1
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death. Curr Issues Mol Biol 2022; 44:3428-3443. [PMID: 36005132 PMCID: PMC9406952 DOI: 10.3390/cimb44080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
- Correspondence: ; Tel.: +7-(905)7765062; Fax: +7-(499)2450857
| | - Alisa M. Gisina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| | - Garik V. Manukyan
- Petrovsky Russian Research Center of Surgery, 119991 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Konstantin N. Yarygin
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| |
Collapse
|
3
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|
4
|
Levochkina M, McQuillan L, Awan N, Barton D, Maczuzak J, Bianchine C, Trombley S, Kotes E, Wiener J, Wagner A, Calcagno J, Maza A, Nierstedt R, Ferimer S, Wagner A. Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome. J Clin Med 2021; 10:jcm10194365. [PMID: 34640381 PMCID: PMC8509449 DOI: 10.3390/jcm10194365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) induces immune dysfunction that can be captured clinically by an increase in the neutrophil-to-lymphocyte ratio (NLR). However, few studies have characterized the temporal dynamics of NLR post-TBI and its relationship with hospital-acquired infections (HAI), resource utilization, or outcome. We assessed NLR and HAI over the first 21 days post-injury in adults with moderate-to-severe TBI (n = 196) using group-based trajectory (TRAJ), changepoint, and mixed-effects multivariable regression analysis to characterize temporal dynamics. We identified two groups with unique NLR profiles: a high (n = 67) versus a low (n = 129) TRAJ group. High NLR TRAJ had higher rates (76.12% vs. 55.04%, p = 0.004) and earlier time to infection (p = 0.003). In changepoint-derived day 0–5 and 6–20 epochs, low lymphocyte TRAJ, early in recovery, resulted in more frequent HAIs (p = 0.042), subsequently increasing later NLR levels (p ≤ 0.0001). Both high NLR TRAJ and HAIs increased hospital length of stay (LOS) and days on ventilation (p ≤ 0.05 all), while only high NLR TRAJ significantly increased odds of unfavorable six-month outcome as measured by the Glasgow Outcome Scale (GOS) (p = 0.046) in multivariable regression. These findings provide insight into the temporal dynamics and interrelatedness of immune factors which collectively impact susceptibility to infection and greater hospital resource utilization, as well as influence recovery.
Collapse
Affiliation(s)
- Marina Levochkina
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Leah McQuillan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David Barton
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - John Maczuzak
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Claudia Bianchine
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Shannon Trombley
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Emma Kotes
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Joshua Wiener
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Audrey Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Jason Calcagno
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Andrew Maza
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Ryan Nierstedt
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Stephanie Ferimer
- Division of Pediatric Rehabilitation Medicine, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA;
| | - Amy Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
5
|
Reinke S, Linge M, Diebner HH, Luksch H, Glage S, Gocht A, Robertson AAB, Cooper MA, Hofmann SR, Naumann R, Sarov M, Behrendt R, Roers A, Pessler F, Roesler J, Rösen-Wolff A, Winkler S. Non-canonical Caspase-1 Signaling Drives RIP2-Dependent and TNF-α-Mediated Inflammation In Vivo. Cell Rep 2021; 30:2501-2511.e5. [PMID: 32101731 DOI: 10.1016/j.celrep.2020.01.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/10/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022] Open
Abstract
Pro-inflammatory caspase-1 is a key player in innate immunity. Caspase-1 processes interleukin (IL)-1β and IL-18 to their mature forms and triggers pyroptosis. These caspase-1 functions are linked to its enzymatic activity. However, loss-of-function missense mutations in CASP1 do not prevent autoinflammation in patients, despite decreased IL-1β production. In vitro data suggest that enzymatically inactive caspase-1 drives inflammation via enhanced nuclear factor κB (NF-κB) activation, independent of IL-1β processing. Here, we report two mouse models of enzymatically inactive caspase-1-C284A, demonstrating the relevance of this pathway in vivo. In contrast to Casp1-/- mice, caspase-1-C284A mice show pronounced hypothermia and increased levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-6 when challenged with lipopolysaccharide (LPS). Caspase-1-C284A signaling is RIP2 dependent and mediated by TNF-α but independent of the NLRP3 inflammasome. LPS-stimulated whole blood from patients carrying loss-of-function missense mutations in CASP1 secretes higher amounts of TNF-α. Taken together, these results reveal non-canonical caspase-1 signaling in vivo.
Collapse
Affiliation(s)
- Sören Reinke
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mary Linge
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hans H Diebner
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anne Gocht
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Sigrun R Hofmann
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Pessler
- Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joachim Roesler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Choi S, Chung JH, Nam MH, Bang E, Hong KS, Kim YH, Seo JB, Chi SG. Elevated aldolase 1A, retrogene 1 expression induces cardiac apoptosis in rat experimental autoimmune myocarditis model. Can J Physiol Pharmacol 2020; 98:373-382. [PMID: 31999472 DOI: 10.1139/cjpp-2019-0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute myocarditis is an unpredictable heart disease that is caused by inflammation-associated cell death. Although viral infection and drug exposure are known to induce acute myocarditis, the molecular basis for its development remains undefined. Using proteomics and molecular analyses in myosin-induced rat experimental autoimmune myocarditis (EAM), we identified that elevated expression of aldolase 1A, retrogene 1 (Aldoart1) is critical to induce mitochondrial dysfunction and acute myocarditis development. Here, we demonstrate that cardiac cell death is associated with increased expressions of proapoptotic genes in addition to high levels of glucose, lactate, and triglyceride in metabolite profiling. The functional protein association network analysis also suggests that Aldoart1 upregulation correlates with high levels of dihydroxyacetone kinase and triglyceride. In H9c2 cardiac cells, lipopolysaccharides (LPS) or high glucose exposure significantly increases the cytochrome c release and the conversion of pro-caspase 3 into the cleaved form of caspase 3. We also found that LPS- or glucose-induced toxicities are almost completely reversed by siRNA-mediated knockdown of Aldoartl, which consequently increases cell viability. Together, our study strongly suggests that Aldoart1 may be involved in inducing mitochondrial apoptotic processes and can be a novel therapeutic target to prevent the onset of acute myocarditis or cardiac apoptosis.
Collapse
Affiliation(s)
- Seungmin Choi
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Joo Hee Chung
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Myung-Hee Nam
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Eunjung Bang
- Korea Basic Science Institute, Western Seoul Center, Seoul 03759, Korea
| | - Kwan Soo Hong
- Korea Basic Science Institute, Bioimaging Research Team, Cheongju 28123, Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
| | - Jong Bok Seo
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Abstract
The prevalence of celiac disease (CeD) has increased in the last decades, suggesting a role for environmental factors in addition to gluten. Several cohort studies have shown that different gastrointestinal infections increase CeD risk. However, the mechanisms by which microbes participate in CeD have remained elusive. Recently, with the use of animal models, both viral and bacterial opportunistic pathogens were shown to induce immune activation relevant for CeD. The hypothesis that viral and/or bacterial infections can contribute to immune activation and breakdown of tolerance toward gluten in genetically susceptible individuals is therefore reinforced. Here, we discuss the evidence regarding the role of microbes in promoting CeD and the specific pathways triggered by microbes that could participate in CeD pathogenesis. Understanding these pathways will allow us to develop optimal microbiota-modulating strategies to help prevent CeD.
Collapse
Affiliation(s)
- Alberto Caminero
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Zhang G, Zha J, Liu J, Di J. Minocycline impedes mitochondrial-dependent cell death and stabilizes expression of hypoxia inducible factor-1α in spinal cord injury. Arch Med Sci 2019; 15:475-483. [PMID: 30899301 PMCID: PMC6425201 DOI: 10.5114/aoms.2018.73520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/01/2018] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION One of the crucial mechanisms following spinal cord injury is mitochondria-associated cell death. Minocycline, an anti-inflammatory drug, is well known to impede mitochondrial cell death. However, there has been no study on the effect of minocycline linking Fas cell surface death receptor (FAS)-mediated cell death and hypoxia inducible factor (HIF-1α), the targets involved in mitochondrial cell death. MATERIAL AND METHODS Male Sprague Dawley rats (N = 15, divided into three groups) were subjected to traumatic spinal cord injury and were injected with minocycline (n = 5) (90 mg/kg and later a 45 mg/kg dose twice a day (every 12 h)). Injection with sterile PBS in injured animals served as the vehicle (n = 5) and another group comprised healthy animals (n = 5). TUNEL assay was used to quantify cell death. The release of Smac/Diablo, cytochrome-c (cyt-c), HIF-1α, FAS ligand (FASL) and tumour necrosis factor-α (TNF-α) was measured using ELISA. Expression of HIF-1α, FASL and other cell death associated factors was quantified at the mRNA and protein level and confirmed with immunohistochemistry. RESULTS There was a marked reduction in the HIF-1α and FASL expression levels in the minocycline-treated group compared to the vehicle. The reduction of HIF-1α and FASL was associated with other factors linked to cell death (Smac/Diablo, cyt-c, TNF-α, p53, caspase-8 and BH3 interacting domain death agonist (BID)) (p < 0.5; *p < 0.05 vs. vehicle group, **p < 0.01 vs. vehicle group). CONCLUSIONS The present study focuses on the investigation of minocycline in inhibiting mitochondria-associated cell death by modulating FASL and HIF-1α expression, which are seemingly interlinked mechanisms contributing to cell death.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Kaur A, Riaz MS, Murugaiah V, Varghese PM, Singh SK, Kishore U. A Recombinant Fragment of Human Surfactant Protein D induces Apoptosis in Pancreatic Cancer Cell Lines via Fas-Mediated Pathway. Front Immunol 2018; 9:1126. [PMID: 29915574 PMCID: PMC5994421 DOI: 10.3389/fimmu.2018.01126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/03/2018] [Indexed: 12/24/2022] Open
Abstract
Human surfactant protein D (SP-D) is a potent innate immune molecule, which is emerging as a key molecule in the recognition and clearance of altered and non-self targets. Previous studies have shown that a recombinant fragment of human SP-D (rfhSP-D) induced apoptosis via p53-mediated apoptosis pathway in an eosinophilic leukemic cell line, AML14.3D10. Here, we report the ability of rfhSP-D to induce apoptosis via TNF-α/Fas-mediated pathway regardless of the p53 status in human pancreatic adenocarcinoma using Panc-1 (p53mt), MiaPaCa-2 (p53mt), and Capan-2 (p53wt) cell lines. Treatment of these cell lines with rfhSP-D for 24 h caused growth arrest in G1 cell cycle phase and triggered transcriptional upregulation of pro-apoptotic factors such as TNF-α and NF-κB. Translocation of NF-κB from the cytoplasm into the nucleus of pancreatic cancer cell lines was observed via immunofluorescence microscopy following treatment with rfhSP-D as compared to the untreated cells. The rfhSP-D treatment caused upregulation of pro-apoptotic marker Fas, as analyzed via qPCR and western blot, which then triggered caspase cascade, as evident from cleavage of caspase 8 and 3 analyzed via western blot at 48 h. The cell number following the rfhSP-D treatment was reduced in the order of Panc-1 (~67%) > MiaPaCa-2 (~60%) > Capan-2 (~35%). This study appears to suggest that rfhSP-D can potentially be used to therapeutically target pancreatic cancer cells irrespective of their p53 phenotype.
Collapse
Affiliation(s)
- Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Muhammad Suleman Riaz
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
11
|
Zhang G, Zha J, Liu J, Di J. WITHDRAWN: Minocycline an antimicrobial agent attenuates the mitochondrial dependent cell death and stabilizes the expression of HIF-1α in spinal cord injury. Microb Pathog 2018:S0882-4010(18)30284-5. [PMID: 29530807 DOI: 10.1016/j.micpath.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
12
|
Vendomèle J, Khebizi Q, Fisson S. Cellular and Molecular Mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID): What We Have Learned from Knockout Mice. Front Immunol 2017; 8:1686. [PMID: 29250068 PMCID: PMC5714853 DOI: 10.3389/fimmu.2017.01686] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023] Open
Abstract
Anterior chamber-associated immune deviation (ACAID) is a well-known phenomenon that can occur after an antigen is introduced without any danger signal into the anterior chamber of a murine eye. It is reported to lead to an antigen-specific immune deviation throughout the body. Despite the relatively little evidence of this phenomenon in humans, it has been suggested as a potential prophylactic strategy in allograft rejections and in several autoimmune diseases. Cellular and molecular mechanisms of ACAID have been explored in different murine models mainly as proofs of concept, first by direct analyses of immune components in normal immunocompetent settings and by cell transfer experiments. Later, use of knockout (KO) mice has helped considerably to decipher ACAID mechanisms. However, several factors raise questions about the reliability and validity of studies using KO murine models. This mini-review summarizes results obtained with KO mice and discusses their advantages, their potential weaknesses, and their potential methods for further progress.
Collapse
Affiliation(s)
- Julie Vendomèle
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, Evry, France
| | - Quentin Khebizi
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sylvain Fisson
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
13
|
Choi KJ, Na YJ, Park SB, Jung WH, Sung HR, Kim KY. Carbenoxolone prevents chemical eye ischemia-reperfusion-induced cell death via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Pharmacol Res 2017; 123:62-72. [PMID: 28687341 DOI: 10.1016/j.phrs.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/07/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023]
Abstract
Glaucoma is one of the leading causes of preventable blindness diseases, affecting more than 2 million people in the United States. Recently, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors were found to exert preventive effects against glaucoma. Therefore, we investigated whether carbenoxolone (CBX), an 11β-HSD1 inhibitor, prevents chemical ischemia-reperfusion-induced cell death in human trabecular meshwork (HTM) cells. The present study demonstrated that CBX inhibited cell death caused by iodoacetic acid (IAA)-induced ischemia-reperfusion, and its effect was associated with the inhibition of 11β-HSD1 expression and activity. Furthermore, CBX reversed the IAA-induced structural damage on filamentous actin in HTM cells. In IAA-treated cells, the levels of 11β-HSD1 and the apoptosis-related factors Bax and FASL were increased throughout the reperfusion period, and CBX was able to attenuate the expression of 11β-HSD1 and the apoptosis-related factors. CBX also effectively suppressed IAA-induced intracellular ROS formation and cytochrome c release, which are involved in the mitochondrial apoptosis pathway. In addition, IAA-induced chemical ischemia-reperfusion stimulated TNF-α expression and NF-κB p65 phosphorylation, and these effects were attenuated by CBX. 11β-HSD1 RNAi also suppressed IAA-induced cell apoptosis via reduction of oxidative stress and inhibition of the pro-inflammatory pathway. Taken together, the present study demonstrated that the inhibition of 11β-HSD1 protected the TM against chemical ischemia-reperfusion injury, suggesting that the use of 11β-HSD1 inhibitors could be a useful strategy for glaucoma therapy.
Collapse
Affiliation(s)
- Kyoung-Jin Choi
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yoon-Ju Na
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sung Bum Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Hoon Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hye-Rim Sung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ki Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
14
|
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 2016; 73:1765-86. [PMID: 26852158 PMCID: PMC4819943 DOI: 10.1007/s00018-016-2147-8] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland.
| | - Jussi J Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Chaves AT, de Assis Silva Gomes Estanislau J, Fiuza JA, Carvalho AT, Ferreira KS, Fares RCG, Guimarães PHG, de Souza Fagundes EM, Morato MJ, Fujiwara RT, da Costa Rocha MO, Correa-Oliveira R. Immunoregulatory mechanisms in Chagas disease: modulation of apoptosis in T-cell mediated immune responses. BMC Infect Dis 2016; 16:191. [PMID: 27138039 PMCID: PMC4852404 DOI: 10.1186/s12879-016-1523-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background Chronic Chagas disease presents different clinical manifestations ranging from asymptomatic (namely indeterminate) to severe cardiac and/or digestive. Previous results have shown that the immune response plays an important role, although no all mechanisms are understood. Immunoregulatory mechanisms such as apoptosis are important for the control of Chagas disease, possibly affecting the morbidity in chronic clinical forms. Apoptosis has been suggested to be an important mechanism of cellular response during T. cruzi infection. We aimed to further understand the putative role of apoptosis in Chagas disease and its relation to the clinical forms of the disease. Methods Apoptosis of lymphocytes, under antigenic stimuli (soluble T. cruzi antigens – TcAg) where compared to that of non-stimulated cells. Apoptosis was evaluated using the expression of annexin and caspase 3+ by T cells and the percentage of cells positive evaluated by flow cytometry. In addition activation and T cell markers were used for the identification of TCD4+ and TCD8+ subpopulations. The presence of intracellular and plasma cytokines were also evaluated. Analysis of the activation status of the peripheral blood cells showed that patients with Chagas disease presented higher levels of activation determined by the expression of activation markers, after TcAg stimulation. PCR array were used to evaluate the contribution of this mechanism in specific cell populations from patients with different clinical forms of human Chagas disease. Results Our results showed a reduced proliferative response associated a high expression of T CD4+CD62L− cells in CARD patients when compared with IND group and NI individuals. We also observed that both groups of patients presented a significant increase of CD4+ and CD8+ T cell subsets in undergoing apoptosis after in vitro stimulation with T. cruzi antigens. In CARD patients, both CD4+ and CD8+ T cells expressing TNF-α were highly susceptible to undergo apoptosis after in vitro stimulation. Interestingly, the in vitro TcAg stimulation increased considerably the expression of cell death TNF/TNFR superfamily and Caspase family receptors genes in CARD patients. Conclusions Taken together, our results suggest that apoptosis may be an important mechanism for the control of morbidity in T. cruzi infection by modulating the expression of apoptosis genes, the cytokine environment and/or killing of effector cells. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1523-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Thereza Chaves
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Juliana de Assis Silva Gomes Estanislau
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil.,Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.,Programa de Pós graduação em Medicina Tropical e Infectologia, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Jacqueline Araújo Fiuza
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Andréa Teixeira Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Karine Silvestre Ferreira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil
| | | | - Pedro Henrique Gazzinelli Guimarães
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil
| | | | - Maria José Morato
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil
| | - Manoel Otávio da Costa Rocha
- Programa de Pós graduação em Medicina Tropical e Infectologia, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Rodrigo Correa-Oliveira
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais - INCT-DT, Minas Gerais, Brazil. .,NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
16
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|
17
|
Dai Q, Yin Q, Zhao Y, Guo R, Li Z, Ma S, Lu N. III-10, a newly synthesized flavonoid, induces cell apoptosis with the involvement of reactive oxygen species-mitochondria pathway in human hepatocellular carcinoma cells. Eur J Pharmacol 2015; 764:353-362. [PMID: 26164795 DOI: 10.1016/j.ejphar.2015.06.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 01/18/2023]
Abstract
Study of the mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. We recently established that III-10, a new flavonoid with a pyrrolidinyl and a benzyl group substitution, exerted its anti-tumor effect via inducing differentiation of human U937 leukemia cells. In this study, we demonstrated that III-10 induced cell apoptosis in human hepatocellular carcinoma cells. The activation of caspase-3, caspase-9, and the increased expression ratio of Bax/Bcl-2 were detected in III-10-induced apoptosis. Z-VAD-FMK, a pan-caspase inhibitor, partly attenuated the apoptotic induction of III-10 on both HepG2 and BEL-7402 cells. Furthermore, the increase of intracellular reactive oxygen species levels and the reduction of mitochondria ΔΨm were also observed in BEL-7402 and HepG2 cells after the treatment of III-10. Pretreatment with NAC, a reactive oxygen species production inhibitor, partly attenuated the apoptosis induced by III-10 via blocking the reactive oxygen species generation. Our data also showed that III-10 induced the release of cytochrome c and AIF to cytosol followed after the reactive oxygen species accumulation. Moreover, the GSH levels and ATP generation were both inhibited after III-10 treatment. Besides, the MAPK, the downstream effect of reactive oxygen species accumulation including JNK could be activated by III-10, as well as the inactivation of ERK. Collectively, the generation of reactive oxygen species might play an crucial role in III-10-induced mitochondrial apoptosis pathway, provided more stubborn evidence for III-10 as a potent anticancer therapeutic candidate.
Collapse
Affiliation(s)
- Qinsheng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qian Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yikai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ruichen Guo
- Xi'an Middle School of Shaanxi Province, Xi'an 710021, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
18
|
Georgiadou M, Notas G, Xidakis C, Drygiannakis I, Sfakianaki O, Klironomos S, Valatas V, Kouroumalis E. TNF receptors in Kupffer cells. J Recept Signal Transduct Res 2011; 31:291-8. [DOI: 10.3109/10799893.2011.586354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Nakazawa T, Kayama M, Ryu M, Kunikata H, Watanabe R, Yasuda M, Kinugawa J, Vavvas D, Miller JW. Tumor necrosis factor-alpha mediates photoreceptor death in a rodent model of retinal detachment. Invest Ophthalmol Vis Sci 2011; 52:1384-91. [PMID: 21402953 DOI: 10.1167/iovs.10-6509] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Photoreceptor degeneration is a major cause of visual loss in various retinal diseases, including retinal detachment (RD) and neovascular AMD, but the underlying mechanisms remain elusive. In this study, the role of TNFα in RD-induced photoreceptor degeneration was investigated. METHODS RD was induced by subretinal injection of hyaluronic acid. Photoreceptor degeneration was assessed by counting the number of apoptotic cells with TdT-dUTP terminal nick-end labeling (TUNEL) 3 days after RD and measurement of the outer nuclear layer (ONL) thickness 7 days after RD. As the target of anti-inflammatory treatment, the expression of TNFα, with or without dexamethasone (DEX) was examined in rats by real-time PCR. To understand the role of TNFα in photoreceptor degeneration, RD was induced in mice deficient in TNFα or its receptors (TNFR1, TNFR2, and TNFR1 and -2), or in wild-type (WT) mice by using a functionally blocking antibody to TNFα. CD11b(+) cells in the outer plexiform layer (OPL) and subretinal space were counted by immunohistochemistry (IHC). RESULTS Treatment with DEX (P = 0.001) significantly suppressed RD-induced photoreceptor degeneration and the expression of TNFα. RD-induced photoreceptor degeneration was significantly suppressed with specific blockade of TNFα (P = 0.032), in mice deficient for TNFα (P < 0.001), TNFR2 (P = 0.001), or TNFR1 and -2 (P < 0.001). However, lack of TNFR1 did not protect against RD-induced photoreceptor degeneration (P = 0.060). Müller cell activation was unchanged in WT and TNFα(-/-) mice. Recruitment of CD11b(+) monocytes was significantly lower in the TNFα(-/-) mice compared to WT mice (P = 0.002). CONCLUSIONS TNFα plays a critical role in RD-induced photoreceptor degeneration. This pathway may become an important target in the prevention of RD-induced photoreceptor degeneration.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Association of combined maternal-fetal TNF-alpha gene G308A genotypes with preterm delivery: a gene-gene interaction study. J Biomed Biotechnol 2010; 2010:396184. [PMID: 20224765 PMCID: PMC2836175 DOI: 10.1155/2010/396184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/05/2009] [Accepted: 01/28/2010] [Indexed: 11/24/2022] Open
Abstract
Preterm delivery (PTD) is a complicated perinatal adverse event. We were interested in association of G308A polymorphism in tumor necrosis factor-α (TNF-α) gene with PTD; so we conducted a genetic epidemiology study in Anqing City, Anhui Province, China. Case families and control families were all collected between July 1999 and June 2002. To control potential population stratification as we could, all eligible subjects were ethnic Han Chinese. 250 case families and 247 control families were included in data analysis. A hybrid design which combines case-parent triads and control parents was employed, to test maternal-fetal genotype (MFG) incompatibility. The method is based on a log-linear modeling approach. In summary, we found that when the mother's or child's genotype was G/A, there was a reduced risk of PTD; however when the mother's or child's genotype was genotype A/A, there was a relatively higher risk of PTD. Combined maternal-fetal genotype GA/GA showed the most reduced risk of PTD. Comparison of the LRTs showed that the model with maternal-fetal genotype effects fits significantly better than the model with only maternal and fetal genotype main effects (log-likelihood = −719.4, P = .023, significant at 0.05 level). That means that the combined maternal-fetal genotype incompatibility was significantly associated with PTD. The model with maternal-fetal genotype effects can be considered a gene-gene interaction model. We claim that both maternal effects and fetal effects should be considered together while investigating genetic factors of certain perinatal diseases.
Collapse
|
21
|
Mumm JB, Oft M. Subversion and coercion: the art of redirecting tumor immune surveillance. Curr Top Microbiol Immunol 2010; 344:25-39. [PMID: 20490777 DOI: 10.1007/82_2010_47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor immune surveillance and CD8+ T cells in particular appear capable of recognizing the antigenic properties of human tumor cells. However, those antigen specific T cells are often excluded from tumor tissue or are functionally limited in their cytotoxic capacity. Instead, the immune response provides proinflammatory cytokines and proteases promoting tumor growth and progression while subverting cytotoxic anti-tumor immunity. The cytokines and the inflammatory mechanisms driving tumor associated inflammation resemble tissue remodeling processes during wound healing and chronic inflammatory diseases. In this chapter, we summarize the current knowledge of how inflammatory cytokines may promote the deviation of anti-tumor immunity toward a tumor promoting, noncytotoxic inflammation.
Collapse
Affiliation(s)
- John B Mumm
- Merck Research Labs (formerly DNAX), 901 California Avenue, Palo Alto, CA 94303, USA
| | | |
Collapse
|
22
|
Müller S, Rihs S, Dayer Schneider JM, Paredes BE, Seibold I, Brunner T, Mueller C. Soluble TNF-α but not transmembrane TNF-α sensitizes T cells for enhanced activation-induced cell death. Eur J Immunol 2009; 39:3171-80. [DOI: 10.1002/eji.200939554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Habib HM, Taher TE, Isenberg DA, Mageed RA. Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol 2009; 38:112-20. [DOI: 10.1080/03009740802409496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, Warram JH, Krolewski AS. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 2008; 4:62-70. [PMID: 19073786 DOI: 10.2215/cjn.03010608] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of our study was to examine serum markers of the TNF and Fas pathways for association with cystatin-C based estimated glomerular filtration rate (cC-GFR) in subjects with type 1 diabetes (T1DM) and no proteinuria. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The study group (the 2nd Joslin Kidney Study) comprised patients with T1DM and normoalbuminuria (NA) (n = 363) or microalbuminuria (MA) (n = 304). Impaired renal function (cC-GFR <90 ml/min) was present in only 10% of patients with NA and 36% of those with MA. We measured markers of the tumor necrosis factor alpha (TNFalpha) pathway [TNFalpha, soluble TNF receptor 1 (sTNFR1), and 2 (sTNFR2)], its downstream effectors [soluble intercellular and soluble vascular adhesion molecules (sICAM-1 and sVCAM-1), interleukin 8 (IL8/CXCL8), monocytes chemoattractant protein-1 (MCP1), and IFNgamma inducible protein-10 (IP10/CXCL10)], the Fas pathway [soluble Fas (sFas) and Fas ligand (sFasL)], CRP, and IL6. RESULTS Of these, TNFalpha, sTNFRs, sFas, sICAM-1, and sIP10 were associated with cC-GFR. However, only the TNF receptors and sFas were associated with cC-GFR in multivariate analysis. Variation in the concentration of the TNF receptors had a much stronger impact on GFR than clinical covariates such as age and albumin excretion. CONCLUSIONS Elevated concentrations of serum markers of the TNFalpha and Fas-pathways are strongly associated with decreased renal function in nonproteinuric type 1 diabetic patients. These effects are independent of those of urinary albumin excretion. Follow-up studies are needed to characterize the role of these markers in early progressive renal function decline.
Collapse
|
25
|
Apoptotic mechanisms within the retina in Staphylococcus epidermidis experimental endophthalmitis. Graefes Arch Clin Exp Ophthalmol 2008; 247:667-74. [DOI: 10.1007/s00417-008-0996-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 10/21/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022] Open
|
26
|
Balakrishnan A, Mishra AC. Immune response during acute Chandipura viral infection in experimentally infected susceptible mice. Virol J 2008; 5:121. [PMID: 18937835 PMCID: PMC2577095 DOI: 10.1186/1743-422x-5-121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/20/2008] [Indexed: 12/30/2022] Open
Abstract
Background Age dependent susceptibility was observed in Chandipura virus (CHPV) infected mice through intravenous and intraperitoneal route. Adult mice were susceptible only through intracerebral route of infection. Immature neuron and some other biological variables including immature immune system are considered to be important factor for age related susceptibility in some diseases. As Chandipura virus infects both young and adult mice brain through intracerebral route the role of immune system during peripheral infection in young susceptible mice needs to be studied. Results Through intravenous route of infection the virus produces vireamia and cross the blood brain barrier (BBB) to replicate in the central nervous system. Circulating virus is effectively cleared by virus specific IgM antibody but replication in CNS continues. The infected mice secreted significant amount of proinflammatory cytokines like TNFα and MCP-1 and high amount of IFNγ, IL-1 and IL-6 at 24 h post infection. Reduction in significant amount of CD4, CD8 and CD19 positive cells at 72 h post infection (p < 0.000) was observed in infected mice. Suppression of T cell proliferation of splenocytes to Con A (p < 0.000), LPS and specific antigen was also observed. Presence of preformed virus specific antibody in the form of passive immunization completely protected the mice but immunization on the day or after the virus infection could not completely protect the mice. Conclusion Proinflammatory cytokines at 24 h post infection and reduction of CD4, CD8 and CD19 positive immune cells might make the mice immune compromised during infection. These cytokines might also increase the permeability of BBB to allow the virus to enter into CNS. Virus replication in CNS is responsible for neurological symptom and mortality. Once virus gets established in CNS it is difficult to protect the mice by passive immunization.
Collapse
Affiliation(s)
- Anukumar Balakrishnan
- Chandipura Virus Group, National Institute of Virology, 20-A Dr. Ambedkar Road, Post Box-11, Pune-411001, Maharashtra, India.
| | | |
Collapse
|
27
|
Matthews AG. An overview of recent developments in corneal immunobiology: potential relevance in the etiogenesis of corneal disease in the horse. Vet Ophthalmol 2008; 11 Suppl 1:66-76. [DOI: 10.1111/j.1463-5224.2008.00635.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Biros D. Anterior Chamber-Associated Immune Deviation. Vet Clin North Am Small Anim Pract 2008; 38:309-21, vi-vii. [DOI: 10.1016/j.cvsm.2007.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Rodrigues V, Agrelli GS, Leon SC, Silva Teixeira DN, Tostes S, Rocha-Rodrigues DB. Fas/Fas-L expression, apoptosis and low proliferative response are associated with heart failure in patients with chronic Chagas' disease. Microbes Infect 2007; 10:29-37. [PMID: 18078776 DOI: 10.1016/j.micinf.2007.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/14/2007] [Accepted: 09/26/2007] [Indexed: 01/25/2023]
Abstract
Chagas' disease affects 16-18 million patients in South America and heart involvement is the major cause of morbidity and mortality. Heart failure is the most severe clinical manifestation of the chronic phase of infection with Trypanosoma cruzi. The intensity and nature of the immune response is associated with the clinical outcome of the disease. In murine models, a low proliferative response and T-cell apoptosis have been observed during acute infection. In the present study the immune response of patients in the chronic phase of infection was analyzed. Patients were divided into: (a) asymptomatic, i.e., without involvement of the heart or digestive system; and (b) with heart failure. Patients with heart failure presented a significantly lower peripheral blood mononuclear cell (PBMC) proliferative response to T. cruzi antigens compared to asymptomatic patients. This low response was associated with antigen-induced apoptosis. Apoptosis of PBMC and a low proliferative response were also associated with double Fas/Fas-L expression and high production of TNF-alpha, a cytokine known to induce programmed cell death. These results suggest that apoptosis of PBMC, probably triggered by double expression of Fas/Fas-L and TNF-alpha, is implicated in the immune regulatory mechanism during the chronic phase of Chagas' disease.
Collapse
Affiliation(s)
- Virmondes Rodrigues
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro, Rua Frei Paulino, 30, Uberaba, MG 38025-180, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Ismail N, Crossley EC, Stevenson HL, Walker DH. Relative importance of T-cell subsets in monocytotropic ehrlichiosis: a novel effector mechanism involved in Ehrlichia-induced immunopathology in murine ehrlichiosis. Infect Immun 2007; 75:4608-20. [PMID: 17562770 PMCID: PMC1951155 DOI: 10.1128/iai.00198-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection with gram-negative monocytotropic Ehrlichia strains results in a fatal toxic shock-like syndrome characterized by a decreased number of Ehrlichia-specific CD4(+) Th1 cells, the expansion of tumor necrosis factor alpha (TNF-alpha)-producing CD8(+) T cells, and the systemic overproduction of interleukin-10 (IL-10) and TNF-alpha. Here, we investigated the role of CD4(+) and CD8(+) T cells in immunity to Ehrlichia and the pathogenesis of fatal ehrlichiosis caused by infection with low- and high-dose (10(3) and 10(5) bacterial genomes/mouse, respectively) ehrlichial inocula. The CD4(+) T-cell-deficient mice showed exacerbated susceptibility to a lethal high- or low-dose infection and harbored higher bacterial numbers than did wild-type (WT) mice. Interestingly, the CD8(+) T-cell-deficient mice were resistant to a low dose but succumbed to a high dose of Ehrlichia. The absence of CD8(+) T cells abrogated TNF-alpha and IL-10 production, reduced tissue injury and bacterial burden, restored splenic CD4(+) T-cell numbers, and increased the frequency of Ehrlichia-specific CD4(+) Th1 cells in comparison to infected WT mice. Although fatal disease is perforin independent, our data suggested that perforin played a critical role in controlling bacterial burden and mediating liver injury. Similar to WT mice, mortality of infected perforin-deficient mice was associated with CD4(+) T-cell apoptosis and a high serum concentration of IL-10. Depletion of IL-10 restored the number of CD4(+) and CD8(+) T cells in infected WT mice. Our data demonstrate a novel mechanism of immunopathology in which CD8(+) T cells mediate Ehrlichia-induced toxic shock, which is associated with IL-10 overproduction and CD4(+) T-cell apoptosis.
Collapse
Affiliation(s)
- Nahed Ismail
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, 301 University Blvd., Galveston, TX 77555-0609, USA.
| | | | | | | |
Collapse
|
31
|
Greenfeld CR, Roby KF, Pepling ME, Babus JK, Terranova PF, Flaws JA. Tumor necrosis factor (TNF) receptor type 2 is an important mediator of TNF alpha function in the mouse ovary. Biol Reprod 2006; 76:224-31. [PMID: 17065602 DOI: 10.1095/biolreprod.106.055509] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is believed that a finite pool of primordial follicles is established during embryonic and neonatal life. At birth, the mouse ovary consists of clusters of interconnected oocytes surrounded by pregranulosa cells. Shortly after birth these structures, termed germ cell cysts or nests (GCN), break down to facilitate primordial follicle formation. Tumor necrosis factor alpha (TNF) is a widely expressed protein with myriad functions. TNF is expressed in the ovary and may regulate GCN breakdown in rats. We investigated whether it participates in GCN breakdown and follicle formation in mice by using an in vitro ovary culture system as well as mutant animal models. We found that TNF and both receptors (TNFRSF1A and TNFRSF1B) are expressed in neonatal mouse ovaries and that TNF promotes oocyte death in neonatal ovaries in vitro. However, deletion of either receptor did not affect follicle endowment, suggesting that TNF does not regulate GCN breakdown in vivo. Tnfrsf1b deletion led to an apparent acceleration of follicular growth and a concomitant expansion of the primordial follicle population. This expansion of the primordial follicle population does not appear to be due to decreased primordial follicle atresia, although this cannot be ruled out completely. This study demonstrates that mouse oocytes express both TNF receptors and are sensitive to TNF-induced death. Additionally, TNFRSF1B is demonstrated to be an important mediator of TNF function in the mouse ovary and an important regulator of folliculogenesis.
Collapse
Affiliation(s)
- Chuck R Greenfeld
- Department of Physiology, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Immune privilege is a term applied to organs that have a unique relationship with the immune response. These sites prohibit the spread of inflammation, since even minor episodes can threaten organ integrity and function. Once thought to be a passive process relying on physical barriers, immune privilege is now viewed as an active process, which uses multiple mechanisms to maintain organ function. The prototypic organ of immune privilege has been the eye, where the spread of inflammation can threaten vision. Nearly 10 years ago, we discussed the finding that Fas ligand (FasL) was constitutively expressed in the eye and played a major role in immune privilege by inducing apoptosis in inflammatory cells that enter the eye. In this review, we reexamine the original evidence for the role of FasL in immune privilege, update progress on some of the concepts, and discuss some of the issues that remain unresolved.
Collapse
Affiliation(s)
- Thomas A Ferguson
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
33
|
Kemp TJ, Ludwig AT, Earel JK, Moore JM, Vanoosten RL, Moses B, Leidal K, Nauseef WM, Griffith TS. Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood 2005; 106:3474-82. [PMID: 16037389 PMCID: PMC1895062 DOI: 10.1182/blood-2005-03-1327] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used to treat bladder cancer for almost 30 years; however, the effector mechanism of the BCG-induced antitumor response remains enigmatic. Most BCG research has focused on the mononuclear-cell infiltrate, but growing evidence supports a role for neutrophils in the antitumor response. Previously, we demonstrated increased urinary tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo-2L) levels from BCG-responsive patients compared to nonresponders. Interestingly, neutrophils isolated from the urine expressed TRAIL/Apo-2L, leading us to investigate the neutrophil response to BCG. BCG-stimulated neutrophils expressed surface-bound and released functional soluble TRAIL/Apo-2L. Whereas neither interferon alpha (IFN-alpha) nor IFN-gamma directly induced TRAIL/Apo2L expression by neutrophils, IFN-alpha did stimulate TRAIL gene transcription, and IFN-primed neutrophils contained and released more TRAIL/Apo-2L after BCG stimulation than did unprimed neutrophils. In unstimulated neutrophils TRAIL/Apo-2L was present predominantly in the azurophilic granules and plasma-membrane-enriched/secretory-granule fraction. Finally, we observed that killed BCG, Toll-like receptor 2 (TLR2) and TLR4 agonists, and an M tuberculosis cell-wall fraction were each capable of inducing the release of soluble TRAIL/Apo-2L from neutrophils. These results further characterize the potential role neutrophils may play in initiating the antitumor response described with BCG treatment for superficial bladder cancer.
Collapse
Affiliation(s)
- Troy J Kemp
- Department of Urology, Interdisciplinary Graduate Program in Immunolgy, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Depuydt B, van Loo G, Vandenabeele P, Declercq W. Induction of apoptosis by TNF receptor 2 in a T-cell hybridoma is FADD dependent and blocked by caspase-8 inhibitors. J Cell Sci 2005; 118:497-504. [PMID: 15657078 DOI: 10.1242/jcs.01640] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we reported that both human TNFR1 and TNFR2 mediate TNF-induced apoptosis in the transfected rat/mouse T cell hybridoma PC60. We show here that TNFR2-mediated apoptosis in PVC60 cells can be blocked by the broad-spectrum caspase inhibitor zVAD-fmk, the caspase-8 inhibitor zIETD-fmk and by CrmA, a viral inhibitor of caspase-1 and caspase-8. This suggests an involvement of caspase-8 in TNFR2-mediated apoptosis. The upstream adaptor of caspase-8, FADD, is also involved in TNFR2-induced cell death, since transient overexpression of a dominant negative deletion mutant of FADD inhibited apoptosis induced by this receptor. TNFR2-induced apoptosis is independent of endogenous TNF or other death-inducing ligand production and subsequent activation of TNFR1 or other death receptors. Furthermore, TNFR2 stimulation does not enhance sensitivity for a subsequent TNFR1-induced apoptotic signal, as has been reported for Jurkat cells. TRAF2 downregulation, which has been proposed as the mechanism by which TNFR2 enhances TNFR1 signaling, was observed in PC60 cells, but the TNRF1 signal was not modulated. These data confirm the capacity of TNFR2 to generate an apoptotic cell death signal independent of TNFR1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Caspase 8
- Caspase Inhibitors
- Caspases/metabolism
- Cell Survival/drug effects
- Cycloheximide/pharmacology
- Cysteine Proteinase Inhibitors/pharmacology
- Fas-Associated Death Domain Protein
- Humans
- Hybridomas
- Mice
- Mutation/genetics
- Rats
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/physiology
- T-Lymphocytes/drug effects
- T-Lymphocytes/physiology
- TNF Receptor-Associated Factor 2/metabolism
- Transfection
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Bart Depuydt
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (VIB) and Gent University, 9052 Ghent-Zwijnaarde, Belgium
| | | | | | | |
Collapse
|
35
|
Rutigliano JA, Graham BS. Prolonged production of TNF-alpha exacerbates illness during respiratory syncytial virus infection. THE JOURNAL OF IMMUNOLOGY 2004; 173:3408-17. [PMID: 15322205 DOI: 10.4049/jimmunol.173.5.3408] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD8(+) CTL are the main effector cells responsible for resolving viral infections. However, the CTL response to respiratory syncytial virus (RSV) infection in mice facilitates viral clearance at the expense of significant immunopathology. Previous reports have shown a strong correlation between the mechanism of CTL activity and the severity of RSV-induced illness. Furthermore, experiments in perforin knockout mice revealed that antiviral cytokine production temporally correlated with RSV-induced illness. In the current study, we show that TNF-alpha is the dominant mediator of RSV-associated illness, and it is also important for clearance of virus-infected cells during the early stages of infection. We also demonstrate that IFN-gamma plays a protective role in conjunction with perforin/granzyme-mediated killing. Preliminary experiments in gld mice that express nonfunctional Fas ligand (FasL) revealed that RSV-induced illness is significantly reduced in the absence of FasL-mediated killing. Antiviral cytokine production was not elevated in the absence of FasL, suggesting a possible link between FasL and antiviral cytokine activity. This work shows that multiple phenotypic subsets of CD8(+) CTLs respond to RSV infection, each with varying capacities for clearance of virus-infected cells and the induction of illness. In addition, the revelation that TNF-alpha is the principal mediator of RSV-induced illness means that administration of TNF receptor antagonists, in combination with antiviral therapy, may be an effective method to treat RSV infections.
Collapse
Affiliation(s)
- John A Rutigliano
- Vaccine Research Center/National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Abstract
Myocarditis is a complex disease in which distinct immunopathogenic mechanisms cause tissue injury. In some but not all cases, autoimmunity is a major pathogenic factor. Cross-reactivity between viral and myosin epitopes underlies both cellular and humoral autoimmunity in myocarditis. Thus, the genetics of the host as well as the virus determine disease pathogenicity. Innate immunity, as represented by gammadelta+ T cells, is important in determining disease susceptibility. The innate effectors rapidly localize in the infected myocardium and through release of IFNgamma (Vgamma4+ cells; BALB/c) or IL-4 (Vgamma1+ cells; C57Bl/6), modulate the developing adaptive immune response to either a Th1 or Th2 response, respectively. The Vgamma4+ cells in BALB/c mice recognize CD1d, a major histocompatibility complex class I-like antigen. The ligand for Vgamma1+ cells is unknown. Only infected myocytes up-regulate CD1d. Signaling through both infection (double stranded RNA) and TNFalpha is required for CD1d up-regulation.
Collapse
Affiliation(s)
- Sally Huber
- Department of Pathology, University of Vermont, Bington, Vermont 05405, USA.
| |
Collapse
|
37
|
Murray DA, Crispe IN. TNF-α Controls Intrahepatic T Cell Apoptosis and Peripheral T Cell Numbers. THE JOURNAL OF IMMUNOLOGY 2004; 173:2402-9. [PMID: 15294953 DOI: 10.4049/jimmunol.173.4.2402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
At the end of an immune response, activated lymphocyte populations contract, leaving only a small memory population. The deletion of CD8(+) T cells from the periphery is associated with an accumulation of CD8(+) T cells in the liver, resulting in both CD8(+) T cell apoptosis and liver damage. After adoptive transfer and in vivo activation of TCR transgenic CD8(+) T cells, an increased number of activated CD8(+) T cells was observed in the lymph nodes, spleen, and liver of mice treated with anti-TNF-alpha. However, caspase activity was decreased only in CD8(+) T cells in the liver, not in those in the lymphoid organs. These results indicate that TNF-alpha is responsible for inducing apoptosis in the liver and suggest that CD8(+) T cells escaping this mechanism of deletion can recirculate into the periphery.
Collapse
Affiliation(s)
- Debbie A Murray
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
38
|
Umemura M, Kawabe T, Shudo K, Kidoya H, Fukui M, Asano M, Iwakura Y, Matsuzaki G, Imamura R, Suda T. Involvement of IL-17 in Fas ligand-induced inflammation. Int Immunol 2004; 16:1099-108. [PMID: 15237105 DOI: 10.1093/intimm/dxh111] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fas ligand (FasL) has been well characterized as a death factor. However, recent studies revealed that ectopic expression of FasL induces inflammation associated with massive neutrophil infiltration. We previously demonstrated that the neutrophil infiltration-inducing activity of FasL is partly dependent on, but partly independent of, IL-1beta. Here we investigated the cytokine profile of peritoneal lavage fluid obtained from mice that received i.p. injections of FFL, a FasL-expressing tumor cell line. We found that FFL injection caused a marked increase of not only IL-1beta but also IL-6, IL-17, IL-18, KC/chemokine CXC ligand 1 and macrophage inflammatory protein (MIP)-2, but not of IL-1alpha, IFN-gamma, TGF-beta or TNF-alpha. The FFL-induced cytokine production was not observed in Fas-deficient lpr mice. Among cells transfected to express individually IL-1beta, IL-6, IL-17, or IL-18, only those expressing IL-1beta and IL-17 induced neutrophil infiltration. In these analyses, as little as 20 pg of peritoneal IL-17 induced neutrophil infiltration. The peritoneal IL-17 levels after FFL-injection were greatly diminished in IL-1-deficient mice. However, the IL-17 level was still above the threshold for neutrophil infiltration. Consistent with this, co-administration of the anti-IL-17 antibody with FFL diminished the peritoneal KC levels and neutrophil infiltration in IL-1-deficient mice. In addition, the expression of IL-17 by the tumor cells inhibited tumor growth in wild-type and nude mice. These results indicate that FasL is an upstream inflammatory factor that induces a variety of other inflammatory cytokines in vivo, and suggest that IL-17 is involved in FasL-induced inflammation in the absence of IL-1beta.
Collapse
Affiliation(s)
- Masayuki Umemura
- Center for the Development of Molecular Target Drugs, Cancer Research Institute, Graduate School of Medicine Science, Kanazawa University, Takaramachi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Katavić V, Grcević D, Lukić IK, Vucenik V, Kovacić N, Kalajzić I, Marusić A. Non-functional Fas ligand increases the formation of cartilage early in the endochondral bone induction by rhBMP-2. Life Sci 2003; 74:13-28. [PMID: 14575809 DOI: 10.1016/j.lfs.2003.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has previously been shown that mice with a defect in Fas ligand-mediated apoptosis have an enhancement of ectopic bone formation. We investigated the expression of bone-related markers--alkaline phosphatase, collagen, bone sialoprotein, osteocalcin, osteopontin, and bone morphogenetic proteins (BMP) -2, -4, and -7; and cytokines interleukin-1alpha (IL-1), IL-1beta, and tumor necrosis factor-alpha (TNF-alpha) in ectopic new bone induced by recombinant human (rh) BMP-2 in mice without functional Fas-ligand (gld mice). At day 6 after rhBMP-2 implantation, gld mice formed more cartilage and mesenchyme compared with their wild type littermates. At later stages, gld mice did not differ from the control mice in the volume of newly formed tissue, expressing higher level of BMP genes and lower levels of genes involved in osteoblast maturation--bone sialoprotein and osteopontin. Differences in the levels of expression of IL-1alpha and TNF-alpha were observed only at day 12 after rhBMP-2 implantation. These results suggest that gld mice have an increased recruitment of cells of mesenchymal origin and an abnormal pattern of differentiation and maturation of the newly formed mesenchymal tissues.
Collapse
Affiliation(s)
- Vedran Katavić
- Department of Anatomy, Croatian Institute for Brain Research, Zagreb University School of Medicine, Salata 11, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Droin NM, Pinkoski MJ, Dejardin E, Green DR. Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses. Mol Cell Biol 2003; 23:7638-47. [PMID: 14560009 PMCID: PMC207583 DOI: 10.1128/mcb.23.21.7638-7647.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 04/25/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
The Fas ligand (FasL)/Fas pathway is crucial for homeostasis of the immune system and peripheral tolerance. Peripheral lymphocyte deletion involves FasL/Fas in at least two ways: coexpression of both Fas and its ligand on T cells, leading to activation-induced cell death, and expression of FasL by nonlymphoid cells, such as intestinal epithelial cells (IEC), that kill Fas-positive T cells. We demonstrate here that superantigen Staphylococcus enterotoxin B (SEB) induced a dramatic upregulation of FasL, TRAIL, and TNF mRNA expression and function in IEC from BALB/c and C57BL/6 mice. Using adoptive transfer in which CD4(+) T cells from OT-2 T-cell receptor transgenic mice were transferred into recipients, we observed an induction in IEC of FasL, TRAIL, and TNF mRNA after administration of antigen. Specific Egr-binding sites have been identified in the 5' promoter region of the FasL gene, and Egr-1, Egr-2, and Egr-3 mRNA in IEC from mice treated with SEB and from transgenic OT-2 mice after administration of antigen was upregulated. Overexpression of Egr-2 and Egr-3 induced endogenous ligand upregulation that was inhibited by overexpression of Egr-specific inhibitor Nab1. These results support a role for Egr family members in nonlymphoid expression of FasL, TRAIL, and TNF.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis Regulatory Proteins
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Early Growth Response Protein 1
- Early Growth Response Protein 2
- Early Growth Response Protein 3
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Fas Ligand Protein
- Gene Expression Regulation
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Repressor Proteins/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Nathalie M Droin
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
41
|
Chan FKM, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 2003; 278:51613-21. [PMID: 14532286 DOI: 10.1074/jbc.m305633200] [Citation(s) in RCA: 359] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Members of the tumor necrosis factor (TNF) receptor (TNFR) superfamily are potent regulators of apoptosis, a process that is important for the maintenance of immune homeostasis. Recent evidence suggests that TNFR-1 and Fas and TRAIL receptors can also trigger an alternative form of cell death that is morphologically distinct from apoptosis. Because distinct molecular components including the serine/threonine protein kinase receptor-interacting protein (RIP) are required, we have referred to this alternative form of cell death as "programmed necrosis." We show that TNFR-2 signaling can potentiate programmed necrosis via TNFR-1. When cells were pre-stimulated through TNFR-2 prior to subsequent activation of TNFR-1, enhanced cell death and recruitment of RIP to the TNFR-1 complex were observed. However, TNF-induced programmed necrosis was normally inhibited by caspase-8 cleavage of RIP. To ascertain the physiological significance of RIP and programmed necrosis, we infected Jurkat cells with vaccinia virus (VV) and found that VV-infected cells underwent programmed necrosis in response to TNF, but deficiency of RIP rescued the infected cells from TNF-induced cytotoxicity. Moreover, TNFR-2-/- mice exhibited reduced inflammation in the liver and defective viral clearance during VV infection. Interestingly, death effector domain-containing proteins such as MC159, E8, K13, and cellular FLIP, but not the apoptosis inhibitors Bcl-xL, p35, and XIAP, potently suppressed programmed necrosis. Thus, TNF-induced programmed necrosis is facilitated by TNFR-2 signaling and caspase inhibition and may play a role in controlling viral infection.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Caspase 8
- Caspase 9
- Caspases/pharmacology
- Humans
- Jurkat Cells
- Mice
- Mice, Knockout
- Necrosis
- Proteins/immunology
- Proteins/metabolism
- Proteins/physiology
- Receptor-Interacting Protein Serine-Threonine Kinases
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Signal Transduction
- Tumor Necrosis Factor-alpha/pharmacology
- Vaccinia/immunology
- Vaccinia/pathology
- Virus Diseases/immunology
- Virus Diseases/pathology
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kafrouni MI, Brown GR, Thiele DL. The role of TNF-TNFR2 interactions in generation of CTL responses and clearance of hepatic adenovirus infection. J Leukoc Biol 2003; 74:564-71. [PMID: 12960267 DOI: 10.1189/jlb.0103035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deficiency or inhibition of tumor necrosis factor (TNF) significantly prolongs hepatic expression of recombinant adenoviral vectors. To explore mechanisms responsible for this observation, the present studies examined the effects of TNF versus TNF receptor 1 (TNFR1) or TNFR2 deficiency on the course of antiviral-immune responses to a replication-deficient, beta-galactosidase-encoding recombinant adenovirus (AdCMV-lacZ). Clearance of AdCMV-lacZ was significantly delayed in TNF-deficient mice. Less pronounced but significant delays in AdCMV-lacZ clearance were observed in TNFR2-deficient but not TNFR1-deficient mice. Numbers of interferon-gamma expressing intrahepatic lymphocytes (IHL) were similar in AdCMV-lacZ-infected, TNF-deficient, TNFR1-deficient, TNFR2-deficient, and control mice. However, IHL isolated from AdCMV-lacZ-infected, TNF-deficient or AdCMV-lacZ-infected, TNFR2-deficient mice exhibited decreased levels of FasL expression and adenovirus-specific cytolytic T lymphocyte (CTL) activity. Similar defects in allo-specific killing of Fas-sensitive hepatocyte targets by TNF-deficient or TNFR2-deficient but not TNFR1-deficient CTL were also noted. No defects in generation of allo-specific cytotoxicity directed against perforin-sensitive target cells were noted in TNF-, TNFR1-, or TNFR2-deficient lymphocytes. These findings indicate that TNF/TNFR2 interactions facilitate generation of FasL-dependent CTL effector pathways that play an important role in in vivo antiviral-immune responses in the liver.
Collapse
MESH Headings
- Adenoviridae/immunology
- Animals
- Antigens, CD/physiology
- Cytotoxicity, Immunologic
- Fas Ligand Protein
- Interferon-gamma/analysis
- Liver/immunology
- Liver/virology
- Membrane Glycoproteins/analysis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Michel I Kafrouni
- Department of Internal Medicine, Divison of Digestive and Liver Diseases, University of Texas Southwestern Medical Center at Dallas, 75390-9151, USA
| | | | | |
Collapse
|
43
|
Malewicz M, Zeller N, Yilmaz ZB, Weih F. NF kappa B controls the balance between Fas and tumor necrosis factor cell death pathways during T cell receptor-induced apoptosis via the expression of its target gene A20. J Biol Chem 2003; 278:32825-33. [PMID: 12813034 DOI: 10.1074/jbc.m304000200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Activation-induced cell death (AICD), a term originally coined for the anti-CD3-induced apoptosis of T cell hybridomas and thymocytes, is predominantly driven by death receptors and has been involved in the control of autoreactive T cells in the periphery. In the Do-11.10 T cell hybridoma model of AICD, activation of the T cell receptor (TCR) results in Fas-dependent apoptosis. Here, we show that inhibition of the transcription factor nuclear factor kappa B (NF kappa B) in Do-11.10 cells resulted in increased sensitivity to TCR-mediated apoptosis, correlating with defective induction of the anti-apoptotic NF kappa B target gene A20. Stable expression of the zinc finger protein A20 in NF kappa B-negative Do-11.10 cells rescued the phenotype. TCR activation in NF kappa B-deficient Do-11.10 cells resulted predominantly in tumor necrosis factor (TNF) receptor 2 (TNFR2)-dependent bystander cell death rather than classical Fas-dependent AICD. Strikingly, A20 blocked TNF-mediated apoptosis and simultaneously restored TCR-induced Fas-dependent AICD. In addition, NF kappa B downstream of TNFR was required for up-regulation of Fas expression by endogenous TNF secreted in response to TCR stimulation. Together, these results suggest that NF kappa B can play both pro- and anti-apoptotic roles during AICD. We propose that NF kappa B controls the balance between Fas and TNF cell death pathways during AICD via the expression of the zinc finger protein A20.
Collapse
Affiliation(s)
- Michal Malewicz
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, 76021 Karlsruhe, Germany
| | | | | | | |
Collapse
|
44
|
Arreaza G, Salojin K, Yang W, Zhang J, Gill B, Mi QS, Gao JX, Meagher C, Cameron M, Delovitch TL. Deficient activation and resistance to activation-induced apoptosis of CD8+ T cells is associated with defective peripheral tolerance in nonobese diabetic mice. Clin Immunol 2003; 107:103-15. [PMID: 12763479 DOI: 10.1016/s1521-6616(03)00049-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activation-induced cell death (AICD) is a mechanism of homeostasis that limits the clonal expansion of autoreactive T cells and regulates central and peripheral tolerance. In nonobese diabetic (NOD) mice, defects in central and peripheral tolerance are associated with a proliferative hyporesponsiveness of thymocytes and peripheral T cells elicited upon TCR activation. We investigated whether these defects in tolerance induction and hyporesponsiveness of NOD T cells manifest in an altered susceptibility to TCR-induced AICD. TCR-activated NOD splenic CD4+ and CD8+ T cells are more resistant to AICD than control strain C57BL/6, BALB/c, and NOR T cells. NOR CD4+ but not CD8+ T cells are resistant to TCR-induced AICD. Whereas c-FLIP expression is reduced in activated T cells from control strains, it persists in activated NOD CD8+ T cells and is accompanied by diminished activity of caspase-3 and -8. IL-4 reduces this c-FLIP expression and increases caspase-3 and -8 activity in activated NOD CD8+ T cells. Moreover, IL-4 and CD28 costimulation restores the susceptibility of NOD CD8+ T cells to AICD, and this is associated with increased expression of CD25, CD95, CD95L, and TNFR2. Thus, deficient activation of CD8+ T cells and their greater resistance to TCR-induced AICD may mediate defective peripheral tolerance and the development of T1D in NOD mice.
Collapse
Affiliation(s)
- Guillermo Arreaza
- Autoimmunity/Diabetes Group, The John P. Robarts Research Institute, NG6 2V4, London, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hines IN, Kawachi S, Harada H, Pavlick KP, Hoffman JM, Bharwani S, Wolf RE, Grisham MB. Role of nitric oxide in liver ischemia and reperfusion injury. Mol Cell Biochem 2003. [PMID: 12162439 DOI: 10.1023/a:1015952926016] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.
Collapse
Affiliation(s)
- Ian N Hines
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pinkoski MJ, Droin NM, Green DR. Tumor necrosis factor alpha up-regulates non-lymphoid Fas-ligand following superantigen-induced peripheral lymphocyte activation. J Biol Chem 2002; 277:42380-5. [PMID: 12196549 DOI: 10.1074/jbc.m208167200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the tumor necrosis factor (TNF) and TNF receptor families play important roles in inducing apoptosis and mediating the inflammatory response. Activated T lymphocytes can trigger the expression of Fas-ligand on non-lymphoid tissue, such as intestinal epithelial cells (IEC), and this, in turn, can induce apoptosis in the T cells. Here, we examine the role of TNFalpha in this feedback regulation. Injection of TNFalpha into mice caused a rapid up-regulation of Fas-ligand mRNA in IEC. TNFalpha-induced activation of the Fas-ligand promoter in IEC requires NF-kappaB as this was blocked by an I-kappaBalphaM super-repressor and by mutation of an NF-kappaB site in the Fas-ligand promoter. Activation of T cells by antigen induced Fas-ligand expression in IEC in vivo in wild type, but not in TNFalpha-/- or TNFR1-/- mice. These results define a novel pathway wherein TNFalpha, produced by activated T cells in the intestine, induce Fas-ligand expression in IEC. This is the first observation that one member of the TNF superfamily mediates the regulation of another family member and represents a potential feedback mechanism controlling lymphocyte infiltration and inflammation in the small intestine.
Collapse
Affiliation(s)
- Michael J Pinkoski
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| | | | | |
Collapse
|
47
|
Bortolami M, Venturi C, Giacomelli L, Scalerta R, Bacchetti S, Marino F, Floreani A, Lise M, Naccarato R, Farinati F. Cytokine, infiltrating macrophage and T cell-mediated response to development of primary and secondary human liver cancer. Dig Liver Dis 2002; 34:794-801. [PMID: 12546515 DOI: 10.1016/s1590-8658(02)80073-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Kupffer cells, monocytes and infiltrating T cells have been considered the major source of interleukin-1beta and tumour necrosis factor-alpha in the liver. AIMS; To explore the expression of interleukin-1beta and tumour necrosis factor-alpha and to evaluate the density and the distribution of T lymphocytes and monocytes/macrophages in the liver of patients with primary and secondary tumours. METHODS Tumoural and peritumoural liver samples were examined from 21 patients with hepatocellular carcinoma, 10 with hepatic metastases, 5 with benign focal liver lesions and 4 healthy adult livers. Interleukin-1beta and tumour necrosis factor-alpha mRNAs were detected by a semiquantitative comparative reverse transcriptase polymerase chain reaction. T lymphocytes and monocytes/macrophages were detected by immunohistochemistry. RESULTS Higher levels of interleukin-1beta, tumour necrosis factor-alpha, CD3+ and CD68+ cells were found in the tissue surrounding hepatocellular carcinoma and metastases than in the tumour itself. A strong expression of CD68+ and CD3+ cells was found mainly along the tumour-host interface but the highest expression of CD3+ cells was found at the metastasis interfaces. Interleukin-1beta expression, CD3+ and CD68+ cell densities were higher in peritumoural samples than in so-called "normal" liver tissue. CONCLUSIONS An increased production of interleukin-1beta and, to a lesser extent, of tumour necrosis factor-alpha mRNA coincides with the presence of cancer be it primary or secondary, both in healthy and cirrhotic livers. The presence of cancer, irrespective of the presence of underlying liver damage, appears to play the most important role.
Collapse
Affiliation(s)
- M Bortolami
- Department of Surgical and Gastroenterological Sciences, University of Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen G, Kirby M, Zeng W, Young NS, Maciejewski JP. Superior growth of glycophosphatidy linositol-anchored protein-deficient progenitor cells in vitro is due to the higher apoptotic rate of progenitors with normal phenotype in vivo. Exp Hematol 2002; 30:774-82. [PMID: 12135676 DOI: 10.1016/s0301-472x(02)00811-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Recently, phenotypically normal CD34 cells from the marrow of patients with paroxysmal nocturnal hemoglobinuria (PNH) were reported to show impaired growth and elevated Fas receptor expression as compared to glycophosphatidylinositol-anchored protein (GPI-AP)-deficient CD34 cells and CD34 cells from normal individuals. These results are consistent with the theory that PNH cells have an intrinsic growth advantage, but their superior expansion in vitro could also be the outcome of selective extrinsic pressure in vivo. MATERIAL AND METHODS Growth characteristics, competitive features, and susceptibility to apoptosis of sorted normal or GPI-AP-deficient CD34(+) cells derived from PNH patients were assessed in suspension and methylcellulose cultures. RESULTS When we directly compared the growth of patients' CD34 cells, separated based on expression of GPI-AP CD55 and CD59, in most of the patients studied, mutant CD34 cells showed higher progeny production and outgrew phenotypically normal CD34 cells derived from PNH patients in mixing experiments. However, their proliferation rate did not exceed that of control CD34 cells. To determine whether deficient growth of phenotypically normal CD34 cells in PNH was secondary to a pre-existing in vivo insult, we determined the fraction of apoptotic cells within fresh normal and PNH CD34 cells. Normal CD34 cells from PNH patients showed a high proportion of apoptotic cells and higher Fas expression, while GPI-AP-deficient and control CD34 cells showed similar, low rates of apoptosis. After correction for pre-existing apoptosis, the proliferation potential of normal and PNH CD34 cells was similar. CONCLUSIONS These results strongly suggest that clonal expansion of GPI-AP-deficient progenitor cells from PNH patients is due to their selection in the hostile marrow environment of the patient.
Collapse
Affiliation(s)
- Guibin Chen
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md., USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
A better understanding of the basic mechanisms of uveitis and of the role of cytokines in experimental ocular inflammation autoimmune diseases should allow us to define new approaches for therapy. Modulation of the cytokine network by either blocking cytokine activity or administration of regulatory Th2 cytokines has shown its efficacy in several experimental autoimmune diseases including uveitis. However, cytokines present pleiotropic activities and thus may exert different effects depending on the autoimmune diseases, making interventions on their production complex. Anti-cytokine therapy or a combination of anti-cytokine drugs, antibodies, and cytokine gene therapy to synergize the therapeutical effects of other treatments appear to be of interest. Improvements in drug delivery and in biotechnology will also allow us to elaborate new and safe immunomodulatory strategies.
Collapse
|
50
|
|