1
|
Huang X, Zhang Y, Huang J, Gao W, Yongfang X, Zeng C, Gao C. The effect of FMT and vitamin C on immunity-related genes in antibiotic-induced dysbiosis in mice. PeerJ 2023; 11:e15356. [PMID: 37193034 PMCID: PMC10183171 DOI: 10.7717/peerj.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Antibiotics are double-edged swords. Although antibiotics are used to inhibit pathogenic bacteria, they also run the risk of destroying some of the healthy bacteria in our bodies. We examined the effect of penicillin on the organism through a microarray dataset, after which 12 genes related to immuno-inflammatory pathways were selected by reading the literature and validated using neomycin and ampicillin. The expression of genes was measured using qRT-PCR. Several genes were significantly overexpressed in antibiotic-treated mice, including CD74 and SAA2 in intestinal tissues that remained extremely expressed after natural recovery. Moreover, transplantation of fecal microbiota from healthy mice to antibiotic-treated mice was made, where GZMB, CD3G, H2-AA, PSMB9, CD74, and SAA1 were greatly expressed; however, SAA2 was downregulated and normal expression was restored, and in liver tissue, SAA1, SAA2, SAA3 were extremely expressed. After the addition of vitamin C, which has positive effects in several aspects, to the fecal microbiota transplantation, in the intestinal tissues, the genes that were highly expressed after the fecal microbiota transplantation effectively reduced their expression, and the unaffected genes remained normally expressed, but the CD74 gene remained highly expressed. In liver tissues, normally expressed genes were not affected, but the expression of SAA1 was reduced and the expression of SAA3 was increased. In other words, fecal microbiota transplantation did not necessarily bring about a positive effect of gene expression restoration, but the addition of vitamin C effectively reduced the effects of fecal microbiota transplantation and regulated the balance of the immune system.
Collapse
Affiliation(s)
- Xiaorong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Yv Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Junsong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Gao
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China
| | - Xie Yongfang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chuisheng Zeng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chao Gao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| |
Collapse
|
2
|
He J, Chen J, Han X, Gu Q, Liang J, Sun M, Liu S, Yao Y, Shi L. Association of HLA-DM and HLA class II Genes with Antibody Response Induced by Inactivated Japanese Encephalitis Vaccine. HLA 2022; 99:357-367. [PMID: 35118816 DOI: 10.1111/tan.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
HLA (HLA) class II molecules, HLA-DR, DP, and DQ, together with HLA II-like protein DM, play a dominant role in the processing and presentation of antigens, which may influence vaccine effectiveness. We previously demonstrated that variations in the HLA-DRB1, DPB1, and DQB1 genes may affect the neutralising antibody (NAb) response induced by the inactivated Japanese encephalitis vaccine (IJEV). In the present study, we genotyped HLA-DPA1, DQA1, DMA, and DMB genes and used previous HLA-DRB1, DPB1, and DQB1 data to evaluate the association of these genes with IJEV-induced NAbs, at both the seroconversion and geometric mean titres (GMTs). We confirmed the seropositive association of DQB1*02:01 and NAbs (0.156 vs. 0.075, Padj = 0.018; OR = 2.270; 95% CI = 1.285-3.999) and seronegative association of DQB1*02:02 (0.014 vs. 0.09, Padj = 0.0002; OR = 0.130; 95% CI = 0.047-0.400). Furthermore, the DMB*01:03-DMA*01:01-DPA1*01:03-DPB1*04:01 haplotype was associated with a negative response (0.020 vs. 0.074; Padj = 0.03; OR = 0.250; 95% CI = 0.097-0.649), whereas DRB1*15:02-DMB*01:01-DMA*01:01 was associated with a positive response (0.034 vs. 0; Padj = 0.044). In addition, DRB1*12:02, DRB1*13:02, DPB1*04:01, DPB1*05:01, DPB1*09:01, DQA1*06:01, and DQA1*01:02 were associated with a higher GMT of NAbs, whereas DRB1*11:01, DPB1*13:01, and DQA1*05:05 were associated with a lower GMT of NAbs. In conclusion, the present study suggests that variations in the HLA-DM and HLA class II genes, as well as their combined allotypes, may influence the IJEV NAbs at seroconversion and GMT levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jihong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jun Chen
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
3
|
Xi Y, Zhang D, Liang Y, Shan Z, Teng X, Teng W. Proteomic Analysis of the Intestinal Resistance to Thyroid Hormone Mouse Model With Thyroid Hormone Receptor Alpha Mutations. Front Endocrinol (Lausanne) 2022; 13:773516. [PMID: 35574030 PMCID: PMC9095823 DOI: 10.3389/fendo.2022.773516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone is critical during the development of vertebrates and affects the function of many organs and tissues, especially the intestine. Triiodothyronine (T3) is the active form and can bind to thyroid hormone nuclear receptors (TRs) to play a vital role in the development of vertebrates. The resistance to thyroid hormone α, as seen in patients, has been mimicked by the ThraE403X mutation. To investigate the mechanisms underlying the effect of TRα1 on intestinal development, the present study employed proteomic analysis to identify differentially expressed proteins (DEPs) in the distal ileum between homozygous ThraE403X/E403X and wild-type Thra+/+ mice. A total of 1,189 DEPs were identified, including 603 upregulated and 586 downregulated proteins. Proteomic analysis revealed that the DEPs were highly enriched in the metabolic process, the developmental process, the transporter of the nutrients, and the intestinal immune system-related pathway. Of these DEPs, 20 proteins were validated by parallel reaction monitoring analysis. Our intestinal proteomic results provide promising candidates for future studies, as they suggest novel mechanisms by which TRα1 may influence intestinal development, such as the transport of intestinal nutrients and the establishment of innate and adaptive immune barriers of the intestine.
Collapse
Affiliation(s)
- Yue Xi
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Liang
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaochun Teng, ; Weiping Teng,
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaochun Teng, ; Weiping Teng,
| |
Collapse
|
4
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Zhao T, Bernstein KE, Fang J, Shen XZ. Angiotensin-converting enzyme affects the presentation of MHC class II antigens. J Transl Med 2017; 97:764-771. [PMID: 28394320 PMCID: PMC5493495 DOI: 10.1038/labinvest.2017.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 11/12/2022] Open
Abstract
Antigen processing and presentation through the MHC class II pathway is critical for activating T helper cells. Angiotensin-converting enzyme (ACE) is a carboxyl peptidase expressed by antigen-presenting cells. By analysis of ACE null (knockout), wild-type, and ACE-overexpressing (ACE10) mice and the antigen-presenting cells derived from these mice, we found that ACE has a physiological role in the processing of peptides for MHC class II presentation. The efficiency of presenting MHC class II epitopes from ovalbumin (OVA) and hen egg lysosome is markedly affected by cellular ACE levels. Mice overexpressing ACE in myeloid cells have a much more vigorous CD4+ T-cell and antibody response when immunized with OVA. ACE is present in the endosomal pathway where MHC class II peptide processing and loading occur. The efficiency of MHC class II antigen presentation can be altered by ACE overexpression or ACE pharmacological inhibition. Thus, ACE is a dynamic participant in processing MHC class II peptides. Manipulation of ACE expression by antigen-presenting cells may prove to be a novel strategy to alter the immune response.
Collapse
Affiliation(s)
- Tuantuan Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai, China, 200234,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A.90048
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A.90048
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai, China, 200234,Correspondence: (X.Z.S), (J.F.)
| | - Xiao Z. Shen
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, China,310058,Correspondence: (X.Z.S), (J.F.)
| |
Collapse
|
7
|
Allan ERO, Tailor P, Balce DR, Pirzadeh P, McKenna NT, Renaux B, Warren AL, Jirik FR, Yates RM. NADPH Oxidase Modifies Patterns of MHC Class II–Restricted Epitopic Repertoires through Redox Control of Antigen Processing. THE JOURNAL OF IMMUNOLOGY 2014; 192:4989-5001. [DOI: 10.4049/jimmunol.1302896] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Weaver JM, Sant AJ. Understanding the focused CD4 T cell response to antigen and pathogenic organisms. Immunol Res 2009; 45:123-43. [PMID: 19198764 DOI: 10.1007/s12026-009-8095-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunodominance is a term that reflects the final, very limited peptide specificity of T cells that are elicited during an immune response. Recent experiments in our laboratory compel us to propose a new paradigm for the control of immunodominance in CD4 T cell responses, stating that immunodominance is peptide-intrinsic and is dictated by the off-rate of peptides from MHC class II molecules. Our studies have revealed that persistence of peptide:class II complexes both predicts and controls CD4 T cell immunodominance and that this parameter can be rationally manipulated to either promote or eliminate immune responses. Mechanistically, we have determined that DM editing in APC is a key event that is influenced by the kinetic stability of class II:peptide complexes and that differential persistence of complexes also impacts the expansion phase of the immune response. These studies have important implications for rational vaccine design and for understanding the immunological mechanisms that limit the specificity of CD4 T cell responses.
Collapse
Affiliation(s)
- Jason M Weaver
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, NY 14642, USA
| | | |
Collapse
|
9
|
Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nat Immunol 2008; 9:1244-52. [DOI: 10.1038/ni.1665] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/12/2008] [Indexed: 01/09/2023]
|
10
|
Chen X, Jensen PE. MHC class II antigen presentation and immunological abnormalities due to deficiency of MHC class II and its associated genes. Exp Mol Pathol 2008; 85:40-4. [PMID: 18547561 PMCID: PMC2568888 DOI: 10.1016/j.yexmp.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/02/2008] [Indexed: 11/24/2022]
Abstract
Antigen presentation by Major Histocompatibility Complex (MHC) class II molecules plays an important role in controlling immunity and autoimmunity. Multiple co-factors including the invariant chain (Ii), HLA-DM and HLA-DO are involved in this process. While the role for Ii and DM has been well defined, the biological function of DO remains obscure. Our data indicate that DO inhibits presentation of endogenous self-antigens and that developmentally-regulated DO expression enables antigen presenting cells to preferentially present different sources of peptide antigens at different stages of development. Disruption of this regulatory mechanism can result in not only immunodeficiency but also autoimmunity. Despite the fact that deletion of each of the three genes in experimental animals is associated with profound immunological abnormalities, no corresponding human diseases have been reported. This discrepancy suggests the possibility that primary immunodeficiencies due to a genetic defect of Ii, DM and DO in humans are under diagnosed or diagnosed as "common variable immunodeficiency", a category of immunodeficiency of heterogeneous or undefined etiology. Clinical tests for any of these potential genetic defects are not yet available. We propose the use of multi-color flow cytometry in conjunction with intracellular staining to detect expression of Ii, DM, DO in peripheral blood B cells as a convenient reliable screening test to identify individuals with defects in antigen presentation.
Collapse
Affiliation(s)
- Xinjian Chen
- Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
11
|
Menges PR, Jenks SA, Bikoff EK, Friedmann DR, Knowlden ZAG, Sant AJ. An MHC class II restriction bias in CD4 T cell responses toward I-A is altered to I-E in DM-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:1619-33. [PMID: 18209058 PMCID: PMC2981066 DOI: 10.4049/jimmunol.180.3.1619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC-encoded cofactor DM catalyzes endosomal loading of peptides onto MHC class II molecules. Despite evidence from in vitro experiments that DM acts to selectively edit the repertoire of class II:peptide complexes, the consequence of DM expression in vivo, or a predictive pattern of DM activity in the specificity of CD4 T cell responses has remained unresolved. Therefore, to characterize DM function in vivo we used wild-type (WT) or DM-deficient (DM(-/-)) mice of the H-2(d) MHC haplotype and tested the hypothesis that DM promotes narrowing of the repertoire of class II:peptide complexes displayed by APC, leading to a correspondingly selective CD4 T cell response. Surprisingly, our results indicated that DM(-/-) mice do not exhibit a broadened CD4 T cell response relative to WT mice, but rather shift their immunodominance pattern to new peptides, a pattern associated with a change in class II isotype-restriction. Specifically, we found that CD4 T cell responses in WT mice were primarily restricted to the I-A class II molecule, whereas DM(-/-) mice recognize peptides in the context of I-E. The observed shift in isotype-restriction appeared to be due in part to a modification in the peripheral CD4 T cell repertoire available for peptide recognition.
Collapse
Affiliation(s)
- Paula R. Menges
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642
| | - Scott A. Jenks
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642
| | - Elizabeth K. Bikoff
- University of Oxford, Wellcome Trust Center for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David R. Friedmann
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
12
|
Iacobas DA, Iacobas S, Werner P, Scemes E, Spray DC. Alteration of transcriptomic networks in adoptive-transfer experimental autoimmune encephalomyelitis. Front Integr Neurosci 2007; 1:10. [PMID: 18958238 PMCID: PMC2526015 DOI: 10.3389/neuro.07.010.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/03/2007] [Indexed: 01/09/2023] Open
Abstract
Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE) is an inflammatory demyelination that recapitulates in mouse spinal cord (SC) the human multiple sclerosis disease. We now analyze previously reported cDNA array data from age-matched young female adult control and passively myelin antigen-sensitized EAE mice with regard to organizational principles of the SC transcriptome in autoimmune demyelination. Although AT-EAE had a large impact on immune response genes, broader functional and chromosomal gene cohorts were neither significantly regulated nor showed significant changes in expression coordination. However, overall transcriptional control was increased in AT-EAE and the proportions of transcript abundances were perturbed within each cohort. Striking likenesses and oppositions were identified in the coordination profiles of genes related to myelination, calcium signaling, and inflammatory response in controls that were substantially altered in AT-EAE. We propose that up- or down-regulation of genes linked to those targeted by the disease could potentially compensate for the pathological transcriptomic changes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine USA.
| | | | | | | | | |
Collapse
|
13
|
Kopec AK, Boverhof DR, Burgoon LD, Ibrahim-Aibo D, Harkema JR, Tashiro C, Chittim B, Zacharewski TR. Comparative toxicogenomic examination of the hepatic effects of PCB126 and TCDD in immature, ovariectomized C57BL/6 mice. Toxicol Sci 2007; 102:61-75. [PMID: 18042819 DOI: 10.1093/toxsci/kfm289] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polychlorinated biphenyls are persistent environmental pollutants that elicit a wide range of effects in humans and wildlife, mediated by the aryl hydrocarbon receptor. 3,3',4,4',5-pentachlorobiphenyl (PCB126) is the most potent congener with relative effect potencies ranging from 0.0026 to 0.857, and a toxic equivalency factor (TEF) of 0.1 set by an expert panel of the World Health Organization. In this study, the hepatic effects elicited by 300 microg/kg PCB126 were compared with 30 microg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in immature, ovariectomized female C57BL/6 mice. Comprehensive hepatic gene expression analyses with complementary histopathology, high-resolution gas chromatograph/high-resolution mass spectrometer tissue analysis, and clinical chemistry were examined. For temporal analysis, mice were orally gavaged with PCB126 or sesame oil vehicle and sacrificed after 2, 4, 8, 12, 18, 24, 72, 120, or 168 h. In the dose-response study, mice were gavaged with 0.3, 1, 3, 10, 30, 100, 300, 1000 microg/kg PCB126, 30 or 100 microg/kg TCDD and sacrificed after 72 h. 251 and 367 genes were differentially expressed by PCB126 at one or more time points or doses, respectively, significantly less than elicited by TCDD. In addition, there was less vacuolization and necrosis, and no immune cell infiltration, despite comparable or higher TEF-adjusted hepatic PCB126 levels. The functional annotation of differentially expressed genes was consistent with the observed histopathology. Collectively, the data indicate that 300 microg/kg PCB126 elicited a subset of weaker effects compared with 30 microg/kg TCDD in immature, ovariectomized C57BL/6 mice.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Biochemistry & Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing 48824-1319, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicol Sci 2006; 94:398-416. [PMID: 16960034 DOI: 10.1093/toxsci/kfl100] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an effort to further characterize conserved and species-specific mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated toxicity, comparative temporal and dose-response microarray analyses were performed on hepatic tissue from immature, ovariectomized Sprague Dawley rats and C57BL/6 mice. For temporal studies, rats and mice were gavaged with 10 or 30 microg/kg of TCDD, respectively, and sacrificed after 2, 4, 8, 12, 18, 24, 72, or 168 h while dose-response studies were performed at 24 h. Hepatic gene expression profiles were monitored using custom cDNA microarrays containing 8567 (rat) or 13,361 (mouse) cDNA clones. Affymetrix data from male rats treated with 40 microg/kg TCDD were also included to expand the species comparison. In total, 3087 orthologous genes were represented in the cross-species comparison. Comparative analysis identified 33 orthologous genes that were commonly regulated by TCDD as well as 185 rat-specific and 225 mouse-specific responses. Functional annotation using Gene Ontology identified conserved gene responses associated with xenobiotic/chemical stress and amino acid and lipid metabolism. Rat-specific gene expression responses were associated with cellular growth and lipid metabolism while mouse-specific responses were associated with lipid uptake/metabolism and immune responses. The common and species-specific gene expression responses were also consistent with complementary histopathology, clinical chemistry, hepatic lipid analyses, and reports in the literature. These data expand our understanding of TCDD-mediated gene expression responses and indicate that species-specific toxicity may be mediated by differences in gene expression which may help explain the wide range of species sensitivities and will have important implications in risk assessment strategies.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramsey C, Hässler S, Marits P, Kämpe O, Surh CD, Peltonen L, Winqvist O. Increased antigen presenting cell-mediated T cell activation in mice and patients without the autoimmune regulator. Eur J Immunol 2006; 36:305-17. [PMID: 16421949 DOI: 10.1002/eji.200535240] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with autoimmune polyendocrine syndrome type I (APS I)suffer from endocrine and non-endocrine disorders due to mutations in the autoimmune regulator gene (AIRE). Mouse Aire is expressed both in thymic medullary epithelial cells and in peripheral antigen-presenting cells, suggesting a role in both central and peripheral tolerance. We here report that Aire(-/-) dendritic cells (DC) activate naive T cells more efficiently than do Aire(+/+) DC. Expression array analyses of Aire(-/-) DC revealed differential regulation of 68 transcripts, among which, the vascular cell adhesion molecule-1 (VCAM-1) transcript was up-regulated in Aire(-/-) DC. Concurrently, the expression of the VCAM-1 protein was up-regulated on both Aire(-/-) DC and monocytes from APS I patients. Blocking the interaction of VCAM-1 prevented enhanced Aire(-/-) DC stimulation of T cell hybridomas. We determined an increased number of DC in spleen and lymph nodes and of monocytes in the blood from Aire(-/-) mice, and an increased number of blood monocytes in APS I patients. Our findings imply a role for Aire in peripheral DC regulation of T cell activation, and suggest that Aire participates in peripheral tolerance.
Collapse
Affiliation(s)
- Chris Ramsey
- Department of Immunology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Lal G, Shaila MS, Nayak R. Activated mouse T-cells synthesize MHC class II, process, and present morbillivirus nucleocapsid protein to primed T-cells. Cell Immunol 2005; 234:133-45. [PMID: 16083868 DOI: 10.1016/j.cellimm.2005.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 06/02/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022]
Abstract
A pivotal step in the initiation of T-cell immunity is the presentation of antigenic peptides by major histocompatibility complex (MHC) expressed on antigen presenting cells. The expression of MHC class II molecules by mouse T-cells has not been shown unequivocally. In the present work, we demonstrate that activated mouse T-cells synthesize MHC class II molecules de novo and express them on their surface. Further, we have demonstrated that in vitro activated T-cells take up extra-cellular soluble nucleocapsid protein of a morbillivirus. The internalized antigen goes to antigen processing compartment as shown by co-localization of antigen and LAMP-1 using confocal microscopy. We show that activated T-cells express H2M, a chaperone molecule known to have a role in antigen presentation. Further, we demonstrate that activated T-cells process and present internalized extra-cellular antigen to primed T-cells as shown by IL-2 secretion and in vitro proliferation. The presentation of antigen by T-cells may have implications in immuno-regulation, control of infection by lymphotropic viruses and maintenance of immunological memory.
Collapse
Affiliation(s)
- Girdhari Lal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
17
|
Boverhof DR, Burgoon LD, Tashiro C, Chittim B, Harkema JR, Jump DB, Zacharewski TR. Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-Mediated hepatotoxicity. Toxicol Sci 2005; 85:1048-63. [PMID: 15800033 DOI: 10.1093/toxsci/kfi162] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In an effort to further characterize the mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated toxicity, comprehensive temporal and dose-response microarray analyses were performed on hepatic tissue from immature ovariectomized C57BL/6 mice treated with TCDD. For temporal analysis, mice were gavaged with 30 microg/kg of TCDD or vehicle and sacrificed after 2, 4, 8, 12, 18, 24, 72, or 168 h. Dose-response mice were gavaged with 0, 0.001, 0.01, 0.1, 1, 10, 100, or 300 microg/kg of TCDD and sacrificed after 24 h. Hepatic gene expression profiles were monitored using custom cDNA microarrays containing 13,362 cDNA clones. Gene expression analysis identified 443 and 315 features which exhibited a significant change at one or more doses or time points, respectively, as determined using an empirical Bayes approach. Functional gene annotation extracted from public databases associated gene expression changes with physiological processes such as oxidative stress and metabolism, differentiation, apoptosis, gluconeogenesis, and fatty acid uptake and metabolism. Complementary histopathology (H&E and Oil Red O stains), clinical chemistry (i.e., alanine aminotransferase [ALT], triglyceride [TG], free fatty acids [FFA], cholesterol) and high-resolution gas chromatography/mass spectrometry assessment of hepatic TCDD levels were also performed in order to phenotypically anchor changes in gene expression to physiological end points. Collectively, the data support a proposed mechanism for TCDD-mediated hepatotoxicity, including fatty liver, which involves mobilization of peripheral fat and inappropriate increases in hepatic uptake of fatty acids.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan 48824-1319, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The presentation of antigenic peptides by MHC class II molecules is essential for activation of CD4+ T cells. The formation of most peptide-MHC-class-II complexes is influenced by the actions of two specialized accessory proteins--DM and DO--located in the endosomal/lysosomal system where peptide loading occurs. DM removes class-II-associated invariant-chain peptide (CLIP) from newly synthesized class II molecules, but by now it is clearly established that this is only a special case of the general peptide-editing function of DM. Recent data have begun to explain the molecular basis for the editing activity. The other accessory protein, DO, modulates DM activity in vitro, but the physiological importance of DO is unclear. New evidence from several laboratories has provided clues that may soon change this.
Collapse
Affiliation(s)
- Lars Karlsson
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
19
|
El-Sukkari D, Wilson NS, Hakansson K, Steptoe RJ, Grubb A, Shortman K, Villadangos JA. The Protease Inhibitor Cystatin C Is Differentially Expressed among Dendritic Cell Populations, but Does Not Control Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2003; 171:5003-11. [PMID: 14607896 DOI: 10.4049/jimmunol.171.10.5003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) undergo complex developmental changes during maturation. The MHC class II (MHC II) molecules of immature DC accumulate in intracellular compartments, but are expressed at high levels on the plasma membrane upon DC maturation. It has been proposed that the cysteine protease inhibitor cystatin C (CyC) plays a pivotal role in the control of this process by regulating the activity of cathepsin S, a protease involved in removal of the MHC II chaperone Ii, and hence in the formation of MHC II-peptide complexes. We show that CyC is differentially expressed by mouse DC populations. CD8(+) DC, but not CD4(+) or CD4(-)CD8(-) DC, synthesize CyC, which accumulates in MHC II(+)Lamp(+) compartments. However, Ii processing and MHC II peptide loading proceeded similarly in all three DC populations. We then analyzed MHC II localization and Ag presentation in CD8(+) DC, bone marrow-derived DC, and spleen-derived DC lines, from CyC-deficient mice. The absence of CyC did not affect the expression, the subcellular distribution, or the formation of peptide-loaded MHC II complexes in any of these DC types, nor the efficiency of presentation of exogenous Ags. Therefore, CyC is neither necessary nor sufficient to control MHC II expression and Ag presentation in DC. Our results also show that CyC expression can differ markedly between closely related cell types, suggesting the existence of hitherto unrecognized mechanisms of control of CyC expression.
Collapse
Affiliation(s)
- Dima El-Sukkari
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Wilson NS, El-Sukkari D, Villadangos JA. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 2003; 103:2187-95. [PMID: 14604956 DOI: 10.1182/blood-2003-08-2729] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) change their antigen-presenting properties during maturation. Immature DCs efficiently capture antigens, but are reported to be impaired in their processing and presenting capacity. Upon an encounter with an inflammatory stimulus, DCs undergo a maturation process that leads to efficient presentation of antigens captured at the time of activation, but precludes processing of antigens encountered at later time points. The mechanisms that underlie these developmental changes are controversial. Thus, it is unclear whether immature DCs can present self antigens, and which are the checkpoints that regulate antigen presentation in immature and mature DCs. We have characterized these mechanisms using DCs derived directly from lymphoid organs. Immature lymphoid organ DCs constitutively presented self peptides bound to major histocompatibility complex class II (MHCII) molecules, but these MHCII-peptide complexes were degraded quickly after their transient expression on the cell surface. During maturation, MHC II endocytosis was down-regulated, so that newly generated MHC II-peptide complexes accumulated on the plasma membrane. Simultaneously, MHC II synthesis was down-regulated, thus preventing the turnover of the MHC II-peptide complexes that accumulated early during maturation. Our results demonstrate that immature DCs constitutively present self antigens in the lymphoid organs and characterize the molecular basis of the capacity of DCs to provide "antigenic memory" in vivo.
Collapse
Affiliation(s)
- Nicholas S Wilson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
21
|
Alfonso C, Williams GS, Han JO, Westberg JA, Winqvist O, Karlsson L. Analysis of H2-O influence on antigen presentation by B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2331-7. [PMID: 12928379 DOI: 10.4049/jimmunol.171.5.2331] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM (DM; in mouse H2-DM) promotes the exchange of MHC class II-associated peptides, resulting in the accumulation of stable MHC class II-peptide complexes. In naive (but not germinal center) B cells, a large part of DM is tightly associated with HLA-DO (DO; in mouse H2-O), but the functional consequence of this association for Ag presentation is debated. Here, we have extended previous studies by examining the presentation of multiple epitopes after Ag internalization by fluid phase endocytosis or receptor-mediated uptake by membrane Ig (mIg) receptors. We find that the effects of H2-O are more complex than previously appreciated; thus, while only minor influences on Ag presentation could be detected after fluid phase uptake, many epitopes were substantially affected after mIg-mediated uptake. Unexpectedly, the presentation of different epitopes was found to be enhanced, diminished, or unaffected in the absence of H2-O, depending on the specificity of the mIg used for Ag internalization. Interestingly, epitopes from the same Ag did not necessarily show the same H2-O dependency. This finding suggests that H2-O may control the repertoire of peptides presented by B cells depending on the mIg-Ag interaction. The absence of DO/H2-O from germinal center B cells suggests that this control may be released during B cell maturation.
Collapse
Affiliation(s)
- Christopher Alfonso
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rajagopalan G, Smart MK, Cheng S, Krco CJ, Johnson KL, David CS. Expression and function of HLA-DR3 and DQ8 in transgenic mice lacking functional H2-M. TISSUE ANTIGENS 2003; 62:149-61. [PMID: 12889995 DOI: 10.1034/j.1399-0039.2003.00088.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
H2-M or HLA-DM are non-classical class II molecules encoded by the MHC and play an important role during antigen presentation. They catalyze exchange of CLIP (Class II-associated invariant chain peptide) or other low-affinity peptides bound to class II molecules for peptides capable of more efficient binding. The phenotype of mice lacking H2-M is determined by the allotype of the MHC class II molecules expressed. In general, H2-M deficiency does not affect the surface expression of mature class II molecules. The class II molecules in such cases predominantly contain CLIP in their peptide-binding groove. In some mice strains, H2-M deficiency results in defective CD4+ T-cell development accompanied by defective responses to conventional antigens and superantigens. Even though the HLA class II molecules show similar dependency for HLA-DM for presenting antigens in vitro, their interaction in vivo is not known. By using transgenic approach we show here that DQ8 and DR3 are expressed at normal levels in H2-M-deficient mice and the CD4+ T-cell development is unaltered. However, the ability of DQ8 molecules to present peptide antigens is compromised in a H2-M-deficient state. Presentation of exogenous bacterial superantigens by both DQ8 and DR3 is unaffected in H2-M-deficient mice. Unexpectedly, Staphylococcal Enterotoxin B-induced systemic IFN-gamma production was significantly higher in H2-M-deficient DQ8/DR3 transgenic mice and these mice were susceptible to SEB-induced toxic shock at doses that are non-lethal to H2-M-sufficient counterparts.
Collapse
Affiliation(s)
- G Rajagopalan
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ye Q, Finn PW, Sweeney R, Bikoff EK, Riese RJ. MHC class II-associated invariant chain isoforms regulate pulmonary immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1473-80. [PMID: 12538710 DOI: 10.4049/jimmunol.170.3.1473] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asthma, a chronic inflammatory disease of the lung, is characterized by reversible airway obstruction and airway hyperresponsiveness (AHR), and is associated with increased production of IgE and Th2-type cytokines (IL-4, IL-5, and IL-13). Development of inflammation within the asthmatic lung depends on MHC class II-restricted Ag presentation, leading to stimulation of CD4(+) T cells and cytokine generation. Conventional MHC class II pathways require both MHC-associated invariant chain (Ii) and HLA-DM (H2-M in mice) chaperone activities, but alternative modes of Ag presentation may also promote in vivo immunity. In this study, we demonstrate that Ii(-/-) and H2-M(-/-) mice fail to develop lung inflammation or AHR following sensitization and challenge with OVA in a mouse model of allergic inflammation. To assess potentially distinct contributions by Ii chain isoforms to lung immunity, we also compared allergen-induced lung inflammation, eosinophilia, IgE production, and AHR in mice genetically altered to express either p31 Ii or p41 Ii isoform alone. Sole expression of either Ii isoform alone facilitates development of allergen-induced lung inflammation and eosinophilia. However, animals expressing only the p31 Ii isoform exhibit abrogated IgE and AHR responses as compared with p41 Ii mice in this model of allergen-induced lung inflammation, suggesting that realization of complete immunity within the lung requires expression of p41 Ii. These findings reveal a crucial role of Ii and H2-M in controlling the immune response within the lung, and suggest that p31 Ii and p41 Ii manifest nonredundant roles in development of immunity.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Animals
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Cytokines/biosynthesis
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Immunoglobulin E/biosynthesis
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Injections, Intraperitoneal
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Ovalbumin/administration & dosage
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Isoforms/physiology
- Pulmonary Eosinophilia/genetics
- Pulmonary Eosinophilia/immunology
- Pulmonary Eosinophilia/metabolism
- Pulmonary Eosinophilia/pathology
Collapse
Affiliation(s)
- Qiang Ye
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Murk JL, Stoorvogel W, Kleijmeer MJ, Geuze HJ. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin Cell Dev Biol 2002; 13:303-11. [PMID: 12243730 DOI: 10.1016/s1084952102000605] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multivesicular bodies (MVBs) are ubiquitous endocytic organelles containing numerous 50-80 nm vesicles. MVBs are very dynamic in shape and function. In antigen presenting cells (APCs), MVBs play a central role in the loading of major histocompatibility complex class II (MHC II) with antigenic peptides. How MHC II is transported from MVBs to the cell surface is only partly understood. One way involves direct fusion of MVBs with the plasma membrane. As a consequence, their internal vesicles are secreted as so-called exosomes. An alternative has been illustrated in maturing dendritic cells (DCs). Here, MVBs are reshaped into long tubules by back fusion of the internal vesicles with the MVB limiting membrane. Vesicles derived from the tips of these tubules then carry MHC II to the cell surface.
Collapse
Affiliation(s)
- Jean-Luc Murk
- Department of Cell Biology, Center for Biomedical Genetics and Institute of Biomembranes, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|