1
|
Gambichler T, Girke S, Abu Rached N, Susok L, Becker JC, Schulze HJ, Hirsch T, Kückelhaus M, Wellenbrock S. Low Intratumoral CD200 Protein Expression in Primary Merkel Cell Carcinoma Is a Strong Predictor for Disease Relapse. Cancers (Basel) 2025; 17:822. [PMID: 40075669 PMCID: PMC11899218 DOI: 10.3390/cancers17050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare and frequently fatal form of skin cancer. Apart from Programmed Cell Death Protein 1 (PD-1)/Programmed Death-Ligand 1 (PD-L1) signaling, there is a lack of knowledge regarding other immune checkpoint molecules. Recent studies have observed elevated glycoprotein CD200 (also known as OX-2) mRNA expression in in different types of tumors, with CD200R-expressing myeloid cells present in the tumor microenvironment. However, the potential role of the CD200/CD200 axis as an additional checkpoint modulator remains widely unexplored. The aim of this study was to determine the intratumoral protein expression of CD200 as well as CD200R in a larger cohort of MCC patients and to correlate the expression levels with patients' outcomes. METHODS In this multicenter study, we investigated 68 patients with MCC (68 primary tumors and 15 corresponding metastases). Immunohistochemistry (IHC) was performed for CD200 as well as CD200R. Digital quantification and analysis of IHC were performed using QuPath-0.2.3. RESULTS CD200 and CD200R expression was observed in 100% of cases. Univariate analysis revealed that low CD200 expression in primary tumors (p = 0.0007, HR 9.35), male sex (p = 0.045, HR 2.41), and immunosuppression (p = 0.0031, HR 6.36) were significantly associated with MCC relapse. Low CD200 expression was also linked to prior immune checkpoint inhibitors (ICI) and/or chemotherapy treatment (p = 0.037). Multivariable analysis confirmed that low CD200 expression (p = 0.0012, HR 5.25) and immunosuppression (p = 0.0056, HR 4.11) were independent predictors of MCC relapse. CONCLUSIONS Expression of CD200/CD200R proteins is very high in MCC and may thus be of diagnostic value. More importantly, low intratumoral CD200 protein expression in primary MCC represents a robust independent predictor of MCC relapse.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, 44787 Bochum, Germany; (S.G.); (N.A.R.); (L.S.)
- Department of Dermatology, Klinikum Dortmund gGmbH, University Witten/Herdecke, 44137 Dortmund, Germany
- Department of Dermatology, Christian Hospital Unna, 59423 Unna, Germany
| | - Sophia Girke
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, 44787 Bochum, Germany; (S.G.); (N.A.R.); (L.S.)
| | - Nessr Abu Rached
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, 44787 Bochum, Germany; (S.G.); (N.A.R.); (L.S.)
| | - Laura Susok
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, 44787 Bochum, Germany; (S.G.); (N.A.R.); (L.S.)
- Department of Dermatology, Klinikum Dortmund gGmbH, University Witten/Herdecke, 44137 Dortmund, Germany
| | - Jürgen C. Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Department of Dermatology, University Duisburg-Essen, 45122 Essen, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Tobias Hirsch
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, 48157 Munster, Germany; (T.H.); (M.K.); (S.W.)
- Department of Plastic Surgery, University Hospital Munster, 48149 Munster, Germany
- Department of Plastic and Reconstructive Surgery, Institute for Musculoskeletal Medicine, University Hospital Munster, 48149 Munster, Germany
| | - Maximilian Kückelhaus
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, 48157 Munster, Germany; (T.H.); (M.K.); (S.W.)
- Department of Plastic Surgery, University Hospital Munster, 48149 Munster, Germany
- Department of Plastic and Reconstructive Surgery, Institute for Musculoskeletal Medicine, University Hospital Munster, 48149 Munster, Germany
| | - Sascha Wellenbrock
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, 48157 Munster, Germany; (T.H.); (M.K.); (S.W.)
- Department of Plastic Surgery, University Hospital Munster, 48149 Munster, Germany
- Department of Plastic and Reconstructive Surgery, Institute for Musculoskeletal Medicine, University Hospital Munster, 48149 Munster, Germany
| |
Collapse
|
2
|
Kinoshita S, Terai T, Nagai M, Nakamura K, Kohara Y, Yasuda S, Matsuo Y, Doi S, Sakata T, Migita K, Ouji-Sageshima N, Ito T, Sho M. Clinical significance and therapeutic implication of CD200 in pancreatic cancer. Pancreatology 2024; 24:1280-1287. [PMID: 39419752 DOI: 10.1016/j.pan.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND CD200, a negative regulator of T cells as well as a marker for cancer stem cells, represents a significant prognostic factor and potential therapeutic target in certain cancers. However, its clinical significance remains unknown in pancreatic ductal adenocarcinoma (PDAC). METHODS CD200 was assessed in 220 resected PDAC patients who underwent surgery with or without neoadjuvant chemoradiotherapy (NACRT). We examined the clinicopathological outcomes associated with CD200 and further assessed its clinical implications regarding immunological and cancer stem cell properties. RESULTS NACRT was associated with higher CD200 expression (66.4 % vs. 32.2 %, P < 0.001) compared to upfront surgery. CD200 was identified as an independent poor prognostic factor in NACRT (hazard ratio 1.90, 95 % confidence interval 1.12-3.23, P = 0.016), but not in upfront surgery patients. Post-recurrence survival was significantly worse in CD200+ patients compared to CD200- patients in the NACRT group, but there was no significant difference observed in the upfront surgery group. CD200 expression was correlated with significantly lower levels of CD4+, CD8+, and CD45RO+ tumor-infiltrating lymphocytes. Furthermore, the correlation of CD200 with pancreatic cancer stem cell markers CD44/CD24/ESA was stronger in irradiated human pancreatic cancer cells. CONCLUSIONS Our data underscore novel roles for CD200 in immune evasion as well as therapy resistance in pancreatic cancer. CD200 may represent a novel poor prognostic predictive factor and potential therapeutic target for PDAC with NACRT.
Collapse
Affiliation(s)
- Shoichi Kinoshita
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Taichi Terai
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Minako Nagai
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kota Nakamura
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Yuichiro Kohara
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Satoshi Yasuda
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Yasuko Matsuo
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shunsuke Doi
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Takeshi Sakata
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kazuhiro Migita
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| |
Collapse
|
3
|
Dunbar ZT, González-Ochoa S, Kanagasabai T, Ivanova A, Shanker A. Differential Effector Function of Tissue-Specific Natural Killer Cells against Lung Tumors. J Innate Immun 2024; 16:573-594. [PMID: 39561728 PMCID: PMC11644122 DOI: 10.1159/000542078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors. METHODS Using hanging drop tumor spheroid and subcutaneously established LL/2 (LLC1) lung tumor models, we examined NK cell receptor diversity and its correlation with tissue-specific cytotoxicity through multiparametric flow cytometry, fluorescence imaging, and cytotoxicity assays. RESULTS We identified distinct patterns of cell surface receptors expression on tissue-specific NK cells that are crucial for antitumor activity. Linear regression mathematical analyses further revealed significant positive correlations between activation-associated cell surface receptors and cytotoxic capacity in NK cells from tissues such as the liver and bone marrow. CONCLUSION These findings underscore the differential effector capacities of NK cells from distinct tissues, even prior to exposure to LL/2 tumor cells. This highlights the significance of tissue-specific NK cell heterogeneity and its impact on their antitumor cytotoxicity. Recognizing these distinct tissue-specific receptor expression patterns will be instrumental in developing more efficacious NK cell-based cancer treatments.
Collapse
Affiliation(s)
- Zerick Terrell Dunbar
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Alla Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
4
|
Zhang Y, Zhong F, Liu L. Single-cell transcriptional atlas of tumor-associated macrophages in breast cancer. Breast Cancer Res 2024; 26:129. [PMID: 39232806 PMCID: PMC11373130 DOI: 10.1186/s13058-024-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The internal heterogeneity of breast cancer, notably the tumor microenvironment (TME) consisting of malignant and non-malignant cells, has been extensively explored in recent years. The cells in this complex cellular ecosystem activate or suppress tumor immunity through phenotypic changes, secretion of metabolites and cell-cell communication networks. Macrophages, as the most abundant immune cells within the TME, are recruited by malignant cells and undergo phenotypic remodeling. Tumor-associated macrophages (TAMs) exhibit a variety of subtypes and functions, playing significant roles in impacting tumor immunity. However, their precise subtype delineation and specific function remain inadequately defined. METHODS The publicly available single-cell transcriptomes of 49,141 cells from eight breast cancer patients with different molecular subtypes and stages were incorporated into our study. Unsupervised clustering and manual cell annotation were employed to accurately classify TAM subtypes. We then conducted functional analysis and constructed a developmental trajectory for TAM subtypes. Subsequently, the roles of TAM subtypes in cell-cell communication networks within the TME were explored using endothelial cells (ECs) and T cells as key nodes. Finally, analyses were repeated in another independent publish scRNA datasets to validate our findings for TAM characterization. RESULTS TAMs are accurately classified into 7 subtypes, displaying anti-tumor or pro-tumor roles. For the first time, we identified a new TAM subtype capable of proliferation and expansion in breast cancer-TUBA1B+ TAMs playing a crucial role in TAMs diversity and tumor progression. The developmental trajectory illustrates how TAMs are remodeled within the TME and undergo phenotypic and functional changes, with TUBA1B+ TAMs at the initial point. Notably, the predominant TAM subtypes varied across different molecular subtypes and stages of breast cancer. Additionally, our research on cell-cell communication networks shows that TAMs exert effects by directly modulating intrinsic immunity, indirectly regulating adaptive immunity through T cells, as well as influencing tumor angiogenesis and lymphangiogenesis through ECs. CONCLUSIONS Our study establishes a precise single-cell atlas of breast cancer TAMs, shedding light on their multifaceted roles in tumor biology and providing resources for targeting TAMs in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Yupeng Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Zhong
- Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Sun W, Hu S, Wang X. Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies. Cancer Commun (Lond) 2024; 44:1071-1097. [PMID: 39073258 PMCID: PMC11492363 DOI: 10.1002/cac2.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
6
|
Wedig J, Jasani S, Mukherjee D, Lathrop H, Matreja P, Pfau T, D'Alesio L, Guenther A, Fenn L, Kaiser M, Torok MA, McGue J, Sizemore GM, Noonan AM, Dillhoff ME, Blaser BW, Frankel TL, Culp S, Hart PA, Cruz-Monserrate Z, Mace TA. CD200 is overexpressed in the pancreatic tumor microenvironment and predictive of overall survival. Cancer Immunol Immunother 2024; 73:96. [PMID: 38619621 PMCID: PMC11018596 DOI: 10.1007/s00262-024-03678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic cancer is an aggressive disease with a 5 year survival rate of 13%. This poor survival is attributed, in part, to limited and ineffective treatments for patients with metastatic disease, highlighting a need to identify molecular drivers of pancreatic cancer to target for more effective treatment. CD200 is a glycoprotein that interacts with the receptor CD200R and elicits an immunosuppressive response. Overexpression of CD200 has been associated with differential outcomes, depending on the tumor type. In the context of pancreatic cancer, we have previously reported that CD200 is expressed in the pancreatic tumor microenvironment (TME), and that targeting CD200 in murine tumor models reduces tumor burden. We hypothesized that CD200 is overexpressed on tumor and stromal populations in the pancreatic TME and that circulating levels of soluble CD200 (sCD200) have prognostic value for overall survival. We discovered that CD200 was overexpressed on immune, stromal, and tumor populations in the pancreatic TME. Particularly, single-cell RNA-sequencing indicated that CD200 was upregulated on inflammatory cancer-associated fibroblasts. Cytometry by time of flight analysis of PBMCs indicated that CD200 was overexpressed on innate immune populations, including monocytes, dendritic cells, and monocytic myeloid-derived suppressor cells. High sCD200 levels in plasma correlated with significantly worse overall and progression-free survival. Additionally, sCD200 correlated with the ratio of circulating matrix metalloproteinase (MMP) 3: tissue inhibitor of metalloproteinase (TIMP) 3 and MMP11/TIMP3. This study highlights the importance of CD200 expression in pancreatic cancer and provides the rationale for designing novel therapeutic strategies that target this protein.
Collapse
Affiliation(s)
- Jessica Wedig
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Shrina Jasani
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Debasmita Mukherjee
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, USA
| | - Hannah Lathrop
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Priya Matreja
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy Pfau
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Liliana D'Alesio
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Abigail Guenther
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Lexie Fenn
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Morgan Kaiser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Molly A Torok
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
| | - Jake McGue
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Gina M Sizemore
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, USA
| | - Anne M Noonan
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Mary E Dillhoff
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Bradley W Blaser
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Timothy L Frankel
- Department of Surgical Oncology, University of Michigan, Ann Arbor, USA
| | - Stacey Culp
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Phil A Hart
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA
| | - Thomas A Mace
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, USA.
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W. 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Pang ZQ, Wang JS, Wang JF, Wang YX, Ji B, Xu YD, He JX, Zhang L, Zhang LQ, Ding BC, Liu Y, Ren MH. JAM3: A prognostic biomarker for bladder cancer via epithelial-mesenchymal transition regulation. BIOMOLECULES & BIOMEDICINE 2024; 24:897-911. [PMID: 38400838 PMCID: PMC11293228 DOI: 10.17305/bb.2024.9979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Understanding the intricate relationship between prognosis, immune function, and molecular markers in bladder cancer (BC) demands sophisticated analytical methods. To identify novel biomarkers for predicting prognosis and immune function in BC patients, we combined weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression analysis. This was conducted using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Ultimately, we screened the junctional adhesion molecule 3 (JAM3) as an independent risk factor in BC. High levels of JAM3 were linked to adverse clinical parameters, such as higher T and N stages. Additionally, a JAM3-based nomogram model accurately predicted 1-, 3- and 5-year survival rates of BC patients, indicating potential clinical utility. Functional enrichment analysis revealed that high JAM3 expression activated the calcium signaling pathway, the extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway, and was positively correlated with genes associated with epithelial-mesenchymal transition (EMT). Subsequently, we found that overexpression of JAM3 promoted the migration and invasion abilities in BC cells, regulating the expression levels of N-cadherin, matrix metallopeptidase 2 (MMP2), and Claudin-1 thereby promoting EMT levels. Additionally, we showed that JAM3 was negatively correlated with anti-tumor immune cells such as CD8+ T cells, while positively correlated with pro-tumor immune cells such as M2 macrophages, suggesting its involvement in immune cell infiltration. The immune checkpoint CD200 also showed a positive correlation with JAM3. Our findings revealed that elevated JAM3 levels are predictive of poor prognosis and immune cell infiltration in BC patients by regulating the EMT process.
Collapse
Affiliation(s)
- Zhong-qi Pang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian-she Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin-feng Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ya-xuan Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Ji
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-dan Xu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jia-xin He
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Zhang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-qiu Zhang
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei-chen Ding
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat sen University, Shenzhen, Guangdong, China
| | - Ming-hua Ren
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Li L, Li A, Jin H, Li M, Jia Q. Inhibitory receptors and checkpoints on NK cells: Implications for cancer immunotherapy. Pathol Res Pract 2024; 253:155003. [PMID: 38042093 DOI: 10.1016/j.prp.2023.155003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
With the success of immunosuppressive checkpoint in tumor therapy, the corresponding adverse response and drug resistance defects have been exposed. T cells and NK cells are the body's immune system of the two substantial main forces. in recent years, study of T cell checkpoints appeared a certain block, such as PD-1 the effect not benign, on the distribution of NK cell surface excitatory and inhibitory receptors under normal conditions to maintain steady, could be targeted in the tumor treatment blockade have therapeutic effect. This paper reviews the function of NK cells and the effects of corresponding receptors in various types of tumors, providing a direction for the selection of appropriate gate control sites for future treatment.
Collapse
Affiliation(s)
- Lingfei Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ang Li
- Department of Cardiology, 2nd Medical Center of PLA General Hospital, Beijing, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
9
|
Nip C, Wang L, Liu C. CD200/CD200R: Bidirectional Role in Cancer Progression and Immunotherapy. Biomedicines 2023; 11:3326. [PMID: 38137547 PMCID: PMC10741515 DOI: 10.3390/biomedicines11123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
As an immune checkpoint molecule, CD200 serves a foundational role in regulating immune homeostasis and promoting self-tolerance. While CD200 expression occurs in various immune cell subsets and normal tissues, its aberrant expression patterns in hematologic malignancies and solid tumors have been linked to immune evasion and cancer progression under pathological conditions, particularly through interactions with its cognate receptor, CD200R. Through this CD200/CD200R signaling pathway, CD200 exerts its immunosuppressive effects by inhibiting natural killer (NK) cell activation, cytotoxic T cell functions, and M1-polarized macrophage activity, while also facilitating expansion of myeloid-derived suppressor cells (MDSCs) and Tregs. Moreover, CD200/CD200R expression has been linked to epithelial-to-mesenchymal transition and distant metastasis, further illustrating its role in cancer progression. Conversely, CD200 has also been shown to exert anti-tumor effects in certain cancer types, such as breast carcinoma and melanoma, indicating that CD200 may exert bidirectional effects on cancer progression depending on the specific tumor microenvironment (TME). Regardless, modulating the CD200/CD200R axis has garnered clinical interest as a potential immunotherapeutic strategy for cancer therapy, as demonstrated by early-phase clinical trials. However, further research is necessary to fully understand the complex interactions of CD200 in the tumor microenvironment and to optimize its therapeutic potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA
| |
Collapse
|
10
|
Lin CH, Talebian F, Li Y, Zhu J, Liu JQ, Zhao B, Basu S, Pan X, Chen X, Yan P, Carson WE, Xin G, Wen H, Wang R, Li Z, Ma Q, Bai XF. CD200R signaling contributes to unfavorable tumor microenvironment through regulating production of chemokines by tumor-associated myeloid cells. iScience 2023; 26:106904. [PMID: 37275530 PMCID: PMC10239067 DOI: 10.1016/j.isci.2023.106904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ T cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Cho-Hao Lin
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianmin Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jin-Qing Liu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bolin Zhao
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xi Chen
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - William E. Carson
- Department of Surgery, Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Haitao Wen
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ruoning Wang
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Choe D, Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front Oncol 2023; 13:1088038. [PMID: 36756156 PMCID: PMC9900175 DOI: 10.3389/fonc.2023.1088038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint molecules function to inhibit and regulate immune response pathways to prevent hyperactive immune activity from damaging healthy tissues. In cancer patients, targeting these key molecules may serve as a valuable therapeutic mechanism to bolster immune function and restore the body's natural defenses against tumors. CD200, an immune checkpoint molecule, is a surface glycoprotein that is widely but not ubiquitously expressed throughout the body. By interacting with its inhibitory receptor CD200R, CD200 suppresses immune cell activity within the tumor microenvironment, creating conditions that foster tumor growth. Targeting the CD200/CD200R pathway, either through the use of monoclonal antibodies or peptide inhibitors, has shown to be effective in boosting anti-tumor immune activity. This review will explore CD200 and the protein's expression and role within the tumor microenvironment, blood endothelial cells, and lymph nodes. This paper will also discuss the advantages and challenges of current strategies used to target CD200 and briefly summarize relevant preclinical/clinical studies investigating the immunotherapeutic efficacy of CD200/CD200R blockade.
Collapse
|
12
|
Liu JQ, Zhang C, Zhang X, Yan J, Zeng C, Talebian F, Lynch K, Zhao W, Hou X, Du S, Kang DD, Deng B, McComb DW, Bai XF, Dong Y. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release 2022; 345:306-313. [PMID: 35301053 PMCID: PMC9133152 DOI: 10.1016/j.jconrel.2022.03.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Cytokines are important immunotherapeutics with approved drugs for the treatment of human cancers. However, systemic administration of cytokines often fails to achieve adequate concentrations to immune cells in tumors due to dose-limiting toxicity. Thus, developing localized therapy that directly delivers immune-stimulatory cytokines to tumors may improve the therapeutic efficacy. In this study, we generated novel lipid nanoparticles (LNPs) encapsulated with mRNAs encoding cytokines including IL-12, IL-27 and GM-CSF, and tested their anti-tumor activity. We first synthesized ionizable lipid materials containing di-amino groups with various head groups (DALs). The novel DAL4-LNP effectively delivered different mRNAs in vitro to tumor cells and in vivo to tumors. Intratumoral injection of DAL4-LNP loaded with IL-12 mRNA was most potent in inhibiting B16F10 melanoma tumor growth compared to IL-27 or GM-CSF mRNAs in monotherapy. Furthermore, intratumoral injection of dual DAL4-LNP-IL-12 mRNA and IL-27 mRNA showed a synergistic effect in suppressing tumor growth without causing systematic toxicity. Most importantly, intratumoral delivery of IL-12 and IL-27 mRNAs induced robust infiltration of immune effector cells, including IFN-γ and TNF-α producing NK and CD8+ T cells into tumors. Thus, intratumoral administration of DAL-LNP loaded with IL-12 and IL-27 mRNA provides a new treatment strategy for cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xinfu Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Chunxi Zeng
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Kimberly Lynch
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, United States
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, United States; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism, Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
13
|
Talebian F, Yu J, Lynch K, Liu JQ, Carson WE, Bai XF. CD200 Blockade Modulates Tumor Immune Microenvironment but Fails to Show Efficacy in Inhibiting Tumor Growth in a Murine Model of Melanoma. Front Cell Dev Biol 2021; 9:739816. [PMID: 34692697 PMCID: PMC8531493 DOI: 10.3389/fcell.2021.739816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
CD200-CD200R pathway regulates immune responses and has been implicated in the pathogenesis of a number of cancer types. CD200 blockade is considered a strategy for immunotherapy of CD200-positive cancers such as melanoma. Thus, it is critical to understand the potential impacts of CD200 blockade in a more human relevant tumor model. In this study, we evaluated these issues using the CD200+ Yumm1.7 mouse melanoma model. Yumm1.7 cells bear Braf/Pten mutations resembling human melanoma. We found that Yumm1.7 tumors grow significantly faster in CD200R–/– mice compared to wild type mice. Analysis of tumor immune microenvironment (TIME) revealed that tumors from CD200R–/– or anti-CD200 treated mice had downregulated immune cell contents and reduced TCR clonality compared to tumors from untreated wild type mice. T cells also showed impaired effector functions, as reflected by reduced numbers of IFN-γ+ and TNF-α+ T cells. Mechanistically, we found upregulation of the CCL8 gene in CD200R–/– tumors. In vitro co-culture experiments using Yumm1.7 tumor cells with bone marrow derived macrophages (BMDM) from WT and CD200R–/– mice confirmed upregulation of macrophage CCL8 in the absence of CD200-CD200R interaction. Finally, we found that anti-CD200 therapy failed to show efficacy either alone or in combination with checkpoint inhibitors such as anti-PD-1 or anti-CTLA4 in inhibiting Yumm1.7 tumor growth. Given that CD200R-deficiency or anti-CD200 treatment leads to reduced T cell responses in TME, using blockade of CD200 as an immunotherapy for cancers such as melanoma should be practiced with caution.
Collapse
Affiliation(s)
- Fatemeh Talebian
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jianyu Yu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kimberly Lynch
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jin-Qing Liu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - William E Carson
- Division of Surgical Oncology, Department of Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
van der Vlist M, Ramos MIP, van den Hoogen LL, Hiddingh S, Timmerman LM, de Hond TAP, Kaan ED, van der Kroef M, Lebbink RJ, Peters FMA, Khoury-Hanold W, Fritsch-Stork R, Radstake TRDJ, Meyaard L. Signaling by the inhibitory receptor CD200R is rewired by type I interferon. Sci Signal 2021; 14:eabb4324. [PMID: 34637328 DOI: 10.1126/scisignal.abb4324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD200 receptor 1 (CD200R) is an inhibitory immunoreceptor that suppresses Toll-like receptor (TLR)–induced cytokine production through the adaptor protein Dok2 and the GTPase activating protein (GAP) p120-RasGAP, which can be cleaved during mild cellular stress. We found that in the presence of cleaved p120-RasGAP, CD200R lost its capacity to inhibit phosphorylation of ribosomal S6 protein (rpS6), suggesting the reduced activity of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, treatment of human peripheral blood mononuclear cells (PBMC) with interferon-α (IFN-α) resulted in increased amounts of cleaved p120-RasGAP. Upon pretreatment of cells with increasing concentrations of IFN-α, CD200R switched from inhibiting to potentiating the TLR7- and TLR8-induced expression of the gene encoding IFN-γ, a cytokine that is important for innate and adaptive immunity and is implicated in systemic lupus erythematosus (SLE) pathogenesis. PBMC from patients with SLE, a prototypic type I IFN disease, had an increased abundance of cleaved p120-RasGAP compared to that in cells from healthy controls. In a subset of SLE patients, CD200R stopped functioning as an inhibitory receptor or potentiated TLR-induced IFNG mRNA expression. Thus, our data suggest that type I IFN rewires CD200R signaling to be proinflammatory, which could contribute to the perpetuation of inflammation in patients with SLE.
Collapse
Affiliation(s)
- Michiel van der Vlist
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - M Inês Pascoal Ramos
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Lucas L van den Hoogen
- Center for Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Laura M Timmerman
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Titus A P de Hond
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Ellen D Kaan
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Maarten van der Kroef
- Center for Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Florence M A Peters
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth Fritsch-Stork
- Center for Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
15
|
Zhao Y, Su G, Shen J, Liu C, Miao N. The CD200/CD200R expression level and its mechanism of action in hematological malignancy patients. Am J Transl Res 2021; 13:7077-7082. [PMID: 34306467 PMCID: PMC8290775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the CD200/CD200R expression level in the peripheral blood mononuclear cells (PBMC) of hematological malignancy patients and to analyze its mechanism of action. METHODS Thirty hematological malignancy patients who were hospitalized in our hospital from June 2019 to December 2019 were recruited as the study cohort and placed in the disease group, and 30 healthy people were also recruited for the study and placed in the healthy control group. The CD200/CD200R expression level in the two groups' peripheral blood was measured using real-time fluorescent quantitative PCR, and enzyme-linked immunosorbent assays were used to measure the interleukin 17 (IL-17), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) expression levels in the two groups' peripheral blood. We monitored the effects of the effective treatment on the CD200/CD200R level in the hematological malignancy patients. RESULTS Compared with the healthy group, the CD200 and CD200R mRNA expression level in the PBMC of the disease group was down-regulated, but the IL-17, TNF-α and IFN-γ expression levels in the peripheral blood plasma were up-regulated, and the differences were statistically significant (P < 0.001). The CD200 and CD200R levels showed a negative correlation with the IL-17, TNF-α, and IFN-γ expression levels in the hematological malignancy patients (P < 0.001). The CD200/CD200R expression level was significantly increased in the PBMC of the effectively treated hematological malignancy patients compared with their pre-treatment expression level, and the difference was statistically significant (P < 0.001). CONCLUSION CD200/CD200R exhibits a low expression level in hematological malignancy patients, reducing the inhibitory effect on the inflammatory factor expressions, enhancing the inflammatory factors, and mediating the occurrence and development of hematological malignancies.
Collapse
Affiliation(s)
- Yulei Zhao
- The Second Department of Hematology, Cangzhou Central Hospital Cangzhou, China
| | - Guohong Su
- The Second Department of Hematology, Cangzhou Central Hospital Cangzhou, China
| | - Jie Shen
- The Second Department of Hematology, Cangzhou Central Hospital Cangzhou, China
| | - Chunyan Liu
- The Second Department of Hematology, Cangzhou Central Hospital Cangzhou, China
| | - Na Miao
- The Second Department of Hematology, Cangzhou Central Hospital Cangzhou, China
| |
Collapse
|
16
|
Vathiotis IA, MacNeil T, Zugazagoitia J, Syrigos KN, Aung TN, Gruver AM, Vaillancourt P, Hughes I, Hinton S, Driscoll K, Rimm DL. Quantitative Assessment of CD200 and CD200R Expression in Lung Cancer. Cancers (Basel) 2021; 13:cancers13051024. [PMID: 33804482 PMCID: PMC7957629 DOI: 10.3390/cancers13051024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
CD200/CD200R is an immune checkpoint with broad expression patterns and a potential target for immune therapy. In this study, we assess both CD200 and CD200R expression in solid tumors, with a focus on lung cancer, and evaluate their association with clinicopathologic characteristics, mutation status, outcome, and programmed death-ligand 1 (PD-L1) expression. We used multiplexed quantitative immunofluorescence (QIF) to measure the expression of CD200 and CD200R in a total of 455 patients from three lung cancer cohorts. Using carefully validated antibodies, we performed target measurement with tyramide-based QIF panels and analyzed the data using the PM2000 microscope and AQUA software. CD200 tumor positivity was found in 29.7% of non-small cell lung cancer (NSCLC) patients and 33.3% of lung large cell neuroendocrine carcinoma (LCNEC) patients. CD200 demonstrated notable intratumoral heterogeneity. CD200R was expressed in immune cells in 25% of NSCLC and 41.3% of LCNEC patients. While CD200R is predominantly expressed in immune cells, rare tumor cell staining was seen in a highly heterogeneous pattern. CD200R expression in the stromal compartment was significantly higher in patients with squamous differentiation (p < 0.0001). Neither CD200 nor CD200R were associated with other clinicopathologic characteristics or mutation status. Both biomarkers were not prognostic for disease-free or overall survival in NSCLC. CD200 showed moderate correlation with PD-L1. CD200/CD200R pathway is frequently expressed in lung cancer patients. Differential expression patterns of CD200 and CD200R with PD-L1 suggest a potential role for targeting this pathway alone in patients with NSCLC.
Collapse
Affiliation(s)
- Ioannis A. Vathiotis
- Department of Pathology, BML 116, Yale University School of Medicine, 310 Cedar St. P.O. Box 208023, New Haven, CT 06520-8023, USA; (I.A.V.); (T.M.); (J.Z.); (T.N.A.)
| | - Tyler MacNeil
- Department of Pathology, BML 116, Yale University School of Medicine, 310 Cedar St. P.O. Box 208023, New Haven, CT 06520-8023, USA; (I.A.V.); (T.M.); (J.Z.); (T.N.A.)
| | - Jon Zugazagoitia
- Department of Pathology, BML 116, Yale University School of Medicine, 310 Cedar St. P.O. Box 208023, New Haven, CT 06520-8023, USA; (I.A.V.); (T.M.); (J.Z.); (T.N.A.)
| | - Konstantinos N. Syrigos
- Department of Medicine, National and Kapodistrian University of Athens School of Medicine, 11527 Athens, Greece;
| | - Thazin Nwe Aung
- Department of Pathology, BML 116, Yale University School of Medicine, 310 Cedar St. P.O. Box 208023, New Haven, CT 06520-8023, USA; (I.A.V.); (T.M.); (J.Z.); (T.N.A.)
| | - Aaron M. Gruver
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (A.M.G.); (P.V.); (I.H.); (S.H.); (K.D.)
| | - Peter Vaillancourt
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (A.M.G.); (P.V.); (I.H.); (S.H.); (K.D.)
| | - Ina Hughes
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (A.M.G.); (P.V.); (I.H.); (S.H.); (K.D.)
| | - Steve Hinton
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (A.M.G.); (P.V.); (I.H.); (S.H.); (K.D.)
| | - Kyla Driscoll
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (A.M.G.); (P.V.); (I.H.); (S.H.); (K.D.)
| | - David L. Rimm
- Department of Pathology, BML 116, Yale University School of Medicine, 310 Cedar St. P.O. Box 208023, New Haven, CT 06520-8023, USA; (I.A.V.); (T.M.); (J.Z.); (T.N.A.)
- Correspondence: ; Tel.: +1-203-737-4204; Fax: +1-203-737-5089
| |
Collapse
|
17
|
Matsuo Y, Sho M, Nomi T, Hokuto D, Yoshikawa T, Kamitani N, Nakamura K, Iwasa Y. Clinical Importance of CD200 Expression in Colorectal Liver Metastasis. Ann Surg Oncol 2021; 28:5362-5372. [PMID: 33393050 DOI: 10.1245/s10434-020-09471-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Approximately 30% of patients diagnosed with colorectal cancer (CRC) develop liver metastases. We evaluated the role of CD200, a potent immunosuppressive molecule, in colorectal liver metastases (CRLM). METHODS We examined 110 patients who underwent curative liver resection for CRLM at our institution between 2000 and 2016. Based on the results of immunohistochemical analysis, the patients were divided into high-CD200 (n = 47) and low-CD200 (n = 63) expression groups. The relationships between CD200 expression and various clinicopathological outcomes were investigated. RESULTS The overall survival (OS) of patients in the high-CD200 group was significantly worse than that in the low-CD200 group (p = 0.009). Multivariate analysis showed that the independent prognostic factors in CRLM were maximum tumor size > 30 mm (p = 0.002), preoperative carcinoembryonic antigen level > 20 ng/mL (p < 0.001), primary CRC N2-3 (p = 0.049), and high-CD200 expression (p = 0.004). Furthermore, CD4+, CD8+, and CD45RO+ tumor-infiltrating lymphocytes in CRLM were significantly higher in the low-CD200 group than in the high-CD200 group (p = 0.005, p = 0.001, and p < 0.001, respectively). In addition, patients who had received preoperative chemotherapy had higher CD200 expression than those who had not received preoperative chemotherapy, and OS was significantly worse in patients in the high-CD200 group who had received preoperative chemotherapy. CONCLUSIONS CD200 expression was an independent prognostic factor in CRLM. CD200 may play a critical role in tumor immunity in CRLM, and can therefore be used as a potential therapeutic target in CRLM.
Collapse
Affiliation(s)
- Yasuko Matsuo
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan.
| | - Takeo Nomi
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Hokuto
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Naoki Kamitani
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kota Nakamura
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Iwasa
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
18
|
Su Y, Yamazaki S, Morisue R, Suzuki J, Yoshikawa T, Nakatsura T, Tsuboi M, Ochiai A, Ishii G. Tumor-Infiltrating T Cells Concurrently Overexpress CD200R with Immune Checkpoints PD-1, CTLA-4, and TIM-3 in Non-Small-Cell Lung Cancer. Pathobiology 2020; 88:218-227. [PMID: 33321503 DOI: 10.1159/000511557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION CD200R has been reported to be the receptor for the immune checkpoint molecule CD200 and can transduce immune-suppressive signals. In this study, we mainly focused on the expression level of CD200R in T cells in pulmonary artery (PA) blood and non-small-cell lung cancer (NSCLC) tumor tissue. METHODS Immune cells were isolated from dissected tumor samples and PA blood of NSCLC patients and analyzed with multiparameter flow cytometry. The co-expression of CD200R with other immune checkpoints, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), was also investigated. RESULTS CD200R expression was observed on the surface of approximately 75% of T cells among tumor-infiltrating leukocytes (TILs). Compared to T cells extracted from TILs, only 55% of T cells extracted from PA blood exhibited CD200R expression. Moreover, with higher expression of CD200R, the expression of other immune checkpoints, including PD-1, CTLA-4, and TIM-3, was also increased in tumor-infiltrating T cells compared to T cells in PA blood. CONCLUSIONS Our results showed that those tumors were dominated by T cells expressing CD200R together with other checkpoints, which suggests a phenotypic change after T cell infiltration into the tumor, such as T cell exhaustion.
Collapse
Affiliation(s)
- Yinghan Su
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shota Yamazaki
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ryo Morisue
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Jun Suzuki
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ochiai
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.,Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Genichiro Ishii
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan, .,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan, .,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan,
| |
Collapse
|
19
|
Prognostic Value of CD200R1 mRNA Expression in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12071777. [PMID: 32635224 PMCID: PMC7408128 DOI: 10.3390/cancers12071777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Immune system dysfunction is associated with head and neck squamous cell carcinoma (HNSCC) development and progression and immune checkpoint inhibitors have demonstrated substantial survival benefits in platinum-refractory HNSCC; therefore, we examined the prognostic value of immune-related gene (IRG) expression in HNSCC. We analyzed the expression of 82 IRGs in 71 patients with HNSCC enrolled in a feasibility study for a prospective HNSCC biomarker-driven umbrella trial (Korean Cancer Study Group TRIUMPH study, NCT03292250). CD200R1 was identified as an independent prognostic factor and validated in GEO and TCGA database. CD2000R1 mRNA expression was found to be an independent favorable prognostic factor in patients with HNSCC. Moreover, CD200R1 was found to affect genes and pathways associated with the immune response, while seven differentially expressed genes (CD8A, DOK2, CX3CR1, TYROBP, CXCL9, CD300LF, IFNG) were associated with CD200R1 expression. Samples with higher CD200R1 expression displayed higher tumor-infiltrating immune cell counts both in silico and in histological analysis. These findings will help in the development of more accurate prognostic tools and suggest CD200R1 modulation as a HNSCC immunotherapy.
Collapse
|
20
|
Xin C, Zhu J, Gu S, Yin M, Ma J, Pan C, Tang J, Zhang P, Liu Y, Bai XF, Mo X, Xu M, Zhu H. CD200 is overexpressed in neuroblastoma and regulates tumor immune microenvironment. Cancer Immunol Immunother 2020; 69:2333-2343. [PMID: 32514618 DOI: 10.1007/s00262-020-02589-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Patients with pediatric cancers such as neuroblastoma (NB) are often unresponsive to checkpoint blockade immunotherapy. One major factor in pediatric tumor resistance to immunotherapy is considered to be the low mutation rate of pediatric tumors. Another factor may be the overexpression of additional inhibitory pathways. While analyzing the RNA-sequencing database TARGET, we found that human NB tumors overexpress immune checkpoint molecule CD200. To determine its significance and impact on tumor immune microenvironment, we analyzed 49 cases of previously untreated, surgically removed NB tumors using immunohistochemistry and multi-color flow cytometry (FACS). We found that CD200 is overexpressed in more than 90% of NB tumors. In the tumor microenvironment of NB, CD200 is mainly overexpressed in CD45- NB tumor cells, while its cognate receptor (CD200R) is mainly expressed in HLA-DR+CD14+ myeloid cells and CD11c+ dendritic cells. Low-level expression of CD200R is also observed in tumor-infiltrating CD4+ and CD8+ T cells. In NB tumors with higher CD200 expression (CD200high), we observed lower numbers of HLA-DR+CD14+ myeloid cells and less tumor-infiltrating CD4+ and CD8+ T cells. Moreover, we found that CD4+ and CD8+ T cells produced less IFN-γ and/or TNF-α in CD200high NB tumors. Thus, CD200-CD200R pathway appears to downregulate anti-tumor immunity in the tumor microenvironment of NB tumors, and blockade of this pathway may be beneficial for NB patients.
Collapse
Affiliation(s)
- Chao Xin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200017, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ma
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci Pan
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China
| | - Jingyan Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200017, China.
| | - Hua Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China.
| |
Collapse
|
21
|
Choueiry F, Torok M, Shakya R, Agrawal K, Deems A, Benner B, Hinton A, Shaffer J, Blaser BW, Noonan AM, Williams TM, Dillhoff M, Conwell DL, Hart PA, Cruz-Monserrate Z, Bai XF, Carson WE, Mace TA. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer 2020; 8:e000189. [PMID: 32581043 PMCID: PMC7312341 DOI: 10.1136/jitc-2019-000189] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A significant challenge to overcome in pancreatic ductal adenocarcinoma (PDAC) is the profound systemic immunosuppression that renders this disease non-responsive to immunotherapy. Our supporting data provide evidence that CD200, a regulator of myeloid cell activity, is expressed in the PDAC microenvironment. Additionally, myeloid-derived suppressor cells (MDSC) isolated from patients with PDAC express elevated levels of the CD200 receptor (CD200R). Thus, we hypothesize that CD200 expression in the PDAC microenvironment limits responses to immunotherapy by promoting expansion and activity of MDSC. METHODS Immunofluorescent staining was used to determine expression of CD200 in murine and human PDAC tissue. Flow cytometry was utilized to test for CD200R expression by immune populations in patient blood samples. In vivo antibody blocking of CD200 was conducted in subcutaneous MT-5 tumor-bearing mice and in a genetically engineered PDAC model (KPC-Brca2 mice). Peripheral blood mononuclear cells (PBMC) from patients with PDAC were analyzed by single-cell RNA sequencing. MDSC expansion assays were completed using healthy donor PBMC stimulated with IL-6/GM-CSF in the presence of recombinant CD200 protein. RESULTS We found expression of CD200 by human pancreatic cell lines (BxPC3, MiaPaca2, and PANC-1) as well as on primary epithelial pancreatic tumor cells and smooth muscle actin+ stromal cells. CD200R expression was found to be elevated on CD11b+CD33+HLA-DRlo/- MDSC immune populations from patients with PDAC (p=0.0106). Higher expression levels of CD200R were observed in CD15+ MDSC compared with CD14+ MDSC (p<0.001). In vivo studies demonstrated that CD200 antibody blockade limited tumor progression in MT-5 subcutaneous tumor-bearing and in KPC-Brca2 mice (p<0.05). The percentage of intratumoral MDSC was significantly reduced in anti-CD200 treated mice compared with controls. Additionally, in vivo blockade of CD200 can also significantly enhance the efficacy of PD-1 checkpoint antibodies compared with single antibody therapies (p<0.05). Single-cell RNA sequencing of PBMC from patients revealed that CD200R+ MDSC expressed genes involved in cytokine signaling and MDSC expansion. Further, in vitro cytokine-driven expansion and the suppressive activity of human MDSC was enhanced when cocultured with recombinant CD200 protein. CONCLUSIONS These results indicate that CD200 expression in the PDAC microenvironment may regulate MDSC expansion and that targeting CD200 may enhance activity of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Fouad Choueiry
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Molly Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Reena Shakya
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Kriti Agrawal
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Undergaduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Anna Deems
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Brooke Benner
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Jami Shaffer
- Division of Hematology, The Ohio State University, Columbus, Ohio, United States
| | - Bradley W Blaser
- Division of Hematology, The Ohio State University, Columbus, Ohio, United States
| | - Anne M Noonan
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Mary Dillhoff
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xue-Feng Bai
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States
| | - William E Carson
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
22
|
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol 2020; 11:167. [PMID: 32117298 PMCID: PMC7031489 DOI: 10.3389/fimmu.2020.00167] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, with an increasing number of therapeutic dimensions, is becoming an important mode of treatment for cancer patients. The inhibition of immune checkpoints, which are the source of immune escape for various cancers, is one such immunotherapeutic dimension. It has mainly been aimed at T cells in the past, but NK cells are a newly emerging target. Simultaneously, the number of checkpoints identified has been increasing in recent times. In addition to the classical NK cell receptors KIRs, LIRs, and NKG2A, several other immune checkpoints have also been shown to cause dysfunction of NK cells in various cancers and chronic infections. These checkpoints include the revolutionized CTLA-4, PD-1, and recently identified B7-H3, as well as LAG-3, TIGIT & CD96, TIM-3, and the most recently acknowledged checkpoint-members of the Siglecs family (Siglec-7/9), CD200 and CD47. An interesting dimension of immune checkpoints is their candidacy for dual-checkpoint inhibition, resulting in therapeutic synergism. Furthermore, the combination of immune checkpoint inhibition with other NK cell cytotoxicity restoration strategies could also strengthen its efficacy as an antitumor therapy. Here, we have undertaken a comprehensive review of the literature to date regarding NK cell-based immune checkpoints.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Liu JQ, Hu A, Zhu J, Yu J, Talebian F, Bai XF. CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:155-165. [PMID: 32030689 DOI: 10.1007/978-3-030-35582-1_8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated inflammation and immune responses are key components in the tumor microenvironment (TME) which regulate tumor growth, progression, and metastasis. Tumor-associated myeloid cells (TAMCs) are a group of cells that play multiple key roles including induction of tumor-associated inflammation/angiogenesis and regulation of tumor-specific T-cell responses. Thus, identification and characterization of key pathways that can regulate TAMCs are of critical importance for developing cancer immunotherapy. Recent studies suggest that CD200-CD200 receptor (CD200R) interaction may be important in regulating the TME via affecting TAMCs. In this chapter, we will give a brief overview of the CD200-CD200R axis, including the biology behind CD200-CD200R interaction and the role(s) it plays in tumor microenvironment and tumor growth, and activation/effector functions of T cells. We will also discuss CD200-CD200R's role as potential checkpoint molecules for cancer immunotherapy. Further investigation of the CD200-CD200R pathway will not only advance our understanding of tumor pathogenesis and immunity but also provide the rationale for CD200-CD200R-targeted immunotherapy of human cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Aiyan Hu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyu Yu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Hu Y, Xie A, Cheng Q. Upregulated CD200 in pre-retinal proliferative fibrovascular membranes of proliferative diabetic retinopathy patients and its correlation with vascular endothelial growth factor. Inflamm Res 2019; 68:1071-1079. [PMID: 31612255 DOI: 10.1007/s00011-019-01290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective was to determine the expression of CD200 in the pre-retinal proliferative fibrovascular membranes (PFVM) of patients with proliferative diabetic retinopathy (PDR) and to clarify its correlation with vascular endothelial growth factor (VEGF) and corresponding receptors. METHODS PFVM samples were collected by vitrectomy from 14 patients with PDR, and 11 non-diabetic patients who accepted vitrectomy for idiopathic epiretinal membranes removal. The expression of CD200, VEGF,VEGF-R1 and VEGF-R2 was measured via qPCR and immunofluorescent staining. RESULTS The mRNA level of CD200 was significantly higher in PDR patients than that in control patients. Meanwhile, CD200 and CD31 were found co-located and statistically associated in PFVM of PDR patients. The mRNA levels of VEGF, VEGF-R1 and VEGF-R2 were also significantly higher in PDR patients. Moreover, statistical association was found between CD200 and VEGF, VEGF-R1 in mRNA levels. But there was no significant correlationship between CD200 and VEGF-R2. CONCLUSIONS These results suggest a significantly increased expression of CD200 in PFVM of patients with PDR and present a crucial association between CD200 and VEGF-involved pathway. It represents a potential therapy that interfering with CD200 may inhibit the VEFG expression and neovascular formation in PDR patients.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Anming Xie
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
25
|
Katoh M, Katoh M. CD157 and CD200 at the crossroads of endothelial remodeling and immune regulation. Stem Cell Investig 2019; 6:10. [PMID: 31119148 DOI: 10.21037/sci.2019.04.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023]
Affiliation(s)
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo, Japan
| |
Collapse
|
26
|
Ge N, Mao C, Yang Q, Han B, Wang Y, Xu L, Yang X, Jiao W, Li C. Single nucleotide polymorphism rs3746444 in miR‑499a affects susceptibility to non‑small cell lung carcinoma by regulating the expression of CD200. Int J Mol Med 2019; 43:2221-2229. [PMID: 30864695 DOI: 10.3892/ijmm.2019.4124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/04/2019] [Indexed: 11/05/2022] Open
Abstract
The present study evaluated the association between single nucleotide polymorphism (SNP) rs3746444 and the risk of non‑small cell lung carcinoma (NSCLC) in a Chinese population. Computational analyses and luciferase assays were performed to investigate the regulatory relationship between miR‑499a and CD200. In addition, reverse transcription‑quantitative polymerase chain reaction and western blot assays were performed to examine the effect of rs3746444 on the expression of miR‑499a and CD200. The results demonstrated a significant difference in the smoking history of patients carrying malignant pulmonary nodules and those carrying benign pulmonary nodules. Furthermore, CD200 was demonstrated to be a direct target of miR‑499a, and a miR‑499a binding site was located in the 3'UTR of CD200. Notably, the levels of miR‑499a in malignant pulmonary nodules were higher compared with benign pulmonary nodules, while the levels of CD200 were higher in benign pulmonary nodules compared with malignant pulmonary nodules. In addition, the subjects carrying the AA genotype of SNP rs3746444 exhibited upregulated miR‑499a expression and reduced CD200 expression, compared with the subjects carrying AG and GG genotypes. These findings indicate that the SNP rs3746444 in miR‑499a could affect the prognosis of NSCLC patients by regulating the expression of CD200.
Collapse
Affiliation(s)
- Nan Ge
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chunxia Mao
- Department of Hematology, Τhe Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qingbo Yang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bin Han
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Linhao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiuzhi Yang
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuan Li
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
27
|
Zgodziński W, Grywalska E, Surdacka A, Zinkiewicz K, Majewski M, Szczepanek D, Wallner G, Roliński J. Surface CD200 and CD200R antigens on lymphocytes in advanced gastric cancer: a new potential target for immunotherapy. Arch Med Sci 2018; 14:1271-1280. [PMID: 30393481 PMCID: PMC6209723 DOI: 10.5114/aoms.2018.73398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Gastric cancer (GC) is one of the leading causes of cancer death worldwide. The membrane glycoprotein CD200, widely expressed on multiple cells/tissues, uses a structurally similar receptor (CD200R), delivering immunoregulatory signals. There is evidence that CD200/CD200R signaling suppresses anti-tumor responses in different types of malignancies. Little is known about the CD200/CD200R pathway in GC. The aim of the study was to evaluate the frequencies of CD200+ and CD200R+ lymphocytes in patients with GC. MATERIAL AND METHODS Forty patients primarily diagnosed with GC and 20 healthy volunteers (control group) were enrolled. The viable peripheral blood lymphocytes underwent labeling with fluorochrome-conjugated monoclonal antibodies and were analyzed using a flow cytometer. RESULTS In the GC group, the percentages of T CD3+, CD3+/CD4+, and CD3+/CD8+ cells expressing CD200 antigen were higher than in the control group (p < 0.00013, p < 0.0004, and p < 0.0006, respectively). In the GC group, the frequencies of T CD3+, CD3+/CD4+ and CD3+/CD8+ cells expressing CD200R were lower than in the control group (p < 0.0009, p < 0.004, and p < 0.002, respectively). The percentage of B CD19+/CD200+ lymphocytes was higher in GC patients than in the control group (p < 0.00005). Lower frequency of B CD19+/CD200R+ cells was observed in GC patients compared to the control group (p < 0.0001). No differences in the frequencies of CD200+ and CD200R+ lymphocytes were found in relation to either UICC stage or histological grading of the tumors. CONCLUSIONS For GC pathogenesis, deregulation of the CD200/CD200R axis is important. High percentages of lymphocytes with CD200 expression may contribute to the continuous T cell activation and development of chronic inflammation and influence gastric carcinogenesis.
Collapse
Affiliation(s)
- Witold Zgodziński
- 2 Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Lublin, Poland
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Agata Surdacka
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Zinkiewicz
- 2 Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Lublin, Poland
| | - Marek Majewski
- 2 Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Lublin, Poland
| | - Dariusz Szczepanek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Wallner
- 2 Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Kuwabara J, Umakoshi A, Abe N, Sumida Y, Ohsumi S, Usa E, Taguchi K, Choudhury ME, Yano H, Matsumoto S, Kunieda T, Takahashi H, Yorozuya T, Watanabe Y, Tanaka J. Truncated CD200 stimulates tumor immunity leading to fewer lung metastases in a novel Wistar rat metastasis model. Biochem Biophys Res Commun 2018; 496:542-548. [DOI: 10.1016/j.bbrc.2018.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
|
29
|
Zhu H, Gu S, Yin M, Shi M, Xin C, Zhu J, Wang J, Huang S, Xie C, Ma J, Pan C, Tang J, Xu M, Bai XF. Analysis of infantile fibrosarcoma reveals extensive T-cell responses within tumors: Implications for immunotherapy. Pediatr Blood Cancer 2018; 65. [PMID: 28921877 DOI: 10.1002/pbc.26813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Infantile fibrosarcoma (IFS) is a rare pediatric malignancy with relatively good prognosis, but the risk of progression or recurrence after therapy exists. To understand the immune microenvironment of IFS and determine if immunotherapy is a potential treatment, we analyzed T-cell responses in IFS tumors. PROCEDURE IFS tumors were analyzed by immunohistochemistry and multicolor flow cytometry to characterize immune cell infiltration and function. Tumor infiltrating lymphocytes (TILs) were expanded in vitro and evaluated for recognition of autologous tumor cells. Real-time PCR was applied to evaluate tumor expression of chemokines/cytokines and tumor antigens. RESULTS Significant infiltration of both CD4+ and CD8+ T cells was found in seven of 10 IFS but rarely found in age- and sex-matched rhabdomyosarcoma tumors. The TILs from recurrent IFS tumors expressed high levels of costimulatory molecules such as CD28, 4-1BB, and OX40, but little or no coinhibitory molecules such as PD-1 and CTLA4, Tim3, Lag3, and CD39. Upon activation, large portions of TILs produced IFN-γ and TNF-α. Eighteen out of 40 T cell lines generated from surgically removed tumors could recognize autologous tumor cells. Moreover, we found that IFS tumors expressed high levels of T-cell chemokines such as CXCL10 and CXCL16, and also classic tumor antigens such as CTAG2, GAGE, and NY-ESO-1, whose expression could be further enhanced by treatment with epigenetic modulator decitabine. CONCLUSIONS IFS tumors are highly immunogenic and expansion of TILs followed by adoptive cell transfer could be a potential immunotherapy for IFS patients undergoing tumor recurrence.
Collapse
Affiliation(s)
- Hua Zhu
- Pediatric Translational Medicine Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Shi
- Pediatric Translational Medicine Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Xin
- Pediatric Translational Medicine Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Pediatric Translational Medicine Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siqi Huang
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Xie
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ma
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci Pan
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyan Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Feng Bai
- Pediatric Translational Medicine Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|