1
|
Xu J, Cao S, Xu Y, Chen H, Nian S, Li L, Liu Q, Xu W, Ye Y, Yuan Q. The role of DC subgroups in the pathogenesis of asthma. Front Immunol 2024; 15:1481989. [PMID: 39530090 PMCID: PMC11550972 DOI: 10.3389/fimmu.2024.1481989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs), specialized antigen-presenting cells of the immune system, act as immunomodulators in diseases of the immune system, including asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Moreover, most strategies for treating asthma with relevant therapeutic agents that target DCs have been initiated from the study of DC function. We discussed the pathogenesis of asthma (including T2-high and T2-low), the roles played by different DC subpopulations in the pathogenesis of asthma, and the therapeutic strategies centered around DCs. This study will provide a scientific theoretical basis for current asthma treatment, provide theoretical guidance and research ideas for developing and studying therapeutic drugs targeting DC, and provide more therapeutic options for the patient population with poorly controlled asthma symptoms.
Collapse
Affiliation(s)
- Jiangang Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuxian Cao
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Han Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Siji Nian
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Liu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenfeng Xu
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Sharma N, Mazumder R, Rai P, Debnath A. Role of PD-1 in Skin Cancer: Molecular Mechanism, Clinical Applications, and Resistance. Chem Biol Drug Des 2024; 104:e14613. [PMID: 39231792 DOI: 10.1111/cbdd.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Skin cancer is a widespread worldwide health concern, manifesting in many subtypes such as squamous cell carcinoma, basal cell carcinoma, and melanoma. Although all these types occur frequently, they generally lack the possibility of being cured, emphasizing the importance of early discovery and treatment. This comprehensive study explores the role of programmed cell death protein 1 (PD-1) in skin cancer, focusing on its molecular mechanisms in immune regulation and its critical role in tumor immune evasion, while also clarifying the complexities of immune checkpoints in cancer pathogenesis. It critically evaluates the clinical applications of PD-1 inhibitors, spotlighting their therapeutic potential in treating skin cancer, while also addressing the significant challenge of resistance. This work further discusses the evolution of resistance mechanisms against PD-1 inhibitors and suggests potential approaches to mitigate these issues, thereby enhancing the effectiveness of these therapies. The study further highlights the current state of PD-1 targeted therapies and sets the stage for future research aimed at optimizing these treatments for better clinical outcomes in skin cancer.
Collapse
Affiliation(s)
- Neha Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Pallavi Rai
- Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Zhang A, Mo L, Chen X, Tang P, Liu Y, Zhang W, Zhang C, Wang C, Zhang H, Yang P. Direct exposure to CpG and specific antigens mitigate airway allergy through modulating dendritic cell properties. Biomed Pharmacother 2024; 174:116510. [PMID: 38554528 DOI: 10.1016/j.biopha.2024.116510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND CpG oligodeoxynucleotide (CpG-ODN; CpG, in short) has been employed as an adjuvant in allergen specific immunotherapy (AIT) to treat allergic diseases. The underlying mechanism needs to be further explained. The aim of this study is to examine the mechanism by which CpG and dust mite extracts (DME, a specific antigen) alleviate experimental airway allergy. METHODS DME was used as the specific allergen to establish an airway allergy mouse model. The mice were directly exposed to DME and CpG through nasal instillations (the CpG.DME therapy). The response of DCs and allergic responses in the airways were assessed using immunological approaches. RESULTS The airway allergy reaction was effectively suppressed by CpG.DME therapy. The administration of CpG or DME alone did not have any significant suppressive effects on the airway allergic response. Direct exposure to CpG.DME induced type 1 DCs (DC1s) and plasmacytoid DCs (pDCs), while CpG alone induced DC1s and DME alone induced DC2s in the airway tissues. Both DC1s and pDCs were required for the induction of type 1 regulatory T cells in the airway tissues by CpG.DME therapy. Depletion of either pDCs or DC1s abolished the induction of Tr1 cells, and abolished the suppressive effects on airway allergic response by the CpG.DME therapy. CONCLUSIONS Direct exposure to CpG.DME induces DC1s and pDCs in the airway tissues. DC1s in synergy with pDCs induce type 1 regulatory T cells. The CpG.DME therapy is effective in suppressing allergic responses in mice with airway allergy.
Collapse
Affiliation(s)
- Aizhi Zhang
- Department of Critical Care Medicine, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Mo
- Department of General Medicine Practice, Third Affiliated Hospital, Shenzhen University, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiaoxue Chen
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ping Tang
- Department of General Medicine Practice, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Medicine Practice, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Wenkai Zhang
- Department of Critical Care Medicine, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cheng Zhang
- Department of Critical Care Medicine, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cailing Wang
- Department of Critical Care Medicine, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Huanping Zhang
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Rep 2022; 40:111148. [PMID: 35858624 PMCID: PMC9279298 DOI: 10.1016/j.celrep.2022.111148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.
Collapse
|
6
|
Das A, Chauhan KS, Kumar H, Tailor P. Mutation in Irf8 Gene ( Irf8R294C ) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs. Front Immunol 2021; 12:758190. [PMID: 34867997 PMCID: PMC8635750 DOI: 10.3389/fimmu.2021.758190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the key producers of type I interferons (IFNs), thus playing a central role in initiating antiviral immune response. Besides robust type I IFN production, pDCs also act as antigen presenting cells post immunogenic stimulation. Transcription factor Irf8 is indispensable for the development of both pDC and cDC1 subset. However, the mechanism underlying the differential regulation by IRF8 in cDC1- and pDC-specific genomic architecture of developmental pathways still remains to be fully elucidated. Previous studies indicated that the Irf8R294C mutation specifically abrogates development of cDC1 without affecting that of pDC. In the present study using RNA-seq based approach, we have found that though the point mutation Irf8R294C did not affect pDC development, it led to defective type I IFN production, thus resulting in inefficient antiviral response. This observation unraveled the distinctive roles of IRF8 in these two subpopulations—regulating the development of cDC1 whereas modulating the functionality of pDCs without affecting development. We have reported here that Irf8R294C mutation also caused defect in production of ISGs as well as defective upregulation of costimulatory molecules in pDCs in response to NDV infection (or CpG stimulation). Through in vivo studies, we demonstrated that abrogation of type I IFN production was concomitant with reduced upregulation of costimulatory molecules in pDCs and increased NDV burden in IRF8R294C mice in comparison with wild type, indicating inefficient viral clearance. Further, we have also shown that Irf8R294C mutation abolished the activation of type I IFN promoter by IRF8, justifying the low level of type I IFN production. Taken together, our study signifies that the single point mutation in Irf8, Irf8R294C severely compromised type I IFN-mediated immune response by murine pDCs, thereby causing impairment in antiviral immunity.
Collapse
Affiliation(s)
- Annesa Das
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | | | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India.,Special Centre for Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Chiale C, Marchese AM, Furuya Y, Robek MD. Virus-based vaccine vectors with distinct replication mechanisms differentially infect and activate dendritic cells. NPJ Vaccines 2021; 6:138. [PMID: 34811393 PMCID: PMC8608815 DOI: 10.1038/s41541-021-00400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The precise mechanism by which many virus-based vectors activate immune responses remains unknown. Dendritic cells (DCs) play key roles in priming T cell responses and controlling virus replication, but their functions in generating protective immunity following vaccination with viral vectors are not always well understood. We hypothesized that highly immunogenic viral vectors with identical cell entry pathways but unique replication mechanisms differentially infect and activate DCs to promote antigen presentation and activation of distinctive antigen-specific T cell responses. To evaluate differences in replication mechanisms, we utilized a rhabdovirus vector (vesicular stomatitis virus; VSV) and an alphavirus-rhabdovirus hybrid vector (virus-like vesicles; VLV), which replicates like an alphavirus but enters the cell via the VSV glycoprotein. We found that while virus replication promotes CD8+ T cell activation by VLV, replication is absolutely required for VSV-induced responses. DC subtypes were differentially infected in vitro with VSV and VLV, and displayed differences in activation following infection that were dependent on vector replication but were independent of interferon receptor signaling. Additionally, the ability of the alphavirus-based vector to generate functional CD8+ T cells in the absence of replication relied on cDC1 cells. These results highlight the differential activation of DCs following infection with unique viral vectors and indicate potentially discrete roles of DC subtypes in activating the immune response following immunization with vectors that have distinct replication mechanisms.
Collapse
Affiliation(s)
- Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.,Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Anthony M Marchese
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
8
|
Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity 2021; 54:2514-2530.e7. [PMID: 34717796 DOI: 10.1016/j.immuni.2021.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/01/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.
Collapse
|
9
|
Truby LK, Kwee LC, Agarwal R, Grass E, DeVore AD, Patel CB, Chen D, Schroder JN, Bowles D, Milano CA, Shah SH, Holley CL. Proteomic profiling identifies CLEC4C expression as a novel biomarker of primary graft dysfunction after heart transplantation. J Heart Lung Transplant 2021; 40:1589-1598. [PMID: 34511330 DOI: 10.1016/j.healun.2021.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Clinical models to identify patients at high risk of primary graft dysfunction (PGD) after heart transplantation (HT) are limited, and the underlying pathophysiology of this common post-transplant complication remains poorly understood. We sought to identify whether pre-transplant levels of circulating proteins reporting on immune activation and inflammation are associated with incident PGD. METHODS The study population consisted of 219 adult heart transplant recipients identified between 2016 and 2020 at Duke University Medical Center, randomly divided into derivation (n = 131) and validation (n = 88) sets. PGD was defined using modified ISHLT criteria. Proteomic profiling was performed using Olink panels (n = 354 proteins) with serum samples collected immediately prior to transplantation. Association between normalized relative protein expression and PGD was tested using univariate and multivariable (recipient age, creatinine, mechanical circulatory support, and sex; donor age; ischemic time) models. Significant proteins identified in the derivation set (p < 0.05 in univariate models), were then tested in the validation set. Pathway enrichment analysis was used to test candidate biological processes. The predictive performance of proteins was compared to that of the RADIAL score. RESULTS Nine proteins were associated with PGD in univariate models in the derivation set. Of these, only CLEC4C remained associated with PGD in the validation set after Bonferroni correction (OR [95% CI] = 3.04 [1.74,5.82], p = 2.8 × 10-4). Patterns of association were consistent for CLEC4C in analyses stratified by biventricular/left ventricular and isolated right ventricular PGD. Pathway analysis identified interferon-alpha response and C-type lectin signaling as significantly enriched biologic processes. The RADIAL score was a poor predictor of PGD (AUC = 0.55). CLEC4C alone (AUC = 0.66, p = 0.048) and in combination with the clinical covariates from the multivariable model (AUC = 0.69, p = 0.018) improved discrimination for the primary outcome. CONCLUSIONS Pre-transplantation circulating levels of CLEC4C, a protein marker of plasmacytoid dendritic cells (pDCs), may identify HT recipients at risk for PGD. Further studies are needed to better understand the potential role pDCs and the innate immune response in PGD.
Collapse
Affiliation(s)
- Lauren K Truby
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Lydia Coulter Kwee
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Richa Agarwal
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Elizabeth Grass
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Adam D DeVore
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Chetan B Patel
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Dongfeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Jacob N Schroder
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Dawn Bowles
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Carmelo A Milano
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Svati H Shah
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Christopher L Holley
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
10
|
De Ceuninck F, Duguet F, Aussy A, Laigle L, Moingeon P. IFN-α: A key therapeutic target for multiple autoimmune rheumatic diseases. Drug Discov Today 2021; 26:2465-2473. [PMID: 34224903 DOI: 10.1016/j.drudis.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-α has emerged as a major therapeutic target for several autoimmune rheumatic diseases. In this review, we focus on clinical and preclinical advances in anti-IFN-α treatments in systemic lupus erythematosus (SLE), primary Sjögren syndrome (pSS), systemic sclerosis (SSc), and dermatomyositis (DM), for which a high medical need persists. Promising achievements were obtained following direct IFN-α neutralization, targeting its production through the cytosolic nucleic acid sensor pathways or by blocking its downstream effects through the type I IFN receptor. We further focus on molecular profiling and data integration approaches as crucial steps to select patients most likely to benefit from anti-IFN-α therapies within a precision medicine approach.
Collapse
Affiliation(s)
- Frédéric De Ceuninck
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France.
| | - Fanny Duguet
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| | - Audrey Aussy
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 50 rue Carnot, 92150 Suresnes, France
| | - Laurence Laigle
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 50 rue Carnot, 92150 Suresnes, France
| | - Philippe Moingeon
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 50 rue Carnot, 92150 Suresnes, France; Immuno-inflammatory Disease Department, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| |
Collapse
|
11
|
Asano S, Sato H, Mori K, Yamazaki K, Naito H, Suzuki H. Necrotizing lymphadenitis may be induced by overexpression of Toll-like receptor7 (TLR7) caused by reduced TLR9 transport in plasmacytoid dendritic cells (PDCs). J Clin Exp Hematop 2021; 61:85-92. [PMID: 33994431 PMCID: PMC8265496 DOI: 10.3960/jslrt.20060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotizing lymphadenitis (NEL) is a self-limited systemic disease exhibiting characteristic clinical features. The pathogenesis of the disease remains unclear, but it may be associated with viral infection. In lymph nodes affected by this disease, innumerable plasmacytoid dendritic cells produce interferon-α when triggered by certain viral stimuli. IFN-α presents antigens causing the transformation of CD8+ cells into immunoblasts and apoptosis of CD4+ cells. From the perspective of innate immunity, UNC93B1, an endoplasmic reticulum (ER)-resident protein, associates more strongly with TLR9 than TLR7. Homeostasis is maintained under normal conditions. However, in NEL, TLR 7 was observed more than TLR 9, possibly because mutant type UNC93B1 associates more tightly with TLR7. The inhibitory effects against TLR7 by TLR9 were reported to disappear. It is likely that more TLR7 than TLR9 is transported from the ER to endolysosomes. In conclusion, overexpression of TLR7, an innate immune sensor of microbial single-stranded RNA, is inferred. Consequently, NEL may be induced.
Collapse
Affiliation(s)
| | - Hiroko Sato
- Department of Dentistry and Oral Surgery, Iwaki City Medical Center, Iwaki, Japan
| | - Kikuo Mori
- Pathology Center, Iwaki City Medical Center, Iwaki, Japan
| | | | - Hiroyuki Naito
- Department of Dentistry and Oral Surgery, Iwaki City Medical Center, Iwaki, Japan
| | - Hoshiro Suzuki
- Department of Pediatrics, Iwaki City Medical Center, Iwaki, Japan
| |
Collapse
|
12
|
Psarras A, Antanaviciute A, Alase A, Carr I, Wittmann M, Emery P, Tsokos GC, Vital EM. TNF-α Regulates Human Plasmacytoid Dendritic Cells by Suppressing IFN-α Production and Enhancing T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2021; 206:785-796. [PMID: 33441439 PMCID: PMC7851743 DOI: 10.4049/jimmunol.1901358] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 11/25/2020] [Indexed: 12/29/2022]
Abstract
TNF downregulates IFN-α and TNF production by human pDCs. TNF downregulates IRF7 and NF-κB pathways and upregulates Ag processing in pDCs. TNF enhances Ag presentation and T cell activation properties in pDCs.
Human plasmacytoid dendritic cells (pDCs) play a vital role in modulating immune responses. They can produce massive amounts of type I IFNs in response to nucleic acids via TLRs, but they are also known to possess weak Ag-presenting properties inducing CD4+ T cell activation. Previous studies showed a cross-regulation between TNF-α and IFN-α, but many questions remain about the effect of TNF-α in regulating human pDCs. In this study, we showed that TNF-α significantly inhibited the secretion of IFN-α and TNF-α of TLR-stimulated pDCs. Instead, exogenous TNF-α promoted pDC maturation by upregulating costimulatory molecules and chemokine receptors such as CD80, CD86, HLA-DR, and CCR7. Additionally, RNA sequencing analysis showed that TNF-α inhibited IFN-α and TNF-α production by downregulating IRF7 and NF-κB pathways, while it promoted Ag processing and presentation pathways as well as T cell activation and differentiation. Indeed, TNF-α–treated pDCs induced in vitro higher CD4+ T cell proliferation and activation, enhancing the production of Th1 and Th17 cytokines. In conclusion, TNF-α favors pDC maturation by switching their main role as IFN-α–producing cells to a more conventional dendritic cell phenotype. The functional status of pDCs might therefore be strongly influenced by their overall inflammatory environment, and TNF-α might regulate IFN-α–mediated aspects of a range of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom.,Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Agne Antanaviciute
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| | - Ian Carr
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom; .,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| |
Collapse
|
13
|
Chu CY, Hsu SH, Yang CW, Hsieh YC, Chen KL, Cho YT, Liau JY. Plasmacytoid dendritic cells diminution in peripheral blood is prevalent in drug reaction with eosinophilia and systemic symptoms and may precede human herpesvirus 6 reactivation. DERMATOL SIN 2021. [DOI: 10.4103/ds.ds_37_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Lin TY, Lo CY, Tsao KC, Chang PJ, Kuo CHS, Lo YL, Lin SM, Hsieh MH, Wang TY, Hsu PC, Lin HC. Impaired interferon-α expression in plasmacytoid dendritic cells in asthma. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:183-195. [PMID: 33236850 PMCID: PMC7860612 DOI: 10.1002/iid3.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
Background Toll‐like receptor (TLR)‐7‐associated rhinovirus (RV) activation is involved in the pathogenesis of asthma. Plasmacytoid dendritic cells (pDCs) are the main interferon‐α‐producing cells against viruses. Objective To determine whether asthmatic patients and control subjects differ in terms of interferon‐α expression in pDCs under TLR‐7 or RV stimulation. Methods pDCs were identified in BDCA‐2+ and HLA‐DR+ peripheral blood mononuclear cells. Interferon‐α expression of pDCs was analyzed after TLR‐7 stimulation with or without interleukin 4 (IL‐4)/IL‐13 pretreatment. Interferon‐α expression was also analyzed after RV stimulation over periods of 24, 48, or 96 h with or without IL‐4 pretreatment. RV detection and molecular typing were assayed from throat swabs. Results Following TLR‐7 stimulation, the expression of intracellular interferon‐α was higher in the pDCs of normal subjects than those of asthmatic patients; however, pretreatment with IL‐4 was shown to reduce this effect. After 48‐ and 96‐h RV stimulation, we observed a notable increase in the production of interferon‐α of pDCs in normal subjects but not in asthmatic patients. Baseline interferon‐α expression in pDCs and the incidence of asthma exacerbation to emergency was higher among the 13% of patients identified as rhinovirus+ than among their RV counterparts. Conclusion Our study discovered the response to TLR‐7 stimulation in pDCs was compromised and the sustainability of interferon‐α expression to RV stimulation was reduced in pDCs of asthmatic patients, which provide further evidence of defective innate response and subspeciality to RV infection in asthma. The high exacerbation history founded in RV+ patients agrees with these findings. Further research is required for the modulatory effect of IL‐4 on TLR‐7 stimulated pDCs.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Lin-Kou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chih-His Scott Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Meng-Heng Hsieh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| |
Collapse
|
15
|
Brar G, Farhat NA, Sukhina A, Lam AK, Kim YH, Hsu T, Tong L, Lin WW, Ware CF, Blackman MA, Sun R, Wu TT. Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. NPJ Vaccines 2020; 5:102. [PMID: 33298958 PMCID: PMC7644650 DOI: 10.1038/s41541-020-00251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.
Collapse
Affiliation(s)
- Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Nisar A Farhat
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alisa Sukhina
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alex K Lam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yong Hoon Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tiffany Hsu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Wai Wai Lin
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Hishiki H, Kawashima T, Tsuji NM, Ikari N, Takemura R, Kido H, Shimojo N. A Double-Blind, Randomized, Placebo-Controlled Trial of Heat-Killed Pediococcus acidilactici K15 for Prevention of Respiratory Tract Infections among Preschool Children. Nutrients 2020; 12:nu12071989. [PMID: 32635408 PMCID: PMC7400799 DOI: 10.3390/nu12071989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Although some probiotic bacteria have been reported to prevent infections in children, there are few well-designed double-blind studies. Here we evaluated the effects of a probiotic strain of lactic acid bacteria (LAB), Pediococcus acidilactici K15, on viral respiratory tract infections in preschool children. A four-month, randomized, double-blind, placebo-controlled study was performed in 172 healthy children aged 3 to 6 years. Subjects were administered dextrin alone or dextrin including heat-killed K15 (5 × 1010 bacteria). The number of febrile days was the primary outcome. The number of absent days from preschools and the influenza incidence were secondary outcomes. Secretory IgA (sIgA) concentrations in saliva were measured as an exploratory outcome. The primary and secondary outcomes were not significantly different between both groups. Analyses in children with little intake of fermented foods including LAB showed that the duration of a fever significantly decreased by K15 intake. The salivary sIgA level in the K15 group was maintained significantly higher than it was in the placebo group. The effects of K15 on preventing viral respiratory tract infections were not observed without the restriction of fermented foods intake. However, K15 supported anti-infectious immune systems in children who took less fermented foods and the maintenance of salivary sIgA levels in all subjects.
Collapse
Affiliation(s)
- Haruka Hishiki
- Department of Pediatrics, Chiba University Hospital, Chiba 260-8670, Japan;
| | - Tadaomi Kawashima
- Research and Development Division, Kikkoman Corporation, Chiba 278-0037, Japan; (T.K.); (N.I.)
| | - Noriko M. Tsuji
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-0046, Japan;
| | - Naho Ikari
- Research and Development Division, Kikkoman Corporation, Chiba 278-0037, Japan; (T.K.); (N.I.)
| | - Ryo Takemura
- Clinical Research Center, Chiba University Hospital, Chiba 260-8677, Japan;
- Clinical and Translational Research Center, Keio University Hospital, Tokyo 160-8582, Japan
| | - Hiroshi Kido
- Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan;
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Hospital, Chiba 260-8670, Japan;
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
- Correspondence: ; Tel.: +81-43-290-3896
| |
Collapse
|
17
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Heightened TLR7/9-Induced IL-10 and CXCL13 Production with Dysregulated NF-ҝB Activation in CD11c hiCD11b + Dendritic Cells in NZB/W F1 Mice. Int J Mol Sci 2019; 20:ijms20184639. [PMID: 31546763 PMCID: PMC6770860 DOI: 10.3390/ijms20184639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multifactorial autoimmune disease that predominantly affects young females. Dysregulation of different immune cell populations leads to self-tolerance breakdown and subsequent multiple organ damage as the disease develops. Plasmacytoid dendritic cells (pDCs) are potent producers of type I interferon (IFN), while myeloid dendritic cells (mDCs) are more specialized in antigen presentations. We have previously reported that bone-marrow (BM)-derived pDCs from the murine lupus model New Zealand black/white F1 (BWF1) possess abnormalities. Therefore, this study continues to investigate what aberrant properties peripheral pDCs and mDCs possess in BWF1 and how they mediate SLE progression, by comparing their properties in pre-symptomatic and symptomatic mice. Results showed that CD11chiCD11b+ myeloid DCs expanded during the disease state with down-regulation of co-stimulatory molecules and major histocompatibility complex class II molecules (MHC II), but their capacity to stimulate T cells was not hampered. During the disease state, this subset of mDCs displayed heightened toll-like receptors 7 and 9 (TLR 7/9) responses with increased interleukin 10 (IL-10) and C-X-C motif chemokine ligand 13 (CXCL13) expressions. Moreover, the expressions of myeloid differentiation primary response 88 (Myd88) and nuclear factor kappa B subunit 1 (Nfkb1) were higher in CD11chiCD11b+ DCs at the disease stage, leading to higher nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation activity. In summary, we reported aberrant phenotypic properties with enhanced TLR7/9 responses of CD11chiCD11b+ DCs in SLE mediated by aberrant NF-κB signaling pathway. Our findings add additional and novel information to our current understanding of the role of DCs in lupus immunopathogenesis. Lastly, molecular candidates in the NF-κB pathway should be exploited for developing therapeutic targets for SLE.
Collapse
|
19
|
Chea LS, Wyatt LS, Gangadhara S, Moss B, Amara RR. Novel Modified Vaccinia Virus Ankara Vector Expressing Anti-apoptotic Gene B13R Delays Apoptosis and Enhances Humoral Responses. J Virol 2019; 93:e01648-18. [PMID: 30541829 PMCID: PMC6384055 DOI: 10.1128/jvi.01648-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/17/2018] [Indexed: 01/18/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA), an attenuated poxvirus, has been developed as a potential vaccine vector for use against cancer and multiple infectious diseases, including human immunodeficiency virus (HIV). MVA is highly immunogenic and elicits strong cellular and humoral responses in preclinical models and humans. However, there is potential to further enhance the immunogenicity of MVA, as MVA-infected cells undergo rapid apoptosis, leading to faster clearance of recombinant antigens and potentially blunting a greater response. Here, we generated MVA-B13R by replacing the fragmented 181R/182R genes of MVA with a functional anti-apoptotic gene, B13R, and confirmed its anti-apoptotic function against chemically induced apoptosis in vitro In addition, MVA-B13R showed a significant delay in induction of apoptosis in muscle cells derived from mice and humans, as well as in plasmacytoid dendritic cells (pDCs) and CD141+ DCs from rhesus macaques, compared to the induction of apoptosis in MVA-infected cells. MVA-B13R expressing simian immunodeficiency virus (SIV) Gag and Pol and HIV envelope (SHIV) (MVA-B13R/SHIV) produced higher levels of envelope in the supernatants than MVA/SHIV-infected DF-1 cells in vitro Immunization of BALB/c mice showed induction of higher levels of envelope-specific antibody-secreting cells and memory B cells, higher IgG antibody titers, and better persistence of antibody titers with MVA-B13R/SHIV than with MVA/SHIV. Gene set enrichment analysis of draining lymph node cells from day 1 after immunization showed negative enrichment for interferon responses in MVA-B13R/SHIV-immunized mice compared to the responses in MVA/SHIV-immunized mice. Taken together, these results demonstrate that restoring B13R functionality in MVA significantly delays MVA-induced apoptosis in muscle and antigen-presenting cells in vitro and augments vaccine-induced humoral immunity in mice.IMPORTANCE MVA is an attractive viral vector for vaccine development due to its safety and immunogenicity in multiple species and humans even under conditions of immunodeficiency. Here, to further improve the immunogenicity of MVA, we developed a novel vector, MVA-B13R, by replacing the fragmented anti-apoptotic genes 181R/182R with a functional version derived from vaccinia virus, B13R Our results show that MVA-B13R significantly delays apoptosis in antigen-presenting cells and muscle cells in vitro and augments vaccine-induced humoral immunity in mice, leading to the development of a novel vector for vaccine development against infectious diseases and cancer.
Collapse
Affiliation(s)
- Lynette S Chea
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Fernandez-Flores A, Cassarino DS. Plasmacytoid dendritic cells in granulomatous variant of mycosis fungoides. J Cutan Pathol 2019; 46:335-342. [PMID: 30734340 DOI: 10.1111/cup.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Granulomatous mycosis fungoides (MF) is a rare variant in which granulomas are associated with other typical signs of MF. Its prognosis is worse than that of classical MF. Plasmacytoid dendritic cells (PDCs) are a subset of interferon-producing dendritic cells that link the innate and the adaptative immune responses. They have also been related to tolerance to certain tumors such as melanoma. MATERIALS AND METHODS In this article, we examined for the presence of CD123+ PDC in six cases of granulomatous MF from our archives. RESULTS We found clusters of 10 or more positive cells in three of six cases of granulomatous MF (two women and a man, in their sixth and seventh decade). Although in two of these three cases the granulomatous response was extensive, in the other, it only represented 10% of the infiltrate of the biopsy. In all three cases, the granulomas were epithelioid, sarcoidal type. CONCLUSIONS CD123+ PDC can be identified in granulomatous MF. The pathogenic and prognostic role of this finding requires further clarification.
Collapse
Affiliation(s)
- Angel Fernandez-Flores
- Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain.,Department of CellCOM-ST Group, Biomedical Investigation Institute of A Coruña, CellCOM-ST Group, A Coruña, Spain.,Department of Cellular Pathology, Hospital de la Reina, Ponferrada, Spain
| | - David S Cassarino
- Department of Dermatology, Los Angeles Medical Center (LAMC), Southern California Kaiser Permanente, Los Angeles, California
| |
Collapse
|
21
|
Syrett CM, Sindhava V, Sierra I, Dubin AH, Atchison M, Anguera MC. Diversity of Epigenetic Features of the Inactive X-Chromosome in NK Cells, Dendritic Cells, and Macrophages. Front Immunol 2019; 9:3087. [PMID: 30671059 PMCID: PMC6331414 DOI: 10.3389/fimmu.2018.03087] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022] Open
Abstract
In females, the long non-coding RNA Xist drives X-chromosome Inactivation (XCI) to equalize X-linked gene dosage between sexes. Unlike other somatic cells, dynamic regulation of Xist RNA and heterochromatin marks on the inactive X (Xi) in female lymphocytes results in biallelic expression of some X-linked genes, including Tlr7, Cxcr3, and Cd40l, implicated in sex-biased autoimmune diseases. We now find that while Xist RNA is dispersed across the nucleus in NK cells and dendritic cells (DCs) and partially co-localizes with H3K27me3 in bone marrow-derived macrophages, it is virtually absent in plasmacytoid DCs (p-DCs). Moreover, H3K27me3 foci are present in only 10–20% of cells and we observed biallelic expression of Tlr7 in p-DCs from wildtype mice and NZB/W F1 mice. Unlike in humans, mouse p-DCs do not exhibit sex differences with interferon alpha production, and interferon signature gene expression in p-DCs is similar between males and females. Despite the absence of Xist RNA from the Xi, female p-DCs maintain dosage compensation of six immunity-related X-linked genes. Thus, immune cells use diverse mechanisms to maintain XCI which could contribute to sex-linked autoimmune diseases.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Isabel Sierra
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Aimee H Dubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Lim SM, Kim YE, Choi WJ, Oh KW, Noh MY, Kwon MS, Nahm M, Kim N, Ki CS, Kim SH. CLEC4C p.K210del variant causes impaired cell surface transport in plasmacytoid dendritic cells of amyotrophic lateral sclerosis. Oncotarget 2018; 7:24942-9. [PMID: 26943047 PMCID: PMC5041881 DOI: 10.18632/oncotarget.7886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/29/2016] [Indexed: 01/06/2023] Open
Abstract
The type II C-type lectin CLEC4C is a transmembrane protein selectively expressed on plasmacytoid dendritic cells (PDCs). Although its mechanism of action remains unclear, triggering of the extracellular C-terminal C-type carbohydrate recognition region of CLEC4C regulates the secretion of proinflammatory cytokines and type I IFNs in PDCs. Applying whole-exome sequencing in a patient with juvenile amyotrophic lateral sclerosis (ALS) and both healthy parents, we identified a de novo CLEC4C variant (c.629_631delAGA; p.Lys210del). In this study, we report that the deletion of a lysine residue at the extracellular region of CLEC4C yields a C-terminal dilysine motif that results in endoplasmic reticulum (ER) retention of the protein in transfected HeLa and Jurkat T lymphoma cell models. As a consequence, a decrease in the surface expression of CLEC4C and the ER localization of the mutant construct were observed. Furthermore, depletion of the cell surface CLEC4C level was also observed in the patient PDCs, further suggesting that the variant p.Lys210del CLEC4C may contribute to juvenile ALS susceptibility.
Collapse
Affiliation(s)
- Su Min Lim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.,Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | | | - Won Jun Choi
- Department of Neurology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea.,Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Min-Young Noh
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, CHA Bio Complex, Seongnam, Republic of Korea
| | - Minyeop Nahm
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Namshin Kim
- Epigenomics Research Center Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea.,Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
23
|
Abstract
Dendritic cells (DC) are professional antigen presenting cells comprising a variety of subsets, as either resident or migrating cells, in lymphoid and non-lymphoid organs. In the steady state DC continually process and present antigens on MHCI and MHCII, processes that are highly upregulated upon activation. By expressing differential sets of pattern recognition receptors different DC subsets are able to respond to a range of pathogenic and danger stimuli, enabling functional specialisation of the DC. The knowledge of functional specialisation of DC subsets is key to efficient priming of T cells, to the design of effective vaccine adjuvants and to understanding the role of different DC in health and disease. This review outlines mouse and human steady state DC subsets and key attributes that define their distinct functions.
Collapse
|
24
|
Chairakaki AD, Saridaki MI, Pyrillou K, Mouratis MA, Koltsida O, Walton RP, Bartlett NW, Stavropoulos A, Boon L, Rovina N, Papadopoulos NG, Johnston SL, Andreakos E. Plasmacytoid dendritic cells drive acute asthma exacerbations. J Allergy Clin Immunol 2017; 142:542-556.e12. [PMID: 29054692 DOI: 10.1016/j.jaci.2017.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although acute exacerbations, mostly triggered by viruses, account for the majority of hospitalizations in asthmatic patients, there is still very little known about the pathophysiologic mechanisms involved. Plasmacytoid dendritic cells (pDCs), prominent cells of antiviral immunity, exhibit proinflammatory or tolerogenic functions depending on the context, yet their involvement in asthma exacerbations remains unexplored. OBJECTIVES We sought to investigate the role of pDCs in allergic airway inflammation and acute asthma exacerbations. METHODS Animal models of allergic airway disease (AAD) and virus-induced AAD exacerbations were used to dissect pDC function in vivo and unwind the potential mechanisms involved. Sputum from asthmatic patients with stable disease or acute exacerbations was further studied to determine the presence of pDCs and correlation with inflammation. RESULTS pDCs were key mediators of the immunoinflammatory cascade that drives asthma exacerbations. In animal models of AAD and rhinovirus-induced AAD exacerbations, pDCs were recruited to the lung during inflammation and migrated to the draining lymph nodes to boost TH2-mediated effector responses. Accordingly, pDC depletion after allergen challenge or during rhinovirus infection abrogated exacerbation of inflammation and disease. Central to this process was IL-25, which was induced by allergen challenge or rhinovirus infection and conditioned pDCs for proinflammatory function. Consistently, in asthmatic patients pDC numbers were markedly increased during exacerbations and correlated with the severity of inflammation and the risk for asthma attacks. CONCLUSIONS Our studies uncover a previously unsuspected role of pDCs in asthma exacerbations with potential diagnostic and prognostic implications. They also propose the therapeutic targeting of pDCs and IL-25 for the treatment of acute asthma.
Collapse
Affiliation(s)
- Aikaterini-Dimitra Chairakaki
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Saridaki
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Pyrillou
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Marios-Angelos Mouratis
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ourania Koltsida
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; 1(st) Department of Respiratory Medicine, Medical School, National Kapodistrian University of Athens, "Sotiria" Regional Chest Diseases Hospital, Athens, Greece
| | - Ross P Walton
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Athanasios Stavropoulos
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Nikoletta Rovina
- 1(st) Department of Respiratory Medicine, Medical School, National Kapodistrian University of Athens, "Sotiria" Regional Chest Diseases Hospital, Athens, Greece
| | - Nikolaos G Papadopoulos
- Institute of Human Development, University of Manchester, Manchester, United Kingdom; A. Kyriakou Children's Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Evangelos Andreakos
- Department of Immunology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. RECENT FINDINGS Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.
Collapse
|
26
|
Wu J, Li S, Yang Y, Zhu S, Zhang M, Qiao Y, Liu YJ, Chen J. TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget 2017; 8:11708-11718. [PMID: 28052019 PMCID: PMC5355297 DOI: 10.18632/oncotarget.14315] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of naturally occurring dendritic cells, which triggers the production of large amounts of type I interferons (IFNs) after viral infections through Toll-like receptor (TLR) 7 and TLR9. Recent studies have demonstrated that the activation of pDCs kills melanoma cells. However, the role of activated pDCs in breast cancer remains to be determined. In the present study, we generated mouse models of breast cancer and demonstrated that activated pDCs can directly kill breast tumor cells through TRAIL and Granzyme B. Furthermore, we established that pDCs initiate the sequential activation of NK cells and CD8+ T cells, and ultimately inhibit breast tumor growth. Understanding the role of activated pDCs in breast cancer may help to develop new strategies for manipulating the function of pDCs and induce anti-tumor immunity in breast cancer.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Mingyou Zhang
- Department of Cardiovascular Center, The First Hospital, Jilin University, Changchun, 130031, China
| | - Yuan Qiao
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China.,Sanofi Research and Development, Cambridge, MA, 02139, USA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| |
Collapse
|
27
|
Tworek D, Smith SG, Salter BM, Baatjes AJ, Scime T, Watson R, Obminski C, Gauvreau GM, O'Byrne PM. IL-25 Receptor Expression on Airway Dendritic Cells after Allergen Challenge in Subjects with Asthma. Am J Respir Crit Care Med 2017; 193:957-64. [PMID: 26625138 DOI: 10.1164/rccm.201509-1751oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RATIONALE IL-25 is an epithelial-derived cytokine, whose effects are mediated by the IL-25 receptor (IL-17RB), and that has been implicated in the pathogenesis of allergic disease and airway viral responses. Airway myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) are professional antigen-presenting cells. pDCs may play a protective role in asthma and are key players in the innate immune response through recognition of microbial products via Toll-like receptors (TLRs). The effects of inhaled allergens on the expression of IL-17RB by mDCs and pDCs, and the effects of IL-25 on pDCs, are unknown. OBJECTIVES To evaluate allergen-induced changes in IL-17RB expression by mDCs and pDCs and to investigate the effects of IL-25 on pDCs. METHODS Patients with mild atopic asthma (n = 13) were challenged with inhaled allergen. Blood and sputum DCs were enumerated and IL-17RB expression was determined by flow cytometry before and 7 and 24 hours after allergen challenge. The effects of IL-25 on pDCs in vitro were also assessed. MEASUREMENTS AND MAIN RESULTS Inhaled allergen significantly increased mDC and pDC numbers in sputum but not in blood. The percentage of IL-17RB(+) mDCs and pDCs was significantly increased in blood and sputum 24 hours after challenge. IL-25 up-regulated TLR9 expression by pDCs and orchestrated the responses to TLR9 ligation. CONCLUSIONS IL-17RB is up-regulated on blood and sputum mDCs and pDCs after allergen inhalation. IL-25 modulates pDC function through an effect on TLR9 expression.
Collapse
Affiliation(s)
- Damian Tworek
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and.,2 Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Steven G Smith
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Brittany M Salter
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Adrian J Baatjes
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Tara Scime
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Rick Watson
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Caitlin Obminski
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Gail M Gauvreau
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Paul M O'Byrne
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
28
|
Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, Zhou C, Fang Y, Liu J, Yang J, Chen X, Li T, Zang A, Yin S, Li B, Plumas J, Chaperot L, Zhang X, Xu G, Jiang L, Shen N, Xiong S, Gao X, Zhang Y, Xiao H. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med 2017; 214:1471-1491. [PMID: 28416650 PMCID: PMC5413332 DOI: 10.1084/jem.20161149] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Ma and colleagues identify CXXC5 as an epigenetic regulator required for maintaining the hypomethylation of a subset of CGIs, thereby promoting the expression of transcriptional factors such as IRF7 in pDCs to enable robust IFN response to viral infection. TLR7/9 signals are capable of mounting massive interferon (IFN) response in plasmacytoid dendritic cells (pDCs) immediately after viral infection, yet the involvement of epigenetic regulation in this process has not been documented. Here, we report that zinc finger CXXC family epigenetic regulator CXXC5 is highly expressed in pDCs, where it plays a crucial role in TLR7/9- and virus-induced IFN response. Notably, genetic ablation of CXXC5 resulted in aberrant methylation of the CpG-containing island (CGI) within the Irf7 gene and impaired IRF7 expression in steady-state pDCs. Mechanistically, CXXC5 is responsible for the recruitment of DNA demethylase Tet2 to maintain the hypomethylation of a subset of CGIs, a process coincident with active histone modifications and constitutive transcription of these CGI-containing genes. Consequently, CXXC5-deficient mice had compromised early IFN response and became highly vulnerable to infection by herpes simplex virus and vesicular stomatitis virus. Together, our results identify CXXC5 as a novel epigenetic regulator for pDC-mediated antiviral response.
Collapse
Affiliation(s)
- Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoling Wan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congfang Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenyuan Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Chun Zhou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiyuan Fang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shigang Yin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel Plumas
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, CAS Excellence Center in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lubin Jiang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoming Gao
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Yan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
29
|
Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy. J Virol 2017; 91:JVI.02166-16. [PMID: 28179531 PMCID: PMC5375698 DOI: 10.1128/jvi.02166-16] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs. IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is persistently maintained in reservoirs of latently infected cells. Consequently, lifelong therapy is required to maintain viral suppression. Ultimately, new therapies that specifically target and eliminate the latent HIV reservoir are needed. Toll-like receptor agonists are potent enhancers of innate antiviral immunity that can also improve the adaptive immune response. Here, we show that a highly selective TLR7 agonist, GS-9620, activated HIV from peripheral blood mononuclear cells isolated from HIV-infected individuals with suppressed infection. GS-9620 also improved immune effector functions that specifically targeted HIV-infected cells. Previously published studies on the compound in other chronic viral infections show that it can effectively induce immune activation at safe and tolerable clinical doses. Together, the results of these studies suggest that GS-9620 may be useful for treating HIV-infected individuals on suppressive antiretroviral therapy.
Collapse
|
30
|
A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. Proc Natl Acad Sci U S A 2017; 114:1988-1993. [PMID: 28167780 DOI: 10.1073/pnas.1610630114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are known mainly for their secretion of type I IFN upon viral encounter. We describe a CD2hiCD5+CD81+ pDC subset, distinguished by prominent dendrites and a mature phenotype, in human blood, bone marrow, and tonsil, which can be generated from CD34+ progenitors. These CD2hiCD5+CD81+ cells express classical pDC markers, as well as the toll-like receptors that enable conventional pDCs to respond to viral infection. However, their gene expression profile is distinct, and they produce little or no type I IFN upon stimulation with CpG oligonucleotides, likely due to their diminished expression of IFN regulatory factor 7. A similar population of CD5+CD81+ pDCs is present in mice and also does not produce type I IFN after CpG stimulation. In contrast to conventional CD5-CD81- pDCs, human CD5+CD81+ pDCs are potent stimulators of B-cell activation and antibody production and strong inducers of T-cell proliferation and Treg formation. These findings reveal the presence of a discrete pDC population that does not produce type I IFN and yet mediates important immune functions previously attributed to all pDCs.
Collapse
|
31
|
Berry CM. Understanding Interferon Subtype Therapy for Viral Infections: Harnessing the Power of the Innate Immune System. Cytokine Growth Factor Rev 2016; 31:83-90. [PMID: 27544015 DOI: 10.1016/j.cytogfr.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
Type I and III interferons (IFNs) of the innate immune system belong to a polygenic family, however the individual subtype mediators of the antiviral response in viral infections have been hindered by a lack of reagents. Evaluation studies using different IFN subtypes have distinguished distinct protein properties with different efficacies towards different viruses, opening promising avenues for immunotherapy. This review largely focuses on the application of IFN-α/β and IFN-λ therapies for viral infections, influenza, herpes, HIV and hepatitis. Such IFN subtype therapies may help to cure patients with virus infections where no vaccine exists. The ability of cell types to secrete a number of IFN subtypes from a multi-gene family may be an intuitive counterattack on viruses that evade IFN subtype responses. Hence, clinical use of virus-targeted IFN subtypes may restore antiviral immunity in viral infections. Accumulating evidence suggests that individual IFN subtypes have differential efficacies in selectively activating immune cell subsets to enhance antiviral immune responses leading to production of sustained B and T cell memory. Cytokine therapy can augment innate immunity leading to clearance of acute virus infections but such treatments may have limited effects on chronic virus infections that establish lifelong latency. Therefore, exploiting individual IFN subtypes to select those with the ability to sculpt protective responses as well as reinstating those targeted by viral evasion mechanisms may inform development of improved antiviral therapy.
Collapse
Affiliation(s)
- Cassandra M Berry
- School of Veterinary and Life Sciences, Molecular and Biomedical Sciences, Murdoch University, South Street, Murdoch, Perth, Western Australia, Australia.
| |
Collapse
|
32
|
12 Weeks of Combined Endurance and Resistance Training Reduces Innate Markers of Inflammation in a Randomized Controlled Clinical Trial in Patients with Multiple Sclerosis. Mediators Inflamm 2016; 2016:6789276. [PMID: 26903712 PMCID: PMC4745915 DOI: 10.1155/2016/6789276] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022] Open
Abstract
Previously, we reported that patients with multiple sclerosis (MS) demonstrate improved muscle strength, exercise tolerance, and lean tissue mass following a combined endurance and resistance exercise program. However, the effect of exercise on the underlying disease pathogenesis remains elusive. Since recent evidence supports a crucial role of dendritic cells (DC) in the pathogenesis of MS, we investigated the effect of a 12-week combined exercise program in MS patients on the number and function of DC. We demonstrate an increased number of plasmacytoid DC (pDC) following the exercise program. These pDC display an activated phenotype, as evidenced by increased numbers of circulating CD62L+ and CD80+ pDC. Interestingly, the number of CD80+ pDC positively correlates with the presence of IL-10-producing regulatory type 1 cells (Tr1), an important cell type for maintaining peripheral tolerance to self-antigens. In addition, decreased production of the inflammatory mediators, TNF-α and MMP-9, upon Toll-like receptor (TLR) stimulation was found at the end of the exercise program. Overall, our findings suggest that the 12-week exercise program reduces the secretion of inflammatory mediators upon TLR stimulation and promotes the immunoregulatory function of circulating pDC, suggestive for a favorable impact of exercise on the underlying immunopathogenesis of MS.
Collapse
|
33
|
Longbrake EE, Ramsbottom MJ, Cantoni C, Ghezzi L, Cross AH, Piccio L. Dimethyl fumarate selectively reduces memory T cells in multiple sclerosis patients. Mult Scler 2015; 22:1061-1070. [PMID: 26459150 DOI: 10.1177/1352458515608961] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dimethyl fumarate (DMF) alters the phenotype of circulating immune cells and causes lymphopenia in a subpopulation of treated multiple sclerosis (MS) patients. OBJECTIVE To phenotypically characterize circulating leukocytes in DMF-treated MS patients. METHODS Cross-sectional observational comparisons of peripheral blood from DMF-treated MS patients (n = 17 lymphopenic and n = 24 non-lymphopenic), untreated MS patients (n = 17) and healthy controls (n = 23); immunophenotyped using flow cytometry. Longitudinal samples were analyzed for 13 DMF-treated patients. RESULTS Lymphopenic DMF-treated patients had significantly fewer circulating CD8(+) and CD4(+) T cells, CD56(dim) natural killer (NK) cells, CD19(+) B cells and plasmacytoid dendritic cells when compared to controls. CXCR3(+) and CCR6(+) expression was disproportionately reduced among CD4(+) T cells, while the proportion of T-regulatory (T-reg) cells was unchanged. DMF did not affect circulating CD56(hi) NKcells, monocytes or myeloid dendritic cells. Whether lymphopenic or not, DMF-treated patients had a lower proportion of circulating central and effector memory T cells and concomitant expansion of naïve T cells compared to the controls. CONCLUSIONS DMF shifts the immunophenotypes of circulating T cells, causing a reduction of memory cells and a relative expansion of naïve cells, regardless of the absolute lymphocyte count. This may represent one mechanism of action of the drug. Lymphopenic patients had a disproportionate loss of CD8(+) T-cells, which may affect their immunocompetence.
Collapse
Affiliation(s)
- E E Longbrake
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - M J Ramsbottom
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - C Cantoni
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - L Ghezzi
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri.,Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - A H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - L Piccio
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
34
|
A Plasmacytoid Dendritic Cells-Type I Interferon Axis Is Critically Implicated in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:14158-70. [PMID: 26110387 PMCID: PMC4490545 DOI: 10.3390/ijms160614158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that is characterized by the generation of immune responses to various nuclear components. Impaired clearance of apoptotic cells and loss of tolerance to self-antigens are involved both in the initiation and in the propagation of the disease. Dendritic cells (DCs) are key factors in the balance between autoimmunity and tolerance and play a role linking innate and adaptive immunity. DCs, particularly plasmacytoid DCs (pDCs), are the main source of type I interferon (IFN) cytokines, which contribute to the immunopathogenesis of SLE. There is accumulating evidence that pDCs and type I IFN cytokines take the leading part in the development of SLE. In this review, we discuss recent data regarding the role of pDCs and type I IFN cytokines in the pathogenesis of SLE and the potential for employing therapies targeting against aberrant regulation of the pDC-type I IFN axis for treating SLE.
Collapse
|