1
|
Bounder G, Jouimyi MR, Essaidi I, Elyounsi I, Boura H, Michel V, Badre W, Touati E, Maachi F. Upstream stimulating factor 1 (USF1) -202 G/A polymorphism and serum levels of USF1 and USF2 are associated with gastric cancer risk: a case control study. J Cancer Res Clin Oncol 2025; 151:113. [PMID: 40102295 PMCID: PMC11919976 DOI: 10.1007/s00432-025-06158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Gastric cancer is an inflammation-driven disease often associated with a bad prognosis. Upstream stimulatory factors USF1 and USF2 are pleiotropic transcription factors, with tumor suppressor function. Low expression of USF1 is associated with low survival in gastric cancer patients. USF1 genetic polymorphism -202G > A has been associated with cancer susceptibility. Our aim was to investigate USF1 gene polymorphism and serum level with the risk of gastric cancer. METHODS USF1-202 G/A polymorphism was analyzed by sanger sequencing, with the measure of USF1/USF2 serum levels by ELISA in H. pylori-positive patients with chronic gastritis, gastric precancerous lesions, gastric cancer and in healthy controls. RESULTS Our results show that the presence of the USF1-202 A allele increased the risk of gastric cancer compared to G (OR = 2; 95% CI 1.07-3.9; P = 0.02). Genotypically and under the dominant mutation model, the combined USF1- GA/AA -202 genotypes corresponded to higher risk of gastric cancer (OR = 3.5; 95% CI 1.4-8.2; p-value = 0.005) than the GG genotype. Moreover, the G/A transition at USF1-202 was associated with lower USF1 serum level, and mostly observed in gastric cancer patients where the average serological level of USF1 were 2.3 and twofold lower for the AA and GA genotypes, respectively, compared to GG. CONCLUSION USF1-202 G/A polymorphism constitutes a gastric cancer genetic risk factor. Together with USF1/USF2 serum level, they can be proposed as promising biomarkers for gastric cancer detection/prevention.
Collapse
Affiliation(s)
- Ghizlane Bounder
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mohamed Reda Jouimyi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Essaidi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Hasna Boura
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Valérie Michel
- Équipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Wafa Badre
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Eliette Touati
- Équipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| | - Fatima Maachi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
2
|
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024; 16:1110. [PMID: 39066272 PMCID: PMC11281654 DOI: 10.3390/v16071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a significant clinical concern in newborns, immunocompromised patients with acquired immunodeficiency syndrome (AIDS), and patients undergoing immunosuppressive therapy or chemotherapy. CMV infection affects many organs, such as the lungs, digestive organs, the central nerve system, and eyes. In addition, CMV infection sometimes occurs in immunocompetent individuals. CMV ocular diseases includes retinitis, corneal endotheliitis, and iridocyclitis. CMV retinitis often develops in infected newborns and immunocompromised patients. CMV corneal endotheliitis and iridocyclitis sometimes develop in immunocompetent individuals. Systemic infections and CMV ocular diseases often require systemic treatment in addition to topical treatment.
Collapse
Affiliation(s)
| | - Noriyasu Hashida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
4
|
Valenzuela NM. JAKinibs prevent persistent, IFNγ-autonomous endothelial cell inflammation and immunogenicity. Am J Physiol Cell Physiol 2023; 325:C186-C207. [PMID: 37184230 PMCID: PMC10312316 DOI: 10.1152/ajpcell.00298.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The adhesion and subsequent activation of T cells is a critical step in local inflammatory responses, particularly of alloreactive leukocytes in rejection of transplanted donor tissue. Interferon (IFN)γ is an adaptive cytokine that promotes endothelial cell (EC) expression of pro-adhesive factors and costimulatory molecules. We recently reported that IFNγ-induced endothelial cell antigen-presenting capacity was protracted after cytokine withdrawal. This study sought to determine what intracellular signaling mediates this chronic endothelial activation by IFNγ. The durability of interferon signaling in human aortic endothelial activation was tested. Pro-adhesive and costimulatory gene expression, phenotype, secretome, and Janus kinase (JAK)/STAT phosphorylation in human primary endothelial cells were measured under chronic and transient IFNγ stimulation, with various JAK inhibitors. IFNγ reporter cells were tested for STAT1 transcriptional activity with JAK inhibition and suppressors of cytokine signaling (SOCS) overexpression, under continuous and priming conditions. The consequences of even short exposure to IFNγ were long-lasting and broad, with sustained elevation of adhesion molecules and chemokines up to 48 h later. JAK/STAT and interferon response factor expression were likewise durable, dependent on new transcription but autonomous of continuous IFNγ. Persistent STAT new transcription and JAK signaling in the endothelium was required to maintain a pro-adhesive and proimmunogenic phenotype after IFNγ withdrawal since both could be prevented by cycloheximide but only by JAKinibs with potency against JAK2. Finally, the suppressor of cytokine signaling SOCS1 failed to emerge in primed endothelial cells, which likely accounted for prolonged inflammatory gene expression. The results reveal a sustained JAK-dependent perturbation of endothelial function and suggest that JAKinibs may have therapeutic benefits in dampening vascular inflammation and allogeneic leukocyte activation.NEW & NOTEWORTHY The central question investigated in this study is why vascular endothelium remains inflamed and what underlying signaling is responsible. The new results show that the resolution of endothelial-controlled inflammation may be impaired or delayed because Janus kinase (JAK)/STAT activation is maintained autonomous of interferon (IFN)γ presence, and the late phase negative regulator suppressors of cytokine signaling (SOCS)1 fails to be induced.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
5
|
Hum NR, Bourguet FA, Sebastian A, Lam D, Phillips AM, Sanchez KR, Rasley A, Loots GG, Weilhammer DR. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. PLoS Pathog 2022; 18:e1010231. [PMID: 35584192 PMCID: PMC9154093 DOI: 10.1371/journal.ppat.1010231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice. In response to infection, microglia initiated robust transcriptional upregulation of antiviral immune genes, as well as increased levels of activation markers and cytokine secretion that is dependent on mitochondrial antiviral-signaling protein (MAVS) and independent of toll-like receptors 3 and 7. In vivo, Mavs-/- mice displayed enhanced susceptibility to RVFV as determined by increased brain viral burden and higher mortality. Single-cell RNA sequence analysis identified defects in type I interferon and interferon responsive gene expression within microglia in Mavs-/- mice, as well as dysregulated lymphocyte infiltration. The results of this study provide a crucial step towards understanding the precise molecular mechanisms by which RVFV infection is controlled in the brain and will help inform the development of vaccines and antiviral therapies that are effective in preventing encephalitis. Rift Valley fever virus causes severe disease in humans and livestock and in some cases can be fatal. There is concern about the use of Rift Valley fever virus as a bioweapon since it can be transmitted through the air, and there are no vaccines or antiviral treatments. Airborne transmission of the virus causes severe inflammation of the brain, yet little is known about the immune response against the virus in this organ. Here, we investigated the immune response in the brain to Rift Valley fever virus following intranasal infection. We determined that microglia, the resident immune cells of the brain, initiate a robust response to Rift Valley fever virus infection and identified a key immune pathway that is critical for the ability of microglia to respond to infection. When this immune pathway is rendered non-functional, mice have a dysregulated response to infection in the brain. This study provides insight into how the immune response can control Rift Valley fever virus infection of the brain.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Feliza A. Bourguet
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Doris Lam
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kristina R. Sanchez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wang G, Liu W, Wang C, Wang J, Liu H, Hao D, Zhang M. Molecular characterization and immunoregulatory analysis of suppressors of cytokine signaling 1 (SOCS1) in black rockfish, Sebastes schlegeli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104355. [PMID: 35077723 DOI: 10.1016/j.dci.2022.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The suppressors of cytokine signaling (SOCS) family are important soluble mediators to inhibit signal transduction via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway in the innate and adaptive immune responses. SOCS1 is the primary regulator of a number of cytokines. In this study, two spliced transcripts of SOCS1 were identified and characterized from black rockfish (Sebastes schlegeli), named SsSOCS1a and SsSOCS1b. SsSOCS1a and SsSOCS1b contained conserved structural and functional domains including KIR region, ESS region, SH2 domain and SOCS box. SsSOCS1a and SsSOCS1b were distributed ubiquitously in all the detected tissues with the higher expression level in liver and spleen. After stimulation in vivo with Vibrio anguillarum and Edwardsiella tarda, the mRNA expression of SsSOCS1a and SsSOCS1b were induced in most of the immune-related tissues, including head kidney, spleen and liver. Meanwhile, poly I:C and IFNγ up-regulated the expression of SsSOCS1a and SsSOCS1b that reached the highest level at 24 h in macrophages in vitro. Luciferase assays in HEK293 cells showed SsSOCS1a and SsSOCS1b had the similar function in inhibiting ISRE activity after poly I:C and IFNγ treatment. Furthermore, KIR domain in black rockfish was determined to have a negative regulatory role in IFN signaling. SsSOCS1a and SsSOCS1b were found to interact strongly with each other by Co-immunoprecipitation analyses. These results indicated that the function of SOCS1 in the negative regulation of IFN signaling is conserved from teleost to mammals which will be helpful to further understanding of the biological functions of teleosts SOCS1 in innate immunity.
Collapse
Affiliation(s)
- Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Changbiao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jingjing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hongmei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongfang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
7
|
Mizuno N, Yanagawa Y. Tofacitinib enhances interferon-γ-induced expression of major histocompatibility complex class II in macrophages. Eur J Pharmacol 2022; 915:174564. [PMID: 34919889 DOI: 10.1016/j.ejphar.2021.174564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
Tofacitinib is the first selective Janus kinase (JAK) 1/3 inhibitor approved for the treatment of rheumatoid arthritis and has been demonstrated to exhibit its efficacy through suppression of lymphocyte activation. Although macrophages are critically involved in the pathogenesis of rheumatoid arthritis, little is known about the influence of tofacitinib on macrophage activation especially expression of major histocompatibility complex class II (MHC II) and co-stimulatory molecule CD86. In the present study, we examined the effect of tofacitinib on the expression of MHC II and CD86 in RAW264.7 murine macrophages. Interferon (IFN)-γ induces the cell surface expression of MHC II and CD86. The treatment of tofacitinib at 0.5 μM significantly upregulated IFN-γ-induced expression of MHC II, while decreased the expression of CD86. Hence the population of CD86- MHC II+ cells that induced by tofacitinib at 0.5 μM in the presence of IFN-γ were approximately three times larger than that of IFN-γ alone. Consistent with the surface expression, tofacitinib enhanced IFN-γ-induced mRNA expression of MHC II, and contrarily, decreased that of CD86. Similarly, tofacitinib increased the mRNA expression of MHC II transactivator (CIITA), especially CIITA type I, which is a key regulator of MHC II gene transcription. These findings suggested that tofacitinib enhanced IFNγ-induced MHC II expression by transcriptional regulation through induction of CIITA in macrophages and raise the possibility that a novel action of tofacitinib.
Collapse
Affiliation(s)
- Natsumi Mizuno
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Ishikari-Tobetsu, 061-0293, Japan.
| | - Yoshiki Yanagawa
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Ishikari-Tobetsu, 061-0293, Japan
| |
Collapse
|
8
|
Tur J, Farrera C, Sánchez-Tilló E, Vico T, Guerrero-Gonzalez P, Fernandez-Elorduy A, Lloberas J, Celada A. Induction of CIITA by IFN-γ in macrophages involves STAT1 activation by JAK and JNK. Immunobiology 2021; 226:152114. [PMID: 34303919 DOI: 10.1016/j.imbio.2021.152114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023]
Abstract
The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Consol Farrera
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ester Sánchez-Tilló
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Paula Guerrero-Gonzalez
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ainhoa Fernandez-Elorduy
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Nast R, Choepak T, Lüder CGK. Epigenetic Control of IFN-γ Host Responses During Infection With Toxoplasma gondii. Front Immunol 2020; 11:581241. [PMID: 33072127 PMCID: PMC7544956 DOI: 10.3389/fimmu.2020.581241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023] Open
Abstract
Host defense against the human pathogen Toxoplasma gondii depends on secretion of interferon (IFN)-γ and subsequent activation of monocytic cells to combat intracellular parasites. Previous studies have shown that T. gondii evades IFN-γ-mediated immunity by secreting the effector TgIST into the host cell where it binds to STAT1, strengthens its DNA binding activity and recruits the Mi-2/NuRD complex to STAT1-responsive promoters. Here we investigated the impact of the host chromatin environment on parasite interference with IFN-γ-induced gene expression. Luciferase reporters under control of primary and secondary IFN-γ response promoters were only inhibited by T. gondii when they were stably integrated into the host genome but not when expressed from a plasmid vector. Absence of CpG islands upstream and/or downstream of the transcriptional start site allowed more vigorous up-regulation by IFN-γ as compared to CpG-rich promoters. Remarkably, it also favored parasite interference with IFN-γ-induced gene expression indicating that nucleosome occupancy at IFN-γ-responsive promoters is important. Promoter DNA of IFN-γ-responsive genes remained largely non-methylated in T. gondii-infected cells, and inhibition of DNA methylation did not impact parasite interference with host responses. IFN-γ up-regulated histone marks H4ac, H3K9ac, and H3K4me3 but down-regulated H3S10p at primary and secondary response promoters. Infection with T. gondii abolished histone modification, whereas total nuclear activities of histone acetyl transferases and histone deacetylases were not altered. Taken together, our study reveals a critical impact of the host chromatin landscape at IFN-γ-activated promoters on their inhibition by T. gondii with a comprehensive blockade of histone modifications at parasite-inactivated promoters.
Collapse
Affiliation(s)
- Roswitha Nast
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Tenzin Choepak
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
10
|
Burmeister AR, Johnson MB, Marriott I. Murine astrocytes are responsive to the pro-inflammatory effects of IL-20. Neurosci Lett 2019; 708:134334. [PMID: 31238130 DOI: 10.1016/j.neulet.2019.134334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Glia are key regulators of inflammatory responses within the central nervous system (CNS) following infection or trauma. We have previously demonstrated the ability of activated astrocytes to rapidly produce pro-inflammatory mediators followed by a transition to an anti-inflammatory cytokine production profile that includes the immunosuppressive cytokine interleukin (IL)-10 and the closely related cytokines IL-19 and IL-24. IL-20, another member of the IL-10 family, is known to modulate immune cell activity in the periphery and we have previously demonstrated that astrocytes constitutively express the cognate receptors for this cytokine. However, the ability of glia to produce IL-20 remains unclear and the effects of this pleiotropic cytokine on glial immune functions have not been investigated. In this study, we report that primary murine and human astrocytes are not an appreciable source of IL-20 following challenge with disparate bacterial species or their components. Importantly, we have determined that astrocyte are responsive to the immunomodulatory actions of this cytokine by showing that recombinant IL-20 administration upregulates microbial pattern recognition receptor expression and induces release of the inflammatory mediator IL-6 by these cells. Taken together, these data suggest that IL-20 acts in a dissimilar manner to other IL-10 family members to augment the inflammatory responses of astrocytes.
Collapse
Affiliation(s)
- Amanda R Burmeister
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
11
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Barrionuevo P, Giambartolomei GH. Inhibition of antigen presentation by Brucella: many more than many ways. Microbes Infect 2019; 21:136-142. [PMID: 30677519 DOI: 10.1016/j.micinf.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/18/2023]
Abstract
Brucella infection activates the immune system and favors the differentiation of CD4+ and CD8+ T cells. To persist during a long time inside macrophages evading immune surveillance of these T cells the pathogen must exploit different evasion strategies. We review the mechanisms whereby Brucella, through TLR signaling, inhibits MHC class I and II antigen presentation, allowing infected macrophages to become effective niches for Brucella survival.
Collapse
Affiliation(s)
- Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina.
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Bai J, Wu L, Chen X, Wang L, Li Q, Zhang Y, Wu J, Cai G, Chen X. Suppressor of Cytokine Signaling-1/STAT1 Regulates Renal Inflammation in Mesangial Proliferative Glomerulonephritis Models. Front Immunol 2018; 9:1982. [PMID: 30214448 PMCID: PMC6125399 DOI: 10.3389/fimmu.2018.01982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MsGN) is a significant global threat to public health. Inflammation plays a crucial role in MsGN; however, the underlying mechanism remains unknown. Herein, we demonstrate that suppression of the cytokine signaling-1 (SOCS1)/signal transducer and activator of transcription 1 (STAT1) signaling pathway is associated with renal inflammation and renal injury in MsGN. Using MsGN rat (Thy1.1 GN) and mouse (Habu GN) models, renal SOCS1/STAT1 was determined to be associated with CD4+ T cell infiltration and related cytokines. In vitro, SOCS1 overexpression repressed IFN-γ-induced MHC class II and cytokine levels and STAT1 phosphorylation in mesangial cells. SOCS1 and STAT1 inhibitors significantly inhibited IFN-γ-induced CIITA promoter activity and MHC class II expression. In conclusion, our study emphasizes the pivotal role of the SOCS1/STAT1 axis in the regulation of inflammation in MsGN.
Collapse
Affiliation(s)
- Jiuxu Bai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Qinggang Li
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Jie Wu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| |
Collapse
|
15
|
Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. J Virol 2018; 92:JVI.00526-18. [PMID: 29976680 DOI: 10.1128/jvi.00526-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
AIDS-related human cytomegalovirus retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. To study mechanisms of this disease, we used a clinically relevant animal model of murine cytomegalovirus (MCMV) retinitis with retrovirus-induced murine AIDS (MAIDS) that mimics the progression of AIDS in humans. We found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling 1 (SOCS1) and SOCS3, host proteins which hinder immune-related signaling by cytokines, including antiviral type I and type II interferons. The present study demonstrates that in the absence of retinal disease, systemic MCMV infection of mice without MAIDS, but not in mice with MAIDS, leads to mild stimulation of splenic SOCS1 mRNA. In sharp contrast, when MCMV is directly inoculated into the eyes of retinitis-susceptible MAIDS mice, high levels of intraocular SOCS1 and SOCS3 mRNA and protein are produced which are associated with significant intraocular upregulation of gamma interferon (IFN-γ) and interleukin-6 (IL-6) mRNA expression. We also show that infiltrating macrophages, granulocytes, and resident retinal cells are sources of intraocular SOCS1 and SOCS3 protein production during development of MAIDS-related MCMV retinitis, and SOCS1 and SOCS3 mRNA transcripts are detected in retinal areas histologically characteristic of MCMV retinitis. Furthermore, SOCS1 and SOCS3 are found in both MCMV-infected cells and uninfected cells, suggesting that these SOCS proteins are stimulated via a bystander mechanism during MCMV retinitis. Taken together, our findings suggest a role for MCMV-related stimulation of SOCS1 and SOCS3 in the progression of retinal disease during ocular, but not systemic, MCMV infection.IMPORTANCE Cytomegalovirus infection frequently causes blindness in untreated HIV/AIDS patients. This virus manipulates host cells to dysregulate immune functions and drive disease. Here, we use an animal model of this disease to demonstrate that cytomegalovirus infection within eyes during retinitis causes massive upregulation of immunosuppressive host proteins called SOCS. As viral overexpression of SOCS proteins exacerbates infection with other viruses, they may also enhance cytomegalovirus infection. Alternatively, the immunosuppressive effect of SOCS proteins may be protective against immunopathology during cytomegalovirus retinitis, and in such a case SOCS mimetics or overexpression treatment strategies might be used to combat this disease. The results of this work therefore provide crucial basic knowledge that contributes to our understanding of the mechanisms of AIDS-related cytomegalovirus retinitis and, together with future studies, may contribute to the development of novel therapeutic targets that could improve the treatment or management of this sight-threatening disease.
Collapse
|
16
|
Bedoui Y, Neal JW, Gasque P. The Neuro-Immune-Regulators (NIREGs) Promote Tissue Resilience; a Vital Component of the Host's Defense Strategy against Neuroinflammation. J Neuroimmune Pharmacol 2018; 13:309-329. [PMID: 29909495 DOI: 10.1007/s11481-018-9793-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
Abstract
An effective protective inflammatory response in the brain is crucial for the clearance of pathogens (e.g. microbes, amyloid fibrils, prionSC) and should be closely regulated. However, the CNS seems to have limited tissue resilience to withstand the detrimental effects of uncontrolled inflammation compromising functional recovery and tissue repair. Newly described neuro-immune-regulators (NIREGs) are functionally related proteins regulating the severity and duration of the host inflammatory response. NIREGs such as CD200, CD47 and CX3CL1 are vital for increasing tissue resilience and are constitutively expressed by neurons. The interaction with co-receptors (CD200R, CD172a, CX3CR1) will maintain microglia in the resting phenotype, directing aggressive microglia phenotype and limiting bystander injuries. Neurons can also express many of the complement NIREGs (CD55, CD46, CD59 and factor H). Neurons and glia also express suppressor of cytokine signaling proteins (SOCS) down regulating janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway and to lead to the polarization of microglia towards anti-inflammatory phenotype. Other NIREGs such as serine protease inhibitors (serpins) and thrombomodulin (CD141) inhibit neurotoxic systemic coagulation proteins such as thrombin. The unfolded protein response (UPR) detects misfolded proteins and other stressors to prevent irreversible cell injury. Microglial pattern recognition receptors (PRR) (TREM-2, CR3, FcγR) are important to clear apoptotic cells and cellular debris but in non-phlogystic manner through inhibitory signaling pathways. The TYRO3, Axl, Mer (TAM) tyrosine receptor kinases activated by Gas 6 and PROS1 regulate inflammation by inhibiting Toll like receptors (TLR) /JAK-STAT activation and contribute to NIREG's functions.
Collapse
Affiliation(s)
- Yosra Bedoui
- Université de la Réunion, CRNS 9192, INSERM U1187, IRD249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Saint -Clotilde, La Réunion, France
| | - Jim W Neal
- Infection and Immunity, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK.
| | - Philippe Gasque
- Laboratoire de biologie, secteur laboratoire d'immunologie Clinique et expérimentale ZOI, LICE-OI, CHU Felix Guyon Bellepierre, St Denis, La Réunion, France.
| |
Collapse
|
17
|
Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, De Jager PL, Ransohoff RM, Regev A, Tsai LH. Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution. Cell Rep 2018; 21:366-380. [PMID: 29020624 PMCID: PMC5642107 DOI: 10.1016/j.celrep.2017.09.039] [Citation(s) in RCA: 514] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 11/09/2022] Open
Abstract
Microglia, the tissue-resident macrophages in the brain, are damage sensors that react to nearly any perturbation, including neurodegenerative diseases such as Alzheimer’s disease (AD). Here, using single-cell RNA sequencing, we determined the transcriptome of more than 1,600 individual microglia cells isolated from the hippocampus of a mouse model of severe neurodegeneration with AD-like phenotypes and of control mice at multiple time points during progression of neurodegeneration. In this neurodegeneration model, we discovered two molecularly distinct reactive microglia phenotypes that are typified by modules of co-regulated type I and type II interferon response genes, respectively. Furthermore, our work identified previously unobserved heterogeneity in the response of microglia to neurodegeneration, discovered disease stage-specific microglia cell states, revealed the trajectory of cellular reprogramming of microglia in response to neurodegeneration, and uncovered the underlying transcriptional programs.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chinnakkaruppan Adaikkan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennie Z Young
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elodie Manet
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Hemberg
- Department of Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Wang H, Wang J, Xia Y. Defective Suppressor of Cytokine Signaling 1 Signaling Contributes to the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2017; 8:1292. [PMID: 29085365 PMCID: PMC5650678 DOI: 10.3389/fimmu.2017.01292] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving injuries in multiple organs and systems. Exaggerated inflammatory responses are characterized as end-organ damage in patients with SLE. Although the explicit pathogenesis of SLE remains unclear, increasing evidence suggests that dysregulation of cytokine signals contributes to the progression of SLE through the Janus kinase/signal transducer and activator of transcription (STAT) signaling pathway. Activated STAT proteins translocate to the cell nucleus and induce transcription of target genes, which regulate downstream cytokine production and inflammatory cell infiltration. The suppressor of cytokine signaling 1 (SOCS1) is considered as a classical inhibitor of cytokine signaling. Recent studies have demonstrated that SOCS1 expression is decreased in patients with SLE and in murine lupus models, and this negatively correlates with the magnitude of inflammation. Dysregulation of SOCS1 signals participates in various pathological processes of SLE such as hematologic abnormalities and autoantibody generation. Lupus nephritis is one of the most serious complications of SLE, and it correlates with suppressed SOCS1 signals in renal tissues. Moreover, SOCS1 insufficiency affects the function of several other organs, including skin, central nervous system, liver, and lungs. Therefore, SOCS1 aberrancy contributes to the development of both systemic and local inflammation in SLE patients. In this review, we discuss recent studies regarding the roles of SOCS1 in the pathogenesis of SLE and its therapeutic implications.
Collapse
Affiliation(s)
- Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxing Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 2017; 37:67-79. [DOI: 10.1016/j.cytogfr.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022]
|
20
|
Velásquez LN, Milillo MA, Delpino MV, Trotta A, Fernández P, Pozner RG, Lang R, Balboa L, Giambartolomei GH, Barrionuevo P. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). J Leukoc Biol 2017; 101:759-773. [PMID: 27765819 DOI: 10.1189/jlb.4a0416-196r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4+ T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection.
Collapse
Affiliation(s)
- Lis N Velásquez
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M Ayelén Milillo
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Aldana Trotta
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pablo Fernández
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Roberto G Pozner
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Freidrich Alexander Universität Erlangen-Nürnberg, Germany
| | - Luciana Balboa
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Paula Barrionuevo
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina;
| |
Collapse
|
21
|
Yau ACY, Piehl F, Olsson T, Holmdahl R. Effects of C2ta genetic polymorphisms on MHC class II expression and autoimmune diseases. Immunology 2016; 150:408-417. [PMID: 27861821 DOI: 10.1111/imm.12692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 11/28/2022] Open
Abstract
Antigen presentation by the MHC-II to CD4+ T cells is important in adaptive immune responses. The class II transactivator (CIITA in human and C2TA in mouse) is the master regulator of MHC-II gene expression. It coordinates the transcription factors necessary for the transcription of MHC-II molecules. In humans, genetic variations in CIITA have been associated with differential expression of MHC-II and susceptibility to autoimmune diseases. Here we made use of a C2ta congenic mouse strain (expressing MHC-II haplotype H-2q ) to investigate the effect of the natural genetic polymorphisms in type I promoter of C2ta on MHC-II expression and function. We demonstrate that an allelic variant in the type I promoter of C2ta resulted in an increased expression of MHC-II on macrophages (72-151% higher mean florescence intensity) and conventional dendritic cells (13-65% higher mean florescence intensity) in both spleen and peripheral blood. The increase in MHC-II expression resulted in an increase in antigen presentation to T cells in vitro and increased T-cell activation. The differential MHC-II expression in B6Q.C2ta, however, did not alter the disease development in models of rheumatoid arthritis (collagen-induced arthritis and human glucose-6-phosphate-isomerase325-339 -peptide-induced arthritis), or multiple sclerosis (MOG1-125 protein-induced and MOG79-96 peptide-induced experimental autoimmune encephalomyelitis). This is the first study to address the role of an allelic variant in type I promoter of C2ta in MHC-II expression and autoimmune diseases; and shows that C2ta polymorphisms regulate MHC-II expression and T-cell responses but do not necessarily have a strong impact on autoimmune diseases.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Ottum PA, Arellano G, Reyes LI, Iruretagoyena M, Naves R. Opposing Roles of Interferon-Gamma on Cells of the Central Nervous System in Autoimmune Neuroinflammation. Front Immunol 2015; 6:539. [PMID: 26579119 PMCID: PMC4626643 DOI: 10.3389/fimmu.2015.00539] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is the principal cause of autoimmune neuroinflammation in humans, and its animal model, experimental autoimmune encephalomyelitis (EAE), is widely used to gain insight about their immunopathological mechanisms for and the development of novel therapies for MS. Most studies on the role of interferon (IFN)-γ in the pathogenesis and progression of EAE have focused on peripheral immune cells, while its action on central nervous system (CNS)-resident cells has been less explored. In addition to the well-known proinflammatory and damaging effects of IFN-γ in the CNS, evidence has also endowed this cytokine both a protective and regulatory role in autoimmune neuroinflammation. Recent investigations performed in this research field have exposed the complex role of IFN-γ in the CNS uncovering unexpected mechanisms of action that underlie these opposing activities on different CNS-resident cell types. The mechanisms behind these two-faced effects of IFN-γ depend on dose, disease phase, and cell development stage. Here, we will review and discuss the dual role of IFN-γ on CNS-resident cells in EAE highlighting its protective functions and the mechanisms proposed.
Collapse
Affiliation(s)
- Payton A Ottum
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Gabriel Arellano
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Lilian I Reyes
- Faculty of Science, Universidad San Sebastián , Santiago , Chile
| | - Mirentxu Iruretagoyena
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Rodrigo Naves
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| |
Collapse
|
23
|
Cooley ID, Chauhan VS, Donneyz MA, Marriott I. Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia 2014; 62:818-28. [PMID: 24677051 DOI: 10.1002/glia.22644] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 11/07/2022]
Abstract
There is growing appreciation that resident glial cells can initiate and/or regulate inflammation following trauma or infection in the central nervous system (CNS). We have previously demonstrated the ability of microglia and astrocytes to respond to bacterial pathogens or their products by rapid production of inflammatory mediators, followed by the production of the immunosuppressive cytokine interleukin (IL)−10. IL-19, another member of the IL-10 family of cytokines, has been studied in the context of a number of inflammatory conditions in the periphery and is known to modulate immune cell activity. In the present study, we demonstrate the constitutive and/or inducible expression of IL-19 and its cognate receptor subunits, IL-19Rα and IL-19Rβ (also known as IL-20R1 and IL-20R2, and IL-20RA and IL-20RB), in mouse brain tissue, and by primary murine and human astrocytes. We also provide evidence for the presence of a novel truncated IL-19Rα transcript variant in mouse brain tissue, but not glial cells, that shows reduced expression following bacterial infection. Importantly, IL-19R functionality in glia is indicated by the ability of IL-19 to regulate signaling component expression in these cells. Furthermore, while IL-19 itself had no effect on glial cytokine production, IL-19 treatment of bacterially infected or Toll-like receptor ligand stimulated astrocytes significantly attenuated pro-inflammatory cytokine production. The bacterially induced production of IL-19 by these resident CNS cells, the constitutive expression of its cognate receptor subunits, and the immunomodulatory effects of this cytokine, suggest a novel mechanism by which astrocytes can regulate CNS inflammation.
Collapse
|
24
|
Liu Y, Holdbrooks AT, De Sarno P, Rowse AL, Yanagisawa LL, McFarland BC, Harrington LE, Raman C, Sabbaj S, Benveniste EN, Qin H. Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 192:59-72. [PMID: 24323580 DOI: 10.4049/jimmunol.1301513] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathogenic Th cells and myeloid cells are involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is used by numerous cytokines for signaling and is critical for development, regulation, and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ, and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have used AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in myelin oligodendrocyte glycoprotein-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of proinflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T cells and attenuates Ag presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple preclinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xue M, Zhu L, Meng Y, Wang L, Sun H, Wang F, Wang E, Shan F. Detailed modulation of phenotypes and functions of bone marrow dendritic cells (BMDCs) by interferon-gamma (IFN-γ). Int Immunopharmacol 2013; 17:366-72. [PMID: 23867288 DOI: 10.1016/j.intimp.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022]
Abstract
IFN-γ is a cytokine that plays crucial role in innate and adaptive immunity against viral and intracellular bacterial infections and for tumor control. IFN-γ is also a key activator of macrophages [1,2]. In the present study, we studied detailed modulation of IFN-γ on phenotypic and functional maturation of murine bone marrow derived dendritic cells (BMDCs). Phenotypic and functional maturation of BMDCs was evaluated by light microscope, flow cytometry(FCM), transmission electron microscopy (TEM), cytochemistry method, acid phosphatase activity(ACP), FITC-dextran bio-assay and enzyme linked immunosorbent assay (ELISA). We elucidated that IFN-γ up-regulated the expression of MHC II, CD40, CD80, CD83 and CD86 molecules on BMDCs, down-regulated the activity of pinocytosis and phagocytosis by BMDCs, and induced higher levels of IL-12 and TNF-α secreted by BMDCs. It is therefore confirmed that IFN-γ can effectively promote the maturation of BMDCs. Our study provides more evidence and rationale on future application of IFN-γ for enhancing host immunity.
Collapse
Affiliation(s)
- Ming Xue
- Department of Endodontics, China Medical University, Shenyang, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lofrumento DD, Nicolardi G, Cianciulli A, De Nuccio F, La Pesa V, Carofiglio V, Dragone T, Calvello R, Panaro MA. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun 2013; 20:249-60. [PMID: 23764428 DOI: 10.1177/1753425913488429] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the present study we used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model to analyze resveratrol neuroprotective effects. The MPTP-induced PD model is characterized by chronic inflammation, oxidative stress and loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). We observed that resveratrol treatment significantly reduced glial activation, decreasing the levels of IL-1β, IL-6 and TNF-α, as well as their respective receptors in the SNpc of MPTP-treated mice, as demonstrated by Western blotting, RT-PCR and quantitative PCR analysis. This reduction is related to possible neuroprotection as we also observed that resveratrol administration limited the decline of tyrosine hydroxylase-immunoreactivity induced in the striatum and SNpc by MPTP injection. Consistent with these data, resveratrol treatment up-regulated the expression of the suppressor of cytokine signaling-1 (SOCS-1), supporting the hypothesis that resveratrol protects DA neurons of the SNpc against MPTP-induced cell loss by regulating inflammatory reactions, possibly through SOCS-1 induction.
Collapse
Affiliation(s)
- Dario D Lofrumento
- 1Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liang X, He M, Chen T, Liu Y, Tian YL, Wu YL, Zhao Y, Shen Y, Yuan ZY. Multiple roles of SOCS proteins: differential expression of SOCS1 and SOCS3 in atherosclerosis. Int J Mol Med 2013; 31:1066-74. [PMID: 23545584 DOI: 10.3892/ijmm.2013.1323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/01/2013] [Indexed: 11/06/2022] Open
Abstract
Pro-inflammatory cytokines play a key pathogenic role in atherosclerosis, which are induced by the Janus kinase/signal transducer and activator of transduction (JAK/STAT) pathway. Furthermore, the JAK/STAT pathway is negatively regulated by the suppressor of cytokine signaling (SOCS) proteins. However, the change in SOCS expression levels and the correlation between SOCS expression and cholesterol levels in atherosclerosis is not yet well understood. To this end, a mouse model of atherosclerosis was established using apolipoprotein-deficient (ApoE(-/-)) mice. The mice were fed either a chow or high-fat diet. The mRNA and protein expression of SOCS1 and SOCS3 in plaque and vessels were determined at different time points. Furthermore, SOCS1 and SOCS3 mRNA expression was detected in the peripheral blood mononuclear cells (PBMCs) obtained from 18 male subjects with no coronary heart disease (non-CHD) population. The expression of SOCS1 in the ApoE(-/-) mice first increased and then decreased and the high-fat diet accelerated the appearance of the peak; the expression of SOCS3 increased with the increased feeding duration, and this trend was more pronounced in the mice fed the high-fat diet. SOCS1/CD68 and SOCS3/CD68 showed opposite trends in expression with the increased duration of the high-fat diet. Interleukin-6 (IL-6) expression in the main aorta of the ApoE(-/-) mice fed the high-fat diet also increased with the increased feeding duration. In the non-CHD population, the total serum cholesterol levels positively correlated with SOCS3 mRNA expression in the PBMCs (r=0.433, P=0.012). These results demonstrate the differential expression of SOCS1 and SOCS3 in atherosclerosis and suggest that SOCS3, together with IL-6 may promote the formation and development of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ereifej ES, Matthew HW, Newaz G, Mukhopadhyay A, Auner G, Salakhutdinov I, VandeVord PJ. Nanopatterning effects on astrocyte reactivity. J Biomed Mater Res A 2012. [PMID: 23184878 DOI: 10.1002/jbm.a.34480] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An array of design strategies have been targeted toward minimizing failure of implanted microelectrodes by minimizing the chronic glial scar around the microelectrode under chronic conditions. Current approaches toward inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape, and materials of the device. Studies have shown materials which mimic the nanotopography of the natural environment in vivo will consequently result in an improved biocompatible response. Nanofabrication of electrode arrays is being pursued in the field of neuronal electrophysiology to increase sampling capabilities. Literature shows a gap in research of nanotopography influence in the reduction of astrogliosis. The aim of this study was to determine optimal feature sizes for neural electrode fabrication, which was defined as eliciting a nonreactive astrocytic response. Nanopatterned surfaces were fabricated with nanoimprint lithography on poly(methyl methacrylate) surfaces. The rate of protein adsorption, quantity of protein adsorption, cell alignment, morphology, adhesion, proliferation, viability, and gene expression was compared between nanopatterned surfaces of different dimensions and non-nanopatterned control surfaces. Results of this study revealed that 3600 nanopatterned surfaces elicited less of a response when compared with the other patterned and non-nanopatterned surfaces. The surface instigated cell alignment along the nanopattern, less protein adsorption, less cell adhesion, proliferation and viability, inhibition of glial fibrillary acidic protein, and mitogen-activated protein kinase kinase 1 compared with all other substrates tested.
Collapse
Affiliation(s)
- Evon S Ereifej
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pisapia L, Pozzo GD, Barba P, Citro A, Harris PE, Maffei A. Contrasting effects of IFNα on MHC class II expression in professional vs. nonprofessional APCs: Role of CIITA type IV promoter. RESULTS IN IMMUNOLOGY 2012; 2:174-83. [PMID: 24371581 DOI: 10.1016/j.rinim.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/16/2012] [Accepted: 09/19/2012] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that, in ex vivo cultures, IFNα downregulates the expression of MHC class II (MHCII) genes in human non-professional APCs associated with pancreatic islets. IFNα has an opposing effect on MHCII expression in professional APCs. In this study, we found that the mechanism responsible for the IFNα-mediated MHCII's downregulation in human MHCII-positive non-professional antigen presenting human non-hematopoietic cell lines is the result of the negative feedback system that regulates cytokine signal transduction, which eventually inhibits promoters III and IV of CIITA gene. Because the CIITA-PIV isoform is mostly responsible for the constitutive expression of MHCII genes in non-professional APCs, we pursued and achieved the specific knockdown of CIITA-PIV mRNA in our in vitro system, obtaining a partial silencing of MHCII molecules similar to that obtained by IFNα. We believe that our results offer a new understanding of the potential significance of CIITA-PIV as a therapeutic target for interventional strategies that can manage autoimmune disease and allograft rejection with little interference on the function of professional APCs of the immune system.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Alessandra Citro
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Paul E Harris
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy ; Department of Medicine of Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Razakandrainibe R, Pelleau S, Grau GE, Jambou R. Antigen presentation by endothelial cells: what role in the pathophysiology of malaria? Trends Parasitol 2012; 28:151-60. [PMID: 22365903 DOI: 10.1016/j.pt.2012.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/19/2022]
Abstract
Disruption of the endothelial cell (EC) barrier leads to pathology via edema and inflammation. During infections, pathogens are known to invade the EC barrier and modulate vascular permeability. However, ECs are semi-professional antigen-presenting cells, triggering T-cell costimulation and specific immune-cell activation. This in turn leads to the release of inflammatory mediators and the destruction of infected cells by effectors such as CD8(+) T-cells. During malaria, transfer of parasite antigens to the EC surface is now established. At the same time, CD8 activation seems to play a major role in cerebral malaria. We summarize here some of the pathways leading to antigen presentation by ECs and address the involvement of these mechanisms in the pathophysiology of cerebral malaria.
Collapse
|
31
|
Santos CI, Costa-Pereira AP. Signal transducers and activators of transcription-from cytokine signalling to cancer biology. Biochim Biophys Acta Rev Cancer 2011; 1816:38-49. [PMID: 21447371 DOI: 10.1016/j.bbcan.2011.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Signal transducers and activators of transcription (STATs) are, as the name indicates, both signal transducers and transcription factors. STATs are activated by cytokines and some growth factors and thus control important biological processes. These include cell growth, cell differentiation, apoptosis and immune responses. Dysregulation of STATs, either due to constitutive activation or function impairment, can have, therefore, deleterious biological consequences. This review places particular emphasis on their structural organization, biological activities and regulatory mechanisms most commonly utilized by cells to control STAT-mediated signalling. STATs also play important roles in cancer and immune deficiencies and are thus being exploited as therapeutic targets.
Collapse
Affiliation(s)
- Cristina Isabel Santos
- Imperial College London, Faculty of Medecine, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
32
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
33
|
Chauhan VS, Furr SR, Sterka DG, Nelson DA, Moerdyk-Schauwecker M, Marriott I, Grdzelishvili VZ. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses. Virology 2010; 400:187-96. [PMID: 20172575 DOI: 10.1016/j.virol.2010.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/11/2010] [Accepted: 01/20/2010] [Indexed: 11/18/2022]
Abstract
Vesicular stomatitis virus (VSV) infection of mice via intranasal administration results in a severe encephalitis with rapid activation and proliferation of microglia and astrocytes. We have recently shown that these glial cells express RIG-I and MDA5, cytosolic pattern recognition receptors for viral RNA. However, it is unclear whether VSV can replicate in glial cells or if such replication is required for their inflammatory responses. Here we demonstrate that primary microglia and astrocytes are permissive for VSV infection and limited productive replication. Importantly, we show that viral replication is required for robust inflammatory mediator production by these cells. Finally, we have confirmed that in vivo VSV administration can result in viral infection of glial cells in situ. These results suggest that viral replication within resident glial cells might play an important role in CNS inflammation following infection with VSV and possibly other neurotropic nonsegmented negative-strand RNA viruses.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Baker BJ, Akhtar LN, Benveniste EN. SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 2009; 30:392-400. [PMID: 19643666 PMCID: PMC2836122 DOI: 10.1016/j.it.2009.07.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/28/2022]
Abstract
In the decade following their initial discovery, the suppressor of cytokine signaling (SOCS) proteins have been studied for their potential use as immunomodulators in disease. SOCS proteins, especially SOCS1 and SOCS3, are expressed by immune cells and cells of the central nervous system (CNS) and have the potential to impact immune processes within the CNS, including inflammatory cytokine and chemokine production, activation of microglia, macrophages and astrocytes, immune cell infiltration and autoimmunity. We describe CNS-relevant in vitro and in vivo studies that have examined the function of SOCS1 or SOCS3 under various neuroinflammatory or neuropathological conditions, including exposure of CNS cells to inflammatory cytokines or bacterial infection, demyelinating insults, stroke, spinal cord injury, multiple sclerosis and glioblastoma multiforme.
Collapse
Affiliation(s)
- Brandi J Baker
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | | | | |
Collapse
|
35
|
Itoh T, Horiuchi M, Itoh A. Interferon-triggered transcriptional cascades in the oligodendroglial lineage: a comparison of induction of MHC class II antigen between oligodendroglial progenitor cells and mature oligodendrocytes. J Neuroimmunol 2009; 212:53-64. [PMID: 19467717 PMCID: PMC2710417 DOI: 10.1016/j.jneuroim.2009.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/09/2009] [Accepted: 04/30/2009] [Indexed: 01/09/2023]
Abstract
Interferon-gamma induces major histocompatibility complex class II (MHC-II) in proliferating oligodendroglial progenitor cells (OPC), but to a much lesser extent in mature oligodendrocytes. Interferon-beta has virtually no effects on MHC-II induction even in OPC. Interferon-gamma-mediated transcriptional induction of CIITA, a critical regulator of MHC-II induction, was 6-fold lower in mature oligodendrocytes than in OPC, and entirely dependent on promoter IV, suggesting that the transcriptional activity of promoter IV is down-regulated after differentiation. The distinct difference in MHC-II induction between interferon-gamma and interferon-beta is attributed to transient interferon-beta-mediated activation of STAT1-IRF1 signaling compared to the sustained interferon-gamma-mediated activation.
Collapse
Affiliation(s)
- Takayuki Itoh
- Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA 95817-2215, United States.
| | | | | |
Collapse
|
36
|
Harnesk K, Swanberg M, Diez M, Olsson T, Piehl F, Lidman O. Differential nerve injury-induced expression of MHC class II in the mouse correlates to genetic variability in the type I promoter of C2ta. J Neuroimmunol 2009; 212:44-52. [PMID: 19481818 DOI: 10.1016/j.jneuroim.2009.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Major histocompatibility complex (MHC) class II is of critical importance for the induction of immune responses. Levels of MHC class II in the nervous system are normally low, but expression is up-regulated in many disease conditions. In rat and human, variation in the MHC class II transactivator gene (C2ta) is associated with differential expression of MHC class II and susceptibility to autoimmune disease. Here we have characterized the response to facial nerve transection in 7 inbred mouse strains (C57BL/6J, DBA/2J, 129X1/SvJ, BALB/cJ, SJL/J, CBA/J, and NOD). The results demonstrate differences in expression of C2ta and markers for MHC class I and II expression, glial activation, and T cell infiltration. Expression levels of C2ta and Cd74 followed similar patterns, in contrast to MHC class I and markers of glial activation. The regulatory region of the C2ta gene was subsequently sequenced in the four strains (C57BL/6/J, DBA/2J, SJL/J and 129X1/SvJ) that represented the phenotypical extremes with regard to C2ta/Cd74 expression. We found 3 single nucleotide polymorphisms in the type I (pI) and type III (pIII) promoters of C2ta, respectively. Higher expression of pI in 129X1/SvJ correlated with the pI haplotype specific for this strain. Furthermore, congenic strains carrying the 129X1/SvJ C2ta allele on B6 background displayed significantly higher C2ta and Cd74 expression compared to parental controls. We conclude that genetic polymorphisms in the type I promoter of C2ta regulates differential expression of MHC class II, but not MHC class I, Cd3 and other markers of glial activation.
Collapse
Affiliation(s)
- Karin Harnesk
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Brain abscesses arise from a localized parenchymal infection, typically elicited by pyogenic bacteria such as Staphylococcus aureus. Despite improvements in detection and treatment strategies, brain abscesses continue to occur, with an increased prevalence in developing countries and immune-compromised patients. Adding to the seriousness of these infections is the recent emergence of antibiotic-resistant strains of bacteria, which are becoming more commonly associated with brain abscesses. Recent studies using a mouse experimental brain abscess model have revealed a complex role for Toll-like receptors (TLRs) in disease pathogenesis. Interestingly, TLR2 has limited impact on the innate immune response during the acute stage of brain abscess formation induced by S. aureus but influences adaptive immunity. In contrast, mice deficient in MyD88, a central adapter molecule for the majority of TLRs in addition to the IL-1R and IL-18R, demonstrate severe defects in innate immunity coupled with exaggerated tissue destruction. It is envisioned that understanding the roles for TLRs in both resident CNS glia as well as infiltrating immune cells will provide insights into how the immune response to bacterial infection can be tailored to achieve effective pathogen destruction without inducing excessive bystander damage of surrounding noninfected brain parenchyma. A discussion of recent findings in this field is presented along with outstanding questions and the concept of a pathogen-necrosis-autoantigen triad for the amplification of TLR signaling is introduced.
Collapse
|
38
|
Qin H, Niyongere SA, Lee SJ, Baker BJ, Benveniste EN. Expression and functional significance of SOCS-1 and SOCS-3 in astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3167-76. [PMID: 18713987 PMCID: PMC2836124 DOI: 10.4049/jimmunol.181.5.3167] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Astrocytes play a number of important physiological roles in CNS homeostasis. Inflammation stimulates astrocytes to secrete cytokines and chemokines that guide macrophages/microglia and T cells to sites of injury/inflammation. Herein, we describe how these processes are controlled by the suppressor of cytokine signaling (SOCS) proteins, a family of proteins that negatively regulate adaptive and innate immune responses. In this study, we describe that the immunomodulatory cytokine IFN-beta induces SOCS-1 and SOCS-3 expression in primary astrocytes at the transcriptional level. SOCS-1 and SOCS-3 transcriptional activity is induced by IFN-beta through IFN-gamma activation site (GAS) elements within their promoters. Studies in STAT-1alpha-deficient astrocytes indicate that STAT-1alpha is required for IFN-beta-induced SOCS-1 expression, while STAT-3 small interfering RNA studies demonstrate that IFN-beta-induced SOCS-3 expression relies on STAT-3 activation. Specific small interfering RNA inhibition of IFN-beta-inducible SOCS-1 and SOCS-3 in astrocytes enhances their proinflammatory responses to IFN-beta stimulation, such as heightened expression of the chemokines CCL2 (MCP-1), CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL5 (RANTES), and CXCL10 (IP-10), and promoting chemotaxis of macrophages and CD4(+) T cells. These results indicate that IFN-beta induces SOCS-1 and SOCS-3 in primary astrocytes to attenuate its own chemokine-related inflammation in the CNS.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Under neuropathological conditions, reactive astrocytes release cytokines and chemokines, which act in an autocrine and/or paracrine fashion to modulate production of immunoregulatory factors from cells including microglia, astrocytes, and neurons. In this way, astrocytes play an important role in orchestrating immune responses within the central nervous system (CNS). Suppressor of cytokine signaling (SOCS) proteins are endogenous, negative regulators of the JAK/STAT signaling pathway and function as attenuators of the immune and inflammatory responses. As such, SOCS proteins may have critical roles in the CNS under neuroinflammatory conditions. In the inflamed CNS, expression of IL-6 cytokine family member oncostatin M (OSM) is elevated; however, its functional effects are not well understood. We demonstrate that OSM is a potent inducer of SOCS-3 in astrocytes. Analysis of the SOCS-3 promoter revealed that an AP-1 element, two IFN-gamma activation sequence (GAS) elements, and a GC-rich region are crucial for SOCS-3 gene expression. Using small interfering RNA against STAT-3, as well as a STAT-3 dominant-negative construct, we demonstrate that STAT-3 activation is critical for OSM induction of SOCS-3 expression. The ERK1/2 and JNK pathways also contribute to OSM-induced SOCS-3 gene expression. OSM stimulation led to a time-dependent recruitment of the transcription factors STAT-3, c-Fos, c-Jun, and Sp1 and the coactivators CREB-binding protein (CBP) and p300 to the endogenous SOCS-3 promoter. These data indicate that OSM-induced activation of STAT-3 and the ERK1/2 and JNK pathways are critical for astrocytic expression of SOCS-3, which provides for feedback inhibition of cytokine-induced inflammatory responses in the CNS.
Collapse
Affiliation(s)
- Brandi J. Baker
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005
| | - Hongwei Qin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005
| | - Etty N. Benveniste
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005
| |
Collapse
|
40
|
Lee SJ, Qin H, Benveniste EN. The IFN-gamma-induced transcriptional program of the CIITA gene is inhibited by statins. Eur J Immunol 2008; 38:2325-36. [PMID: 18601229 PMCID: PMC2692880 DOI: 10.1002/eji.200838189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors that exert anti-inflammatory effects. IFN-gamma induction of class II MHC expression, which requires the class II transactivator (CIITA), is inhibited by statins; however, the molecular basis for suppression is undetermined. We describe that statins inhibit IFN-gamma-induced class II MHC expression by suppressing CIITA gene expression, which is dependent on the HMG-CoA reductase pathway. In addition, CIITA expression is inhibited by GGTI-298 or Clostridium difficile Toxin A, specific inhibitors of Rho family protein prenylation, indicating the involvement of small GTPases. Rac1 is involved in IFN-gamma inducible expression of CIITA, and statins inhibit IFN-gamma-induced Rac1 activation, contributing to the inhibitory effect of statins. IFN-gamma induction of the CIITA gene is regulated by the transcription factors STAT-1alpha, interferon regulatory factor (IRF)-1 and upstream stimulatory factor (USF)-1. We previously reported that statins inhibit constitutive STAT-1alpha expression. IRF-1, a STAT-1 dependent gene, is also inhibited by statins. Therefore, statin treatment results in decreased recruitment of STAT-1alpha and IRF-1 to the endogenous CIITA promoter IV (pIV). The recruitment of USF-1 to CIITA pIV is also reduced by statins, as is the recruitment of RNA polymerase II (Pol II), p300 and Brg-1. These data indicate that statins inhibit the transcriptional program of the CIITA gene.
Collapse
Affiliation(s)
- Sun J Lee
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
41
|
Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. Int J Hematol 2008; 88:197-201. [DOI: 10.1007/s12185-008-0113-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/01/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
|
42
|
Katti MK, Dai G, Armitige LY, Marrero CR, Daniel S, Singh CR, Lindsey DR, Dhandayuthapani S, Hunter RL, Jagannath C. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 2008; 10:1286-303. [PMID: 18248626 PMCID: PMC3668688 DOI: 10.1111/j.1462-5822.2008.01126.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis H37Rv (Mtb) excludes phagocyte oxidase (phox) and inducible nitric oxide synthase (iNOS) while preventing lysosomal fusion in macrophages (MPhis). The antigen 85A deficient (Delta fbpA) mutant of Mtb was vaccinogenic in mice and the mechanisms of attenuation were compared with MPhis infected with H37Rv and BCG. Delta fbpA contained reduced amounts of trehalose 6, 6, dimycolate and induced minimal levels of SOCS-1 in MPhis. Blockade of oxidants enhanced the growth of Delta fbpA in MPhis that correlated with increased colocalization with phox and iNOS. Green fluorescent protein-expressing strains within MPhis or purified phagosomes were analysed for endosomal traffick with immunofluorescence and Western blot. Delta fbpA phagosomes were enriched for rab5, rab11, LAMP-1 and Hck suggesting enhanced fusion with early, recycling and late endosomes in MPhis compared with BCG or H37Rv. Delta fbpA phagosomes were thus more mature than H37Rv or BCG although, they failed to acquire rab7 and CD63 preventing lysosomal fusion. Finally, Delta fbpA infected MPhis and dendritic cells (DCs) showed an enhanced MHC-II and CD1d expression and primed immune T cells to release more IFN-gamma compared with those infected with BCG and H37Rv. Delta fbpA was thus more immunogenic in MPhis and DCs because of an enhanced susceptibility to oxidants and increased maturation.
Collapse
Affiliation(s)
- Muralidhar K. Katti
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Guixiang Dai
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Lisa Y. Armitige
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Carlos Rivera Marrero
- Department of Pulmonary Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sundarsingh Daniel
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Christopher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Devin R. Lindsey
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | | | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| |
Collapse
|
43
|
Yang MS, Min KJ, Joe E. Multiple mechanisms that prevent excessive brain inflammation. J Neurosci Res 2007; 85:2298-305. [PMID: 17348044 DOI: 10.1002/jnr.21254] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation of the injured brain has a double-edged effect. Inflammation protects the brain from infection, but it aggravates injury. Furthermore, brain inflammation is considered a risk factor for neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Emerging evidence supports the activation of negative regulatory mechanisms during this process to prevent prolonged and extensive inflammation. The inflammatory stimulators themselves or products of inflammatory cells may induce the expression of negative feedback regulators, such as suppressor of cytokine signaling (SOCS)-family proteins, antioxidant enzymes, and antiinflammatory cytokines. Furthermore, death of activated microglia (major inflammatory cells in the brain) may regulate brain inflammation. Astrocytes, the most abundant cells in the brain, may also act in preventing microglial overactivation. Therefore, we propose that the extent and duration of brain inflammation is tightly regulated through the cooperation of multiple mechanisms to maximize antipathogenic effects and minimize tissue damage.
Collapse
Affiliation(s)
- Myung-Soon Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do, Korea
| | | | | |
Collapse
|
44
|
Benveniste EN, Qin H. Type I interferons as anti-inflammatory mediators. ACTA ACUST UNITED AC 2007; 2007:pe70. [PMID: 18073382 DOI: 10.1126/stke.4162007pe70] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The type I interferons (IFNs), IFN-alpha and IFN-beta, are cytokines that have antiviral, antiproliferative, and immunomodulatory activities. Data are now emerging that suggest that type I IFNs are also important mediators of anti-inflammatory responses. These findings, largely driven by studies to explain the beneficial effects of IFN-beta in the treatment of multiple sclerosis, an autoimmune disease of the central nervous system, offer a number of mechanisms for the anti-inflammatory properties of type I IFNs. Type I IFNs, through their ability to induce the immunosuppressive cytokine interleukin-10 (IL-10), mediate the inhibition of proinflammatory gene products. In addition, type I IFNs induce other immunosuppressive mediators such as suppressor of cytokine signaling-1 (SOCS-1) and tristetrapolin (TTP), which act by divergent mechanisms to restore homeostasis to the immune system. Furthermore, type I IFNs mediate anti-inflammatory and protective effects in a variety of autoimmune disease models such as experimental colitis, experimental allergic encephalomyelitis, experimental arthritis, and neonatal inflammation. Here, we discuss the molecular basis for the anti-inflammatory properties of type I IFNs and their therapeutic potential in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Etty N Benveniste
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | | |
Collapse
|
45
|
Interleukin-27 upregulates major histocompatibility complex class II expression in primary human endothelial cells through induction of major histocompatibility complex class II transactivator. Hum Immunol 2007; 68:965-72. [PMID: 18191724 DOI: 10.1016/j.humimm.2007.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 09/26/2007] [Accepted: 10/05/2007] [Indexed: 11/24/2022]
Abstract
Interleukin-27 (IL-27) is a novel IL-12 family member that plays a critical role in the regulation of T-cell responses. Its immunoregulatory effects on endothelial cells (EC) remain unexplored. Here we show a role for IL-27 in the induction of major histocompatibility complex (MHC) expression in primary human EC. Stimulation of human umbilical vein ECs by IL-27 rapidly induces IFN regulatory factor-1 and dramatically increases the expression of major histocompatibility class II transactivator (CIITA) isoform IV. Expression of this transactivator correlates with increased MHC class II gene expression. IL-27 also enhances expression of MHC class I molecules. Furthermore expression of beta2-microglobulin and transporter associated with antigen processing-1 transcripts increases in response to IL-27. Additional microarray analysis demonstrates that IL-27 significantly upregulates a panel of genes that correlates with immune regulation, including the chemokines CXCL9, CXCL10, and CX3CL1 in human umbilical vein ECs. This first demonstration that both MHC II and I expression are increased in EC after IL-27 stimulation suggests that IL-27 may be important in conferring immune function on vascular endothelium.
Collapse
|
46
|
Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells. J Virol 2007; 82:300-10. [PMID: 17928334 DOI: 10.1128/jvi.01794-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurotropic coronavirus infection induces expression of both beta interferon (IFN-beta) RNA and protein in the infected rodent central nervous system (CNS). However, the relative contributions of type I IFN (IFN-I) to direct, cell-type-specific virus control or CD8 T-cell-mediated effectors in the CNS are unclear. IFN-I receptor-deficient (IFNAR(-/-)) mice infected with a sublethal and demyelinating neurotropic virus variant and those infected with a nonpathogenic neurotropic virus variant both succumbed to infection within 9 days. Compared to wild-type (wt) mice, replication was prominently increased in all glial cell types and spread to neurons, demonstrating expanded cell tropism. Furthermore, increased pathogenesis was associated with significantly enhanced accumulation of neutrophils, tumor necrosis factor alpha, interleukin-6, chemokine (C-C motif) ligand 2, and IFN-gamma within the CNS. The absence of IFN-I signaling did not impair induction or recruitment of virus-specific CD8 T cells, the primary adaptive mediators of virus clearance in wt mice. Despite similar IFN-gamma-mediated major histocompatibility complex class II upregulation on microglia in infected IFNAR(-/-) mice, class I expression was reduced compared to that on microglia in wt mice, suggesting a synergistic role of IFN-I and IFN-gamma in optimizing class I antigen presentation. These data demonstrate a critical direct antiviral role of IFN-I in controlling virus dissemination within the CNS, even in the presence of potent cellular immune responses. By limiting early viral replication and tropism, IFN-I controls the balance of viral replication and immune control in favor of CD8 T-cell-mediated protective functions.
Collapse
|
47
|
Kwon MJ, Yao Y, Walter MJ, Holtzman MJ, Chang CH. Role of PKCdelta in IFN-gamma-inducible CIITA gene expression. Mol Immunol 2007; 44:2841-9. [PMID: 17346795 PMCID: PMC1924468 DOI: 10.1016/j.molimm.2007.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
The class II transactivator (CIITA) is a key regulatory factor for MHC class II expression. Here, we demonstrate that PKCdelta plays an important role in regulating IFN-gamma-inducible CIITA gene expression in macrophages. Inhibition of PKCdelta by either a PKCdelta inhibitor or a dominant negative (DN) mutant form of PKCdelta led to down-regulation of CIITA expression. The decrease in CIITA expression by PKCdelta inhibition was in part due to the reduced recruitment of serine 727-phosphorylated Stat1 and histone acetyltransferases to the CIITA promoter. As a result, IFN-gamma induced histone acetylation at the CIITA promoter is also compromised. However, inhibition of PKCdelta did not affect IRF-1 expression or IRF-1 binding to the CIITA promoter. Therefore, we report, for the first time, that PKCdelta is an essential signaling molecule to achieve the maximal expression of CIITA in response to IFN-gamma in macrophages. In addition, although IRF-1 is a key transcription factor to activate the IFN-gamma inducible CIITA promoter, the effect of PKCdelta on CIITA expression is mediated primarily by serine phosphorylation of Stat 1.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Department of Microbiology and Immunology, The Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongxue Yao
- Department of Microbiology and Immunology, The Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michael J. Walter
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, The Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
48
|
Muraoka M, Hasegawa H, Kohno M, Inoue A, Miyazaki T, Terada M, Nose M, Yasukawa M. IK cytokine ameliorates the progression of lupus nephritis in MRL/lpr mice. ACTA ACUST UNITED AC 2006; 54:3591-600. [PMID: 17075801 DOI: 10.1002/art.22172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE IK cytokine has been isolated as a factor that inhibits interferon-gamma (IFNgamma)-induced expression of class II major histocompatibility complex (MHC) antigens. Aberrant expression of class II MHC antigens has reportedly been recognized in the target organs of autoimmune diseases and been associated with disease activity. In this study, we investigated whether IK cytokine can ameliorate the progression of lupus nephritis in MRL/lpr mice. METHODS A truncated IK analog was prepared and transfected into a nonmetastatic fibroblastoid cell line, and then injected subcutaneously into MRL/lpr mice at ages 8 weeks (before the onset of lupus nephritis) and 12 weeks (at the early stage of the disease). RESULTS An IK cytokine, when it was translated from methionine at position 316, acted as a secretory protein. This truncated IK cytokine (tIK) reduced IFNgamma-induced class II MHC expression in various cells through decreased expression of class II MHC transcription activator. Treatment of MRL/lpr mice with tIK significantly reduced renal damage as compared with control mice. A significant decrease in macrophage and T cell infiltration was found in the kidneys of tIK-treated mice, resulting in decreased production of IFNgamma and interleukin-2. Mice treated with tIK also showed significant reduction of anti-DNA antibodies and circulating immune complexes. A specific reduction of class II MHC expression was observed on B cells and monocytes as well as in the kidney. CONCLUSION We prepared a potent IK analog and demonstrated its ability to ameliorate the progression of lupus nephritis. This agent may therefore provide a new therapeutic approach for lupus nephritis.
Collapse
|
49
|
Sterka D, Marriott I. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. J Neuroimmunol 2006; 179:65-75. [PMID: 16842862 DOI: 10.1016/j.jneuroim.2006.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/26/2006] [Accepted: 06/12/2006] [Indexed: 11/23/2022]
Abstract
We demonstrate that primary microglia express nucleotide-binding oligomerization domain (NOD) proteins that are thought to serve as novel pattern recognition receptors for bacterial peptidoglycan motifs. NOD2 is constitutively present in microglia and is upregulated following exposure to Borrelia burgdorferi or Neisseria meningitidis. Its expression is also elevated following exposure to Toll-like receptor (TLR) ligands and muramyl dipeptide (MDP), a putative ligand for NOD2. Microglia express essential downstream effector molecules for NOD2-mediated cell responses, and MDP augments TLR ligand-induced inflammatory cytokine production. Together these data suggest that NOD2 may contribute to microglial immune responses to bacterial pathogens.
Collapse
Affiliation(s)
- David Sterka
- Department of Biology, 9201 University City Boulevard, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | |
Collapse
|
50
|
Kwon MJ, Soh JW, Chang CH. Protein kinase C delta is essential to maintain CIITA gene expression in B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:950-6. [PMID: 16818750 DOI: 10.4049/jimmunol.177.2.950] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of MHC class II genes requires CIITA. Although the transactivation function of CIITA is well characterized, the signaling events that regulate CIITA expression are less understood. In this study, we report that CIITA expression in B cells depends on protein kinase Cdelta (PKCdelta). PKCdelta controls CIITA gene transcription mainly via modulating CREB recruitment to the CIITA promoter without affecting CIITA mRNA stability. Inhibition of PKCdelta by a pharmacological inhibitor or knocking down of endogenous PKCdelta expression by small interfering RNA reduced CREB binding to the CIITA promoter. The decrease of CIITA gene expression in the presence of the PKCdelta inhibitor was prevented by ectopically expressing a constitutively active form of CREB. In addition, histone acetylation of the CIITA promoter is regulated by PKCdelta since the PKCdelta inhibitor treatment or PKCdelta small interfering RNA resulted in decreased histone acetylation. Taken together, our study reveals that PKCdelta is an important signaling molecule necessary to maintain CIITA and MHC class II expression in B cells.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Department of Microbiology and Immunology, and Walther Oncology Center, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|