147781 DOI: 10.3390/molecules27103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
Ursane-type pentacyclic triterpenoids exert various biological effects, including anticancer and anti-inflammatory activities. We previously reported that ursolic acid, corosolic acid, and asiatic acid interfered with the intracellular trafficking and glycosylation of intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells stimulated with the pro-inflammatory cytokine interleukin-1α. However, the structure–activity relationship of ursane-type pentacyclic triterpenoids remains unclear. In the present study, the biological activities of seven ursane-type pentacyclic triterpenoids (β-boswellic acid, uvaol, madecassic acid, 3-O-acetyl-11-keto-β-boswellic acid, ursolic acid, corosolic acid, and asiatic acid) were investigated. We revealed that the inhibitory activities of ursane-type pentacyclic triterpenoids on the cell surface expression and glycosylation of ICAM-1 and α-glucosidase activity were influenced by the number of hydroxy groups and/or the presence and position of a carboxyl group. We also showed that β-boswellic acid interfered with ICAM-1 glycosylation in a different manner from other ursane-type pentacyclic triterpenoids.
Collapse
|
43
|
Kang L, Kim M, Lee YM. Expression of ICAM-1 in Blood Vascular Endothelium and Tissues in Human Premalignant Lesion and Gastric/Hepatocellular Carcinomas. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2022; 79:170-176. [PMID: 35473775 DOI: 10.4166/kjg.2022.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Background/Aims Angiogenesis is essential for the outgrowth and metastasis of tumors. The structure and characteristics of tumor vasculature differ from those of normal vessels. We compared the characteristics of differentially expressed genes in endothelial cells (ECs) isolated from gastric and normal cells. Methods Previously, we had isolated pure tumor ECs (TECs) and normal ECs (NECs) from advanced gastric cancer (AGC) lesions and normal mucosal tissues, respectively. Using the oligomer chip platform of the Affymetrix GeneChip technology, genes that were expressed more than three-fold with a significance of p≤0.001 were measured. The intercellular adhesion molecule 1 (ICAM-1) was found to be overexpressed in the TECs compared to the normal gastric ECs. In this study, the upregulation of ICAM-1 was confirmed in cultured TECs by immunofluorescence. Results The expression of ICAM-1 was upregulated in the ECs, as well as in the stromal and immune cells, in early human gastric preneoplastic and hepatic fibrotic tissues. Upregulation of ICAM-1 was observed in the TECs, immune cells, and cancer epithelial cells in AGC and hepatocellular carcinoma (HCC). These results suggest that increased ICAM-1 expression in the ECs of the tissue microenvironment progressively contributes to the recruitment of immune cells to promote inflammation, leading to fibrosis and tumorigenesis. Conclusions Therefore, upregulated ICAM-1 in the tissues in premalignant gastric diseases or hepatic fibrosis and their malignant cancers could be a promising target for disease prevention and treatment.
Collapse
Affiliation(s)
- Li Kang
- Department of Molecular Pathophysiology, Kyungpook National University College of Pharmacy, Daegu, Korea
| | - Moonsik Kim
- Department of Pathology, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - You Mie Lee
- Department of Molecular Pathophysiology, Kyungpook National University College of Pharmacy, Daegu, Korea.,Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, Daegu, Korea
| |
Collapse
|
44
|
Lee KT, Su CH, Liu SC, Chen BC, Chang JW, Tsai CH, Huang WC, Hsu CJ, Chen WC, Wu YC, Tang CH. Cordycerebroside A inhibits ICAM-1-dependent M1 monocyte adhesion to osteoarthritis synovial fibroblasts. J Food Biochem 2022; 46:e14108. [PMID: 35165902 DOI: 10.1111/jfbc.14108] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is represented by the accumulation and adhesion of M1 macrophages into synovium tissues in the joint microenvironment and subsequent inflammatory response. Cordycerebroside A, a cerebroside compound isolated from Cordyceps militaris, exhibits anti-inflammatory activity, but has not yet been examined in M1 macrophages during OA disease. Our results indicate higher expression of M1 macrophage markers in synovium tissue from OA patients compared with normal healthy controls. Records from the Gene Expression Omnibus (GEO) data set and our clinic samples revealed higher levels of ICAM-1 (a critical adhesion molecule during OA disease) and CD86 (a M1 macrophage marker) in OA synovial tissue than in healthy tissue. The same effects were found in rats with OA induced by anterior cruciate ligament transaction (ACLT). We also found that cordycerebroside A inhibited ICAM-1 synthesis and antagonized M1 macrophage adhesion to OA synovial fibroblasts by inhibiting the ERK/AP-1 pathway. Thus, cordycerebroside A displayed novel anti-arthritic effects. PRACTICAL APPLICATIONS: Here we report a higher level of M1 macrophage markers and ICAM-1 in synovium tissue from OA patients compared with normal healthy controls by using GEO data set and our clinic samples. The same effects were revealed in rats with OA induced by ACLT. Cordycerebroside A significantly suppressed ICAM-1 production and diminished M1 macrophage adhesion to OA synovial fibroblasts. Therefore, cordycerebroside A exhibited novel anti-OA functions.
Collapse
Affiliation(s)
- Kun-Tsan Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.,Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Horng Su
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedics, Yuan-Lin Christian Hospital, Changhua, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Bo-Cheng Chen
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yang-Chang Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
45
|
Guha S, Paidi RK, Goswami S, Saha P, Biswas SC. ICAM-1 protects neurons against Amyloid-β and improves cognitive behaviors in 5xFAD mice by inhibiting NF-κB. Brain Behav Immun 2022; 100:194-210. [PMID: 34875346 DOI: 10.1016/j.bbi.2021.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
Alzheimer's disease (AD) is mainly characterized by amyloid beta (Aβ) plaque deposition and neurofibrillary tangle formation due to tau hyperphosphorylation. It has been shown that astrocytes respond to these pathologies very early and exert either beneficial or deleterious effects towards neurons. Here, we identified soluble intercellular adhesion molecule-1 (ICAM-1) which is rapidly increased in astrocyte conditioned medium derived from Aβ1-42 treated cultured astrocytes (Aβ1-42-ACM). Aβ1-42-ACM was found to be neuroprotective, however, Aβ1-42-ACM deprived of ICAM-1 was unable to protect neurons against Aβ1-42 mediated toxicity. Moreover, exogenous ICAM-1 renders protection to neurons from Aβ1-42 induced death. It blocks Aβ1-42-mediated PARP cleavage and increases the levels of anti-apoptotic proteins such as Bcl-2 and Bcl-xL, and decreases pro-apoptotic protein Bim. In an Aβ-infused rat model of AD and in 5xFAD mouse, intra-peritoneal administration of ICAM-1 revealed a reduction in Aβ load in hippocampal and cortical regions. Moreover, ICAM-1 treatment led to an increment in the expression of the Aβ-degrading enzyme, neprilysin in 5xFAD mice. Finally, we found that ICAM-1 can ameliorate cognitive deficits in Aβ-infused rat and 5xFAD mouse. Interestingly, ICAM-1 could block the NF-κB upregulation by Aβ and inhibition of NF-κB recovers cognitive impairments in 5xFAD mice. Thus, our study finds a neuroprotective role of ICAM-1 and suggests that it can be a major candidate in cytokine-mediated therapy of AD.
Collapse
Affiliation(s)
- Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India; Current address: Department of Neurological Sciences, RUMC, 1735 West Harrison St, Suite Cohn 336, Chicago, IL 60612, USA
| | - Soumita Goswami
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India; Current address: Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, USA
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
46
|
Kamble PR, Breed AA, Pawar A, Kasle G, Pathak BR. Prognostic utility of the ovarian cancer secretome: a systematic investigation. Arch Gynecol Obstet 2022; 306:639-662. [PMID: 35083554 DOI: 10.1007/s00404-021-06361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ovarian cancer is usually detected at an advanced stage with frequent recurrence. The recurrence-free survival and overall survival is influenced by the age at diagnosis, tumor stage and histological subtype. Nonetheless, quantifiable prognostic biomarkers are needed for early identification of the high-risk patients and for personalized medicine. Several studies link tumor-specific dysregulated expression of certain proteins with ovarian cancer prognosis. However, careful investigation of presence of these prognostically relevant proteins in ovarian cancer secretome is lacking. OBJECTIVE To critically analyze the recent published data on prognostically relevant proteins for ovarian cancer and to carefully search how many of them are reported in the published ovarian cancer secretome datasets. DESIGN A search for relevant studies in the past 2 years was conducted in PubMed and a comprehensive list of proteins associated with the ovarian cancer prognosis was prepared. These were cross-referred to the published ovarian cancer secretome profiles. The proteins identified in the secretome were further shortlisted based on a scoring strategy employing stringent criteria. RESULTS A panel of seven promising secretory biomarkers associated with ovarian cancer prognosis is proposed. CONCLUSION Scanning the ovarian cancer secretome datasets provides the opportunity to identify if tumor-specific biomarkers could be tested as secretory biomarkers. Detecting their levels in the body fluid would be more advantageous than evaluating the expression in the tissue, since it could be monitored multiple times over the course of the disease to have a better judgment of the prognosis and response to therapy.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Apoorva Pawar
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Grishma Kasle
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
- Division of Biological Sciences, IISER, Kolkata, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
47
|
Johnson MD, Otuki MF, Cabrini DA, Rudolph R, Witherden DA, Havran WL. Hspa8 and ICAM-1 as damage-induced mediators of γδ T cell activation. J Leukoc Biol 2022; 111:135-145. [PMID: 33847413 DOI: 10.1002/jlb.3ab0420-282r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Tissue-resident γδ T cells form the first line of defense at barrier surfaces where they survey host tissue for signs of stress or damage. Following recognition of injury, γδ T cells play a crucial role in the wound-healing response through the production of growth factors and cytokines that promote proliferation in surrounding epithelial cells. To initiate this response, γδ T cells require interactions with a variety of epithelial-expressed costimulatory molecules in addition to primary signaling through their TCR. In the epidermis these signals include the coxsackie and adenovirus receptor (CAR), histocompatibility antigen 60c (H60c), and plexin B2, which interact with γδ T cell-expressed junctional adhesion molecule-like protein (JAML), NKG2D, and CD100, respectively. Here we identify heat shock protein family A member 8 (Hspa8) and ICAM-1 as two additional keratinocyte-expressed costimulatory molecules for epidermal resident γδ T cells (termed DETC). These molecules were rapidly up-regulated in the epidermis following wounding in both mouse and human tissue. Both Hspa8 and ICAM-1 had a costimulatory effect on DETC, inducing proliferation, CD25 up-regulation, and IL-2 production. We also provide evidence that DETC can be activated through the potential ICAM-1 and Hspa8 receptors LFA-1 and CD316. Finally, knockdown of Hspa8 in keratinocytes reduced their ability to activate DETC in culture and ICAM-1-/- mice exhibited impaired rates of healing in skin-organ culture suggesting a role for these proteins in the DETC-mediated damage response. Together with previous work on CAR, H60c, and plexin B2, these results add to a picture of a complex keratinocyte wound signature that is required for efficient DETC activation.
Collapse
Affiliation(s)
- Margarete D Johnson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Michel F Otuki
- Department of Pharmacology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Daniela A Cabrini
- Department of Pharmacology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Ross Rudolph
- Division of Plastic Surgery, University of California San Diego, La Jolla, California, USA
| | - Deborah A Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Wendy L Havran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
48
|
Yoo K, Kang J, Choi M, Suh Y, Zhao Y, Kim M, Chang JH, Shim J, Yoon S, Kang S, Lee S. Soluble ICAM-1 a Pivotal Communicator between Tumors and Macrophages, Promotes Mesenchymal Shift of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102768. [PMID: 34813169 PMCID: PMC8805565 DOI: 10.1002/advs.202102768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.
Collapse
Affiliation(s)
- Ki‐Chun Yoo
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
- Department of Lymphoma and MyelomaDivision of Cancer MedicineCenter for Cancer Immunology ResearchThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Jae‐Hyeok Kang
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Mi‐Young Choi
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yongjoon Suh
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yi Zhao
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Min‐Jung Kim
- Laboratory of Radiation Exposure & TherapeuticsNational Radiation Emergency Medical CenterKorea Institute of Radiological and Medical SciencesSeoul01812Korea
| | - Jong Hee Chang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Jin‐Kyoung Shim
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seon‐Jin Yoon
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seok‐Gu Kang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Su‐Jae Lee
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| |
Collapse
|
49
|
Barros B, Oliveira M, Morais S. Firefighters' occupational exposure: Contribution from biomarkers of effect to assess health risks. ENVIRONMENT INTERNATIONAL 2021; 156:106704. [PMID: 34161906 DOI: 10.1016/j.envint.2021.106704] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Firefighting is physically and physiologically exhausting besides encompassing exposure to toxic fire emissions. Biomonitoring studies from the past five years have been significantly contributing to characterize the occupational-related health effects in this group of professionals and to improve risk assessment. Therefore, this study gathers and critically discusses the most characterized biomarkers of effect (oxidative stress, DNA and protein damage, stress hormones, inflammation, and vascular, lung, and liver injury), including those potentially more promising to be explored in future studies, and their relation with health outcomes. Various studies proved an association between exposures to fire emissions and/or heat and significantly altered values of biomarkers of inflammation (soluble adhesion molecules, tumor necrosis factor, interleukins, and leucocyte count), vascular damage and tissue injury (pentraxin-3, vascular endothelial growth factor, and cardiac troponin T) in firefighting forces. Moreover, preliminary data of DNA damage in blood, urinary mutagenicity and 8-isoprostaglandin in exhaled breath condensate suggest that these biomarkers of oxidative stress should be further explored. However, most of the reported studies are based on cross-sectional designs, which limit full identification and characterization of the risk factors and their association with development of work-related diseases. Broader studies based on longitudinal designs and strongly supported by the analysis of several types of biomarkers in different biological fluids are further required to gain deeper insights into the firefighters occupational related health hazards and contribute to implementation of new or improved surveillance programs.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto
| | - Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto.
| |
Collapse
|
50
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|