1
|
Divito SJ, Aasebø AT, Matos TR, Hsieh PC, Collin M, Elco CP, O'Malley JT, Bækkevold ES, Reims H, Gedde-Dahl T, Hagerstrom M, Hilaire J, Lian JW, Milford EL, Pinkus GS, Ho VT, Soiffer RJ, Kim HT, Mihm MC, Ritz J, Guleria I, Cutler CS, Clark RA, Jahnsen FL, Kupper TS. Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease. J Clin Invest 2021; 130:4624-4636. [PMID: 32516138 DOI: 10.1172/jci129965] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in hematopoietic stem cell transplantation (HSCT). Donor T cells are key mediators in pathogenesis, but a contribution from host T cells has not been explored, as conditioning regimens are believed to deplete host T cells. To evaluate a potential role for host T cells in GVHD, the origin of skin and blood T cells was assessed prospectively in patients after HSCT in the absence of GVHD. While blood contained primarily donor-derived T cells, most T cells in the skin were host derived. We next examined patient skin, colon, and blood during acute GVHD. Host T cells were present in all skin and colon acute GVHD specimens studied, yet were largely absent in blood. We observed acute skin GVHD in the presence of 100% host T cells. Analysis demonstrated that a subset of host T cells in peripheral tissues were proliferating (Ki67+) and producing the proinflammatory cytokines IFN-γ and IL-17 in situ. Comparatively, the majority of antigen-presenting cells (APCs) in tissue in acute GVHD were donor derived, and donor-derived APCs were observed directly adjacent to host T cells. A humanized mouse model demonstrated that host skin-resident T cells could be activated by donor monocytes to generate a GVHD-like dermatitis. Thus, host tissue-resident T cells may play a previously unappreciated pathogenic role in acute GVHD.
Collapse
Affiliation(s)
- Sherrie J Divito
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anders T Aasebø
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Tiago R Matos
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pei-Chen Hsieh
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew Collin
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Christopher P Elco
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - John T O'Malley
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Espen S Bækkevold
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Henrik Reims
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Hematology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | | | - John W Lian
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Edgar L Milford
- Renal Transplant Program, Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Vincent T Ho
- Division of Hematological Malignancies and Stem Cell Transplantation and
| | - Robert J Soiffer
- Division of Hematological Malignancies and Stem Cell Transplantation and
| | - Haesook T Kim
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Martin C Mihm
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jerome Ritz
- Division of Hematological Malignancies and Stem Cell Transplantation and
| | - Indira Guleria
- Renal Transplant Program, Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Corey S Cutler
- Division of Hematological Malignancies and Stem Cell Transplantation and
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Frode L Jahnsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wang T, Sun G, Wang Y, Li S, Zhao X, Zhang C, Jin H, Tian D, Liu K, Shi W, Tian Y, Zhang D. The immunoregulatory effects of CD8 T-cell-derived perforin on diet-induced nonalcoholic steatohepatitis. FASEB J 2019; 33:8490-8503. [PMID: 30951375 DOI: 10.1096/fj.201802534rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The liver is a central immunologic organ with a high density of myeloid and lymphoid immune cells that play important roles in the development and progression of nonalcoholic steatohepatitis (NASH). However, the immune-cell-mediated regulation of NASH and its underlying mechanisms remain obscure. In this study, Prf1null mice showed significantly higher plasma alanine transaminase levels, with increased liver fat accumulation, lobular inflammation, and focal necrosis compared with wild-type (WT) mice after 4 wk of feeding on a methionine- and choline-deficient diet (MCD) or 16 wk of feeding on a high-fat diet. Perforin deficiency promoted the M1 polarization of infiltrated monocytes. Moreover, MCD-fed Prf1null mice exhibited increased accumulation, survival, activation, and proinflammatory cytokine production of CD8 T cells but not NK cells or CD4 T cells. Adoptive transfer of CD8 T cells or NK cells from WT or Prf1null mice, together with non-CD8 cells or non-NK cells from WT mice, indicated that CD8 T-cell-derived perforin participates in the mechanism regulating liver inflammation and thus plays a protective role in the development of NASH. Perforin-deficient CD8 T cells exhibited decreased cytotoxicity toward bone marrow-derived M1 monocytes and macrophages. According to the RNA sequencing data, the perforin deficiency inhibited cell apoptosis and enhanced the activation, migration, and proinflammatory cytokine production of CD8 T cells in mice with NASH. Furthermore, we found higher plasma soluble perforin levels and hepatic perforin expression in NASH patients, suggesting clinical relevance of the findings. We have elucidated an important role for the cytotoxic immune effector molecule perforin from CD8 T cells in restricting hepatic inflammation in mice with NASH and suggest that therapies designed to maximize the function of endogenous perforin in CD8 T cells might have potential benefits as NASH treatments.-Wang, T., Sun, G., Wang, Y., Li, S., Zhao, X., Zhang, C., Jin, H., Tian, D., Liu, K., Shi, W., Tian, Y., Zhang, D. The immunoregulatory effects of CD8 T-cell-derived perforin on diet-induced nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Tianqi Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Yaning Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Shuxiang Li
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Chunpan Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Hua Jin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Hu R, Liu Y, Su M, Song Y, Rood D, Lai L. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-versus-Host Disease in Mice. Stem Cells Transl Med 2016; 6:121-130. [PMID: 28170174 PMCID: PMC5442732 DOI: 10.5966/sctm.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD. Stem Cells Translational Medicine 2017;6:121-130.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
5
|
Fu J, Wu Y, Nguyen H, Heinrichs J, Schutt S, Liu Y, Liu C, Jin J, Anasetti C, Yu XZ. T-bet Promotes Acute Graft-versus-Host Disease by Regulating Recipient Hematopoietic Cells in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:3168-79. [PMID: 26903480 DOI: 10.4049/jimmunol.1501020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/21/2016] [Indexed: 01/16/2023]
Abstract
Beyond its critical role in T cells, T-bet regulates the functions of APCs including dendritic cells and B cells, as well as NK cells. Given that recipient APCs are essential for priming allogeneic T cells and recipient NK or T cells are able to reject allogeneic donor cells, we evaluated the role of T-bet on the host in acute graft-versus-host disease (GVHD) using murine models of allogeneic bone marrow transplantation. T-bet(-/-) recipients developed significantly milder GVHD than their wild type counterparts in MHC-mismatched or CD4-dependent minor histocompatibility Ag-mismatched models. Allogeneic donor T cells, in particular, CD4 subset, significantly reduced IFN-γ production, proliferation and migration, and caused less injury in liver and gut of T-bet(-/-) recipients. We further observed that T-bet on recipient hematopoietic cells was primarily responsible for the donor T cell response and pathogenicity in GVHD. T-bet(-/-) dendritic cells expressed higher levels of Trail, whereas they produced lower levels of IFN-γ and IL-12/23 p40, as well as chemokine CXCL9, resulting in significantly higher levels of apoptosis, less priming, and infiltration of donor T cells. Meanwhile, NK cells in T-bet(-/-) hosts partially contribute to the decreased donor T cell proliferation. Furthermore, although T-bet on hematopoietic cells was required for GVHD development, it was largely dispensable for the graft-versus-leukemia effect. Taken together with our previous findings, we propose that T-bet is a potential therapeutic target for the control of GVHD through regulating donor T cells and recipient hematopoietic cells.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612; Department of Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica Heinrichs
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yuejun Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Junfei Jin
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi, China; and
| | - Claudio Anasetti
- Department of Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
6
|
Ogawa Y, Morikawa S, Okano H, Mabuchi Y, Suzuki S, Yaguchi T, Sato Y, Mukai S, Yaguchi S, Inaba T, Okamoto S, Kawakami Y, Tsubota K, Matsuzaki Y, Shimmura S. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model. eLife 2016; 5:e09394. [PMID: 26809474 PMCID: PMC4739756 DOI: 10.7554/elife.09394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3+ CD25+ Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. DOI:http://dx.doi.org/10.7554/eLife.09394.001 Systemic scleroderma is an autoimmune disease caused by the immune system attacking the body’s connective tissues, which provide the body with structural support. Immune cells called T cells accumulate in connective tissue, which leads to the hardening of the skin and may also damage the heart, lungs and other internal organs. However, it is not clear what prompts the T cells to accumulate in the connective tissues of these individuals. Autoimmune diseases develop when the immune system mistakenly identifies host cells as being a threat to the body. Normally, the immune system recognizes healthy body cells by the presence of particular proteins on the surface of the cells. A set of surface proteins called the major histocompatibility complexes (MHCs) play a major role in this process, but there are also many other surface proteins that play more minor roles. In 2002, researchers developed a method that can trigger the symptoms of systemic scleroderma in mice. This method involves transplanting bone marrow from one mouse into another mouse. Both mice have identical MHC proteins on the surfaces of their cells, but have some differences in other cell surface proteins, and so the bone marrow from the donor mouse triggers an immune response in the recipient. To better understand how this mouse “model” of systemic scleroderma works, Ogawa, Morikawa et al. refined the method so that they could just transplant specific types of bone marrow cells into the recipient mice. The experiments reveal that bone marrow stromal stem cells, but not so-called “hematopoietic stem cells”, from a donor mouse are responsible for triggering the immune response and disease symptoms in the recipients. Ogawa, Morikawa et al.’s findings show that mismatched minor cell surface proteins on bone marrow stromal stem cells can trigger symptoms of systemic scleroderma in mice. Further studies are required to find out how these cells encourage T cells to trigger an autoimmune response. DOI:http://dx.doi.org/10.7554/eLife.09394.002
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yukio Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shin Mukai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Saori Yaguchi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takaaki Inaba
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Life Science Laboratory of Tumor Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Mossoba ME, Halverson DC, Kurlander R, Schuver BB, Carpenter A, Hansen B, Steinberg SM, Ali SA, Tageja N, Hakim FT, Gea-Banacloche J, Sportes C, Hardy NM, Hickstein DD, Pavletic SZ, Khuu H, Sabatini M, Stroncek D, Levine BL, June CH, Mariotti J, Rixe O, Fojo AT, Bishop MR, Gress RE, Fowler DH. High-Dose Sirolimus and Immune-Selective Pentostatin plus Cyclophosphamide Conditioning Yields Stable Mixed Chimerism and Insufficient Graft-versus-Tumor Responses. Clin Cancer Res 2015; 21:4312-20. [PMID: 26071480 DOI: 10.1158/1078-0432.ccr-15-0340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE We hypothesized that lymphoid-selective host conditioning and subsequent adoptive transfer of sirolimus-resistant allogeneic T cells (T-Rapa), when combined with high-dose sirolimus drug therapy in vivo, would safely achieve antitumor effects while avoiding GVHD. EXPERIMENTAL DESIGN Patients (n = 10) with metastatic renal cell carcinoma (RCC) were accrued because this disease is relatively refractory to high-dose conditioning yet may respond to high-dose sirolimus. A 21-day outpatient regimen of weekly pentostatin (P; 4 mg/m(2)/dose) combined with daily, dose-adjusted cyclophosphamide (C; ≤200 mg/d) was designed to deplete and suppress host T cells. After PC conditioning, patients received matched sibling, T-cell-replete peripheral blood stem cell allografts, and high-dose sirolimus (serum trough target, 20-30 ng/mL). To augment graft-versus-tumor (GVT) effects, multiple T-Rapa donor lymphocyte infusions (DLI) were administered (days 0, 14, and 45 posttransplant), and sirolimus was discontinued early (day 60 posttransplant). RESULTS PC conditioning depleted host T cells without neutropenia or infection and facilitated donor engraftment (10 of 10 cases). High-dose sirolimus therapy inhibited multiple T-Rapa DLI, as evidenced by stable mixed donor/host chimerism. No antitumor responses were detected by RECIST criteria and no significant classical acute GVHD was observed. CONCLUSIONS Immune-selective PC conditioning represents a new approach to safely achieve alloengraftment without neutropenia. However, allogeneic T cells generated ex vivo in sirolimus are not resistant to the tolerance-inducing effects of in vivo sirolimus drug therapy, thereby cautioning against use of this intervention in patients with refractory cancer.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - David C Halverson
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Roger Kurlander
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Bazetta Blacklock Schuver
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Ashley Carpenter
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Brenna Hansen
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | | | - Syed Abbas Ali
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Nishant Tageja
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Claude Sportes
- Georgia Regents University Cancer Center, Augusta, Georgia
| | - Nancy M Hardy
- University of Maryland Greenbaum Cancer Center, Baltimore, Maryland
| | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Hanh Khuu
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Marianna Sabatini
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - David Stroncek
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Bruce L Levine
- University of Pennsylvania, Abramson Family Cancer Research Center, Philadelphia, Pennsylvania
| | - Carl H June
- University of Pennsylvania, Abramson Family Cancer Research Center, Philadelphia, Pennsylvania
| | - Jacopo Mariotti
- Fondazione IRCCS Instituto Nazionale dei Tumori, Milan, Italy
| | - Olivier Rixe
- University of New Mexico Cancer Center, Albuquerque, New Mexico
| | - Antonio Tito Fojo
- Genitourinary Malignancies Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | | | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, NIH, Bethesda, Maryland.
| |
Collapse
|
8
|
Lee SC, Seo KW, Kim HJ, Kang SW, Choi HJ, Kim A, Kwon BS, Cho HR, Kwon B. Depletion of Alloreactive T-Cells by Anti-CD137-Saporin Immunotoxin. Cell Transplant 2015; 24:1167-81. [DOI: 10.3727/096368914x679327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Depletion of alloreactive T-lymphocytes from allogeneic bone marrow tansplants may prevent graft-versus-host disease (GVHD) without impairing donor cell engraftment, immunity, and the graft-versus-leukemia (GVL) effect. Alloreactive T-cells may be identified by their expression, upon activation, of CD137, a costimulatory receptor and putative surrogate marker for antigen-specific effector T-cells. In this context, we tested the use of anti-CD137-saporin immunotoxin to selectively deplete mouse and human alloreactive T-cells. Anti-CD137 antibodies were internalized by cells within 4 h of binding to the cell surface CD137, and anti-CD137-saporin immunotoxin effectively killed polyclonally activated T-cells or antigen-stimulated T-cells. Transfer of donor T-cells after allodepletion with anti-CD137-saporin immunotoxin failed to induce any evident expression of GVHD; however, a significant GVL effect was observed. Targeting of CD137 with an immunotoxin was also effective in killing polyclonally activated or alloreactive human T-cells. Our results indicate that anti-CD137-saporin immunotoxin may be used to deplete alloreactive T-cells prior to bone marrow transplantation and thereby prevent GVHD and the relapse of leukemia.
Collapse
Affiliation(s)
- Sang C. Lee
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Personalized Medicine System R&D Center, Bio-support Co., Ltd., Anyang, Republic of Korea
| | - Kwang W. Seo
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Hye J. Kim
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Sang W. Kang
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Ansuk Kim
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Byoung S. Kwon
- Division of Cell and Immunobiology and Research and Development Center for Cancer Therapeutics, National Cancer Center, Ulsan, Republic of Korea
| | - Hong R. Cho
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Department of Surgery, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
9
|
Heat shock protein vaccination and directed IL-2 therapy amplify tumor immunity rapidly following bone marrow transplantation in mice. Blood 2014; 123:3045-55. [PMID: 24687086 DOI: 10.1182/blood-2013-08-520775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor relapse is the primary cause of mortality in patients with hematologic cancers following autologous hematopoietic stem cell transplantation (HSCT). Vaccination early after HSCT can exploit both the state of lymphopenia and minimal residual disease for generating antitumor immunity. Here, multiple vaccinations using lymphoma cells engineered to secrete heat shock protein fusion gp96-Ig within 2 weeks of T cell-replete syngeneic HSCT led to cross-presentation and increased survival of lymphoma-bearing mice. To enhance vaccine efficacy, interleukin (IL)-2 was directed to predominantly memory phenotype CD8(+) T lymphocytes and natural killer (NK) cells via administration bound to anti-IL-2 monoclonal antibody clone S4B6 (IL-2S4B6). Combination therapy with gp96-Ig vaccination and coordinated infusions of IL-2S4B6 resulted in marked prolongation of survival, which directly correlated with ~500% increase in effector CD8(+) T-cell numbers. Notably, this dual regimen elicited large increases in both donor CD8(+) T and NK cells, but not CD4(+) T lymphocytes; the former 2 populations are essential for both vaccine efficacy and protection against opportunistic infections after HSCT. Indeed, IL-2S4B6-treated HSCT recipients infected with Listeria monocytogenes exhibited decreased bacterial levels. These preclinical studies validate a new strategy particularly well suited to the post-HSCT environment, which may augment adaptive and innate immune function in patients with malignant disease receiving autologous HSCT.
Collapse
|
10
|
Maintenance of host leukocytes in peripheral immune compartments following lethal irradiation and bone marrow reconstitution: implications for graft versus host disease. Transpl Immunol 2013; 28:112-9. [PMID: 23334064 DOI: 10.1016/j.trim.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/29/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022]
Abstract
Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. The expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later time points or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a "successful" bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation.
Collapse
|
11
|
Li HW, Sachs J, Pichardo C, Bronson R, Zhao G, Sykes M. Nonalloreactive T cells prevent donor lymphocyte infusion-induced graft-versus-host disease by controlling microbial stimuli. THE JOURNAL OF IMMUNOLOGY 2012; 189:5572-81. [PMID: 23136200 DOI: 10.4049/jimmunol.1200045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mice, graft-versus-host reactions, associated with powerful graft-versus-tumor effects, can be achieved without graft-versus-host disease (GVHD) by delayed administration of donor lymphocyte infusions (DLI) to established mixed chimeras. However, GVHD sometimes occurs after DLI in established mixed chimeric patients. In contrast to mice, in which T cell recovery from the thymus occurs prior to DLI administration, human T cell reconstitution following T cell-depleted hematopoietic cell transplantation is slow, resulting in lymphopenia at the time of DLI. We demonstrate in this study that T cell lymphopenia is an independent risk factor for GVHD following DLI in the absence of known inflammatory stimuli. DLI-induced GVHD was prevented in lymphopenic recipients by prior administration of a small number of nonalloreactive polyclonal T cells, insufficient to prevent lymphopenia-associated expansion of subsequently administered T cells, through a regulatory T cell-independent mechanism. GVHD was not inhibited by T cells with irrelevant specificity. Moreover, administration of antibiotics reduced the severity of GVHD in lymphopenic hosts. Accumulation of DLI-derived effector T cells and host hematopoietic cell elimination were markedly diminished by regulatory T cell-depleted, nonalloreactive T cells. Finally, thymectomized mixed chimeras showed increased GVHD following delayed DLI. Collectively, our data demonstrate that in the absence of known conditioning-induced inflammatory stimuli, T cell lymphopenia is a risk factor for GVHD in mixed chimeras receiving delayed DLI. Our data suggest that the predisposition to GVHD can at least in part be explained by the presence of occult inflammatory stimuli due to the absence of T cells to control microbial infections.
Collapse
Affiliation(s)
- Hao Wei Li
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
12
|
Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, Gobourne A, Lipuma L, Young LF, Smith OM, Ghosh A, Hanash AM, Goldberg JD, Aoyama K, Blazar BR, Pamer EG, van den Brink MRM. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. ACTA ACUST UNITED AC 2012; 209:903-11. [PMID: 22547653 PMCID: PMC3348096 DOI: 10.1084/jem.20112408] [Citation(s) in RCA: 494] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
GVHD is associated with significant shifts in the composition of the intestinal microbiota in human and mouse models; manipulating the microbiota can alter the severity of GVHD in mice. Despite a growing understanding of the link between intestinal inflammation and resident gut microbes, longitudinal studies of human flora before initial onset of intestinal inflammation have not been reported. Here, we demonstrate in murine and human recipients of allogeneic bone marrow transplantation (BMT) that intestinal inflammation secondary to graft-versus-host disease (GVHD) is associated with major shifts in the composition of the intestinal microbiota. The microbiota, in turn, can modulate the severity of intestinal inflammation. In mouse models of GVHD, we observed loss of overall diversity and expansion of Lactobacillales and loss of Clostridiales. Eliminating Lactobacillales from the flora of mice before BMT aggravated GVHD, whereas reintroducing the predominant species of Lactobacillus mediated significant protection against GVHD. We then characterized gut flora of patients during onset of intestinal inflammation caused by GVHD and found patterns mirroring those in mice. We also identified increased microbial chaos early after allogeneic BMT as a potential risk factor for subsequent GVHD. Together, these data demonstrate regulation of flora by intestinal inflammation and suggest that flora manipulation may reduce intestinal inflammation and improve outcomes for allogeneic BMT recipients.
Collapse
Affiliation(s)
- Robert R Jenq
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim J, Kim W, Kim HJ, Park S, Kim HA, Jung D, Choi HJ, Park SJ, Mittler RS, Cho HR, Kwon B. Host CD25+CD4+Foxp3+ regulatory T cells primed by anti-CD137 mAbs inhibit graft-versus-host disease. Biol Blood Marrow Transplant 2011; 18:44-54. [PMID: 21958951 DOI: 10.1016/j.bbmt.2011.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/20/2011] [Indexed: 01/01/2023]
Abstract
CD25(+)CD4(+)Foxp3(+) regulatory T cells (Tregs) play a pivotal role in the maintenance of self-tolerance and regulation of immune responses. Previous studies have demonstrated that CD137 signals can promote proliferation and survival of Tregs in vitro. Here, we show that in vivo CD137-induced expansion of Tregs in naive mice was dependent upon IL-2 secreted by memory T cells. Tregs primed by anti-CD137 mAbs had a higher immunosuppressive capacity. Preconditioning with anti-CD137 mAbs significantly inhibited graft-versus-host disease (GVHD) in the C57BL/6 → (C57BL/6 × DBA/2) F1 acute GVHD model. In this disease model, a high proportion of host Tregs remained long-term in the recipient spleen, whereas donor hematopoietic cells replaced other host bone marrow-derived cells. Transient depletion of Tregs before transfer of donor cells completely abrogated the inhibitory effect of anti-CD137 mAbs on GVHD. In addition, adoptive transfer of anti-CD137-primed Tregs ameliorated GVHD. Our results demonstrate that it is possible to enhance the survival and/or the immunosuppressive activity of host Tregs in nonmyeloablative GVHD, and that 1 way of accomplishing this is through the prophylactic use of anti-CD137 mAbs in nonmyeloablative GVHD.
Collapse
Affiliation(s)
- Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Flutter B, Edwards N, Fallah-Arani F, Henderson S, Chai JG, Sivakumaran S, Ghorashian S, Bennett CL, Freeman GJ, Sykes M, Chakraverty R. Nonhematopoietic antigen blocks memory programming of alloreactive CD8+ T cells and drives their eventual exhaustion in mouse models of bone marrow transplantation. J Clin Invest 2010; 120:3855-68. [PMID: 20978352 DOI: 10.1172/jci41446] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 09/02/2010] [Indexed: 12/31/2022] Open
Abstract
Allogeneic blood or BM transplantation (BMT) is the most commonly applied form of adoptive cellular therapy for cancer. In this context, the ability of donor T cells to respond to recipient antigens is coopted to generate graft-versus-tumor (GVT) responses. The major reason for treatment failure is tumor recurrence, which is linked to the eventual loss of functional, host-specific CTLs. In this study, we have explored the role of recipient antigen expression by nonhematopoietic cells in the failure to sustain effective CTL immunity. Using clinically relevant models, we found that nonhematopoietic antigen severely disrupts the formation of donor CD8+ T cell memory at 2 distinct levels that operate in the early and late phases of the response. First, initial and direct encounters between donor CD8+ T cells and nonhematopoietic cells blocked the programming of memory precursors essential for establishing recall immunity. Second, surviving CD8+ T cells became functionally exhausted with heightened expression of the coinhibitory receptor programmed death-1 (PD-1). These 2 factors acted together to induce even more profound failure in long-term immunosurveillance. Crucially, the functions of exhausted CD8+ T cells could be partially restored by late in vivo blockade of the interaction between PD-1 and its ligand, PD-L1, without induction of graft-versus-host disease, suggestive of a potential clinical strategy to prevent or treat relapse following allogeneic BMT.
Collapse
Affiliation(s)
- Barry Flutter
- Transplantation Immunology Group, Department of Haematology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cellular apoptosis induced by T cells is mainly mediated by two pathways. One, granule exocytosis utilizes perforin/granzymes. The other involves signaling through death receptors of the TNF-alpha R super-family, especially FasL. Perforin plays a central role in apoptosis induced by granzymes. However, the mechanisms of perforin-mediated cytotoxicity are still not elucidated completely. Perforin is not only a pore-forming protein, but also performs multiple biological functions or perforin performs one biological function (cytolysis), but has multiple biological implications in the cellular immune responses, including regulation of proliferation of CD8+ CTLs.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, 300 Jefferson Hospital for Neurosciences Building, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA. [corrected]
| |
Collapse
|
16
|
Li JM, Giver CR, Lu Y, Hossain MS, Akhtari M, Waller EK. Separating graft-versus-leukemia from graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Immunotherapy 2009; 1:599-621. [PMID: 20191089 PMCID: PMC2827928 DOI: 10.2217/imt.09.32] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Routine methods to maximize the graft-versus-leukemia (GvL) activity of allogeneic hematopoietic stem cell transplantation (HSCT) without the detrimental effects of graft-versus-host disease (GvHD) are lacking. Depletion or inhibition of alloreactive T cells is partially effective in preventing GvHD, but usually leads to decreased GvL activity. The current model for the pathophysiology of acute GvHD describes a series of immune pathways that lead to activation of donor T cells and inflammatory cytokines responsible for tissue damage in acute GvHD. This model does not account for how allotransplant can lead to GvL effects without GvHD, or how the initial activation of donor immune cells may lead to counter-regulatory effects that limit GvHD. In this review, we will summarize new findings that support a more complex model for the initiation of GvHD and GvL activities in allogeneic HSCT, and discuss the potential of novel strategies to enhance GvL activity of the transplant.
Collapse
Affiliation(s)
| | | | | | | | | | - Edmund K Waller
- Author for correspondence: Department of Hematology/Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road NE, Room C4002, Atlanta, GA 3032, USA Tel.: +1 404 727 4995 Fax: +1 404 778 5530
| |
Collapse
|
17
|
Abstract
Allogeneic transplantation of hematopoietic cells is an effective treatment of leukemia, even in advanced stages. Allogeneic lymphocytes produce a strong graft-versus-leukemia (GVL) effect, but the beneficial effect is limited by graft-versus-host disease (GVHD). Depletion of T cells abrogates GVHD and GVL effects. Delayed transfusion of donor lymphocytes into chimeras after T cell-depleted stem cell transplantation produces a GVL effect without necessarily producing GVHD. Chimerism and tolerance provide a platform for immunotherapy using donor lymphocytes. The allogeneic GVL effects vary from one disease to another, the stage of the disease, donor histocompatibility, the degree of chimerism, and additional treatment. Immunosuppressive therapy before donor lymphocyte transfusions may augment the effect as well as concomitant cytokine treatment. Possible target antigens are histocompatibility antigens and tumor-associated antigens. Immune escape of tumor cells and changes in the reactivity of T cells are to be considered. Durable responses may be the result of the elimination of leukemia stem cells or the establishment of a durable immune control on their progeny. Recently, we have learned from adoptive immunotherapy of viral diseases and HLA-haploidentical stem cell transplantation that T-cell memory may be essential for the effective treatment of leukemia and other malignancies.
Collapse
|
18
|
Chakraverty R, Flutter B, Fallah-Arani F, Eom HS, Means T, Andreola G, Schwarte S, Buchli J, Cotter P, Zhao G, Sykes M. The host environment regulates the function of CD8+ graft-versus-host-reactive effector cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:6820-8. [PMID: 18981100 DOI: 10.4049/jimmunol.181.10.6820] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined how the host environment influences the graft-vs-leukemia (GVL) response following transfer of donor T cells to allogeneic chimeras. Donor T cells induce significant GVL when administered in large numbers to established mixed chimeras (MC). However, when using limiting numbers of T cells, we found that late transfer to MC induced less GVL than did early transfer to freshly irradiated allogeneic recipients. Late donor T cell transfer to MC was associated with marked accumulation of anti-host CD8 cells within the spleen, but delayed kinetics of differentiation, reduced expression of effector molecules including IFN-gamma, impaired cytotoxicity, and higher rates of sustained apoptosis. Furthermore, in contrast to the spleen, we observed a significant delay in donor CD8 cell recruitment to the bone marrow, a key location for hematopoietic tumors. Increasing the numbers of T cells transferred to MC led to the enhancement of CTL activity and detectable increases in absolute numbers of IFN-gamma(+) cells without inducing graft-vs-host disease (GVHD). TLR-induced systemic inflammation accelerated differentiation of functional CTL in MC but was associated with severe GVHD. In the absence of inflammation, both recipient T and non-T cell populations impeded the full development of GVHD-inducing effector function. We conclude that per-cell deficits in the function of donor CD8 cells activated in MC may be overcome by transferring larger numbers of T cells without inducing GVHD.
Collapse
Affiliation(s)
- Ronjon Chakraverty
- Transplantation Immunology Group, Department of Hematology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wölfl M, Kuball J, Eyrich M, Schlegel PG, Greenberg PD. Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A 2008; 73:1043-9. [PMID: 18561198 DOI: 10.1002/cyto.a.20594] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD137 (4-1BB) is a member of the TNFR-family with costimulatory function, triggering prosurvival signals in activated T-cells. Upregulation of CD137 upon stimulation allows identifying and isolating live, human antigen-specific CD8+ T-cells of all phenotypes, and therefore provides a comprehensive detection method. Furthermore responses against antigen mixtures can be easily detected, enabling antigen discovery in a stepwise deconvoluting approach. In this article, we will discuss various aspects of this methodology, including potential pitfalls as well as a variety of applications, as illustrated by examples from our laboratory.
Collapse
|
20
|
Recovery from established graft-vs-host disease achieved by bone marrow transplantation from a third-party allogeneic donor. Exp Hematol 2008; 36:1216-25. [DOI: 10.1016/j.exphem.2008.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 03/03/2008] [Accepted: 03/25/2008] [Indexed: 01/12/2023]
|
21
|
Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 2008; 38:1745-55. [PMID: 18493986 DOI: 10.1002/eji.200738129] [Citation(s) in RCA: 447] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graft versus host disease (GVHD), mediated by donor T cells, is a significant source of morbidity and mortality following allogeneic stem cell transplantation. Mesenchymal stem cells (MSC) can successfully treat ongoing graft versus host disease, presumably due to their ability to suppress donor T cell proliferation. Little is known about the potential of MSC to prevent GVHD. Here we show that bone marrow-isolated MSC can suppress the development of GVHD if given after donor T cell recognition of antigen. IFN-gamma was required to initiate MSC efficacy. Recipients of IFN-gamma(-/-) T cells did not respond to MSC treatment and succumbed to GVHD. MSC, pre-treated with IFN-gamma, became immediately active and could suppress GVHD more efficiently than a fivefold-greater number of MSC that were not activated. When given at the time of bone marrow transplantation, activated MSC could prevent GVHD mortality (100% survival, p=0.006). MSC activation was dependent on the magnitude of IFN-gamma exposure, with increased IFN-gamma exposure leading to increased MSC suppression of GVHD. Activated MSC present a new strategy for preventing GVHD using fewer MSC.
Collapse
Affiliation(s)
- David Polchert
- Department of Surgery, University of Illinois-Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gibbons C, Sykes M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol Rev 2008; 223:334-60. [PMID: 18613846 PMCID: PMC2680695 DOI: 10.1111/j.1600-065x.2008.00636.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SUMMARY Stem cells (SCs) with varying potentiality have the capacity to repair injured tissues. While promising animal data have been obtained, allogeneic SCs and their progeny are subject to immune-mediated rejection. Here, we review the potential of hematopoietic stem cells (HSCs) to promote immune tolerance to allogeneic and xenogeneic organs and tissues, to reverse autoimmunity, and to be used optimally to cure hematologic malignancies. We also review the mechanisms by which hematopoietic cell transplantation (HCT) can promote anti-tumor responses and establish donor-specific transplantation tolerance. We discuss the barriers to clinical translation of animal studies and describe some recent studies indicating how they can be overcome. The recent achievements of durable mixed chimerism across human leukocyte antigen barriers without graft-versus-host disease and of organ allograft tolerance through combined kidney and bone marrow transplantation suggest that the potential of this approach for use in the treatment of many human diseases may ultimately be realized.
Collapse
Affiliation(s)
- Carrie Gibbons
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
23
|
Response: The role of G-CSF on the risk of graft-versus-host disease after donor lymphocyte infusions. Blood 2008. [DOI: 10.1182/blood-2008-03-141390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Chung B, Dudl E, Toyama A, Barsky L, Weinberg KI. Importance of interleukin-7 in the development of experimental graft-versus-host disease. Biol Blood Marrow Transplant 2007; 14:16-27. [PMID: 18158957 DOI: 10.1016/j.bbmt.2007.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Interleukin (IL)-7 promotes both thymopoiesis and mature T lymphocyte survival and proliferation in experimental murine models of hematopoietic stem cell (HSC) transplantation. Because HSC products for transplantation also may contain IL-7-responsive mature T lymphocytes, we examined whether IL-7 is necessary for the induction of GVHD after allogeneic bone marrow transplantation (BMT). Lethally irradiated C57BL6J (B6) and B6.IL-7(-/-) (both H2K(b)) recipient mice were co-transplanted with T cell-depleted (TCD) bone marrow cells and lymph nodes (LNs) from either congenic B6.SJL (CD45.1(+)) or allogeneic BALB/c (H2K(d)) donor mice. After transplantation, the recipient mice were subcutaneously injected with either human recombinant IL-7 or phosphate-buffered saline (PBS) for 60 days. No evidence of GVHD was detected in the congenic recipients or in the allogeneic B6/IL-7(-/-) recipients treated with PBS; in contrast, significantly increased rates of GVHD-related mortality and morbidity were found in the allogeneic B6.IL-7(-/-) recipients treated with IL-7. The proliferation and number of donor T cells were significantly lower at day 30 post-BMT in the PBS-treated B6.IL-7(-/-) recipients compared with the IL-7-treated B6.IL-7(-/-) mice. These experiments demonstrate that IL-7 is an important factor in the development of GVHD, presumably by supporting the survival, proliferation, and possibly activation of alloreactive donor-derived T cells in the recipients.
Collapse
Affiliation(s)
- Brile Chung
- Division of Stem Cell Transplantation, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
25
|
Mielke S, Rezvani K, Savani BN, Nunes R, Yong ASM, Schindler J, Kurlander R, Ghetie V, Read EJ, Solomon SR, Vitetta ES, Barrett AJ. Reconstitution of FOXP3+ regulatory T cells (Tregs) after CD25-depleted allotransplantation in elderly patients and association with acute graft-versus-host disease. Blood 2007; 110:1689-97. [PMID: 17478639 PMCID: PMC1975850 DOI: 10.1182/blood-2007-03-079160] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/01/2007] [Indexed: 12/12/2022] Open
Abstract
Selective depletion (SD) of host-reactive donor T cells from allogeneic stem-cell transplants (SCTs) using an anti-CD25 immunotoxin (IT) is a strategy to prevent acute graft-versus-host disease (aGvHD). There is concern that concurrent removal of regulatory T cells (T(regs)) with incomplete removal of alloactivated CD25(+) T cells could increase the risk of aGvHD. We therefore measured T(regs) in the blood of 16 patients receiving a T-cell-depleted allograft together with anti-CD25-IT-treated SD lymphocytes, in 13 of their HLA-identical donors, and in 10 SD products. T(regs) were characterized by intracellular staining for forkhead box protein 3 (FOXP3) and by quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for FOXP3 gene in CD4(+) cells. Patients received a median of 1.0 x 10(8)/kg SD T cells and a stem cell product containing a median of 0.25 x 10(4)/kg residual T cells. T(regs) reconstituted promptly after SCT and underwent further expansion. Of the CD4(+) T cells in SD products, 1.5% to 4.8% were CD25(-) T(regs). Acute GvHD (>or= grade II) was restricted to 5 patients whose donors had significantly (P = .019) fewer T(regs) compared with those without clinically significant aGvHD. These results suggest that rapid T(reg) reconstitution can occur following SD allografts, either from CD25(-) T(regs) escaping depletion, or from residual CD25(-) and CD25(+) T(regs) contained in the stem-cell product that expand after transplantation and may confer additional protection against GvHD.
Collapse
Affiliation(s)
- Stephan Mielke
- Allotransplantation Section, Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nervi B, Rettig MP, Ritchey JK, Wang HL, Bauer G, Walker J, Bonyhadi ML, Berenson RJ, Prior JL, Piwnica-Worms D, Nolta JA, DiPersio JF. Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnull mice. Exp Hematol 2007; 35:1823-38. [PMID: 17764813 PMCID: PMC2238776 DOI: 10.1016/j.exphem.2007.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 05/17/2007] [Accepted: 06/13/2007] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Graft-vs-host disease (GVHD) is the major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Models of immunodeficient mice that consistently and efficiently reconstitute with xenoreactive human T cells would be a valuable tool for the in vivo study of GVHD, as well as other human immune responses. MATERIALS AND METHODS We developed a consistent and sensitive model of human GVHD by retro-orbitally injecting purified human T cells into sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD/SCID)-beta2m(null) recipients. In addition, we characterized for the first time the trafficking patterns and expansion profiles of xenoreactive human T cells in NOD/SCID-beta2m(null) recipients using in vivo bioluminescence imaging. RESULTS All NOD/SCID-beta2m(null) mice conditioned with 300 cGy total body irradiation and injected with 1 x 10(7) human T cells exhibited human T-cell engraftment, activation, and expansion, with infiltration of multiple target tissues and a subsequent >20% loss of pretransplantation body weight. Importantly, histological examination of the GVHD target tissues revealed changes consistent with human GVHD. Furthermore, we also showed by in vivo bioluminescence imaging that development of lethal GVHD in the NOD/SCID-beta2m(null) recipients was dependent upon the initial retention and early expansion of human T cells in the retro-orbital sinus cavity. CONCLUSION Our NOD/SCID-beta2m(null) mouse model provides a system to study the pathophysiology of acute GVHD induced by human T cells and aids in development of more effective therapies for human GVHD.
Collapse
Affiliation(s)
- Bruno Nervi
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - Michael P. Rettig
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - Julie K. Ritchey
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - Hanlin L. Wang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - Gerhard Bauer
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - Jon Walker
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | | | | | - Julie L. Prior
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - Jan A. Nolta
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| | - John F. DiPersio
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States, 63110
| |
Collapse
|
27
|
Shaffer J, Villard J, Means TK, Dombkowski D, Dey BR, McAfee S, Ballen KK, Saidman S, Preffer FI, Sachs DH, Spitzer TR, Sykes M. Regulatory T-cell recovery in recipients of haploidentical nonmyeloablative hematopoietic cell transplantation with a humanized anti-CD2 mAb, MEDI-507, with or without fludarabine. Exp Hematol 2007; 35:1140-52. [PMID: 17588483 PMCID: PMC2031850 DOI: 10.1016/j.exphem.2007.03.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/21/2007] [Accepted: 03/26/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We have evaluated T-cell reconstitution and reactivity in patients receiving nonmyeloablative haploidentical hematopoietic cell transplantation (HCT) protocols involving an anti-CD2 monoclonal antibody (MEDI 507) to treat chemorefractory hematopoietic malignancies. METHODS Three cohorts of four patients each and one cohort of six patients received one of four Medi-507-based regimens, all of which included cyclophosphamide, thymic irradiation, and a short posttransplantation course of cyclosporine. RESULTS Following marked T-cell depletion, initially recovering CD4 and CD8 T cells were mainly memory-type cells. A high percentage of CD4 T cells expressed high levels of CD25 in recipients of all protocols, except the only protocol to include fludarabine, early post-HCT. CD25 expression varied inversely with T-cell concentrations in blood. CD25(high) CD4 T cells expressed Foxp3 and cytotoxic T-lymphocyte-associated protein 4, indicating that they were regulatory T cells (Treg). CONCLUSIONS Fludarabine treatment prevents Treg enrichment after haploidentical nonmyeloablative stem cell transplantation, presumably by depleting recipient Tregs. In vitro analyses of allorecognition were consistent with a cytokine-mediated rejection process in one case and in another provided proof of principle that mixed chimerism achieved without graft-vs-host disease induces donor- and recipient-specific tolerance. More reliable achievement of this outcome could provide a promising strategy for organ allograft tolerance induction.
Collapse
Affiliation(s)
- Juanita Shaffer
- Transplantation Biology Research Center, Bone-marrow Transplantation Section, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jean Villard
- Transplantation Biology Research Center, Bone-marrow Transplantation Section, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Terry K. Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - David Dombkowski
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Bimalangshu R. Dey
- Bone Marrow Transplant Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Steven McAfee
- Bone Marrow Transplant Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Karen K. Ballen
- Bone Marrow Transplant Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Susan Saidman
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Frederic I. Preffer
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - David H. Sachs
- Transplantation Biology Research Center, Bone-marrow Transplantation Section, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Thomas R. Spitzer
- Bone Marrow Transplant Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Megan Sykes
- Transplantation Biology Research Center, Bone-marrow Transplantation Section, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 2007; 25:139-70. [PMID: 17129175 DOI: 10.1146/annurev.immunol.25.022106.141606] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has evolved into an effective adoptive cellular immunotherapy for the treatment of a number of cancers. The immunobiology of allogeneic HSCT is unique in transplantation in that it involves potential immune recognition and attack between both donor and host. Much of the immunobiology of allogeneic HSCT has been gleaned from preclinical models and correlation with clinical observations. We review our current understanding of some of the issues that affect the success of this therapy, including host-versus-graft (HVG) reactions, graft-versus-host disease (GVHD), graft-versus-tumor (GVT) activity, and restoration of functional immunity to prevent transplant-related opportunistic infections. We also review new strategies to optimize the GVT and improve overall immune function while reducing GVHD and graft rejection.
Collapse
Affiliation(s)
- Lisbeth A Welniak
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada 89557, USA.
| | | | | |
Collapse
|
29
|
Shaw BE, Byrne JL, Das-Gupta E, Carter GI, Russell NH. The Impact of Chimerism Patterns and Predonor Leukocyte Infusion Lymphopenia on Survival following T Cell-Depleted Reduced Intensity Conditioned Transplants. Biol Blood Marrow Transplant 2007; 13:550-9. [PMID: 17448914 DOI: 10.1016/j.bbmt.2006.12.451] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 12/22/2006] [Indexed: 11/18/2022]
Abstract
Donor leukocyte infusions (DLI) are frequently required following reduced intensity conditioned (RIC) allografts to convert mixed chimerism (MC) to full donor chimerism (FDC). The rationale is to break tolerance and maximize the graft-versus-leukemia responses. We analyzed the impact of chimerism in 125 recipients of RIC (Alemtuzumab containing) transplants. Four patterns of chimerism were seen: (1) always 100% donor chimerism (54%), (2) persisting MC (22%), (3) MC with subsequent development of FDC (18%), (4) lost donor chimerism (6%). Forty-five (36%) patients received DLI. Chimerism patterns and pre-DLI lymphocyte counts (pDLI[Ly]) were significantly associated with DLI responsiveness. Complete disease responses were seen in 6 of 17 (35%) group A patients, 9 of 10 (90%) group C patients, and 0 of 6 group B patients (P = .027), supporting reports that chimerism response is a surrogate marker for disease response. In those with MC, pDLI(Ly) were significantly lower in DLI responsive than nonresponsive patients (P = .044). At 2 years, group C patients had a significant survival advantage (P = .009) compared to all other groups. In conclusion, the chimerism pattern was the best indicator of improved survival in this cohort (ie, MC later converting to FDC). In those with MC, response to DLI therapy was associated with a low lymphocyte count pre-DLI.
Collapse
Affiliation(s)
- Bronwen E Shaw
- Department of Haematology, Nottingham City Hospital Campus, Nottingham University Hospitals, Nottingham UK.
| | | | | | | | | |
Collapse
|
30
|
Subramaniam DS, Fowler DH, Pavletic SZ. Chronic graft-versus-host disease in the era of reduced-intensity conditioning. Leukemia 2007; 21:853-9. [PMID: 17377592 DOI: 10.1038/sj.leu.2404642] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade the field of hematopoietic stem cell transplantation has entered a new era with the introduction of reduced intensity conditioning (RIC) regimens. The impact of RIC on the incidence of chronic graft-versus-host disease (GVHD) has not been evaluated systematically. Factors confounding such analyses include short follow-up in studies, absence of prospective comparison trials, use of a variety of RIC regimens, lack of uniform GVHD prophylaxis and lack of rigorous criteria for the diagnosis and staging of chronic GVHD. This review discusses factors that appear to influence the incidence and clinical presentation of chronic GVHD in the RIC transplantation era. Overall, RIC seems to decrease the incidence and severity of acute GVHD through day 100 post-transplant when compared to conventional conditioning; however, there is little evidence to suggest that chronic GVHD is reduced after RIC. For the more definitive assessments of chronic GVHD after RIC it will be important to study this question in prospective comparison trials with long duration of follow-up. The recent National Institutes of Health chronic GVHD consensus project recommendations provide now the critically needed standardized guidelines for the diagnosis, classification and staging of chronic GVHD.
Collapse
Affiliation(s)
- D S Subramaniam
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Durakovic N, Radojcic V, Skarica M, Bezak KB, Powell JD, Fuchs EJ, Luznik L. Factors governing the activation of adoptively transferred donor T cells infused after allogeneic bone marrow transplantation in the mouse. Blood 2007; 109:4564-74. [PMID: 17227829 PMCID: PMC1885486 DOI: 10.1182/blood-2006-09-048124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Murine models of bone marrow transplantation were used to study the mechanisms governing the activation of donor lymphocyte infusions (DLIs) manifesting as lymphohematopoietic graft-versus-host (LH-GVH) and graft-versus-leukemia (GVL) reactivities. We demonstrate here that established mixed chimerism influences the potency of DLI-mediated alloreactivity only in the MHC-mismatched but not MHC-matched setting. In the MHC-matched setting, high levels (>or= 40%) of residual host chimerism correlated negatively with DLI-mediated alloreactivity irrespective of the timing of their administration, the donor's previous sensitization to host antigens, or the level of residual host APCs. In vivo administration of Toll-like receptor (TLR) ligands was required to maximize DLI-mediated LH-GVH and GVL reactivities in chimeras with low levels (<or= 15%) of residual host chimerism. In contrast, coadministration of DLI with antigen-presenting cell (APC) activators was insufficient to augment their LH-GVH response in the presence of high levels of host chimerism unless the host's T cells were transiently depleted. Together, these results show the cardinal influence of donor-host incompatibility on DLI-mediated GVH responses and suggest that in MHC-matched chimeras, the induction of optimal alloreactivity requires not only donor T cells and host APCs but also TLR ligands and in the presence of high levels of host chimerism depletion of host T cells.
Collapse
Affiliation(s)
- Nadira Durakovic
- Divisions of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pachnio A, Dietrich S, Klapper W, Humpe A, Schwake M, Sedlacek R, Gramatzki M, Beck C. Proliferation-based T-cell selection for immunotherapy and graft-versus-host-disease prophylaxis in the context of bone marrow transplantation. Bone Marrow Transplant 2006; 38:157-67. [PMID: 16820783 DOI: 10.1038/sj.bmt.1705411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Graft-versus-host disease (GvHD) caused by alloreactive T cells within the graft is a major drawback of allogeneic BMT, but depletion of T cells leads to higher rates of relapse, opportunistic infections and graft failure. Therefore, selective removal of GvHD-inducing alloreactive T cells might be beneficial. We describe here the separation of alloresponsive T cells, based on carboxyfluorescein succimidyl ester labeling, in vitro allostimulation and FACS-sorting. In vivo effects of the separated cell populations were investigated in the context of allogeneic BMT in murine models: in vitro resting T cells were shown to survive in the allogeneic host and retain immunoreactivity against 'third-party' antigens. As demonstrated in two different transplantation models, elimination of proliferating cells significantly reduces GvHD but offers no advantages to using T-cell-depleted bone marrow alone concerning engraftment and tumor control. Transplanting T cells that proliferate in response to tumor antigens in vitro may narrow down the spectrum of antigens recognized by T cells and therefore reduce GvHD while maintaining graft-facilitating function and tumor control. Therefore, selecting tumor-reactive T cells on the basis of their proliferative response in vitro may be beneficial for the recipient, less time consuming than T-cell cloning and still reduce the extent of GvHD.
Collapse
Affiliation(s)
- A Pachnio
- II Medical Department, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J, Keyvanfar K, Montero A, Hensel N, Kurlander R, Barrett AJ. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 2006; 108:1291-7. [PMID: 16627754 PMCID: PMC1895877 DOI: 10.1182/blood-2006-02-003996] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (T(reg)s) that constitutively express FOXP3 are instrumental to the maintenance of tolerance and may suppress graft-versus-host disease (GVHD) in humans. To determine whether regulatory T cells in allogeneic stem cell transplants (SCTs) ameliorate GVHD after transplantation, we quantitated the coexpression of FOXP3 on CD4(+) T cells in 32 donor SCTs infused into HLA-matched siblings and examined GVHD incidence in respective recipients. High CD4(+)FOXP3(+) T-cell count in the donor was associated with a reduced risk of GVHD. We monitored T(reg)s during immune reconstitution in 21 patients with leukemia undergoing a T-cell-depleted allogeneic SCT. Early after SCT, there was a significant expansion in the CD4(+)FOXP3(+) T-cell compartment. A low CD4(+)FOXP3(+) T-cell count early after SCT (day 30) was associated with an increased risk of GVHD, and the ratio of CD4(+)FOXP3(+) T cells to CD4(+)CD25(+)FOXP3(-) T cells was significantly reduced in patients with GVHD, suggesting diminished control of effector T cells. Our findings suggest that graft T(reg) content may predict for risk of GVHD after SCT. Determining the T(reg) levels in the donor and manipulating T(reg)s early after transplantation may provide a new approach to controlling GVHD.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xia G, Truitt RL, Johnson BD. Graft-versus-Leukemia and Graft-versus-Host Reactions after Donor Lymphocyte Infusion Are Initiated by Host-Type Antigen-Presenting Cells and Regulated by Regulatory T Cells in Early and Long-Term Chimeras. Biol Blood Marrow Transplant 2006; 12:397-407. [PMID: 16545723 DOI: 10.1016/j.bbmt.2005.11.519] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
Regulatory T (T(reg)) cells and host antigen-presenting cells (APCs) have been implicated in graft-versus-host disease (GVHD) and the graft-versus-leukemia (GVL) effect after donor lymphocyte infusion (DLI), but their relative contributions remain unclear in early versus long-term complete donor or mixed murine allogeneic hematopoietic stem cell (HSC) chimeras. We have previously demonstrated that donor HSC-derived Thy1(+) T(reg) cells, consisting primarily of CD4(+)CD25(+) cells, play an important role in the suppression of graft-versus-host (GVH) reactivity when DLI is given to complete donor chimeras 28 days after HSC transplantation. Data presented here demonstrate that protection against GVHD exerted by Thy1(+) T(reg) cells is less evident with time and eventually is not required in long-term complete donor chimeras because of an absence of host-type APCs to activate alloreactive T cells. Lethal GVHD was observed when Thy1(+) T(reg) cells were depleted from complete donor chimeras given by DLI at day 28, 35, or 42; however, T(reg) cell depletion and DLI at day 70 no longer induced GVHD-associated mortality. Moreover, the failure of DLI to induce GVHD with T(reg) depletion correlated with a loss of the DLI-induced GVL effect in long-term (day 100) complete donor chimeras. In contrast to the results from complete donor chimeras, GVL reactivity in day 100 mixed chimeras was robust after DLI. Loss of a DLI-induced GVL effect in long-term complete donor chimeras was attributed to the absence of host APCs because the infusion of exogenous host-type dendritic cells partially restored both DLI-induced GVL and GVH reactions in day 100 complete donor chimeras. The GVL and GVH reactions restored by infusion of host dendritic cells in day 100 complete donor chimeras were at least partially regulated by T(reg) cells because transient depletion of CD25(+) cells increased both the GVL effect and the severity of GVHD after DLI. Taken together, these data suggest that T(reg) cells can regulate DLI-induced GVL and GVH reactions in both early and long-term complete donor chimeras, and a state of mixed chimerism is superior to complete donor chimerism because host-type APCs facilitate a DLI-induced GVL effect without severe GVHD.
Collapse
Affiliation(s)
- Guliang Xia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | |
Collapse
|
35
|
Fowler DH. Shared biology of GVHD and GVT effects: Potential methods of separation. Crit Rev Oncol Hematol 2006; 57:225-44. [PMID: 16207532 DOI: 10.1016/j.critrevonc.2005.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/30/2005] [Accepted: 07/15/2005] [Indexed: 01/14/2023] Open
Abstract
The difficult separation of clinical graft-versus-tumor (GVT) effects from graft-versus-host disease (GVHD) reflects their shared biology. Experimental approaches to mediate GVT effects while limiting GVHD include: (1) allograft T cell depletion followed by immune enhancement; (2) modulation of T cell dose or T cell subset composition; (3) donor lymphocyte infusion; (4) reduced-intensity host preparation; (5) modulation of Th1/Th2 and Tc1/Tc2 cell balance; (6) cytokine therapy or neutralization; (7) T regulatory cell therapy; (8) co-stimulatory pathway modulation; (9) chemokine pathway modulation; (10) induction of antigen-specific T cells; (11) alloreactive NK cell therapy; and (12) targeted pharmaceutical inhibition of proteosome, mammalian target of rapamycin, and histone deacetylase pathways. Clearly, a multitude of approaches exist that hold promise for separating GVT effects from GVHD. Future success in this endeavor will require a strong commitment towards translational research and continued advances in cell, vaccine, cytokine, monoclonal antibody, and targeted molecular therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, CRC, 3-East Laboratories, 3-3330, Bethesda, MD 20892-MSC 1203, USA.
| |
Collapse
|
36
|
Fukushima A, Yamaguchi T, Ishida W, Fukata K, Mittler RS, Yagita H, Ueno H. Engagement of 4-1BB inhibits the development of experimental allergic conjunctivitis in mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:4897-903. [PMID: 16210591 DOI: 10.4049/jimmunol.175.8.4897] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 4-1BB receptor acts as a costimulator in CD8(+) T cell activation. Agonistic stimulation through this molecule by treatment with anti-4-1BB Abs has been demonstrated to inhibit various experimentally induced diseases in animals. However, the effect of anti-4-1BB Abs on experimental allergic diseases has not been reported. We investigated the effect of anti-4-1BB Abs on the development and progression of experimental allergic conjunctivitis in mice. To examine the effects of Abs during the induction or effector phase, actively immunized mice or passively immunized mice by splenocyte transfer were treated with agonistic anti-4-1BB Abs, blocking anti-4-1BB ligand Abs, or normal rat IgG. Eosinophil infiltration into the conjunctiva was significantly reduced in wild-type mice by the anti-4-1BB Ab treatment during either induction or effector phase. Th2 cytokine production by splenocytes and total serum IgE were significantly reduced by the anti-4-1BB Ab treatment, while IFN-gamma production was increased. The anti-4-1BB Ab treatment induced a relative increase of CD8-positive cell numbers in the spleens. Moreover, inhibition of eosinophil infiltration by the treatment with anti-4-1BB Abs was also noted in actively immunized IFN-gamma knockout mice. Taken altogether, in vivo treatment with agonistic anti-4-1BB Abs in either induction or effector phase inhibits the development of experimental allergic conjunctivitis, and this inhibition is likely to be mediated by suppression of Th2 immune responses rather than up-regulation of IFN-gamma.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cell Movement/immunology
- Cells, Cultured
- Conjunctiva/cytology
- Conjunctiva/immunology
- Conjunctivitis, Allergic/immunology
- Conjunctivitis, Allergic/metabolism
- Conjunctivitis, Allergic/prevention & control
- Eosinophils/immunology
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Receptors, Nerve Growth Factor/agonists
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Spleen/cytology
- Spleen/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Atsuki Fukushima
- Department of Ophthalmology, Kochi Medical School, Nankoku-city, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Mielke S, Solomon SR, Barrett AJ. Selective depletion strategies in allogeneic stem cell transplantation. Cytotherapy 2005; 7:109-15. [PMID: 16040390 DOI: 10.1080/14653240510018172] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Despite improved prophylaxis and treatment, GvHD remains a major limitation to optimal allogeneic stem cell transplantation. Ex vivo selective depletion (SD) is a strategy to prevent GvHD, in which host-reactive donor lymphocytes are selectively eliminated from a PBSC allograft while useful donor immune function is preserved. The elimination of alloreactive and thereby GvHD-mediating T cells has been shown to be feasible in both pre-clinical and more recently clinical studies. However, SD techniques and the translational research needed for clinical application are still under development. Here we summarize and discuss the following aspects of the SD approach: selection of an appropriate allogeneic stimulator; the responder population; the alloresponse; methods for removal of alloreacting T cells; product testing; clinical considerations. Our review highlights the diversity of possible approaches and the need to develop different techniques for specific clinical applications.
Collapse
Affiliation(s)
- S Mielke
- Stem Cell Allogeneic Transplantation Section, National Heart, Lung & Blood Institute/NIH, Bldg. 10 CRC Room 3-5288, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Riley RS, Idowu M, Chesney A, Zhao S, McCarty J, Lamb LS, Ben-Ezra JM. Hematologic aspects of myeloablative therapy and bone marrow transplantation. J Clin Lab Anal 2005; 19:47-79. [PMID: 15756708 PMCID: PMC6807857 DOI: 10.1002/jcla.20055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transplantation of bone marrow cells or isolated hematopoietic stem cells from the bone marrow or peripheral blood is a widely utilized form of therapy for patients with incurable diseases of the hematopoietic and immune systems. Successful engraftment of the transplanted stem cells in an adequately prepared recipient normally leads to bone marrow reconstitution over a period of several weeks, accompanied by more gradual reconstitution of the immune system. Since the recipient is profoundly ill during the initial treatment period, laboratory data is critical for monitoring engraftment, detecting residual/recurrent disease, and identifying problems that may delay bone marrow reconstitution or lead to other medical complications. Accurate blood cell counts are imperative, and most bone marrow transplantation patients undergo periodic monitoring with bone marrow aspirates and biopsies with cytogenetic, molecular, and multiparametric flow cytometric studies. The potential complications of bone marrow transplantation include engraftment failure and delayed engraftment, infection, residual bone marrow disease, acute and chronic graft versus host disease, myelofibrosis, therapy-related acute leukemia, post-transplant lympho-proliferative disorders, and toxic myelopathy.
Collapse
Affiliation(s)
- Roger S Riley
- Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, Virginia 23298-0250, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Erdmann AA, Jung U, Foley JE, Toda Y, Fowler DH. Co-stimulated/Tc2 cells abrogate murine marrow graft rejection. Biol Blood Marrow Transplant 2005; 10:604-13. [PMID: 15319772 DOI: 10.1016/j.bbmt.2004.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD3/CD28 co-stimulation activates T-cell cytokine and cytolytic effector function and therefore represents an approach to modulate donor T cells before allogeneic bone marrow transplantation (BMT). We hypothesized that co-stimulation of donor T cells under T2 conditions would generate CD4+ T-helper type 2 (Th2) and CD8+ Tc2 cells capable of abrogating marrow graft rejection with reduced graft-versus-host disease (GVHD). Relative to control co-stimulated Th1/Tc1 (T1) cells, co-stimulated T2 cells secreted reduced interleukin (IL)-2 and interferon-gamma and increased IL-4 and IL-10, expressed reduced fas ligand, and had similar total cytolytic capacity. In an F1-into-parent sublethal irradiation model, T2 cells potently abrogated rejection; this veto effect was partially attenuated if T2 cell infusion was delayed for 24 hours after BMT. Cell-tracking studies determined that T2 cells were quantitatively reduced after BMT when administered to hosts capable of mounting a host-versus-graft rejection response; both donor and host cytotoxic T lymphocytes may therefore have been deleted during Th2/Tc2 cell facilitation of engraftment. Donor T2 cells also abrogated rejection in an F1-into-parent model that used lethal host irradiation and subsequent host T-cell addback. Further experiments in a P1-into-P2 transplantation model demonstrated that donor T2 cells abrogated rejection with reduced GVHD in a transplant setting involving full major histocompatibility complex disparity in both the host-versus-graft and graft-versus-host directions. The capacity of T2 cells to abrogate rejection with reduced GVHD was a function of both the number of T2 cells infused and the number of T cells present after host preparation. Co-stimulation under T2 polarizing conditions therefore rapidly generates donor Th2/Tc2 cells that potently abrogate murine marrow rejection with reduced GVHD.
Collapse
Affiliation(s)
- Andreas A Erdmann
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
40
|
Prigozhina TB, Elkin G, Khitrin S, Slavin S. Depletion of donor-reactive cells as a new concept for improvement of mismatched bone marrow engraftment using reduced-intensity conditioning. Exp Hematol 2005; 32:1110-7. [PMID: 15539090 DOI: 10.1016/j.exphem.2004.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/26/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE New nonmyeloablative strategies to improve acceptance of mismatched bone marrow (BM) may compensate for the inadequate supply of compatible grafts. Recently we proposed to facilitate engraftment of mismatched BM by selective depletion of activated donor-reactive host cells with cyclophosphamide (CY). Here we have compared engraftment of allogeneic BM after depletion of antigen-activated host lymphocytes by CY, with BM engraftment following general immunosuppression by the same CY dose. MATERIALS AND METHODS Naive or mildly irradiated BALB/c mice were primed with C57BL/6 BM cells (day 0), treated with CY in order to deplete activated T cells (day 1), and transplanted with a second C57BL/6 BM inoculum (day 2) in order to achieve BM engraftment. Alternatively, mice received an equal dose of donor BM cells in a single injection one day after the same CY dose. Treated animals were repeatedly tested for persistence of donor cells in the blood. RESULTS Depletion of alloantigen-primed lymphocytes by 200 mg/kg CY provided stable GVHD-free engraftment of allogeneic BM in nonirradiated mice, while immunosuppressive treatment with the same CY dose alone resulted in BM rejection. Low-dose irradiation before priming with donor BM allowed the tolerance-inducing CY dose to be reduced to 100 mg/kg. Alloantigen-primed lymphocyte depletion (APLD) by a reduced CY dose resulted in engraftment of donor BM after a significantly lower irradiation dose than treatment with irradiation and CY alone. CONCLUSION Our results demonstrate that conditioning that focuses on APLD has a definite advantage over general immunosuppression with CY and radiation therapy.
Collapse
Affiliation(s)
- Tatyana B Prigozhina
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
41
|
Giver CR, Li JM, Hossain MS, Lonial S, Waller EK. Reconstructing immunity after allogeneic transplantation. Immunol Res 2004; 29:269-82. [PMID: 15181288 DOI: 10.1385/ir:29:1-3:269] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A major goal of our research is to reduce the graft-vs-host disease (GVHD) activity of allogeneic donor T cells in bone marrow transplantation (BMT), while preserving graft-vs-tumor (GVT) effects. Using ex vivo immunosuppressive strategies and cell-separation techniques to modulate the graft prior to transplantation, we examined the roles of different donor immune cells on GVHD and GVT effects in allogeneic mouse models. Our results demonstrate that donor-memory CD4 T cells facilitate posttransplant immunological reconstitution without causing GVHD, whereas transplantation of equal numbers of donor naïve CD4 T cells leads to fatal GVHD. The initial events of donor T cells interacting with antigen-presenting cells (APCs) in the transplant recipient appear to be critical to the development of GVT, GVHD, or anergy to alloantigens. In the setting of clinical BMT, increased numbers of donor type 2 dendritic cells (DCs) were associated with an increased rate of posttransplant relapse, and decreased rates of chronic GVHD. In a mouse transplant model, manipulation of the DC content of bone marrow grafts was achieved by depletion of CD11b+ cells. Mice transplanted with CD11b- depleted marrow showed enhanced posttransplant expansion of memory T cells with markedly improved GVT activity and limited GVHD compared to recipients of unmanipulated marrow. A model that differentiates GVT from GVHD based on interaction of T-cell subsets with DC subsets is proposed.
Collapse
Affiliation(s)
- Cynthia R Giver
- Blood Cell Therapy Laboratory, Winship Cancer Institute, Emory University, 1365C Clifton Road, Rm. 4002, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
42
|
Prigozhina TB, Elkin G, Gurevitch O, Morecki S, Yakovlev E, Khitrin S, Slavin S. Depletion of alloantigen-primed lymphocytes overcomes resistance to allogeneic bone marrow in mildly conditioned recipients. Blood Cells Mol Dis 2004; 33:238-47. [PMID: 15528138 DOI: 10.1016/j.bcmd.2004.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Successful implantation of allogeneic bone marrow (BM) cells after nonmyeloablative conditioning would allow to compensate for the inadequate supply of compatible grafts and to reduce mortality of graft-vs.-host disease (GVHD). Recently, we proposed to facilitate engraftment of mismatched BM by conditioning for alloantigen-primed lymphocyte depletion (APLD) with cyclophosphamide (CY). Here we summarize the experimental results obtained by this approach. MATERIALS AND METHODS Naive or mildly irradiated BALB/c mice were primed with C57BL/6 BM cells (day 0), treated with CY (day 1) to deplete alloantigen-primed lymphocytes, and given a second C57BL/6 BM transplant (day 2) for engraftment. Recipients were repeatedly tested for chimerism in the blood and followed for GVHD and survival. The protocol was also tested for inducing tolerance to donor tissue and organ allografts, and for treatment of leukemia, breast cancer, and autoimmune diabetes in NOD mice. RESULTS APLD by 200 mg/kg CY provided engraftment of allogeneic BM from the same donor in 100% mildly irradiated recipients. Eighty percent chimeras remained GVHD-free more 200 days. All chimeras accepted permanently donor skin grafts and donor hematopoietic stromal progenitors. Allogeneic BM transplantation (BMT) after APLD had a strong therapeutic potential in BALB/c mice harboring malignant cells and in autoimmune NOD recipients. Tolerance-inducing CY dose could be reduced to 100 mg/kg. Conditioning for APLD resulted in engraftment of allogeneic BM after a significantly lower radiation dose than treatment with radiation and CY alone. CONCLUSION Our results demonstrate that conditioning for APLD has a definite advantage over general immunosuppression with CY and radiation therapy.
Collapse
Affiliation(s)
- Tatyana B Prigozhina
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Rettig MP, Ritchey JK, Prior JL, Haug JS, Piwnica-Worms D, DiPersio JF. Kinetics of in vivo elimination of suicide gene-expressing T cells affects engraftment, graft-versus-host disease, and graft-versus-leukemia after allogeneic bone marrow transplantation. THE JOURNAL OF IMMUNOLOGY 2004; 173:3620-30. [PMID: 15356106 DOI: 10.4049/jimmunol.173.6.3620] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suicide gene therapy is one approach being evaluated for the control of graft-vs-host disease (GVHD) after allogeneic bone marrow transplantation (BMT). We recently constructed a novel chimeric suicide gene in which the entire coding region of HSV thymidine kinase (HSV-tk) was fused in-frame to the extracellular and transmembrane domains of human CD34 (DeltaCD34-tk). DeltaCD34-tk is an attractive candidate as a suicide gene in man because of the ensured expression of HSV-tk in all selected cells and the ability to rapidly and efficiently purify gene-modified cells using clinically approved CD34 immunoselection techniques. In this study we assessed the efficacy of the DeltaCD34-tk suicide gene in the absence of extended ex vivo manipulation by generating transgenic animals that express DeltaCD34-tk in the peripheral and thymic T cell compartments using the CD2 locus control region. We found that DeltaCD34-tk-expressing T cells could be purified to near homogeneity by CD34 immunoselection and selectively eliminated ex vivo and in vivo when exposed to low concentrations of GCV. The optimal time to administer GCV after allogeneic BMT with DeltaCD34-tk-expressing transgenic T cells was dependent on the intensity of the conditioning regimen, the leukemic status of the recipient, and the dose and timing of T cell infusion. Importantly, we used a controlled graft-vs-host reaction to promote alloengraftment in sublethally irradiated mice and provide a graft-vs-leukemia effect in recipients administered a delayed infusion of DeltaCD34-tk-expressing T cells. This murine model demonstrates the potential usefulness of DeltaCD34-tk-expressing T cells to control GVHD, promote alloengraftment, and provide a graft-vs-leukemia effect in man.
Collapse
Affiliation(s)
- Michael P Rettig
- Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
44
|
Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD, Shlomchik MJ. Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood 2004; 104:1565-73. [PMID: 15150080 DOI: 10.1182/blood-2004-01-0328] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic graft-versus-host disease (cGVHD) is an increasingly common cause of morbidity and mortality in allogeneic stem cell transplantation (alloSCT). Relative to acute GVHD (aGVHD), much less is understood about cGVHD. Using the B10.D2 → BALB/c murine cGVHD model, which shares critical pathologic features with human cGVHD, we find that radiation-resistant host T cells regulate cGVHD. We initially observed that recipients lacking all lymphocytes developed accelerated and more severe cGVHD. Using genetically deficient recipients, we determined that αβ+CD4+ T cells were required to regulate cGVHD. Increased cGVHD severity was not due to the absence of T cells per se. Rather, the potency of regulation was proportional to host T-cell receptor (TCR) diversity. Only CD4+CD25+, and not CD4+CD25-, host T cells ameliorated cGVHD when added back, indicating that host T cells acted not via host-versus-graft activity or by reducing homeostatic proliferation but by an undefined regulatory mechanism. Thus, preparative regimens that spare host CD4+CD25+ T cells may reduce cGVHD. Donor CD4+CD25+ T cells also reduced cGVHD. Depletion of CD4+CD25+ cells from the inoculum exacerbated disease, whereas transplantation of additional CD4+CD25+ cells protected against severe cGVHD. Additional CD4+CD25+ cells also promoted healing of established lesions, suggesting that their effects persist during the evolution of cGVHD.
Collapse
Affiliation(s)
- Britt E Anderson
- Department of Laboratory Medicine, Yale University School of Medicine, 333 Cedar St, PO Box 208035, New Haven, CT 06520-8035, USA
| | | | | | | | | | | |
Collapse
|
45
|
Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 2004; 34:1-12. [PMID: 15156163 DOI: 10.1038/sj.bmt.1704525] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The main goal of post-transplantation monitoring in hematopoietic stem cell transplantation (HSCT) is to predict negative events, such as disease relapse, graft rejection and graft-versus-host disease, in order to intervene with appropriate therapy. In this context, chimerism analysis is an important method in monitoring post HSCT outcome. Mixed chimerism (MC) is mainly evaluated to define engraftment and relapse. Detection of MC is a prerequisite in both myeloablative and nonmyeloablative HSCT, in order to assess the graft status and decide later therapeutic strategies such as donor lymphocyte infusion. In this review, we discuss various techniques including erythrocyte phenotyping, cytogenetic analysis, fluorescent in situ hybridization, restriction fragment length polymorphism, STR/VNTR analysis and real-time quantitative PCR, along with the various methods used to detect minimal residual disease (MRD) in different diseases such as chronic myeloid leukemia, acute myelomonocytic leukemia or acute lymphoblastic leukemia. The review mainly highlights the optimal methodological approach, which needs to be informative, sensitive and quantitatively accurate for MC detection. Future of post HSCT graft monitoring lies in the selection of the most accurate and sensitive technique to determine both MC and MRD. Such an approach would be helpful in not only determining relapse or rejection, but also in ascertaining various responses to different treatment modalities.
Collapse
Affiliation(s)
- F Khan
- Department of Medical Genetics, SGPGIMS, Lucknow, India
| | | | | |
Collapse
|
46
|
Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 2004; 22:1136-51. [PMID: 15020616 DOI: 10.1200/jco.2004.10.041] [Citation(s) in RCA: 421] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The development of malignant disease might be seen as a failure of immune surveillance. However, not all tumors are naturally immunogenic, and even among those that are immunogenic, the uncontrolled rapid growth of a tumor may sometimes out-run a robust immune response. Nevertheless, recent evidence suggests that mechanisms of tolerance that normally exist to prevent autoimmune disease may also preclude the development of an adequate antitumor response and that tumors themselves have the ability to thwart the development of effective immune responses against their antigens. A major challenge has been to develop approaches to breaking this tolerance in tumor-bearing hosts, and recent advances in our understanding of antigen presentation and tolerance have led to some promising strategies. An alternative approach is to use T cells from nontumor-bearing, allogeneic hosts in the form of lymphocyte infusions, with or without hematopoietic cell transplantation. Immunotherapy may occur in this setting via the response of nontolerant, tumor antigen-specific T cells from nontumor-bearing hosts or via the powerful destructive effect of an alloresponse directed against antigens shared by malignant cells in the recipient. Approaches to exploiting this beneficial effect without the deleterious consequence of graft-versus-host disease in allogeneic hematopoietic cell recipients are discussed.
Collapse
Affiliation(s)
- Markus Y Mapara
- Department of Hematology and Oncology, University Medical Center Charité, Campus Virchow Klinikum, Humboldt University Berlin, Germany
| | | |
Collapse
|
47
|
Fowler DH, Bishop MR, Gress RE. Immunoablative reduced-intensity stem cell transplantation: potential role of donor Th2 and Tc2 cells. Semin Oncol 2004; 31:56-67. [PMID: 14970938 DOI: 10.1053/j.seminoncol.2003.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Allogeneic reduced-intensity stem cell transplantation (RISCT) decreases regimen-associated morbidity and mortality, but it is unfortunately still constrained by the same immune T-cell reactions that limit myeloablative transplantation, including graft rejection, graft-versus-host disease (GVHD), and suboptimal graft-versus-leukemia (GVL) or graft-versus-tumor (GVT) effects. Graft rejection is mediated by host T cells, whereas GVHD and GVL/GVT effects are initiated by donor T cells, and to this extent, future advances in RISCT will likely benefit from an ability to modulate both donor and host T-cell immunity. As a step in this direction, we have developed a RISCT approach that first involves chemotherapy-induced host T-cell ablation, and second involves administration of allogeneic inocula enriched for donor CD4(+) Th2 and CD8(+) Tc2 T-cell subsets that in murine studies mediate reduced GVHD. In a pilot clinical trial, "immunoablative" RISCT with human leukocyte antigen (HLA)-matched related allografts resulted in rapid and complete donor chimerism and GVL effects early post-transplant, with GVHD being the primary toxicity. Using this immunoablative RISCT approach, we are now evaluating the feasibility and safety of augmenting allografts with additional donor CD4(+) Th2 cells that are generated in vitro via CD3/CD28 costimulation in the presence of interleukin (IL)-4. We review the biology of host and donor T-cell immunity during allogeneic RISCT and discuss the strategies of host immunoablation and donor Th2 and Tc2 cell therapy as potential means to improve the clinical results in RISCT.
Collapse
Affiliation(s)
- Daniel H Fowler
- National Institutes of Health, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M. Transient expansion of Mac1+Ly6-G+Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 2003; 102:740-8. [PMID: 12676788 DOI: 10.1182/blood-2002-06-1833] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A murine model of minor histocompatibility antigen (miHCag)-mismatched bone marrow transplantation (BMT) was used to study the development of immunoregulatory cells in the posttransplantation period and their possible involvement in the dissociated graft-versus-host (GVH) and graft-versus-leukemia (GVL) reactivity of posttransplantation donor lymphocyte infusions (DLIs). DLI, applied immediately after BMT, induced GVH disease (GVHD), but when DLI was delayed for 3 weeks, GVHD was avoided while a distinct GVL response was allowed to develop. A population of Mac1+Ly6-G+Ly6-C+ immature myeloid cells, found in small numbers in normal mice, strongly expanded in spleens of chimeras, reaching a maximum level at week 3 and returning to base level by week 12. Upon isolation, these cells exhibited interferon-gamma (IFN-gamma)-dependent, nitric oxide (NO)-mediated suppressor activity toward in vitro alloresponses, suggesting that, after in vivo DLI, they are activated by IFN-gamma to produce NO and suppress GVH reactivity. Because not only alloactivated T-cell proliferation but also leukemia cell growth was found susceptible to inhibition by exogenous NO, in vivo activation of these cells after DLI may explain the occurrence of a GVL effect despite suppression of GVHD. This suggested sequence of events was supported by the finding that the ex vivo antihost proliferative response of spleen cells, recovered shortly after in vivo DLI, was characterized by strong mRNA production of the monokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha (TNF-alpha) and of inducible nitric oxide synthase (iNOS). Our data suggest that transiently expanding Mac1+Ly6-G+Ly6-C+ immature myeloid cells (probably as a result of extramedullary myelopoiesis) may play a role in controlling GVH while promoting GVL reactivity of DLI after allogeneic BMT.
Collapse
Affiliation(s)
- An D Billiau
- Laboratory of Experimental Transplantation, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
49
|
Kraus AB, Shaffer J, Toh HC, Preffer F, Dombkowski D, Saidman S, Colby C, George R, McAfee S, Sackstein R, Dey B, Spitzer TR, Sykes M. Early host CD8 T-cell recovery and sensitized anti-donor interleukin-2-producing and cytotoxic T-cell responses associated with marrow graft rejection following nonmyeloablative allogeneic bone marrow transplantation. Exp Hematol 2003; 31:609-21. [PMID: 12842706 DOI: 10.1016/s0301-472x(03)00082-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE We developed a nonmyeloablative conditioning regimen for allogeneic bone marrow transplantation (BMT) followed by donor lymphocyte infusions (DLI) for treatment of chemotherapy refractory malignancies. Although the majority of patients who receive this regimen achieve lasting mixed or full allogeneic chimerism, approximately 30% show initial mixed chimerism followed by loss of the donor graft. These patients recover host hematopoiesis without significant cytopenias. To assess the role of immunologic rejection in graft loss, we compared T-cell recovery and in vitro alloresponses in six patients who lost their marrow graft to that in 16 concurrent patients with sustained donor chimerism. PATIENTS AND METHODS Conditioning included pretransplant cyclophosphamide (150-200 mg/kg), thymic irradiation (700 cGy), and pre- and post-transplant equine antithymocyte globulin (ATG; ATGAM). HLA-identical related donor BMT was followed by DLI at approximately day 35 in patients without graft-vs-host disease. RESULTS The group with transient chimerism showed significantly increased circulating host T-cell (median 416 cells/mm(3) vs 10 cells/mm(3), p<0.05) and CD8 T-cell numbers (354 cells/mm(3) vs 71 cells/mm(3), p<0.05) compared to the group with stable mixed or full donor chimerism within the first 100 days post-BMT. All DLI recipients who lost chimerism following DLI had greater than 80% recipient T cells at the time of DLI, whereas those with persistent chimerism had <60% host T cells. Graft rejection was associated with the development of a sensitized anti-donor bulk cytotoxic T-lymphocyte (CTL) response in 4 of 6 evaluated patients, compared to only 1 of 10 evaluated patients with sustained chimerism (p<0.05). Additionally, 3 of 5 evaluated transient chimeras showed high anti-donor CTL precursor frequencies in limiting dilution assays, and 3 of 4 evaluated transient chimeras showed high anti-donor interleukin-2 (IL-2)-producing T-helper (T(H)) cell frequencies. High anti-donor T(H) or cytotoxic T-lymphocyte precursors were not detected in sustained chimeras. CONCLUSION These data indicate that loss of chimerism in patients receiving this nonmyeloablative regimen is due to immune-mediated rejection. This rejection appears to bemediated by recovering recipient cytolytic CD8(+) cells as well as IL-2-producing recipient T(H) cells. These data are the first to demonstrate sensitization of recipient anti-donor IL-2-producing cells in association with human marrow allograft rejection.
Collapse
Affiliation(s)
- Annette B Kraus
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Mass., USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yunusov MY, Georges GE, Storb R, Moore P, Hagglund H, Affolter V, Lesnikova M, Gass MJ, Little MT, Loken M, McKenna H, Storer B, Nash RA. FLT3 ligand promotes engraftment of allogeneic hematopoietic stem cells without significant graft-versus-host disease. Transplantation 2003; 75:933-40. [PMID: 12698076 DOI: 10.1097/01.tp.0000057831.93385.7d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Graft-versus-host (GVH) reactions contribute to stable engraftment of allogeneic hematopoietic stem cell transplants. It was hypothesized that the in vivo expansion of recipient dendritic cells (DC) with the administration of ligand for Flt3 (FL) could promote allogeneic engraftment after reduced-intensity conditioning by enhancing the GVH effect. METHODS FL was first administered to three nonirradiated healthy dogs for 13 days at a dosage of 100 microg/kg/day. Next, nine dogs received 4.5 Gy total-body irradiation (TBI) and unmodified marrow grafts from dog leukocyte antigen (DLA)-identical littermates without posttransplant immunosuppression. FL was administered to the recipients at a dosage of 100 microg/kg/day from day -7 until day +5. RESULTS In normal dogs, FL produced significant increases in monocytes (CD14+) and neutrophils in the peripheral blood, a marked increase in CD1c+ cells with DC-type morphology in lymph nodes, and increased alloreactivity of third-party responders to peripheral blood mononuclear cells in mixed lymphocyte reactions (P<0.001). Sustained engraftment was observed in eight of nine (89%) FL-treated dogs compared with 14 of 37 (38%) controls (P=0.02, logistic regression). All engrafted FL-treated dogs became stable complete (n=2) or mixed (n=6) hematopoietic chimeras without significant graft-versus-host disease (GVHD). Recipient chimeric dogs (n=4) were tolerant to skin transplants from their marrow donors but rejected skin grafts from unrelated dogs within 7 to 9 days (median, 8 days). CONCLUSIONS In this study, the authors showed that FL administered to recipients promotes stable engraftment of allogeneic marrow from DLA-identical littermates after 4.5 Gy TBI without significant GVHD.
Collapse
Affiliation(s)
- Murad Y Yunusov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|