1
|
Irani M, Kordestani SS. Psychological, behavioural and relevant factors affecting wound healing, and the buffering role of interventions. J Wound Care 2025; 34:i-xviii. [PMID: 39928511 DOI: 10.12968/jowc.2020.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Wound healing is a complex process accompanying numerous health conditions, and millions of people across the world experience deleterious impacts caused by wounds. There are many non-biological factors that can directly or indirectly affect the health outcomes of patients with wounds. The purpose of this review was to investigate the effects of psychological, behavioural and other relevant factors on wound healing. In addition, as the possible associations among these factors have, in the authors' view, not been addressed appropriately, we also aimed to examine if there were specific relationships among these factors and between these factors and health outcomes. Finally, we reviewed the role of various interventions in buffering negative impacts during health procedures.
Collapse
Affiliation(s)
- Masoud Irani
- School of Communication and Creative Arts, Faculty of Arts and Education, Deakin University, Melbourne, Australia
| | | |
Collapse
|
2
|
Clark SL, Hartwell EE, Choi DS, Krystal JH, Messing RO, Ferguson LB. Next-generation biomarkers for alcohol consumption and alcohol use disorder diagnosis, prognosis, and treatment: A critical review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:5-24. [PMID: 39532676 PMCID: PMC11747793 DOI: 10.1111/acer.15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
This critical review summarizes the current state of omics-based biomarkers in the alcohol research field. We first provide definitions and background information on alcohol and alcohol use disorder (AUD), biomarkers, and "omic" technologies. We next summarize using (1) genetic information as risk/prognostic biomarkers for the onset of alcohol-related problems and the progression from regular drinking to problematic drinking (including AUD), (2) epigenetic information as diagnostic biomarkers for AUD and risk biomarkers for alcohol consumption, (3) transcriptomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and (4) metabolomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and predictive biomarkers for response to acamprosate in subjects with AUD. In the final section, the clinical implications of the findings are discussed, and recommendations are made for future research.
Collapse
Affiliation(s)
- Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Ni Z, Kundu P, McKean DF, Wheeler W, Albanes D, Andreotti G, Antwi SO, Arslan AA, Bamlet WR, Beane-Freeman LE, Berndt SI, Bracci PM, Brennan P, Buring JE, Chanock SJ, Gallinger S, Gaziano JM, Giles GG, Giovannucci EL, Goggins MG, Goodman PJ, Haiman CA, Hassan MM, Holly EA, Hung RJ, Katzke V, Kooperberg C, Kraft P, LeMarchand L, Li D, McCullough ML, Milne RL, Moore SC, Neale RE, Oberg AL, Patel AV, Peters U, Rabe KG, Risch HA, Shu XO, Smith-Byrne K, Visvanathan K, Wactawski-Wende J, White E, Wolpin BM, Yu H, Zeleniuch-Jacquotte A, Zheng W, Zhong J, Amundadottir LT, Stolzenberg-Solomon RZ, Klein AP. Genome-Wide Analysis to Assess if Heavy Alcohol Consumption Modifies the Association between SNPs and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:1229-1239. [PMID: 38869494 PMCID: PMC11928872 DOI: 10.1158/1055-9965.epi-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related death globally. Risk factors for pancreatic cancer include common genetic variants and potentially heavy alcohol consumption. We assessed if genetic variants modify the association between heavy alcohol consumption and pancreatic cancer risk. METHODS We conducted a genome-wide interaction analysis of single-nucleotide polymorphisms (SNP) by heavy alcohol consumption (more than three drinks per day) for pancreatic cancer in European ancestry populations from genome-wide association studies. Our analysis included 3,707 cases and 4,167 controls from case-control studies and 1,098 cases and 1,162 controls from cohort studies. Fixed-effect meta-analyses were conducted. RESULTS A potential novel region of association on 10p11.22, lead SNP rs7898449 (interaction P value (Pinteraction) = 5.1 × 10-8 in the meta-analysis; Pinteraction = 2.1 × 10-9 in the case-control studies; Pinteraction = 0.91 in the cohort studies), was identified. An SNP correlated with this lead SNP is an expression quantitative trait locus for the neuropilin 1 gene. Of the 17 genomic regions with genome-wide significant evidence of association with pancreatic cancer in prior studies, we observed suggestive evidence that heavy alcohol consumption modified the association for one SNP near LINC00673, rs11655237 on 17q25.1 (Pinteraction = 0.004). CONCLUSIONS We identified a novel genomic region that may be associated with pancreatic cancer risk in conjunction with heavy alcohol consumption located near an expression quantitative trait locus for neuropilin 1, a protein that plays an important role in the development and progression of pancreatic cancer. IMPACT This work can provide insights into the etiology of pancreatic cancer, particularly in heavy drinkers.
Collapse
Affiliation(s)
- Zhanmo Ni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David F McKean
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Samuel O Antwi
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
- Department of Population Health, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - William R Bamlet
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Laura E Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - J M Gaziano
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Aging, Brigham and Women's Hospital, Boston, Massachusetts
- Boston VA Healthcare System, Boston, Massachusetts
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Edward L Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Peter Kraft
- Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Ann L Oberg
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kari G Rabe
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachael Z Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
4
|
Hitzemann R, Gao L, Fei SS, Ray K, Vigh-Conrad KA, Phillips TJ, Searles R, Cervera-Juanes RP, Khadka R, Carlson TL, Gonzales SW, Newman N, Grant KA. Effects of repeated alcohol abstinence on within-subject prefrontal cortical gene expression in rhesus macaques. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12528. [PMID: 38737578 PMCID: PMC11082748 DOI: 10.3389/adar.2024.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Male rhesus monkeys (n = 24) had a biopsy of prefrontal cortical area 46 prior to chronic ethanol self-administration (n = 17) or caloric control (n = 7). Fourteen months of daily self-administration (water vs. 4% alcohol, 22 h access/day termed "open-access") was followed by two cycles of prolonged abstinence (5 weeks) each followed by 3 months of open-access alcohol and a final abstinence followed by necropsy. At necropsy, a biopsy of Area 46, contralateral to the original biopsy, was obtained. Gene expression data (RNA-Seq) were collected comparing biopsy/necropsy samples. Monkeys were categorized by drinking status during the final post-abstinent drinking phase as light (LD), binge (BD), heavy (HD) and very heavy (VHD drinkers). Comparing pre-ethanol to post-abstinent biopsies, four animals that converted from HD to VHD status had significant ontology enrichments in downregulated genes (necropsy minus biopsy n = 286) that included immune response (FDR < 9 × 10-7) and plasma membrane changes (FDR < 1 × 10-7). Genes in the immune response category included IL16 and 18, CCR1, B2M, TLR3, 6 and 7, SP2 and CX3CR1. Upregulated genes (N = 388) were particularly enriched in genes associated with the negative regulation of MAP kinase activity (FDR < 3 × 10-5), including DUSP 1, 4, 5, 6 and 18, SPRY 2, 3, and 4, SPRED2, BMP4 and RGS2. Overall, these data illustrate the power of the NHP model and the within-subject design of genomic changes due to alcohol and suggest new targets for treating severe escalated drinking following repeated alcohol abstinence attempts.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Lina Gao
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Suzanne S. Fei
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Karina Ray
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Katinka A. Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Robert Searles
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Integrated Genomics Laboratory, Oregon Health and Science University, Portland, OR, United States
| | - Rita P. Cervera-Juanes
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Rupak Khadka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Timothy L. Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Steven W. Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Kathleen A. Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
5
|
Fonseca-Pereira D, Bae S, Michaud M, Glickman JN, Garrett WS. Chronic binge drinking-induced susceptibility to colonic inflammation is microbiome-dependent. Gut Microbes 2024; 16:2392874. [PMID: 39163515 PMCID: PMC11340762 DOI: 10.1080/19490976.2024.2392874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Alterations in intestinal permeability and the gut microbiome caused by alcohol abuse are associated with alcoholic liver disease and with worsening of inflammatory bowel diseases (IBD) symptoms. To resolve the direct effects of chronic ethanol consumption on the colon and its microbiome in the absence of acute or chronic alcohol-induced liver disease, we developed a mouse model of chronic binge drinking that uncovers how alcohol may enhance susceptibility to colitis via the microbiota. Employing daily ethanol gavage, we recapitulate key features of binge ethanol consumption. We found that binge ethanol drinking worsens intestinal infection, colonic injury and inflammation, and this effect persists beyond the drinking period. Using gnotobiotics, we showed that alcohol-driven susceptibility to colitis is microbiota-dependent and transferable to ethanol-naïve mice by microbiome transplantation. Allobaculum spp. expanded in binge drinking mice, and administration of Allobaculum fili was sufficient to enhance colitis in non-drinking mice. Our study provides a model to study binge drinking-microbiota interactions and their effects on host disease and reinforces the pathogenic function of Allobaculum spp. as colitogenic bacteria. Our findings illustrate how chronic binge drinking-induced alterations of the microbiome may affect susceptibility to IBD onset or flares.
Collapse
Affiliation(s)
- Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Jonathan N. Glickman
- Gastrointestinal Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Newman N, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. EBioMedicine 2023; 97:104812. [PMID: 37793211 PMCID: PMC10562860 DOI: 10.1016/j.ebiom.2023.104812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. METHODS In this study we employed luminex, scRNA sequencing, and flow cytometry to investigate the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. FINDINGS Our data show that in both humans (n = 6) and macaques (n = 11), the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. INTERPRETATION These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking. FUNDING This study was supported by NIH 1R01AA028735-04 (Messaoudi), U01AA013510-20 (Grant), R24AA019431-14 (Grant), R24AA019661 (Burnham), P-51OD011092 (ONPRC core grant support). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, USA
| | - Isaac R Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Brianna M Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Madison B Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA; Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, USA
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA.
| |
Collapse
|
7
|
Jia X, Zhang D, Zhou C, Yan Z, Jiang Z, Xie L, Jiang J. Eph receptor B6 shapes a cold immune microenvironment, inhibiting anti-cancer immunity and immunotherapy response in bladder cancer. Front Oncol 2023; 13:1175183. [PMID: 37637034 PMCID: PMC10450340 DOI: 10.3389/fonc.2023.1175183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background The role of Eph receptors and related ephrin (EFN) ligands (as the largest family of transmembrane-bound RTKs) in immunomodulation in many types of cancer, especially bladder cancer (BLCA), is scarcely known. Methods A pan-cancer dataset was retrieved from The Cancer Genome Atlas (TCGA) to explore the relation between Eph receptor/EFN ligand family genes and immunomodulators and tumor-infiltrated immune cells (TIICs). Local BLCA, GSE32894, and GSE31684 cohorts were applied to validate. The IMvigor210 cohort was employed to explore the relationship between EPHB6 and immunotherapy response. Moreover, association between EPHB6 and molecular subtype was investigated to explore potential therapeutic strategies. Immunohistochemical staining of CD8 and CD68 was performed to validate the correlation between EPHB6 and TIICs. Results The pan-cancer analysis revealed variations in the immunological effects of Eph receptor/EFN ligand family genes across different types of cancer. EPHB6 expression negatively correlated with the expression of the majority of immunomodulators (including HLA and immune checkpoints), and CD8 T cells and macrophages in both the TCGA-BLCA and validation BLCA cohorts, shaping a cold immune microenvironment with inhibited immunity. In the IMvigor210 cohort, patients with high-EPHB6 highly correlated with a non-inflamed, low PD-L1 expression immune phenotype, and correspondingly, with less responders to immunotherapy. The high-EPHB6 group, enriched with the basal subtype, presented significantly fewer TP53 and more FGFR3 genomic alterations. Finally, a novel EPHB6-related Genes signature, with reliable and robust ability in prognosis prediction, was constructed. Conclusions This study comprehensively investigated the immunological effects of Eph receptor/EFN ligand family genes pan-cancer, and specially identified the immunosuppressive role of EPHB6 in BLCA. Furthermore, EPHB6 may predict the molecular subtype and prognosis of BLCA, and serve as a novel therapeutic target to improve the sensitivity of immunotherapy.
Collapse
Affiliation(s)
- Xiaolong Jia
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Dongxu Zhang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Cheng Zhou
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zhaohui Jiang
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junhui Jiang
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
8
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539139. [PMID: 37205543 PMCID: PMC10187161 DOI: 10.1101/2023.05.02.539139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. Therefore, in this study we investigated the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. Our data show that in both humans and macaques, the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking.
Collapse
Affiliation(s)
- Sloan A. Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine
| | - Isaac R. Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Brianna M. Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Madison B. Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| |
Collapse
|
9
|
Ferguson LB, Mayfield RD, Messing RO. RNA biomarkers for alcohol use disorder. Front Mol Neurosci 2022; 15:1032362. [PMID: 36407766 PMCID: PMC9673015 DOI: 10.3389/fnmol.2022.1032362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol use disorder (AUD) is highly prevalent and one of the leading causes of disability in the US and around the world. There are some molecular biomarkers of heavy alcohol use and liver damage which can suggest AUD, but these are lacking in sensitivity and specificity. AUD treatment involves psychosocial interventions and medications for managing alcohol withdrawal, assisting in abstinence and reduced drinking (naltrexone, acamprosate, disulfiram, and some off-label medications), and treating comorbid psychiatric conditions (e.g., depression and anxiety). It has been suggested that various patient groups within the heterogeneous AUD population would respond more favorably to specific treatment approaches. For example, there is some evidence that so-called reward-drinkers respond better to naltrexone than acamprosate. However, there are currently no objective molecular markers to separate patients into optimal treatment groups or any markers of treatment response. Objective molecular biomarkers could aid in AUD diagnosis and patient stratification, which could personalize treatment and improve outcomes through more targeted interventions. Biomarkers of treatment response could also improve AUD management and treatment development. Systems biology considers complex diseases and emergent behaviors as the outcome of interactions and crosstalk between biomolecular networks. A systems approach that uses transcriptomic (or other -omic data, e.g., methylome, proteome, metabolome) can capture genetic and environmental factors associated with AUD and potentially provide sensitive, specific, and objective biomarkers to guide patient stratification, prognosis of treatment response or relapse, and predict optimal treatments. This Review describes and highlights state-of-the-art research on employing transcriptomic data and artificial intelligence (AI) methods to serve as molecular biomarkers with the goal of improving the clinical management of AUD. Considerations about future directions are also discussed.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States,*Correspondence: Laura B. Ferguson,
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States,Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
10
|
Synaptic effects of IL-1β and CRF in the central amygdala after protracted alcohol abstinence in male rhesus macaques. Neuropsychopharmacology 2022; 47:847-856. [PMID: 34837077 PMCID: PMC8882167 DOI: 10.1038/s41386-021-01231-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates. The central amygdala (CeA) displays elevated GABA release following chronic alcohol in rodents and in abstinent male macaques, highlighting this neuroadaptation as a conserved mechanism that may underlie excessive alcohol consumption. Here, we determined circulating interleukin-1β (IL-1β) levels, CeA transcriptomic changes, and the effects of IL-1β and corticotropin releasing factor (CRF) signaling on CeA GABA transmission in male controls and abstinent drinkers. While no significant differences in peripheral IL-1β or the CeA transcriptome were observed, pathway analysis identified several canonical immune-related pathways. We addressed this potential dysregulation of CeA immune signaling in abstient drinkers with an electrophysiological approach. We found that IL-1β decreased CeA GABA release in controls while abstinent drinkers were less sensitive to IL-1β's effects, suggesting adaptations in the neuromodulatory role of IL-1β. In contrast, CRF enhanced CeA GABA release similarly in controls and abstinent drinkers, consistent with rodent studies. Notably, CeA CRF expression was inversely correlated with intoxication, suggesting that CRF levels during abstinence may predict future intoxication. Together, our findings highlight conserved and divergent actions of chronic alcohol on neuroimmune and stress signaling on CeA GABA transmission across rodents and macaques.
Collapse
|
11
|
Lewis SA, Doratt B, Sureshchandra S, Pan T, Gonzales SW, Shen W, Grant KA, Messaoudi I. Profiling of extracellular vesicle-bound miRNA to identify candidate biomarkers of chronic alcohol drinking in nonhuman primates. Alcohol Clin Exp Res 2022; 46:221-231. [PMID: 34910314 PMCID: PMC8858875 DOI: 10.1111/acer.14760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long-term alcohol drinking is associated with numerous health complications including susceptibility to infection, cancer, and organ damage. However, due to the complex nature of human drinking behavior, it has been challenging to identify reliable biomarkers of alcohol drinking behavior prior to signs of overt organ damage. Recently, extracellular vesicle-bound microRNAs (EV-miRNAs) have been found to be consistent biomarkers of conditions that include cancer and liver disease. METHODS In this study, we profiled the plasma EV-miRNA content by miRNA-Seq from 80 nonhuman primates after 12 months of voluntary alcohol drinking. RESULTS We identified a list of up- and downregulated EV-miRNA candidate biomarkers of heavy drinking and those positively correlated with ethanol dose. We overexpressed these candidate miRNAs in control primary peripheral immune cells to assess their potential functional mechanisms. We found that overexpression of miR-155, miR-154, miR-34c, miR-450a, and miR-204 led to increased production of the inflammatory cytokines TNFα or IL-6 in peripheral blood mononuclear cells after stimulation. CONCLUSION This exploratory study identified several EV-miRNAs that could serve as biomarkers of long-term alcohol drinking and provide a mechanism to explain alcohol-induced peripheral inflammation.
Collapse
Affiliation(s)
- Sloan A. Lewis
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA
| | - Brianna Doratt
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA
| | - Tianyu Pan
- Department of Statistics, University of California, Irvine CA, USA
| | - Steven W. Gonzales
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Weining Shen
- Department of Statistics, University of California, Irvine CA, USA
| | - Kathleen A. Grant
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA,Center for Virus Research, University of California, Irvine CA, USA,Corresponding Author: Ilhem Messaoudi, Molecular Biology and Biochemistry, University of California Irvine, 2400 Biological Sciences III, Irvine, CA 92697, Phone: 949-824-3078,
| |
Collapse
|
12
|
Zhang Y, Lin Y, Lv D, Wu X, Li W, Wang X, Jiang D. Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer. PeerJ 2022; 10:e12843. [PMID: 35127296 PMCID: PMC8796709 DOI: 10.7717/peerj.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common urinary tract system tumor with high recurrence rate and different populations show distinct response to immunotherapy. Novel biomarkers that can accurately predict prognosis and therapeutic responses are urgently needed. Here, we aim to identify a novel prognostic and therapeutic responses immune-related gene signature of BC through a comprehensive bioinformatics analysis. METHODS The robust rank aggregation was conducted to integrate differently expressed genes (DEGs) in datasets of the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO). Lasso and Cox regression analyses were performed to formulate a novel mRNA signature that could predict prognosis of BC patients. Subsequently, the prognostic value and predictive value of the signature was validated with two independent cohorts GSE13507 and IMvigor210. Finally, quantitative Real-time PCR (qRT-PCR) analysis was conducted to determine the expression of mRNAs in BC cell lines (UM-UC-3, EJ-1, SW780 and T24). RESULTS We built a signature comprised the eight mRNAs: CNKSR1, COPZ2, CXorf57, FASN, PCOLCE2, RGS1, SPINT1 and TPST1. Our prognostic signature could be used to stratify BC population into two risk groups with distinct immune profile and responsiveness to immunotherapy. The results of qRT-PCR demonstrated that the eight mRNAs exhibited different expression levels in BC cell lines. CONCLUSION Our study constructed a convenient and reliable 8-mRNA gene signature, which might provide prognostic prediction and aid treatment decision making of BC patients in clinical practice.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifeng Lin
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Urology, Meizhou Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Daojun Lv
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Wang
- Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
| | - Dongmei Jiang
- Department of Pathology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangzhou, China
| |
Collapse
|
13
|
Malherbe DC, Messaoudi I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front Immunol 2022; 13:911951. [PMID: 35844518 PMCID: PMC9277054 DOI: 10.3389/fimmu.2022.911951] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Drinking alcohol, even in moderation, can affect the immune system. Studies have shown disproportionate effects of alcohol on circulating and tissue-resident myeloid cells (granulocytes, monocytes, macrophages, dendritic cells). These cells orchestrate the body's first line of defense against microbial challenges as well as maintain tissue homeostasis and repair. Alcohol's effects on these cells are dependent on exposure pattern, with acute drinking dampening but chronic drinking enhancing production of inflammatory mediators. Although chronic drinking is associated with heightened systemic inflammation, studies on tissue resident macrophage populations in several organs including the spleen, liver, brain, and lung have also shown compromised functional and metabolic capacities of these cells. Many of these effects are thought to be mediated by oxidative stress caused by alcohol and its metabolites which can directly impact the cellular epigenetic landscapes. In addition, since myeloid cells are relatively short-lived in circulation and are under constant repopulation from the bone marrow compartment, alcohol's effects on bone marrow progenitors and hematopoiesis are important for understanding the impact of alcohol systemically on these myeloid populations. Alcohol-induced disruption of progenitor, circulating, and tissue resident myeloid populations contribute to the increased susceptibility of patients with alcohol use disorders to viral and bacterial infections. In this review, we provide an overview of the impact of chronic alcohol consumption on the function of monocytes and macrophages in host defense, tissue repair and inflammation. We then summarize our current understanding of the mechanisms underlying alcohol-induced disruption and examine changes in transcriptome and epigenome of monocytes and mcrophages. Overall, chronic alcohol consumption leads to hyper-inflammation concomitant with decreased microbial and wound healing responses by monocytes/macrophages due to a rewiring of the epigentic and transcriptional landscape. However, in advanced alcoholic liver disease, myeloid cells become immunosuppressed as a response to the surrounding hyper-inflammatory milieu. Therefore, the effect of chronic alcohol on the inflammatory response depends on disease state and the immune cell population.
Collapse
|
14
|
Dudareva M, Hotchen A, McNally M, Hartmann-Boyce J, Scarborough M, Collins G. Systematic review of risk prediction studies in bone and joint infection: are modifiable prognostic factors useful in predicting recurrence? J Bone Jt Infect 2021; 6:257-271. [PMID: 34285868 PMCID: PMC8283517 DOI: 10.5194/jbji-6-257-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Classification systems for orthopaedic infection include patient health status, but there is no consensus about which comorbidities affect prognosis. Modifiable factors including substance use, glycaemic control, malnutrition and obesity may predict post-operative recovery from infection. Aim: This systematic review aimed (1) to critically appraise clinical prediction models for individual prognosis following surgical treatment for orthopaedic infection where an implant is not retained; (2) to understand the usefulness of modifiable prognostic factors for predicting treatment success. Methods: EMBASE and MEDLINE databases were searched for clinical prediction and prognostic studies in adults with orthopaedic infections. Infection recurrence or re-infection after at least 6 months was the primary outcome. The estimated odds ratios for the primary outcome in participants with modifiable prognostic factors were extracted and the direction of the effect reported. Results: Thirty-five retrospective prognostic cohort studies of 92 693 patients were included, of which two reported clinical prediction models. No studies were at low risk of bias, and no externally validated prediction models were identified. Most focused on prosthetic joint infection. A positive association was reported between body mass index and infection recurrence in 19 of 22 studies, similarly in 8 of 14 studies reporting smoking history and 3 of 4 studies reporting alcohol intake. Glycaemic control and malnutrition were rarely considered. Conclusion: Modifiable aspects of patient health appear to predict outcomes after surgery for orthopaedic infection. There is a need to understand which factors may have a causal effect. Development and validation of clinical prediction models that include participant health status will facilitate treatment decisions for orthopaedic infections.
Collapse
Affiliation(s)
- Maria Dudareva
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics,
Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University
Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew Hotchen
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital,
Cambridge University Hospitals, Cambridge, UK
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University
Hospitals NHS Foundation Trust, Oxford, UK
| | - Martin A. McNally
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University
Hospitals NHS Foundation Trust, Oxford, UK
| | - Jamie Hartmann-Boyce
- Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health
Sciences, University of Oxford, Oxford, UK
| | - Matthew Scarborough
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University
Hospitals NHS Foundation Trust, Oxford, UK
| | - Gary Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics,
Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
da Silva Chagas L, Sandre PC, de Velasco PC, Marcondes H, Ribeiro E Ribeiro NCA, Barreto AL, Alves Mauro LB, Ferreira JH, Serfaty CA. Neuroinflammation and Brain Development: Possible Risk Factors in COVID-19-Infected Children. Neuroimmunomodulation 2021; 28:22-28. [PMID: 33530091 PMCID: PMC7900470 DOI: 10.1159/000512815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022] Open
Abstract
COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) betacoronavirus, affects children in a different way than it does in adults, with milder symptoms. However, several cases of neurological symptoms with neuroinflammatory syndromes, such as the multisystem inflammatory syndrome (MIS-C), following mild cases, have been reported. As with other viral infections, such as rubella, influenza, and cytomegalovirus, SARS-CoV-2 induces a surge of proinflammatory cytokines that affect microglial function, which can be harmful to brain development. Along with the viral induction of neuroinflammation, other noninfectious conditions may interact to produce additional inflammation, such as the nutritional imbalance of fatty acids and polyunsaturated fatty acids and alcohol consumption during pregnancy. Additionally, transient thyrotoxicosis induced by SARS-CoV-2 with secondary autoimmune hypothyroidism has been reported, which could go undetected during pregnancy. Together, those factors may pose additional risk factors for SARS-CoV-2 infection impacting mechanisms of neural development such as synaptic pruning and neural circuitry formation. The present review discusses those conditions in the perspective of the understanding of risk factors that should be considered and the possible emergence of neurodevelopmental disorders in COVID-19-infected children.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Laboratory of Neural Plasticity, Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - Poliana Capucho Sandre
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patricia Coelho de Velasco
- Department of Applied Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Henrique Marcondes
- Laboratory of Neural Plasticity, Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | | | - Aline Loureiro Barreto
- Laboratory of Neural Plasticity, Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - Luiza Beatriz Alves Mauro
- Laboratory of Neural Plasticity, Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - Julia Huber Ferreira
- Laboratory of Neural Plasticity, Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - Claudio A Serfaty
- Laboratory of Neural Plasticity, Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil,
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil,
| |
Collapse
|
16
|
Varlamov O, Bucher M, Myatt L, Newman N, Grant KA. Daily Ethanol Drinking Followed by an Abstinence Period Impairs Bone Marrow Niche and Mitochondrial Function of Hematopoietic Stem/Progenitor Cells in Rhesus Macaques. Alcohol Clin Exp Res 2020; 44:1088-1098. [PMID: 32220015 DOI: 10.1111/acer.14328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Unhealthy consumption of alcohol is a major public health crisis with strong associations between immunological dysfunctions, high vulnerability to infectious disease, anemia, and an increase in the risk of hematological malignancies. However, there is a lack of studies addressing alcohol-induced changes in bone marrow (BM) and hematopoiesis as fundamental aspects of immune system function. METHODS To address the effect of chronic alcohol consumption on hematopoietic stem and progenitor cells (HSPCs) and the BM niche, we used an established rhesus macaque model of voluntary alcohol drinking. A cohort of young adult male rhesus macaques underwent a standard ethanol self-administration protocol that allowed a choice of drinking alcohol or water 22 hours/day with periods of forced abstinence that elevated subsequent intakes when alcohol availability resumed. Following the last month of forced abstinence, the monkeys were euthanized. HSPCs and bone samples were collected and analyzed in functional assays and by confocal microscopy. RESULTS HSPCs from alcohol animals exhibited reduced ability to form granulocyte-monocyte and erythroid colonies in vitro. HSPCs also displayed a decrease in mitochondrial oxygen consumption linked to ATP production and basal respiratory capacity. Chronic alcohol use led to vascular remodeling of the BM niche, a reduction in the number of primitive HSPCs, and a shift in localization of HSPCs from an adipose to a perivascular niche. CONCLUSIONS Our study demonstrates, for the first time, that chronic voluntary alcohol drinking in rhesus macaque monkeys leads to the long-term impairment of HSPC function, a reduction in mitochondrial respiratory activity, and alterations in the BM microenvironment. Further studies are needed to determine whether these changes in hematopoiesis are persistent or adaptive during the abstinent period and whether an initial imprinting to alcohol primes BM to become more vulnerable to future exposure to alcohol.
Collapse
Affiliation(s)
- Oleg Varlamov
- From the, Division of Cardiometabolic Health, (OV), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| | - Matthew Bucher
- Division of Obstetrics and Gynecology, (MB, LM), Oregon Health & Science University, Portland, Oregon
| | - Leslie Myatt
- Division of Obstetrics and Gynecology, (MB, LM), Oregon Health & Science University, Portland, Oregon
| | - Natali Newman
- Division of Neuroscience, (NN, KAG), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, (NN, KAG), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
17
|
Kany S, Janicova A, Relja B. Innate Immunity and Alcohol. J Clin Med 2019; 8:jcm8111981. [PMID: 31739600 PMCID: PMC6912266 DOI: 10.3390/jcm8111981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
The innate immunity has evolved during millions of years, and thus, equivalent or comparable components are found in most vertebrates, invertebrates, and even plants. It constitutes the first line of defense against molecules, which are either pathogen-derived or a danger signal themselves, and not seldom both. These molecular patterns are comprised of highly conserved structures, a common trait in innate immunity, and constitute very potent triggers for inflammation mediated via extracellular or intracellular pattern recognition receptors. Human culture is often interweaved with the consumption of alcohol, in both drinking habits, its acute or chronical misuse. Apart from behavioral effects as often observed in intoxicated individuals, alcohol consumption also leads to immunological modulation on the humoral and cellular levels. In the last 20 years, major advances in this field of research have been made in clinical studies, as well as in vitro and in vivo research. As every physician will experience intoxicated patients, it is important to be aware of the changes that this cohort undergoes. This review will provide a summary of the current knowledge on the influence of alcohol consumption on certain factors of innate immunity after a hit, followed by the current studies that display the effect of alcohol with a description of the model, the mode of alcohol administration, as well as its dose. This will provide a way for the reader to evaluate the findings presented.
Collapse
|
18
|
Identification of novel rhesus macaque microRNAs from naïve whole blood. Mol Biol Rep 2019; 46:5511-5516. [PMID: 31154603 DOI: 10.1007/s11033-019-04891-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are emerging as novel molecular tools for diagnosing and treating diseases. Rhesus monkeys (Macaca mulatta) are the most widely used nonhuman primate species for biomedical studies, yet only 912 mature miRNAs have been identified in this species compared to 2654 in humans and 1978 in mice. The aim of this project was to help bridge that gap in knowledge by evaluating circulating miRNA in naïve rhesus monkeys and comparing results with currently available databases in different species in order to identify novel, mature miRNAs. Total RNA was isolated from whole blood of ten healthy, adult rhesus macaques. After performing next generation sequencing (NGS), 475 novel, mature miRNAs were identified in rhesus macaques for the first time; of those, 423 were identified for the first time in any species. The most abundantly expressed novel rhesus macaque miRNA, hsa-miR-744-5p, has previously been described in humans. Database assessment of hsa-miR-744-5p potential gene targets showed that while the gene targets showed > 90% sequence similarity between rhesus and humans, many did not share the same consensus sequences. The identification of 475 novel miRNAs in the blood of rhesus macaque reflects the complexity and variety of miRNAs across species. Further NGS studies are needed to reveal novel miRNA that will inform on species-, tissue-, and condition-specific miRNAs.
Collapse
|
19
|
Sureshchandra S, Raus A, Jankeel A, Ligh BJK, Walter NAR, Newman N, Grant KA, Messaoudi I. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci Rep 2019; 9:7847. [PMID: 31127176 PMCID: PMC6534547 DOI: 10.1038/s41598-019-44302-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
It is well established that chronic heavy alcohol drinking (CHD) results in significant organ damage, increased susceptibility to infections, and poor outcomes following injury. In contrast, chronic moderate drinking (CMD) has been associated with improved cardiovascular health and immunity. These differential outcomes have been linked to alterations in both innate and adaptive branches of the immune system; however, the mechanisms remain poorly understood. To address this question, we determined the impact of chronic drinking on the transcriptional and functional responses of peripheral blood mononuclear cells (PBMC) collected from male rhesus macaques classified as CMD or CHD after 12 months of voluntary ethanol self-administration. Our analysis suggests that chronic alcohol drinking, regardless of dose alters resting transcriptomes of PBMC, with the largest impact seen in innate immune cells. These transcriptional changes are partially explained by alterations in microRNA profiles. Additionally, chronic alcohol drinking is associated with a dose dependent heightened inflammatory profiled at resting and following LPS stimulation. Moreover, we observed a dose-dependent shift in the kinetics of transcriptional responses to LPS. These findings may explain the dichotomy in clinical and immunological outcomes observed with moderate versus heavy alcohol drinking.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Anthony Raus
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Brian Jin Kee Ligh
- Department of Biomedical Engineering, University of California-Irvine, 92697, Irvine, CA, USA
| | - Nicole A R Walter
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Natali Newman
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Kathleen A Grant
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA.
| |
Collapse
|
20
|
Chronic heavy drinking drives distinct transcriptional and epigenetic changes in splenic macrophages. EBioMedicine 2019; 43:594-606. [PMID: 31005514 PMCID: PMC6557917 DOI: 10.1016/j.ebiom.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chronic heavy alcohol drinking (CHD) leads to significant organ damage, increased susceptibility to infections, and delayed wound healing. These adverse outcomes are believed to be mediated by alterations in the function of myeloid cells; however, the mechanisms underlying these changes are poorly understood. Methods We determined the impact of CHD on the phenotype of splenic macrophages using flow cytometry. Changes in functional responses to LPS were measured using luminex and RNA-Seq. Finally, alterations in chromatin accessibility were uncovered using ATAC-Seq. Findings A history of CHD led to increased frequency of splenic macrophages that exhibited a heightened activation state at resting. Additionally, splenic macrophages from CHD animals generated a larger inflammatory response to LPS, both at protein and gene expression levels. Finally, CHD resulted in increased levels of H3K4me3, a histone mark of active promoters, as well as chromatin accessibility at promoters and intergenic regions that regulate inflammatory responses. Interpretation These findings suggest that a history of CHD alters the immune fitness of tissue-resident macrophages via epigenetic mechanisms. Fund National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) - R24AA019431, U01 AA13641, U01 AA13510, R21AA021947, and R21AA025839.
Collapse
|
21
|
Mohd Hanafiah K, Garcia ML, Anderson DA. An Observational Case-Control Study to Determine Human Immunodeficiency Virus and Host Factor Influence on Biomarker Distribution and Serodiagnostic Potential in Adult Pulmonary Tuberculosis. Trop Med Infect Dis 2019; 4:E57. [PMID: 30935095 PMCID: PMC6630477 DOI: 10.3390/tropicalmed4020057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/02/2022] Open
Abstract
Influence of host factors, including human immunodeficiency virus (HIV) co-infection, on the distribution and diagnostic potential of previously evaluated biomarkers of pulmonary tuberculosis (PTB), such as anti-antigen 60 (A60) immunoglobulin (Ig) G, anti-A60 IgA, and C-reactive protein (CRP), remain unclear. Anti-A60 IgG, anti-A60 IgA, and CRP in PTB and non-PTB patient sera (n = 404, including smear-positive/negative, culture-positive (SPCP/SNCP) and HIV+ve/-ve) were measured by enzyme-linked immunoassay and statistically analysed. In multinomial logistic regression, expectoration, chest pain, wasting, and culture count positively associated with CRP (p < 0.001), while smear count positively associated with anti-A60 IgG (p = 0.090). Expectoration and enlarged lymph nodes negatively associated with anti-A60 IgA (p = 0.018). Biomarker distribution and diagnostic potential varied significantly by symptoms and bacilli burden, and across different PTB subpopulations. CRP was correlated poorly with anti-A60 antibodies, while anti-A60 IgA and IgG were correlated in non-tuberculosis (TB) and SPCP patients (p < 0.001). When combined, anti-A60 IgG and CRP best discriminated SPCP/HIV-ve from non-TB (AUC: 0.838, 95% CI: 0.783⁻0.894), while anti-A60 IgA and CRP performed best in discriminating HIV+ve PTB from non-TB (AUC: 0.687, 95% CI: 0.598⁻0.777). Combined CRP and anti-A60 antibodies had significantly reduced accuracy in SNCP and SNCP/HIV+ve compared to SPCP/HIV-ve subpopulations. The complex relationships between host factors and biomarkers suggest their limited utility, especially in SNCP/HIV+ve subpopulations, highlighting the importance of examining host response and immune biomarkers across relevant patient subpopulations.
Collapse
Affiliation(s)
- Khayriyyah Mohd Hanafiah
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Victoria, Australia.
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang 11600, Malaysia.
- Department of Immunology, Nursing and Health Sciences, Faculty of Medicine, Monash University, Clayton 3800, Victoria, Australia.
| | - Mary Louise Garcia
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Victoria, Australia.
| | | |
Collapse
|
22
|
Barr T, Sureshchandra S, Ruegger P, Zhang J, Ma W, Borneman J, Grant K, Messaoudi I. Concurrent gut transcriptome and microbiota profiling following chronic ethanol consumption in nonhuman primates. Gut Microbes 2018; 9:338-356. [PMID: 29517944 PMCID: PMC6219653 DOI: 10.1080/19490976.2018.1441663] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/28/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Alcohol use disorder (AUD) results in increased intestinal permeability, nutrient malabsorption, and increased risk of colorectal cancer (CRC). Our understanding of the mechanisms underlying these morbidities remains limited because studies to date have relied almost exclusively on short-term heavy/binge drinking rodent models and colonic biopsies/fecal samples collected from AUD subjects with alcoholic liver disease (ALD). Consequently, the dose- and site-dependent impact of chronic alcohol consumption in the absence of overt liver disease remains poorly understood. In this study, we addressed this knowledge gap using a nonhuman primate model of voluntary ethanol self-administration where rhesus macaques consume varying amounts of 4% ethanol in water for 12 months. Specifically, we performed RNA-Seq and 16S rRNA gene sequencing on duodenum, jejunum, ileum, and colon biopsies collected from 4 controls and 8 ethanol-consuming male macaques. Our analysis revealed that chronic ethanol consumption leads to changes in the expression of genes involved in protein trafficking, metabolism, inflammation, and CRC development. Additionally, we observed differences in the relative abundance of putatively beneficial bacteria as well as those associated with inflammation and CRC. Given that the animals studied in this manuscript did not exhibit signs of ALD or CRC, our data suggest that alterations in gene expression and bacterial communities precede clinical disease and could serve as biomarkers as well as facilitate future studies aimed at developing interventions to restore gut homeostasis.
Collapse
Affiliation(s)
- Tasha Barr
- Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| | - Paul Ruegger
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA
| | - Jingfei Zhang
- Department of Statistics, University of California-Riverside, Riverside, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California-Riverside, Riverside, CA, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA
| | - Kathleen Grant
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
23
|
Rossi M, Jahanzaib Anwar M, Usman A, Keshavarzian A, Bishehsari F. Colorectal Cancer and Alcohol Consumption-Populations to Molecules. Cancers (Basel) 2018; 10:E38. [PMID: 29385712 PMCID: PMC5836070 DOI: 10.3390/cancers10020038] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the third most common cancer diagnosed in both men and women in the world. Several environmental and habitual factors have been associated with the CRC risk. Alcohol intake, a common and rising habit of modern society, is one of the major risk factors for development of CRC. Here, we will summarize the evidence linking alcohol with colon carcinogenesis and possible underlying mechanisms. Some epidemiologic studies suggest that even moderate drinking increases the CRC risk. Metabolism of alcohol involves ethanol conversion to its metabolites that could exert carcinogenic effects in the colon. Production of ethanol metabolites can be affected by the colon microbiota, another recently recognized mediating factor to colon carcinogenesis. The generation of acetaldehyde and alcohol's other metabolites leads to activation of cancer promoting cascades, such as DNA-adduct formation, oxidative stress and lipid peroxidation, epigenetic alterations, epithelial barrier dysfunction, and immune modulatory effects. Not only does alcohol induce its toxic effect through carcinogenic metabolites, but alcoholics themselves are predisposed to a poor diet, low in folate and fiber, and circadian disruption, which could further augment alcohol-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Marco Rossi
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Muhammad Jahanzaib Anwar
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ahmad Usman
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ali Keshavarzian
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Faraz Bishehsari
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Messaoudi I, Handu M, Rais M, Sureshchandra S, Park BS, Fei SS, Wright H, White AE, Jain R, Cameron JL, Winters-Stone KM, Varlamov O. Long-lasting effect of obesity on skeletal muscle transcriptome. BMC Genomics 2017; 18:411. [PMID: 28545403 PMCID: PMC5445270 DOI: 10.1186/s12864-017-3799-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reduced physical activity and increased intake of calorically-dense diets are the main risk factors for obesity, glucose intolerance, and type 2 diabetes. Chronic overnutrition and hyperglycemia can alter gene expression, contributing to long-term obesity complications. While caloric restriction can reduce obesity and glucose intolerance, it is currently unknown whether it can effectively reprogram transcriptome to a pre-obesity level. The present study addressed this question by the preliminary examination of the transcriptional dynamics in skeletal muscle after exposure to overnutrition and following caloric restriction. RESULTS Six male rhesus macaques of 12-13 years of age consumed a high-fat western-style diet for 6 months and then were calorically restricted for 4 months without exercise. Skeletal muscle biopsies were subjected to longitudinal gene expression analysis using next-generation whole-genome RNA sequencing. In spite of significant weight loss and normalized insulin sensitivity, the majority of WSD-induced (n = 457) and WSD-suppressed (n = 47) genes remained significantly dysregulated after caloric restriction (FDR ≤0.05). The MetacoreTM pathway analysis reveals that western-style diet induced the sustained activation of the transforming growth factor-β gene network, associated with extracellular matrix remodeling, and the downregulation of genes involved in muscle structure development and nutritional processes. CONCLUSIONS Western-style diet, in the absence of exercise, induced skeletal muscle transcriptional programing, which persisted even after insulin resistance and glucose intolerance were completely reversed with caloric restriction.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mithila Handu
- Division of Cardiometabolic Health, Oregon National Primate Research Center, L584 505 NW 185th Ave., Beaverton, OR, 97006, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Suhas Sureshchandra
- School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Byung S Park
- Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Suzanne S Fei
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Ashley E White
- Division of Cardiometabolic Health, Oregon National Primate Research Center, L584 505 NW 185th Ave., Beaverton, OR, 97006, USA
| | - Ruhee Jain
- Department of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Judy L Cameron
- Department of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Kerri M Winters-Stone
- Department of School of Nursing, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, L584 505 NW 185th Ave., Beaverton, OR, 97006, USA.
| |
Collapse
|
25
|
Landrith TA, Sureshchandra S, Rivera A, Jang JC, Rais M, Nair MG, Messaoudi I, Wilson EH. CD103 + CD8 T Cells in the Toxoplasma-Infected Brain Exhibit a Tissue-Resident Memory Transcriptional Profile. Front Immunol 2017; 8:335. [PMID: 28424687 PMCID: PMC5372813 DOI: 10.3389/fimmu.2017.00335] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
During chronic infection, memory T cells acquire a unique phenotype and become dependent on different survival signals than those needed for memory T cells generated during an acute infection. The distinction between the role of effector and memory T cells in an environment of persistent antigen remains unclear. Here, in the context of chronic Toxoplasma gondii infection, we demonstrate that a population of CD8 T cells exhibiting a tissue-resident memory (TRM) phenotype accumulates within the brain. We show that this population is distributed throughout the brain in both parenchymal and extraparenchymal spaces. Furthermore, this population is transcriptionally distinct and exhibits a transcriptional signature consistent with the TRM observed in acute viral infections. Finally, we establish that the CD103+ TRM population has an intrinsic capacity to produce both IFN-γ and TNF-α, cytokines critical for parasite control within the central nervous system (CNS). The contribution of this population to pro-inflammatory cytokine production suggests an important role for TRM in protective and ongoing immune responses in the infected CNS. Accession number: GSE95105
Collapse
Affiliation(s)
- Tyler A Landrith
- School of Medicine, University of California, Riverside, CA, USA
| | | | - Andrea Rivera
- School of Medicine, University of California, Riverside, CA, USA
| | - Jessica C Jang
- School of Medicine, University of California, Riverside, CA, USA
| | - Maham Rais
- School of Medicine, University of California, Riverside, CA, USA
| | - Meera G Nair
- School of Medicine, University of California, Riverside, CA, USA
| | - Ilhem Messaoudi
- School of Medicine, University of California, Riverside, CA, USA
| | - Emma H Wilson
- School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|
26
|
Jimenez VA, Grant KA. Studies using macaque monkeys to address excessive alcohol drinking and stress interactions. Neuropharmacology 2017; 122:127-135. [PMID: 28347838 DOI: 10.1016/j.neuropharm.2017.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
The use of non-human primates (NHPs) in studies of volitional, oral self-administration of alcohol can help address the complex interplay between stress and excessive alcohol consumption. There are aspects to brain, endocrine and behavior of NHPs, particularly macaques, that provide a critical translational link towards understanding the risks and consequences of alcohol use disorders (AUDs) in humans. These include wide individual differences in escalating daily alcohol intake, accurate measures of hypothalamic-pituitary-adrenal (HPA) axis hormonal interactions, neuroanatomical specificity of synaptic adaptations to chronic alcohol, genetic similarities to humans, and the ability to conduct in vivo brain imaging. When placed in a framework that alcohol addiction is a sequence of dysregulations in motivational circuitry associated with severity of AUD, the NHP can provide within-subject information on both risks for and consequences of repeatedly drinking to intoxication. Notably, long-term adaptations in neurocircuitry that mediate behavioral reinforcement, stress responses and executive functions are possible with NHPs. We review here the substantial progress made using NHPs to address the complex relationship between alcohol and stress as risk factors and consequences of daily drinking to intoxication. This review also highlights areas where future studies of brain and HPA axis adaptations are needed to better understand the mechanisms involved in stress leading to excessive alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Vanessa A Jimenez
- Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA
| | - Kathleen A Grant
- Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA; Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA.
| |
Collapse
|
27
|
Thompson MG, Navarro F, Chitsike L, Ramirez L, Kovacs EJ, Watkins SK. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function. Alcohol 2016; 57:1-8. [PMID: 27916138 DOI: 10.1016/j.alcohol.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol.
Collapse
Affiliation(s)
- Matthew G Thompson
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Flor Navarro
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Lennox Chitsike
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Luis Ramirez
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Elizabeth J Kovacs
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; University of Colorado Denver, Department of Surgery, Aurora, CO, USA
| | - Stephanie K Watkins
- Loyola University Chicago, Department of Surgery, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA.
| |
Collapse
|
28
|
Arnold N, Girke T, Sureshchandra S, Nguyen C, Rais M, Messaoudi I. Genomic and functional analysis of the host response to acute simian varicella infection in the lung. Sci Rep 2016; 6:34164. [PMID: 27677639 PMCID: PMC5039758 DOI: 10.1038/srep34164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, CA, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
| | - Christina Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
29
|
Sureshchandra S, Rais M, Stull C, Grant K, Messaoudi I. Transcriptome Profiling Reveals Disruption of Innate Immunity in Chronic Heavy Ethanol Consuming Female Rhesus Macaques. PLoS One 2016; 11:e0159295. [PMID: 27427759 PMCID: PMC4948771 DOI: 10.1371/journal.pone.0159295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
It is well established that heavy ethanol consumption interferes with the immune system and inflammatory processes, resulting in increased risk for infectious and chronic diseases. However, these processes have yet to be systematically studied in a dose and sex-dependent manner. In this study, we investigated the impact of chronic heavy ethanol consumption on gene expression using RNA-seq in peripheral blood mononuclear cells isolated from female rhesus macaques with daily consumption of 4% ethanol available 22hr/day for 12 months resulting in average ethanol consumption of 4.3 g/kg/day (considered heavy drinking). Differential gene expression analysis was performed using edgeR and gene enrichment analysis using MetaCore™. We identified 1106 differentially expressed genes, meeting the criterion of ≥ two-fold change and p-value ≤ 0.05 in expression (445 up- and 661 down-regulated). Pathway analysis of the 879 genes with characterized identifiers showed that the most enriched gene ontology processes were "response to wounding", "blood coagulation", "immune system process", and "regulation of signaling". Changes in gene expression were seen despite the lack of differences in the frequency of any major immune cell subtype between ethanol and controls, suggesting that heavy ethanol consumption modulates gene expression at the cellular level rather than altering the distribution of peripheral blood mononuclear cells. Collectively, these observations provide mechanisms to explain the higher incidence of infection, delay in wound healing, and increase in cardiovascular disease seen in subjects with Alcohol use disorder.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Cara Stull
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States of America
| | - Kathleen Grant
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States of America
| | - Ilhem Messaoudi
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States of America
- * E-mail:
| |
Collapse
|