1
|
Mukisa J, Kyobe S, Amujal M, Katagirya E, Diphoko T, Sebetso G, Mwesigwa S, Mboowa G, Retshabile G, Williams L, Mlotshwa B, Matshaba M, Jjingo D, Kateete DP, Joloba ML, Mardon G, Hanchard N, Hollenbach JA. High KIR diversity in Uganda and Botswana children living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626612. [PMID: 39677597 PMCID: PMC11642868 DOI: 10.1101/2024.12.03.626612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are essential components of the innate immune system found on the surfaces of natural killer (NK) cells. The KIRs encoding genes are located on chromosome 19q13.4 and are genetically diverse across populations. KIRs are associated with various disease states including HIV progression, and are linked to transplantation rejection and reproductive success. However, there is limited knowledge on the diversity of KIRs from Uganda and Botswana HIV-infected paediatric cohorts, with high endemic HIV rates. We used next-generation sequencing technologies on 312 (246 Uganda, 66 Botswana) samples to generate KIR allele data and employed customised bioinformatics techniques for allelic, allotype and disease association analysis. We show that these sample sets from Botswana and Uganda have different KIRs of different diversities. In Uganda, we observed 147 vs 111 alleles in the Botswana cohort, which had a more than 1 % frequency. We also found significant deviation towards homozygosity for the KIR3DL2 gene for both rapid (RPs) and long-term non-progressors (LTNPs)in the Ugandan cohort. The frequency of the bw4-80I ligand was also significantly higher among the LTNPs than RPs (8.9 % Vs 2.0%, P-value: 0.032). In the Ugandan cohort, KIR2DS4*001 (OR: 0.671, 95 % CI: 0.481-0.937, FDR adjusted Pc=0.142) and KIR2DS4*006 (OR: 2.519, 95 % CI: 1.085-5.851, FDR adjusted Pc=0.142) were not associated with HIV disease progression after adjustment for multiple testing. Our study results provide additional knowledge of the genetic diversity of KIRs in African populations and provide evidence that will inform future immunogenetics studies concerning human disease susceptibility, evolution and host immune responses.
Collapse
Affiliation(s)
- John Mukisa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
- Global Pathogen Genomics, Broad Institute, Cambridge, USA
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, P/Bag BR 129, Gaborone, Botswana
| | - Daudi Jjingo
- College of Computing and Information Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Makerere University, Kampala, Uganda
| | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Graeme Mardon
- Department of Molecular and Human Genetics and Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil Hanchard
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
3
|
Loh L, Saunders PM, Faoro C, Font-Porterias N, Nemat-Gorgani N, Harrison GF, Sadeeq S, Hensen L, Wong SC, Widjaja J, Clemens EB, Zhu S, Kichula KM, Tao S, Zhu F, Montero-Martin G, Fernandez-Vina M, Guethlein LA, Vivian JP, Davies J, Mentzer AJ, Oppenheimer SJ, Pomat W, Ioannidis AG, Barberena-Jonas C, Moreno-Estrada A, Miller A, Parham P, Rossjohn J, Tong SYC, Kedzierska K, Brooks AG, Norman PJ. An archaic HLA class I receptor allele diversifies natural killer cell-driven immunity in First Nations peoples of Oceania. Cell 2024; 187:7008-7024.e19. [PMID: 39476840 PMCID: PMC11606752 DOI: 10.1016/j.cell.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/24/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Genetic variation in host immunity impacts the disproportionate burden of infectious diseases that can be experienced by First Nations peoples. Polymorphic human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptors (KIRs) are key regulators of natural killer (NK) cells, which mediate early infection control. How this variation impacts their responses across populations is unclear. We show that HLA-A∗24:02 became the dominant ligand for inhibitory KIR3DL1 in First Nations peoples across Oceania, through positive natural selection. We identify KIR3DL1∗114, widespread across and unique to Oceania, as an allele lineage derived from archaic humans. KIR3DL1∗114+NK cells from First Nations Australian donors are inhibited through binding HLA-A∗24:02. The KIR3DL1∗114 lineage is defined by phenylalanine at residue 166. Structural and binding studies show phenylalanine 166 forms multiple unique contacts with HLA-peptide complexes, increasing both affinity and specificity. Accordingly, assessing immunogenetic variation and the functional implications for immunity are fundamental toward understanding population-based disease associations.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Camilla Faoro
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Genelle F Harrison
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Suraju Sadeeq
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Katherine M Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sudan Tao
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gonzalo Montero-Martin
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Marcelo Fernandez-Vina
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jane Davies
- Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Casuarina, NT 0810, Australia
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Stephen J Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX3 7LF, UK
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | | | - Carmina Barberena-Jonas
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Andrés Moreno-Estrada
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Adrian Miller
- Jawun Research Centre, Central Queensland University, Cairns, QLD 4870, Australia
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Steven Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia; Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Paul J Norman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Ford MKB, Hari A, Zhou Q, Numanagić I, Sahinalp SC. Biologically-informed killer cell immunoglobulin-like receptor gene annotation tool. Bioinformatics 2024; 40:btae622. [PMID: 39432666 PMCID: PMC11549020 DOI: 10.1093/bioinformatics/btae622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
SUMMARY Natural killer (NK) cells are essential components of the innate immune system, with their activity significantly regulated by Killer cell Immunoglobulin-like Receptors (KIRs). The diversity and structural complexity of KIR genes present significant challenges for accurate genotyping, essential for understanding NK cell functions and their implications in health and disease. Traditional genotyping methods struggle with the variable nature of KIR genes, leading to inaccuracies that can impede immunogenetic research. These challenges extend to high-quality phased assemblies, which have been recently popularized by the Human Pangenome Consortium. This article introduces BAKIR (Biologically informed Annotator for KIR locus), a tailored computational tool designed to overcome the challenges of KIR genotyping and annotation on high-quality, phased genome assemblies. BAKIR aims to enhance the accuracy of KIR gene annotations by structuring its annotation pipeline around identifying key functional mutations, thereby improving the identification and subsequent relevance of gene and allele calls. It uses a multi-stage mapping, alignment, and variant calling process to ensure high-precision gene and allele identification, while also maintaining high recall for sequences that are significantly mutated or truncated relative to the known allele database. BAKIR has been evaluated on a subset of the HPRC assemblies, where BAKIR was able to improve many of the associated annotations and call novel variants. BAKIR is freely available on GitHub, offering ease of access and use through multiple installation methods, including pip, conda, and singularity container, and is equipped with a user-friendly command-line interface, thereby promoting its adoption in the scientific community. AVAILABILITY AND IMPLEMENTATION BAKIR is available at github.com/algo-cancer/bakir.
Collapse
Affiliation(s)
- Michael K B Ford
- National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Ananth Hari
- National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, United States
- Department of Electrical Engineering, University of Maryland, 2410 A.V. Williams Building, College Park, MD, 20742, United States
| | - Qinghui Zhou
- Faculty of Engineering and Computer Science, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Ibrahim Numanagić
- Faculty of Engineering and Computer Science, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - S Cenk Sahinalp
- National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| |
Collapse
|
5
|
Le Luduec JB, Kontopoulos T, Panjwani MK, Sottile R, Liu H, Schäfer G, Massalski C, Lange V, Hsu KC. Polygenic polymorphism is associated with NKG2A repertoire and influences lymphocyte phenotype and function. Blood Adv 2024; 8:5382-5399. [PMID: 39158076 PMCID: PMC11568789 DOI: 10.1182/bloodadvances.2024013508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT CD94/NKG2A is a heterodimeric receptor commonly found on natural killer (NK) and T cells, and its interaction with its ligand HLA-E on adjacent cells leads to inhibitory signaling and cell suppression. We have identified several killer cell lectin-like receptor (KLR)C1 (NKG2A) single nucleotide polymorphisms (SNPs) that are associated with NKG2A expression on NK cells, CD8+ T cells, and Vγ9/Vδ2+ T cells. Additionally, due to strong linkage disequilibrium, polymorphisms in KLRC2 (NKG2C) and KLRK1 (NKG2D) are also associated with NKG2A surface density and frequency. NKG2A surface expression correlates with single-cell NK responsiveness, and NKG2A+ NK cell frequency is associated with total NK repertoire response and inhibitability, making the identification of SNPs responsible for expression and frequency important for predicting the innate immune response. Because HLA-E expression is dependent on HLA class I signal peptides, we analyzed the relationship between peptide abundance and HLA-E expression levels. Our findings revealed a strong association between peptide availability and HLA-E expression. We identified the HLA-C killer immunoglobulin-like receptor ligand epitope as a predictive marker for HLA-ABC expression, with the HLA-C1 epitope associated with high HLA-E expression and the HLA-C2 epitope associated with low HLA-E expression. The relationship between HLA-C epitopes and HLA-E expression was independent of HLA-E allotypes and HLA-B leader peptides. Although HLA-E expression showed no significant influence on NKG2A-mediated NK education, it did affect NK cell inhibition. In summary, these findings underscore the importance of NKG2A SNPs and HLA-C epitopes as predictive markers of NK cell phenotype and function and should be evaluated as prognostic markers for diseases that express high levels of HLA-E.
Collapse
Affiliation(s)
- Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - M Kazim Panjwani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Humanitas Clinical and Research Center, Pieve Emanuele, Italy
| | - Hongtao Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gesine Schäfer
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Carolin Massalski
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Vinzenz Lange
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
6
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
7
|
Hung TK, Liu WC, Lai SK, Chuang HW, Lee YC, Lin HY, Hsu CL, Chen CY, Yang YC, Hsu JS, Chen PL. Genetic complexity of killer-cell immunoglobulin-like receptor genes in human pangenome assemblies. Genome Res 2024; 34:1211-1223. [PMID: 39251346 PMCID: PMC11444179 DOI: 10.1101/gr.278358.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
The killer-cell immunoglobulin-like receptor (KIR) gene complex, a highly polymorphic region of the human genome that encodes proteins involved in immune responses, poses strong challenges in genotyping owing to its remarkable genetic diversity and structural intricacy. Accurate analysis of KIR alleles, including their structural variations, is crucial for understanding their roles in various immune responses. Leveraging the high-quality genome assemblies from the Human Pangenome Reference Consortium (HPRC), we present a novel bioinformatic tool, the structural KIR annoTator (SKIRT), to investigate gene diversity and facilitate precise KIR allele analysis. In 47 HPRC-phased assemblies, SKIRT identifies a recurrent novel KIR2DS4/3DL1 fusion gene in the paternal haplotype of HG02630 and maternal haplotype of NA19240. Additionally, SKIRT accurately identifies eight structural variants and 15 novel nonsynonymous alleles, all of which are independently validated using short-read data or quantitative polymerase chain reaction. Our study has discovered a total of 570 novel alleles, among which eight haplotypes harbor at least one KIR gene duplication, six haplotypes have lost at least one framework gene, and 75 out of 94 haplotypes (79.8%) carry at least five novel alleles, thus confirming KIR genetic diversity. These findings are pivotal in providing insights into KIR gene diversity and serve as a solid foundation for understanding the functional consequences of KIR structural variations. High-resolution genome assemblies offer unprecedented opportunities to explore polymorphic regions that are challenging to investigate using short-read sequencing methods. The SKIRT pipeline emerges as a highly efficient tool, enabling the comprehensive detection of the complete spectrum of KIR alleles within human genome assemblies.
Collapse
Affiliation(s)
- Tsung-Kai Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Wan-Chi Liu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Sheng-Kai Lai
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100229, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Wen Chuang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Yi-Che Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Hong-Ye Lin
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100229, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100229, Taiwan
| |
Collapse
|
8
|
Ford MK, Hari A, Zhou Q, Numanagić I, Sahinalp SC. Biologically-informed Killer cell immunoglobulin-like receptor (KIR) gene annotation tool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607835. [PMID: 39372800 PMCID: PMC11451589 DOI: 10.1101/2024.08.13.607835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Natural killer (NK) cells are essential components of the innate immune system, with their activity significantly regulated by Killer cell Immunoglobulin-like Receptors (KIRs). The diversity and structural complexity of KIR genes present significant challenges for accurate genotyping, essential for understanding NK cell functions and their implications in health and disease. Traditional genotyping methods struggle with the variable nature of KIR genes, leading to inaccuracies that can impede immunogenetic research. These challenges extend to high-quality phased assemblies, which have been recently popularized by the Human Pangenome Consortium. This paper introduces BAKIR (Biologically-informed Annotator for KIR locus), a tailored computational tool designed to overcome the challenges of KIR genotyping and annotation on high-quality, phased genome assemblies. BAKIR aims to enhance the accuracy of KIR gene annotations by structuring its annotation pipeline around identifying key functional mutations, thereby improving the identification and subsequent relevance of gene and allele calls. It uses a multi-stage mapping, alignment, and variant calling process to ensure high-precision gene and allele identification, while also maintaining high recall for sequences that are significantly mutated or truncated relative to the known allele database. BAKIR has been evaluated on a subset of the HPRC assemblies, where BAKIR was able to improve many of the associated annotations and call novel variants. BAKIR is freely available on GitHub, offering ease of access and use through multiple installation methods, including pip, conda, and singularity container, and is equipped with a user-friendly command-line interface, thereby promoting its adoption in the scientific community.
Collapse
Affiliation(s)
| | - Ananth Hari
- National Cancer Institute, NIH, Bethesda, MD, USA
- University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
9
|
Zhao NQ, Pi R, Nguyen DN, Ranganath T, Seiler C, Holmes S, Marson A, Blish CA. NKp30 and NKG2D contribute to natural killer recognition of HIV-infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600449. [PMID: 38979175 PMCID: PMC11230221 DOI: 10.1101/2024.06.24.600449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Natural killer (NK) cells respond rapidly in early HIV-1 infection. HIV-1 prevention and control strategies harnessing NK cells could be enabled by mechanistic understanding of how NK cells recognize HIV-infected T cells. Here, we profiled the phenotype of human primary NK cells responsive to autologous HIV-1-infected CD4 + T cells in vitro. We characterized the patterns of NK cell ligand expression on CD4 + T cells at baseline and after infection with a panel of transmitted/founder HIV-1 strains to identify key receptor-ligand pairings. CRISPR editing of CD4 + T cells to knockout the NKp30 ligand B7-H6, or the NKG2D ligands MICB or ULBP2 reduced NK cell responses to HIV-infected cells in some donors. In contrast, overexpression of NKp30 or NKG2D in NK cells enhanced their targeting of HIV-infected cells. Collectively, we identified receptor-ligand pairs including NKp30:B7-H6 and NKG2D:MICB/ULBP2 that contribute to NK cell recognition of HIV-infected cells.
Collapse
|
10
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
11
|
Zhao M, Xu ZL, Yu XX, Ding YY, Chang YJ, Zhang XH, Liu KY, Huang XJ, Zhao XY. [The impact of donor human leukocyte antigen-Bw4 allele on natural killer cell reconstitution and transplant-related mortality in haploidentical transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:453-461. [PMID: 38964919 PMCID: PMC11270487 DOI: 10.3760/cma.j.cn.121090-20240314-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Indexed: 07/06/2024]
Abstract
Objective: To investigate the impact of donor human leukocyte antigen (HLA) -Bw4 expression on natural killer (NK) cell reconstitution and transplant outcomes in recipients undergoing haploidentical hematopoietic stem cell transplantation (HSCT) from maternal or related donors without ex vivo T-cell depletion. Methods: This study prospectively enrolled 32 patients who received T-replete haploidentical HSCT from maternal or collateral donors (cohort 1) to evaluate the facilitating effect of donor HLA-Bw4 expression on NK cell reconstitution. Furthermore, a retrospective analysis was conducted on 278 patients who underwent T-replete haploidentical HSCT from maternal or collateral donors (cohort 2) to analyze the impact of donor HLA-Bw4 expression on HSCT outcomes. Thus, a comparison was made between the effects of donor HLA-Bw4 expression on HSCT outcomes in patients receiving or not receiving post-transplant cyclophosphamide (PT-Cy) conditioning. Results: Donors expressing HLA-Bw4 alleles facilitated NK cell reconstitution and functional recovery, which remained unaffected by PT-Cy. Donors with HLA-Bw4 expression were associated with reduced transplant-related mortality (TRM), particularly mortality related to infections. The use of PT-Cy did not impact the ability of donor HLA-Bw4 to decrease TRM. Conclusion: In haploidentical HSCT from maternal or related donors without ex vivo T-cell depletion, the presence of donor HLA-Bw4 expression promotes rapid NK cell reconstitution and functional recovery and is significantly associated with lower TRM, especially infection-related mortality. These findings underscore the clinical significance of donor HLA-Bw4 expression in patients who underwent HSCT. Hence, the consideration of donor HLA-Bw4 in recipient selection and HSCT strategies holds important clinical implications.
Collapse
Affiliation(s)
- M Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - Z L Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - X X Yu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Y Y Ding
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - Y J Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - K Y Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| | - X Y Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for Hematologic Diseases, Beijing 100044, China
| |
Collapse
|
12
|
Martín-Sierra C, Bravo MJ, Sáez ME, De Rojas I, Santos M, Martín-Carmona J, Corma-Gómez A, González-Serna A, Royo JL, Pineda JA, Rivero A, Rivero-Juárez A, Macías J, Real LM. The absence of seroconversion after exposition to hepatitis C virus is not related to KIR-HLA genotype combinations (GEHEP-012 study). Antiviral Res 2024; 222:105795. [PMID: 38181855 DOI: 10.1016/j.antiviral.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND & AIMS It has been reported that specific killer-cell immunoglobulin-like receptors (KIRs) and HLA genotype combinations, such as KIR2DS4/HLA-C1 with presence of KIRDL2 or KIRDL3, homozygous KIRDL3/HLA-C1 and KIR3DL1/≥2HLA-Bw4, are strongly associated with the lack of active infection and seroconversion after exposition to hepatitis C virus (HCV). OBJECTIVE To determine whether these KIR-HLA combinations are relevant factors involved in that phenotype. PATIENTS AND METHODS In this retrospective case-control study, genotype data from a genome-wide association study previously performed on low susceptibility to HCV-infection carried out on 27 high-risk HCV-seronegative (HRSN) individuals and 743 chronically infected (CI) subjects were used. HLA alleles were imputed using R package HIBAG v1.2223 and KIR genotypes were imputed using the online resource KIR*IMP v1.2.0. RESULTS It was possible to successfully impute at least one KIR-HLA genotype combination previously associated with the lack of infection and seroconversion after exposition to HCV in a total of 23 (85.2%) HRSN individuals and in 650 (87.5%) CI subjects. No KIR-HLA genotype combination analyzed was related to the HRSN condition. CONCLUSIONS Our results suggest that those KIR-HLA genotype combinations are not relevant factors involved in the lack of infection and seroconversion after exposition to HCV. More studies will be needed to completely understand this phenotype.
Collapse
Affiliation(s)
- Carmen Martín-Sierra
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María José Bravo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, Spain
| | | | - Itziar De Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jesica Martín-Carmona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Anaïs Corma-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alejandro González-Serna
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Fisiología. Universidad de Sevilla, Sevilla, Spain
| | - José Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, Spain
| | - Juan A Pineda
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Antonio Rivero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rivero-Juárez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Juan Macías
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Luis Miguel Real
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen de Valme /CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
13
|
Baek IC, Choi EJ, Kim HJ, Choi H, Shin HS, Lim DG, Kim TG. Association of KIR Genes with Middle East Respiratory Syndrome Coronavirus Infection in South Koreans. J Clin Med 2024; 13:258. [PMID: 38202265 PMCID: PMC10779705 DOI: 10.3390/jcm13010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Middle East respiratory syndrome (MERS) is a lower respiratory tract disease caused by a beta coronavirus (CoV) called MERS-CoV, characterized by a high mortality rate. We aimed to evaluate the association between genetic variation in killer cell immunoglobulin-like receptors (KIRs) and the risk of MERS in South Koreans. METHODS KIR genes were genotyped by multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP). A case-control study was performed to identify the odds ratios (OR) of KIR genes for MERS and the association of KIR genes and their ligands, human leukocyte antigens (HLA) genes. RESULTS KIR2DS4D and KIR3DP1F showed higher frequencies in the group of all patients infected with MERS-CoV than in the control group (p = 0.023, OR = 2.4; p = 0.039, OR = 2.7). KIR2DL1, KIR2DP1, and KIR3DP1D were significantly associated with moderate/mild (Mo/Mi) cases. KIR2DL2, KIR2DS1, and KIR3DP1F were affected in severe cases. When we investigated the association between KIR genes and their ligands in MERS patient and control groups, KIR3DL1+/Bw4(80I)+, KIR3DL1+/Bw6+, KIR3DL1+/Bw6-, KIR2DS1+/C2+, and KIR3DS+/Bw4(80I)+ were associated with MERS. KIR3DL1+/Bw6- was found in Mo/Mi cases. KIR2DS1+/C2+ and KIR2DS2+/C1+ were found in severe cases. CONCLUSION Further investigations are needed to prove the various immune responses of MERS-CoV-infected cells according to variations in the KIR gene and ligand gene. A treatment strategy based on current research on the KIR gene and MERS-CoV will suggest potential treatment targets.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Eun-Jeong Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Hyoung-Jae Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Haeyoun Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Infectious Diseases, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea;
| | - Dong-Gyun Lim
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
14
|
Montero-Martin G, Kichula KM, Misra MK, Vargas LB, Marin WM, Hollenbach JA, Fernández-Viña MA, Elfishawi S, Norman PJ. Exceptional diversity of KIR and HLA class I in Egypt. HLA 2024; 103:e15177. [PMID: 37528739 PMCID: PMC11068459 DOI: 10.1111/tan.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maneesh K. Misra
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Luciana B. Vargas
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wesley M. Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Sally Elfishawi
- BMT lab unit, Clinical Pathology Dept., National Cancer Institute, Cairo University, Cairo, Egypt
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Komic H, Hallner A, Hussein BA, Badami C, Wöhr A, Hellstrand K, Bernson E, Thorén FB. HLA-B*44 and the Bw4-80T motif are associated with poor outcome of relapse-preventive immunotherapy in acute myeloid leukemia. Cancer Immunol Immunother 2023; 72:3559-3566. [PMID: 37597015 PMCID: PMC10576699 DOI: 10.1007/s00262-023-03506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
HLA-B alleles are associated with outcomes in various pathologies, including autoimmune diseases and malignancies. The encoded HLA-B proteins are pivotal in antigen presentation to cytotoxic T cells, and some variants containing a Bw4 motif also serve as ligands to the killer immunoglobulin-like receptors (KIR) 3DL1/S1 of NK cells. We investigated the potential impact of HLA-B genotypes on the efficacy of immunotherapy for relapse prevention in acute myeloid leukemia (AML). Seventy-eight non-transplanted AML patients receiving HDC/IL-2 in the post-consolidation phase were genotyped for HLA-B and KIR genes. HLA-B*44 heralded impaired LFS (leukemia-free survival) and overall survival (OS), but the negative association with outcome was not shared across alleles of the HLA-B44 supertype. Notably, HLA-B*44 is one of few HLA-B44 supertype alleles containing a Bw4 motif with a threonine at position 80, which typically results in weak binding to the inhibitory NK receptor, KIR3DL1. Accordingly, a strong interaction between KIR3DL1 and Bw4 was associated with superior LFS and OS (p = 0.014 and p = 0.027, respectively). KIR3DL1+ NK cells from 80 T-Bw4 donors showed significantly lower degranulation responses and cytokine responses than NK cells from 80I-Bw4 donors, suggesting impaired KIR3DL1-mediated education in 80 T-Bw4 subjects. We propose that presence of a strong KIR3DL1+-Bw4 interaction improves NK cell education and thus is advantageous in AML patients receiving HDC/IL-2 immunotherapy for relapse prevention.
Collapse
Affiliation(s)
- Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Hallner
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Brwa Ali Hussein
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Badami
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Wöhr
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Kobayashi Y, Niida A, Nagayama S, Saeki K, Haeno H, Takahashi KK, Hayashi S, Ozato Y, Saito H, Hasegawa T, Nakamura H, Tobo T, Kitagawa A, Sato K, Shimizu D, Hirata H, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Mizuno S, Kawazu M, Kohsaka S, Ueno T, Mano H, Ishihara S, Uemura M, Mori M, Doki Y, Eguchi H, Oshima M, Suzuki Y, Shibata T, Mimori K. Subclonal accumulation of immune escape mechanisms in microsatellite instability-high colorectal cancers. Br J Cancer 2023; 129:1105-1118. [PMID: 37596408 PMCID: PMC10539316 DOI: 10.1038/s41416-023-02395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Intratumor heterogeneity (ITH) in microsatellite instability-high (MSI-H) colorectal cancer (CRC) has been poorly studied. We aimed to clarify how the ITH of MSI-H CRCs is generated in cancer evolution and how immune selective pressure affects ITH. METHODS We reanalyzed public whole-exome sequencing data on 246 MSI-H CRCs. In addition, we performed a multi-region analysis from 6 MSI-H CRCs. To verify the process of subclonal immune escape accumulation, a novel computational model of cancer evolution under immune pressure was developed. RESULTS Our analysis presented the enrichment of functional genomic alterations in antigen-presentation machinery (APM). Associative analysis of neoantigens indicated the generation of immune escape mechanisms via HLA alterations. Multiregion analysis revealed the clonal acquisition of driver mutations and subclonal accumulation of APM defects in MSI-H CRCs. Examination of variant allele frequencies demonstrated that subclonal mutations tend to be subjected to selective sweep. Computational simulations of tumour progression with the interaction of immune cells successfully verified the subclonal accumulation of immune escape mutations and suggested the efficacy of early initiation of an immune checkpoint inhibitor (ICI) -based treatment. CONCLUSIONS Our results demonstrate the heterogeneous acquisition of immune escape mechanisms in MSI-H CRCs by Darwinian selection, providing novel insights into ICI-based treatment strategies.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Sirokane-dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Satoshi Nagayama
- Gastroenterological Center, Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, 611-0041, Japan
| | - Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 227-8561, Japan
| | - Hiroshi Haeno
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Kazuki K Takahashi
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Sirokane-dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Takanori Hasegawa
- Division of Health Medical Data Science, Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1395, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Shinichi Mizuno
- Division of Cancer Research, Center for Advanced Medical Innovation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masaki Mori
- Faculty of Medicine, Tokai University, Isegahara, 259-1193, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kadoma-Cho, Kanazawa, 920-1164, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Sirokane-dai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Cancer Genomics, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan.
| |
Collapse
|
18
|
Muriuki BM, Forconi CS, Kirwa EK, Maina TK, Ariera BO, Bailey JA, Ghansah A, Moormann AM, Ong’echa JM. Evaluation of KIR3DL1/KIR3DS1 allelic polymorphisms in Kenyan children with endemic Burkitt lymphoma. PLoS One 2023; 18:e0275046. [PMID: 37647275 PMCID: PMC10468049 DOI: 10.1371/journal.pone.0275046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Endemic Burkitt lymphoma (eBL) is a fast-growing germinal center B cell lymphoma, affecting 5-10 per 100,000 children annually, in the equatorial belt of Africa. We hypothesize that co-infections with Plasmodium falciparum (Pf) malaria and Epstein-Barr virus (EBV) impair host natural killer (NK) and T cell responses to tumor cells, and thus increase the risk of eBL pathogenesis. NK cell education is partially controlled by killer immunoglobulin-like receptors and variable expression of KIR3DL1 has been associated with other malignancies. Here, we investigated whether KIR3D-mediated mechanisms contribute to eBL, by testing for an association of KIR3DL1/KIR3DS1 genotypes with the disease in 108 eBL patients and 99 healthy Kenyan children. KIR3DL1 allelic typing and EBV loads were assessed by PCR. We inferred previously observed phenotypes from the genotypes. The frequencies of KIR3DL1/KIR3DL1 and KIR3DL1/KIR3DS1 did not differ significantly between cases and controls. Additionally, none of the study participants was homozygous for KIR3DS1 alleles. EBV loads did not differ by the KIR3DL1 genotypes nor were they different between eBL survivors and non-survivors. Our results suggest that eBL pathogenesis may not simply involve variations in KIR3DL1 and KIR3DS1 genotypes. However, considering the complexity of the KIR3DL1 locus, this study could not exclude a role for copy number variation in eBL pathogenesis.
Collapse
Affiliation(s)
- Beatrice M. Muriuki
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Erastus K. Kirwa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Titus K. Maina
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Bonface O. Ariera
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States of America
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| |
Collapse
|
19
|
Philippon C, Tao S, Clement D, Haroun-Izquierdo A, Kichula KM, Netskar H, Brandt L, Oei VS, Kanaya M, Lanuza PM, Schaffer M, Goodridge JP, Horowitz A, Zhu F, Hammer Q, Sohlberg E, Majhi RK, Kveberg L, Önfelt B, Norman PJ, Malmberg KJ. Allelic variation of KIR and HLA tunes the cytolytic payload and determines functional hierarchy of NK cell repertoires. Blood Adv 2023; 7:4492-4504. [PMID: 37327114 PMCID: PMC10440473 DOI: 10.1182/bloodadvances.2023009827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023] Open
Abstract
The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.
Collapse
Affiliation(s)
- Camille Philippon
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Sudan Tao
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dennis Clement
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Alvaro Haroun-Izquierdo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katherine M. Kichula
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Herman Netskar
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Ludwig Brandt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vincent Sheng Oei
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Minoru Kanaya
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Pilar Maria Lanuza
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Schaffer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Amir Horowitz
- Department of Oncological Sciences, The Marc and Jennifer Lipshultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Quirin Hammer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ebba Sohlberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rakesh Kumar Majhi
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Lise Kveberg
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paul J. Norman
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Mirzazadeh S, Bemani P, Halimi H, Sanaee MN, Karami N, Ramzi M, Farjadian S. Association of killer cell immunoglobulin-like receptors and their cognate HLA class I ligands with susceptibility to acute myeloid leukemia in Iranian patients. Sci Rep 2023; 13:11456. [PMID: 37454198 PMCID: PMC10349836 DOI: 10.1038/s41598-023-38479-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most prevalent leukemia in adults. Among the various NK receptors, killer immunoglobulin-like receptors (KIRs) carry out indispensable roles in NK cell development and function through engaging with class I human leukocyte antigens (HLA-I) as their ligands. Besides divergent KIR and HLA loci, KIR/HLA-I combinations have a significant effect on NK cell response. In this case-control study, we aimed to verify the association of KIR/HLA-I combinations with susceptibility to AML in the Southwestern Iranian population. KIR and HLA genotyping was performed with PCR-SSP by some novel primers for 181 patients with AML and 181 healthy controls. According to our results, the frequencies of KIR3DS1 (p = 0.0001, OR = 2.32, 95% CI 1.51-3.58), KIR2DS4fl (p = 0.02, OR = 1.53, 95% CI 1.05-2.21), CxT4 genotypes (p = 0.03, OR = 2.0, 95% CI 1.05-3.82), and T4 gene cluster (p = 0.01, OR = 1.99, 95% CI 1.17-3.41) were significantly higher in patients than controls, while C1/C2 genotype (p = 0.00002, OR = 0.39, 95% CI 0.25-0.61), HLA-A Bw4 (p = 0.02, OR = 0.6, 95% CI 0.38-0.94), and HLA-A*11 (p = 0.03, OR = 0.57, 95% CI 0.34-0.95) alleles were more frequent in controls. In addition, inhibitory (i)KIR/HLA-I combinations analysis revealed higher frequencies of KIR2DL1( +)/HLA-C2( +), KIR2DL2/3( +)/HLA-C1( +), KIR3DL1( +)/HLA-A Bw4( +), and KIR3DL2( +)/HLA-A*03/11( +) in the control group (p = 0.002, OR = 0.49, 95% CI 0.3-0.78; p = 0.04, OR = 0.62, 95% CI 0.39-0.99; p = 0.04, OR = 0.63, 95% CI 0.4-0.99; and p = 0.03, OR = 0.62, 95% CI 0.4-0.95, respectively). Overall, the number of iKIR/HLA-I combinations was more in the control group. Moreover, KIR3DS1( +)/HLA-B Bw4Ile80( +) and the sum of HLA-B Bw4/A Bw4 combined with KIR3DS1 as activating KIR/HLA-I combinations were more frequent among patients than controls (p = 0.01, OR = 1.99, 95% CI 1.14-3.49 and p = 0.005, OR = 1.97, 95% CI 1.22-3.19, respectively). In conclusion, our results postulate that inhibitory combinations play a protective role against AML by developing potent NK cells during education. It is noteworthy that KIR/HLA-I combination studies can be applicable in donor selection for allogeneic NK cell therapy in hematological malignancies.
Collapse
Affiliation(s)
- Sara Mirzazadeh
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Halimi
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nabi Sanaee
- Department of Hematology and Medical Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Department of Hematology and Medical Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Saunders PM, Brooks AG, Rossjohn J. Oyez, Oyez, Oyez! Nat Immunol 2023:10.1038/s41590-023-01541-x. [PMID: 37308666 DOI: 10.1038/s41590-023-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
22
|
Legrand N, Salameh P, Jullien M, Chevallier P, Ferron E, David G, Devilder MC, Willem C, Gendzekhadze K, Parham P, Retière C, Gagne K. Non-Expressed Donor KIR3DL1 Alleles May Represent a Risk Factor for Relapse after T-Replete Haploidentical Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:2754. [PMID: 37345091 DOI: 10.3390/cancers15102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
KIR3DL1 alleles are expressed at different levels on the natural killer (NK) cell surface. In particular, the non-expressed KIR3DL1*004 allele appears to be common in Caucasian populations. However, the overall distribution of non-expressed KIR3DL1 alleles and their clinical relevance after T-replete haploidentical hematopoietic stem cell transplantation (hHSCT) with post-transplant cyclophosphamide remain poorly documented in European populations. In a cohort of French blood donors (N = 278), we compared the distribution of expressed and non-expressed KIR3DL1 alleles using next-generation sequencing (NGS) technology combined with multi-color flow cytometry. We confirmed the predominance of the non-expressed KIR3DL1*004 allele. Using allele-specific constructs, the phenotype and function of the uncommon KIR3DL1*019 allotype were characterized using the Jurkat T cell line and NKL transfectants. Although poorly expressed on the NK cell surface, KIR3DL1*019 is retained within NK cells, where it induces missing self-recognition of the Bw4 epitope. Transposing our in vitro observations to a cohort of hHSCT patients (N = 186) led us to observe that non-expressed KIR3DL1 HSC grafts increased the incidence of relapse in patients with myeloid diseases. Non-expressed KIR3DL1 alleles could, therefore, influence the outcome of hHSCT.
Collapse
Affiliation(s)
- Nolwenn Legrand
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Perla Salameh
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Maxime Jullien
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- Department of Hematology Clinic, Nantes University Hospital, F-44000 Nantes, France
| | - Patrice Chevallier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- Department of Hematology Clinic, Nantes University Hospital, F-44000 Nantes, France
| | - Enora Ferron
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Gaelle David
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Marie-Claire Devilder
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Ketevan Gendzekhadze
- Department of Hematology and HCT, HLA Laboratory, City of Hope, Medical Center, Duarte, CA 91010, USA
| | - Peter Parham
- Department of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christelle Retière
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Katia Gagne
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- LabEx Transplantex, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
23
|
Cocker ATH, Guethlein LA, Parham P. The CD56-CD16+ NK cell subset in chronic infections. Biochem Soc Trans 2023:233017. [PMID: 37140380 DOI: 10.1042/bst20221374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Long-term human diseases can shape the immune system, and natural killer (NK) cells have been documented to differentiate into distinct subsets specifically associated with chronic virus infections. One of these subsets found in large frequencies in HIV-1 are the CD56-CD16+ NK cells, and this population's association with chronic virus infections is the subject of this review. Human NK cells are classically defined by CD56 expression, yet increasing evidence supports the NK cell status of the CD56-CD16+ subset which we discuss herein. We then discuss the evidence linking CD56-CD16+ NK cells to chronic virus infections, and the potential immunological pathways that are altered by long-term infection that could be inducing the population's differentiation. An important aspect of NK cell regulation is their interaction with human leukocyte antigen (HLA) class-I molecules, and we highlight work that indicates both virus and genetic-mediated variations in HLA expression that have been linked to CD56-CD16+ NK cell frequencies. Finally, we offer a perspective on CD56-CD16+ NK cell function, taking into account recent work that implies the subset is comparable to CD56+CD16+ NK cell functionality in antibody-dependent cell cytotoxicity response, and the definition of CD56-CD16+ NK cell subpopulations with varying degranulation capacity against target cells.
Collapse
Affiliation(s)
- Alexander T H Cocker
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
24
|
Amanda M, Daniela C, Fernando G, Silvia M, Sofia L, Márcia D, Francisco A, Jeane V, Cármino DS. Association of KIR genes polymorphism and its HLA ligands in Diffuse Large B-cell Lymphoma. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2023; 23:438-445. [PMID: 37105848 DOI: 10.1016/j.clml.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Non-Hodgkin lymphoma (NHL) is a heterogeneous disease, with each subtype associated with different risk factors. Within this group, diffuse large B-cell lymphoma (DLBCL) can be highlighted, the most common type of NHL.NK cells are key components of the innate immune response and may play an important antitumor role. OBJECTIVE The objective of the present work was to determine the polymorphism of KIR genes in Brazilian patients with DLBCL. MATERIALS AND METHODS Furthermore, we evaluated the association between the polymorphism of these genes and their ligands with the clinical course of the disease. For the study, 112 patients with DLBCL and 222 voluntary blood and bone marrow donors. The genetic material of these samples were extracted for KIR and HLA typing, determination of HLA ligands, determination of the KIR haplotype and search for the deletion of 22 bp in the KIR2DS4 gene. KIR genotype distributions were made by direct counting using 2 × 2 contingency tables using Fisher's exact test. The magnitude of the association was measured by odds ratio (OR) and 95% confidence interval. P values <.05 were considered significant. Overall survival and progression-free survival were assessed with a Kaplan-Meier estimator. RESULTS In the present study, an association of HLA-Bw4 and HLA-Bw480I ligand was found with more advanced stages of the disease. Also, an association of the KIR2DL3 gene with a better response to treatment was found. CONCLUSION With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment was found. With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment.Non-Hodgkin lymphoma (NHL) is a heterogeneous disease, with each subtype associated with different risk factors. Within this group, diffuse large B-cell lymphoma (DLBCL) can be highlighted, the most common type of NHL.NK cells are key components of the innate immune response and may play an important antitumor role. The objective of the present work was to determine the polymorphism of KIR genes in Brazilian patients with DLBCL. Furthermore, we evaluated the association between the polymorphism of these genes and their ligands with the clinical course of the disease. For the study, 112 patients with DLBCL and 222 voluntary blood and bone marrow donors. The genetic material of these samples were extracted for KIR and HLA typing, determination of HLA ligands, determination of the KIR haplotype and search for the deletion of 22 bp in the KIR2DS4 gene. KIR genotype distributions were made by direct counting using 2 × 2 contingency tables using Fisher's exact test. The magnitude of the association was measured by odds ratio (OR) and 95% confidence interval. P values <.05 were considered significant. Overall survival and progression-free survival were assessed with a Kaplan-Meier estimator. In the present study, an association of HLA-Bw4 and HLA-Bw480I ligand was found with more advanced stages of the disease. Also, an association of the KIR2DL3 gene with a better response to treatment was found. With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment was found. With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment.
Collapse
|
25
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
26
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
27
|
Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: Physiological and pathological influences. Front Immunol 2023; 14:1087155. [PMID: 36742337 PMCID: PMC9896005 DOI: 10.3389/fimmu.2023.1087155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells represent a critical defense against viral infections and cancers. NK cells require integration of activating and inhibitory NK cell receptors to detect target cells and the balance of these NK cell inputs defines the global NK cell response. The sensitivity of the response is largely defined by interactions between self-major histocompatibility complex class I (MHC-I) molecules and specific inhibitory NK cell receptors, so-called NK cell education. Thus, NK cell education is a crucial process to generate tuned effector NK cell responses in different diseases. In this review, we discuss the relationship between NK cell education and physiologic factors (type of self-MHC-I, self-MHC-I allelic variants, variant of the self-MHC-I-binding peptides, cytokine effects and inhibitory KIR expression) underlying NK cell education profiles (effector function or metabolism). Additionally, we describe the broad-spectrum of effector educated NK cell functions on different pathologies (such as HIV-1, CMV and tumors, among others).
Collapse
Affiliation(s)
- Philippe Rascle
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Kristensen AB, Wragg KM, Vanderven HA, Lee WS, Silvers J, Kent HE, Grant MD, Kelleher AD, Juno JA, Kent SJ, Parsons MS. Phenotypic and functional characteristics of highly differentiated CD57+NKG2C+ NK cells in HIV-1-infected individuals. Clin Exp Immunol 2022; 210:163-174. [PMID: 36053502 PMCID: PMC9750827 DOI: 10.1093/cei/uxac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are important anti-viral effector cells. The function and phenotype of the NK cells that constitute an individual's NK cell repertoire can be influenced by ongoing or previous viral infections. Indeed, infection with human cytomegalovirus (HCMV) drives the expansion of a highly differentiated NK cell population characterized by expression of CD57 and the activating NKG2C receptor. This NK cell population has also been noted to occur in HIV-1-infected individuals. We evaluated the NK cells of HIV-1-infected and HIV-1-uninfected individuals to determine the relative frequency of highly differentiated CD57+NKG2C+ NK cells and characterize these cells for their receptor expression and responsiveness to diverse stimuli. Highly differentiated CD57+NKG2C+ NK cells occurred at higher frequencies in HCMV-infected donors relative to HCMV-uninfected donors and were dramatically expanded in HIV-1/HCMV co-infected donors. The expanded CD57+NKG2C+ NK cell population in HIV-1-infected donors remained stable following antiretroviral therapy. CD57+NKG2C+ NK cells derived from HIV-1-infected individuals were robustly activated by antibody-dependent stimuli that contained anti-HIV-1 antibodies or therapeutic anti-CD20 antibody, and these NK cells mediated cytolysis through NKG2C. Lastly, CD57+NKG2C+ NK cells from HIV-1-infected donors were characterized by reduced expression of the inhibitory NKG2A receptor. The abundance of highly functional CD57+NKG2C+ NK cells in HIV-1-infected individuals raises the possibility that these NK cells could play a role in HIV-1 pathogenesis or serve as effector cells for therapeutic/cure strategies.
Collapse
Affiliation(s)
- Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Silvers
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Helen E Kent
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Sungur CM, Wang Q, Ozantürk AN, Gao H, Schmitz AJ, Cella M, Yokoyama WM, Shan L. Human NK cells confer protection against HIV-1 infection in humanized mice. J Clin Invest 2022; 132:e162694. [PMID: 36282589 PMCID: PMC9753998 DOI: 10.1172/jci162694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection, improved functional development of human NK cells in these hosts is needed. Here, we report the humanized MISTRG-6-15 mouse model, in which NK cells were quick to expand and exhibit degranulation, cytotoxicity, and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells, antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover, a broadly neutralizing antibody, PGT121, enhanced NK cell function in vivo, consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall, our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs.
Collapse
Affiliation(s)
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine
| | | | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine
| | | | | | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
30
|
Zhang D, Zhang N, Wang Y, Zhang Q, Wang J, Yao J. Analysis of differentially expressed genes in individuals with noninfectious uveitis based on data in the gene expression omnibus database. Medicine (Baltimore) 2022; 101:e31082. [PMID: 36254061 PMCID: PMC9575823 DOI: 10.1097/md.0000000000031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Noninfectious uveitis (NIU), an intraocular inflammation caused by immune-mediated reactions to eye antigens, is associated with systemic rheumatism and several autoimmune diseases. However, the mechanisms underlying the pathogenesis of uveitis are poorly understood. Therefore, we aimed to identify differentially expressed genes (DEGs) in individuals with NIU and to explore its etiologies using bioinformatics tools. GSE66936 and GSE18781 datasets from the gene expression omnibus (GEO) database were merged and analyzed. Functional enrichment analysis was performed, and protein-protein interaction (PPI) networks were constructed. A total of 89 DEGs were identified. Gene ontology (GO) enrichment analysis identified 21 enriched gene sets. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis identified four core enriched pathways: antigen processing and expression signaling, natural killer (NK) cell-mediated cytotoxicity signaling, glutathione metabolic signal transduction, and arachidonic acid metabolism pathways. PPI network analysis revealed an active component-target network with 40 nodes and 132 edges, as well as several hub genes, including CD27, LTF, NCR3, SLC4A1, CD69, KLRB1, KIR2DL3, KIR3DL1, and GZMK. The eight potential hub genes may be associated with the risk of developing NIU. NK cell-mediated cytotoxicity signaling might be the key molecular mechanism in the occurrence and development of NIU. Our study provided new insights on NIU, its genetics, molecular pathogenesis and new therapeutic targets.
Collapse
Affiliation(s)
- Dandan Zhang
- Dalian Women and Children’s Medical Group, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Ning Zhang
- Heilongjiang University of Chinese Medicine, China
- Dalian Port Hospital
| | - Yan Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
- Heilongjiang University of Chinese Medicine, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Jiadi Wang
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Jing Yao
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
- *Correspondence: Jing Yao, No 26 Heping Road, Xiangfang District, Harbin, China (e-mail: )
| |
Collapse
|
31
|
Vollmers S, Lobermeyer A, Niehrs A, Fittje P, Indenbirken D, Nakel J, Virdi S, Brias S, Trenkner T, Sauer G, Peine S, Behrens GM, Lehmann C, Meurer A, Pauli R, Postel N, Roider J, Scholten S, Spinner CD, Stephan C, Wolf E, Wyen C, Richert L, Norman PJ, Sauter J, Schmidt AH, Hoelzemer A, Altfeld M, Körner C. Host KIR/HLA-C Genotypes Determine HIV-Mediated Changes of the NK Cell Repertoire and Are Associated With Vpu Sequence Variations Impacting Downmodulation of HLA-C. Front Immunol 2022; 13:922252. [PMID: 35911762 PMCID: PMC9334850 DOI: 10.3389/fimmu.2022.922252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.
Collapse
Affiliation(s)
| | | | | | - Pia Fittje
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | - Sebastien Brias
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Gabriel Sauer
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg M.N. Behrens
- Department for Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Clara Lehmann
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anja Meurer
- Center for Internal Medicine and Infectiology, Munich, Germany
| | - Ramona Pauli
- Medizinisches Versorgungszentrum (MVZ) am Isartor, Munich, Germany
| | - Nils Postel
- Prinzmed, Practice for Infectious Diseases, Munich, Germany
| | - Julia Roider
- Department of Internal Medicine IV, Department of Infectious Diseases, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Christoph D. Spinner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph Stephan
- Infectious Diseases Unit, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | | | - Christoph Wyen
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Laura Richert
- University of Bordeaux, Inserm U1219 Bordeaux Population Health, Inria Sistm, Bordeaux, France
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | | | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christian Körner
- Leibniz Institute of Virology, Hamburg, Germany
- *Correspondence: Christian Körner,
| |
Collapse
|
32
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
33
|
Feng Q, Zhou M, Li S, Morimoto L, Hansen H, Myint SS, Wang R, Metayer C, Kang A, Fear AL, Pappas D, Erlich H, Hollenbach JA, Mancuso N, Trachtenberg E, de Smith AJ, Ma X, Wiemels JL. Interaction between maternal killer immunoglobulin-like receptors and offspring HLAs and susceptibility of childhood ALL. Blood Adv 2022; 6:3756-3766. [PMID: 35500222 PMCID: PMC9631572 DOI: 10.1182/bloodadvances.2021006821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) in children is associated with a distinct neonatal cytokine profile. The basis of this neonatal immune phenotype is unknown but potentially related to maternal-fetal immune receptor interactions. We conducted a case-control study of 226 case child-mother pairs and 404 control child-mother pairs to evaluate the role of interaction between HLA genotypes in the offspring and maternal killer immunoglobulin-like receptor (KIR) genotypes in the etiology of childhood ALL, while considering potential mediation by neonatal cytokines and the immune-modulating enzyme arginase-II (ARG-II). We observed different associations between offspring HLA-maternal KIR activating profiles and the risk of ALL in different predicted genetic ancestry groups. For instance, in Latino subjects who experience the highest risk of childhood leukemia, activating profiles were significantly associated with a lower risk of childhood ALL (odds ratio [OR] = 0.59; 95% confidence interval [CI], 0.49-0.71) and a higher level of ARG-II at birth (coefficient = 0.13; 95% CI, 0.04-0.22). HLA-KIR activating profiles were also associated with a lower risk of ALL in non-Latino Asians (OR = 0.63; 95% CI, 0.38-1.01), although they had a lower tumor necrosis factor-α level (coefficient = -0.27; 95% CI, -0.49 to -0.06). Among non-Latino White subjects, no significant association was observed between offspring HLA-maternal KIR interaction and ALL risk or cytokine levels. The current study reports the association between offspring HLA-maternal KIR interaction and the development of childhood ALL with variation by predicted genetic ancestry. We also observed some associations between activating profiles and immune factors related to cytokine control; however, cytokines did not demonstrate causal mediation of the activating profiles on ALL risk.
Collapse
Affiliation(s)
- Qianxi Feng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Mi Zhou
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Libby Morimoto
- School of Public Health, University of California, Berkeley, CA
| | - Helen Hansen
- Department of Neurosurgery, University of California, San Francisco, CA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT
| | | | - Alice Kang
- School of Public Health, University of California, Berkeley, CA
| | - Anna Lisa Fear
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Derek Pappas
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Henry Erlich
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | | | - Adam J. de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
34
|
Mensching L, Hoelzemer A. NK Cells, Monocytes and Macrophages in HIV-1 Control: Impact of Innate Immune Responses. Front Immunol 2022; 13:883728. [PMID: 35711433 PMCID: PMC9197227 DOI: 10.3389/fimmu.2022.883728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/12/2023] Open
Abstract
Rapid and synchronized responses of innate immune cells are an integral part of managing viral spread in acute virus infections. In human immunodeficiency virus type 1 (HIV-1) infection, increased immune control has been associated with the expression of certain natural killer (NK) cell receptors. Further, immune activation of monocytes/macrophages and the presence of specific cytokines was linked to low levels of HIV-1 replication. In addition to the intrinsic antiviral capabilities of NK cells and monocytes/macrophages, interaction between these cell types has been shown to substantially enhance NK cell function in the context of viral infections. This review discusses the involvement of NK cells and monocytes/macrophages in the effective control of HIV-1 and highlights aspects of innate immune crosstalk in viral infections that may be of relevance to HIV-1 infection.
Collapse
Affiliation(s)
- Leonore Mensching
- Research Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelique Hoelzemer
- Research Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
35
|
Bernard NF, Alsulami K, Pavey E, Dupuy FP. NK Cells in Protection from HIV Infection. Viruses 2022; 14:v14061143. [PMID: 35746615 PMCID: PMC9231282 DOI: 10.3390/v14061143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Some people, known as HIV-exposed seronegative (HESN) individuals, remain uninfected despite high levels of exposure to HIV. Understanding the mechanisms underlying their apparent resistance to HIV infection may inform strategies designed to protect against HIV infection. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors use a subset of major histocompatibility (MHC) class I antigens as ligands. This interaction educates NK cells, priming them to respond to cells with reduced MHC class I antigen expression levels as occurs on HIV-infected cells. NK cells can interact with both autologous HIV-infected cells and allogeneic cells bearing MHC antigens seen as non self by educated NK cells. NK cells are rapidly activated upon interacting with HIV-infected or allogenic cells to elicit anti-viral activity that blocks HIV spread to new target cells, suppresses HIV replication, and kills HIV-infected cells before HIV reservoirs can be seeded and infection can be established. In this manuscript, we will review the epidemiological and functional evidence for a role for NK cells in protection from HIV infection.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-(514)-934-1934 (ext. 44584)
| | - Khlood Alsulami
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Erik Pavey
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
36
|
Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. Natural Killer Cells in Antibody Independent and Antibody Dependent HIV Control. Front Immunol 2022; 13:879124. [PMID: 35720328 PMCID: PMC9205404 DOI: 10.3389/fimmu.2022.879124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard,
| | - Sanket Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
37
|
Pymm P, Tenzer S, Wee E, Weimershaus M, Burgevin A, Kollnberger S, Gerstoft J, Josephs TM, Ladell K, McLaren JE, Appay V, Price DA, Fugger L, Bell JI, Schild H, van Endert P, Harkiolaki M, Iversen AKN. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection. Cell Rep 2022; 38:110449. [PMID: 35235807 PMCID: PMC9631117 DOI: 10.1016/j.celrep.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.
Collapse
Affiliation(s)
- Phillip Pymm
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Walter and Eliza Hall Institute of Medical Research, University of Melbourne, 1G Royalparade, Parkville, VIC 3052, Australia
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edmund Wee
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Victor Appay
- Institut National de la Santé et de la Recherche Médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Boulevard de l'Hopital, 75013 Paris, France; International Research Center of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Tenovus Building, CF14 4XN Cardiff, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK
| | - John I Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Maria Harkiolaki
- Structural Biology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
38
|
Dhuyser A, Aarnink A, Pérès M, Jayaraman J, Nemat-Gorgani N, Rubio MT, Trowsdale J, Traherne J. KIR in Allogeneic Hematopoietic Stem Cell Transplantation: Need for a Unified Paradigm for Donor Selection. Front Immunol 2022; 13:821533. [PMID: 35242134 PMCID: PMC8886110 DOI: 10.3389/fimmu.2022.821533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is a lifesaving therapy for hematological malignancies. For years, a fully matched HLA donor was a requisite for the procedure. However, new immunosuppressive strategies have enabled the recruitment of viable alternative donors, particularly haploidentical donors. Over 95% of patients have at least two potential haploidentical donors available to them. To identify the best haploidentical donor, the assessment of new immunogenetic criteria could help. To this end, the clinical benefit of KIR genotyping in aHSCT has been widely studied but remains contentious. This review aims to evaluate the importance of KIR-driven NK cell alloreactivity in the context of aHSCT and explain potential reasons for the discrepancies in the literature. Here, through a non-systematic review, we highlight how the studies in this field and their respective predictive models or scoring strategies could be conceptually opposed, explaining why the role of NK cells remains unclear in aHCST outcomes. We evaluate the limitations of each published prediction model and describe how every scoring strategy to date only partly delivers the requirements for optimally effective NK cells in aHSCT. Finally, we propose approaches toward finding the optimal use of KIR genotyping in aHSCT for a unified criterion for donor selection.
Collapse
Affiliation(s)
- Adèle Dhuyser
- Histocompatibility Laboratory, CHRU de Nancy, Vandoeuvre-les-Nancy, France
- IMoPA6, UMR7365 CNRS, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Alice Aarnink
- Histocompatibility Laboratory, CHRU de Nancy, Vandoeuvre-les-Nancy, France
- IMoPA6, UMR7365 CNRS, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Michaël Pérès
- Histocompatibility Laboratory, CHRU de Nancy, Vandoeuvre-les-Nancy, France
| | - Jyothi Jayaraman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Neda Nemat-Gorgani
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marie Thérèse Rubio
- IMoPA6, UMR7365 CNRS, Université de Lorraine, Vandoeuvre-les-Nancy, France
- Department of Hematology, CHRU de Nancy, Vandoeuvre-les-Nancy, France
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - James Traherne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Harrison GF, Leaton LA, Harrison EA, Kichula KM, Viken MK, Shortt J, Gignoux CR, Lie BA, Vukcevic D, Leslie S, Norman PJ. Allele imputation for the killer cell immunoglobulin-like receptor KIR3DL1/S1. PLoS Comput Biol 2022; 18:e1009059. [PMID: 35192601 PMCID: PMC8896733 DOI: 10.1371/journal.pcbi.1009059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/04/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.
Collapse
Affiliation(s)
- Genelle F. Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica A. Harrison
- Independent Researcher, Broomfield, Colorado, United States of America
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marte K. Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Benedicte A. Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Damjan Vukcevic
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Leslie
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
40
|
Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association of KIR gene polymorphisms with COVID-19 disease. Clin Immunol 2022; 234:108911. [PMID: 34929414 PMCID: PMC8683215 DOI: 10.1016/j.clim.2021.108911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
41
|
Ivison GT, Vendrame E, Martínez-Colón GJ, Ranganath T, Vergara R, Zhao NQ, Martin MP, Bendall SC, Carrington M, Cyktor JC, McMahon DK, Eron J, Jones RB, Mellors JW, Bosch RJ, Gandhi RT, Holmes S, Blish CA. Natural Killer Cell Receptors and Ligands Are Associated With Markers of HIV-1 Persistence in Chronically Infected ART Suppressed Patients. Front Cell Infect Microbiol 2022; 12:757846. [PMID: 35223535 PMCID: PMC8866573 DOI: 10.3389/fcimb.2022.757846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The latent HIV-1 reservoir represents a major barrier to achieving a long-term antiretroviral therapy (ART)-free remission or cure for HIV-1. Natural Killer (NK) cells are innate immune cells that play a critical role in controlling viral infections and have been shown to be involved in preventing HIV-1 infection and, in those who are infected, delaying time to progression to AIDS. However, their role in limiting HIV-1 persistence on long term ART is still uncharacterized. To identify associations between markers of HIV-1 persistence and the NK cell receptor-ligand repertoire, we used twin mass cytometry panels to characterize the peripheral blood NK receptor-ligand repertoire in individuals with long-term antiretroviral suppression enrolled in the AIDS Clinical Trial Group A5321 study. At the time of testing, participants had been on ART for a median of 7 years, with virological suppression <50 copies/mL since at most 48 weeks on ART. We found that the NK cell receptor and ligand repertoires did not change across three longitudinal samples over one year-a median of 25 weeks and 50 weeks after the initial sampling. To determine the features of the receptor-ligand repertoire that associate with markers of HIV-1 persistence, we performed a LASSO normalized regression. This analysis revealed that the NK cell ligands CD58, HLA-B, and CRACC, as well as the killer cell immunoglobulin-like receptors (KIRs) KIR2DL1, KIR2DL3, and KIR2DS4 were robustly predictive of markers of HIV-1 persistence, as measured by total HIV-1 cell-associated DNA, HIV-1 cell-associated RNA, and single copy HIV-RNA assays. To characterize the roles of cell populations defined by multiple markers, we augmented the LASSO analysis with FlowSOM clustering. This analysis found that a less mature NK cell phenotype (CD16+CD56dimCD57-LILRB1-NKG2C-) was associated with lower HIV-1 cell associated DNA. Finally, we found that surface expression of HLA-Bw6 measured by CyTOF was associated with lower HIV-1 persistence. Genetic analysis revealed that this was driven by lower HIV-1 persistence in HLA-Bw4/6 heterozygotes. These findings suggest that there may be a role for NK cells in controlling HIV-1 persistence in individuals on long-term ART, which must be corroborated by future studies.
Collapse
Affiliation(s)
- Geoffrey T Ivison
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elena Vendrame
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Giovanny J Martínez-Colón
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Thanmayi Ranganath
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemary Vergara
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nancy Q Zhao
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National, Cancer Institute, Frederick, MD, United States.,Laboratory of Integrative Cancer, Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National, Cancer Institute, Frederick, MD, United States.,Laboratory of Integrative Cancer, Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.,Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Boston, MA, United States
| | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Deborah K McMahon
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Joseph Eron
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for AIDS Research, Harvard University, Boston, MA, United States
| | - Susan Holmes
- Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, CA, United States
| | - Catherine A Blish
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | | |
Collapse
|
42
|
Wu Z, Park S, Lau CM, Zhong Y, Sheppard S, Sun JC, Das J, Altan-Bonnet G, Hsu KC. Dynamic variability in SHP-1 abundance determines natural killer cell responsiveness. Sci Signal 2021; 14:eabe5380. [PMID: 34752140 DOI: 10.1126/scisignal.abe5380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zeguang Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Soo Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sam Sheppard
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Pelotonia Institute of ImmunoOncology, Wexner College of Medicine, Ohio State University, Columbus, OH 43210, USA.,Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.,Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
43
|
Zhou J, Wu H, Guo C, Li B, Zhou LL, Liang AB, Fu JF. A comprehensive genome-wide analysis of long non-coding RNA and mRNA expression profiles of JAK2V617F-positive classical myeloproliferative neoplasms. Bioengineered 2021; 12:10564-10586. [PMID: 34738870 PMCID: PMC8810098 DOI: 10.1080/21655979.2021.2000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the progression of myeloid neoplasms, but the role of lncRNAs in the JAK2V617F-positive subtype of classical myeloproliferative neoplasms (cMPNs) remains unclear. This study was conducted to clarify the expression and regulation patterns of lncRNAs in JAK2V617F-positive cMPNs, and to explore new potential carcinogenic factors of cMPNs. Bioinformatics analysis of microarray detection and wet testing verification were performed to study the expression and regulation signature of differentially expressed lncRNAs (DELs) and related genes (DEGs) in cMPNs. The expression of lncRNAs and mRNAs were observed to significantly dysregulated in JAK2V617F-positive cMPN patients compared with the normal controls. Co-expression analysis indicated that there were significant differences of the co-expression pattern of lncRNAs and mRNAs in JAK2V617F-positive cMPN patients compared to normal controls. GO and KEGG pathway analysis of DEGs and DELs showed the involvement of several pathways previously reported to regulate the pathogenesis of leukemia and cMPNs. Cis- and trans-regulation analysis of lncRNAs showed that ZNF141, DHX29, NOC2L, MAS1L, AFAP1L1, and CPN2 were significantly cis-regulated by lncRNA ENST00000356347, ENST00000456816, hsa-mir-449c, NR_026874, TCONS_00012136, uc003lqp.2, and ENST00000456816, respectively, and DELs were mostly correlated with transcription factors including CTBP2, SUZ12, REST, STAT2, and GATA4 to jointly regulate multiple target genes. In summary, expression profiles of lncRNAs and mRNAs were significantly altered in JAK2V617F-positive cMPNs, the relative signaling pathway, co-expression, cis- and trans-regulation were regulated by dysregulation of lncRNAs and several important genes, such as ITGB3, which may act as a promising carcinogenic factor, warrant further investigation.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| |
Collapse
|
44
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
45
|
Altered effect of killer immunoglobulin-like receptor-ligand mismatch by graft versus host disease prophylaxis in cord blood transplantation. Bone Marrow Transplant 2021; 56:3059-3067. [PMID: 34561558 DOI: 10.1038/s41409-021-01469-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
The role of killer immunoglobulin-like receptor-ligand mismatch (KIR-ligand mismatch) between donors and recipients undergoing cord blood transplantation (CBT) is controversial. If each immunosuppressant differently affects natural killer (NK) cell function, the effect of KIR-ligand mismatch may be altered depending on the type of graft versus host disease (GVHD) prophylaxis. To verify this hypothesis, the difference in the effect of KIR-ligand mismatch was retrospectively assessed between patients who received CBT for acute leukemia, myelodysplastic syndrome, or chronic myeloid leukemia, as well as GVHD prophylaxis comprising tacrolimus plus methotrexate (MTX) or mycophenolate mofetil (MMF). In the MMF group (n = 1363), KIR-ligand mismatch augmented the incidence of non-relapse mortality (NRM; hazard ratio [HR], 1.40; P = 0.008), which worsened overall survival (OS; HR, 1.30, P = 0.0077). In the analysis of each KIR-ligand mismatch type, HLA-C2 mismatch had a favorable effect on relapse incidence (HR, 0.56; P = 0.0043) and OS (HR, 0.72; P = 0.037) only in the MTX group. In the MMF group, HLA-A3/A11 mismatch worsened NRM (HR, 1.93; P < 0.001) and OS (HR, 1.48; P = 0.014). These results imply that the effects of KIR-ligand mismatch differ with the type of GVHD prophylaxis and that assessing the KIR-ligand mismatch status is important for CBT.
Collapse
|
46
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
47
|
Licensing Natural Killers for Antiviral Immunity. Pathogens 2021; 10:pathogens10070908. [PMID: 34358058 PMCID: PMC8308748 DOI: 10.3390/pathogens10070908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable discrimination between self- and non-self molecules on the surface of host target cells. In this regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are versatile in that they can also positively impact lymphocyte functionality, as exemplified by their role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede virus-specific NK responses for reasons that remain poorly understood. This review highlights a role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection, their impact on virus-specific NK cells during acute infection, and their potential to affect viral pathogenesis and disease.
Collapse
|
48
|
Yokoyama H, Kanda J, Kawahara Y, Uchida N, Tanaka M, Takahashi S, Onizuka M, Noguchi Y, Ozawa Y, Katsuoka Y, Ota S, Ohta T, Kimura T, Kanda Y, Ichinohe T, Atsuta Y, Nakasone H, Morishima S. Reduced leukemia relapse through cytomegalovirus reactivation in killer cell immunoglobulin-like receptor-ligand-mismatched cord blood transplantation. Bone Marrow Transplant 2021; 56:1352-1363. [PMID: 33420393 DOI: 10.1038/s41409-020-01203-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Cytomegalovirus (CMV) reactivation in cord blood transplantation (CBT) may result in the proliferation and maturation of natural killer (NK) cells. Similarly, a mismatch of the killer cell immunoglobulin-like receptor (KIR)-ligand induces NK cell activation. Therefore, if CMV reactivation occurs in the presence of KIR-ligand mismatch, it might improve CBT outcomes. We assessed the difference in the effect of CMV reactivation in the presence of KIR-ligand mismatch on disease relapse in the graft-versus-host direction. A total of 2840 patients with acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, and chronic myeloid leukemia were analyzed. Among those with a HLA-Bw4/A3/A11 (KIR3DL-ligand) mismatch, CMV reactivation up to 100 days following CBT had a favorable impact on relapse (18.9% vs. 32.9%, P = 0.0149). However, this effect was not observed in cases without the KIR3DL-ligand mismatch or in those with or without a HLA-C1/C2 (KIR2DL-ligand) mismatch. The multivariate analysis suggested that CMV reactivation had a favorable effect on relapse only in cases with a KIR3DL-ligand mismatch (hazard ratio 0.54, P = 0.032). Moreover, the interaction effect between CMV reactivation and KIR3DL-ligand mismatch on relapse was significant (P = 0.039). Thus, our study reveals the association between KIR-ligand mismatches and CMV reactivation, which will enhance CBT outcomes.
Collapse
Affiliation(s)
- Hisayuki Yokoyama
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Takahashi
- Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Yuma Noguchi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Yuna Katsuoka
- Department of Hematology, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takanori Ohta
- Department of Hematology, Kitakyushu City Hospital Organization, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Takafumi Kimura
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Ibaraki, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan.,Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
49
|
HLA-A alleles influencing NK cell function impact AML relapse following allogeneic hematopoietic cell transplantation. Blood Adv 2021; 4:4955-4964. [PMID: 33049053 DOI: 10.1182/bloodadvances.2020002086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-B allotypes exhibiting the Bw4 epitope trigger variable inhibitory signaling of KIR3DL1 receptor types, where strong inhibitory HLA-B and KIR3DL1 allele combinations are associated with increased risk for relapse of acute myelogenous leukemia (AML) following allogeneic hematopoietic cell transplantation (HCT). Several HLA-A allotypes also exhibit the Bw4 epitope. Studies with natural killer (NK) cell clones have demonstrated NK inhibition via KIR3DL1 by HLA-A Bw4+ allotypes, but did not delineate strengths of inhibition or hierarchies of NK education. Using primary NK cells from healthy donors, we demonstrate that HLA-A*23, HLA-A*24, and HLA-A*32 proteins are expressed at different densities and exhibit different capacities to educate and inhibit KIR3DL1-expressing NK cells in vitro. Among the HLA-A Bw4+ allotypes, HLA-A*24 and HLA-A*32 demonstrate the strongest inhibitory capacity. To determine if HLA-A allotypes with strong inhibitory capacity have similar negative impact in allogeneic HCT as HLA-B Bw4+ allotypes, we performed a retrospective analysis of 1729 patients with AML who received an allogeneic HCT from a 9/10 or 10/10 HLA allele-matched unrelated donor. Examination of the donor-recipient pairs whose Bw4 epitope was exclusively contributed from HLA-A*24 and A*32 allotypes revealed that patients with HLA-A*24 who received an allograft from a KIR3DL1+ donor experienced a higher risk of disease relapse (hazard ratio, 1.65; 95% confidence interval, 1.17-2.32; P = .004) when compared with patients without a Bw4 epitope. These findings indicate that despite weak affinity interactions with KIR3DL1, common HLA-A allotypes with the Bw4 epitope can interact with KIR3DL1+ donor NK cells with clinically meaningful impact and provide additional insight to donor NK alloreactivity in HLA-matched HCT.
Collapse
|
50
|
Tao S, He Y, Kichula KM, Wang J, He J, Norman PJ, Zhu F. High-Resolution Analysis Identifies High Frequency of KIR-A Haplotypes and Inhibitory Interactions of KIR With HLA Class I in Zhejiang Han. Front Immunol 2021; 12:640334. [PMID: 33995358 PMCID: PMC8121542 DOI: 10.3389/fimmu.2021.640334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) interact with human leukocyte antigen (HLA) class I molecules, modulating critical NK cell functions in the maintenance of human health. Characterizing the distribution and characteristics of KIR and HLA allotype diversity across defined human populations is thus essential for understanding the multiple associations with disease, and for directing therapies. In this study of 176 Zhejiang Han individuals from Southeastern China, we describe diversity of the highly polymorphic KIR and HLA class I genes at high resolution. KIR-A haplotypes, which carry four inhibitory receptors specific for HLA-A, B or C, are known to associate with protection from infection and some cancers. We show the Chinese Southern Han from Zhejiang are characterized by a high frequency of KIR-A haplotypes and a high frequency of C1 KIR ligands. Accordingly, interactions of inhibitory KIR2DL3 with C1+HLA are more frequent in Zhejiang Han than populations outside East Asia. Zhejiang Han exhibit greater diversity of inhibitory than activating KIR, with three-domain inhibitory KIR exhibiting the greatest degree of polymorphism. As distinguished by gene copy number and allele content, 54 centromeric and 37 telomeric haplotypes were observed. We observed 6% of the population to have KIR haplotypes containing large-scale duplications or deletions that include complete genes. A unique truncated haplotype containing only KIR2DL4 in the telomeric region was also identified. An additional feature is the high frequency of HLA-B*46:01, which may have arisen due to selection pressure from infectious disease. This study will provide further insight into the role of KIR and HLA polymorphism in disease susceptibility of Zhejiang Chinese.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Yanmin He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|