1
|
Gerber AN, Abdi K, Singh NJ. The subunits of IL-12, originating from two distinct cells, can functionally synergize to protect against pathogen dissemination in vivo. Cell Rep 2021; 37:109816. [PMID: 34644571 PMCID: PMC8569637 DOI: 10.1016/j.celrep.2021.109816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/04/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.
Collapse
Affiliation(s)
- Allison N Gerber
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| | - Kaveh Abdi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20850, USA.
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Queiroga TBD, Pereira NDS, da Silva DD, Andrade CDM, de Araújo Júnior RF, Brito CRDN, Galvão LMDC, da Câmara ACJ, Nascimento MSL, Guedes PMM. Virulence of Trypanosoma cruzi Strains Is Related to the Differential Expression of Innate Immune Receptors in the Heart. Front Cell Infect Microbiol 2021; 11:696719. [PMID: 34336720 PMCID: PMC8321543 DOI: 10.3389/fcimb.2021.696719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Resistance or susceptibility to T. cruzi infection is dependent on the host immunological profile. Innate immune receptors, such as Toll-like receptors (TLRs/TLR2, TLR4, TLR7, and TLR9) and Nod-like receptors (NLRs/NOD1 and NLRP3 inflammasome) are involved with the resistance against acute experimental T. cruzi infection. Here, we evaluated the impact of T. cruzi virulence on the expression of innate immune receptors and its products in mice. For that, we used six T. cruzi strains/isolates that showed low (AM64/TcIV and 3253/Tc-V), medium (PL1.10.14/TcIII and CL/TcVI), or high (Colombian/Tc-I and Y/TcII) virulence and pathogenicity to the vertebrate host and belonging to the six discrete typing units (DTUs)—TcI to TcVI. Parasitemia, mortality, and myocarditis were evaluated and correlated to the expression of TLRs, NLRs, adapter molecules, cytokines, and iNOS in myocardium by real time PCR. Cytokines (IL-1β, IL-12, TNF-α, and IFN-γ) were quantified in sera 15 days after infection. Our data indicate that high virulent strains of T. cruzi, which generate high parasitemia, severe myocarditis, and 100% mortality in infected mice, inhibit the expression of TLR2, TLR4, TLR9, TRIF, and Myd88 transcripts, leading to a low IL-12 production, when compared to medium and low virulent T. cruzi strains. On the other hand, the high virulent T. cruzi strains induce the upregulation of NLRP3, caspase-1, IL-1β, TNF-α, and iNOS mRNA in heart muscle, compared to low and medium virulent strains, which may contribute to myocarditis and death. Moreover, high virulent strains induce higher levels of IL-1β and TNF-α in sera compared to less virulent parasites. Altogether the data indicate that differential TLR and NLR expression in heart muscle is correlated with virulence and pathogenicity of T cruzi strains. A better knowledge of the immunological mechanisms involved in resistance to T. cruzi infection is important to understand the natural history of Chagas disease, can lead to identification of immunological markers and/or to serve as a basis for alternative therapies.
Collapse
Affiliation(s)
| | - Nathalie de Sena Pereira
- Graduate Program Health and Biological Sciences, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Denis Dantas da Silva
- Graduate Program Parasitary Biology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Raimundo Fernandes de Araújo Júnior
- Laboratory of Investigation of the Inflammation and Cancer (LAICI)/Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Gomes Dos Santos A, Watanabe EH, Ferreira DT, Oliveira J, Nakanishi ÉS, Oliveira CS, Bocchi E, Novaes CTG, Cruz F, Carvalho NB, Sato PK, Yamashiro-Kanashiro EH, Pontillo A, de Freitas VLT, Onuchic LF, Shikanai-Yasuda MA. A Specific IL6 Polymorphic Genotype Modulates the Risk of Trypanosoma cruzi Parasitemia While IL18, IL17A, and IL1B Variant Profiles and HIV Infection Protect Against Cardiomyopathy in Chagas Disease. Front Immunol 2020; 11:521409. [PMID: 33193300 PMCID: PMC7642879 DOI: 10.3389/fimmu.2020.521409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chagas disease caused by Trypanosoma cruzi (T. cruzi) affects approximately six million individuals worldwide. Clinical manifestations are expected to occur due to the parasite persistence and host immune response. Herein we investigated potential associations between IL1B, IL6, IL17A, or IL18 polymorphism profiles and cardiomyopathy or T. cruzi parasitemia, as well as the impact of HIV infection on cardiopathy. Methods Two hundred twenty-six patients and 90 control individuals were analyzed. IL1B rs1143627 T>C, IL6 rs1800795 C>G, IL17A rs2275913 G>A, IL18 rs187238 C>G, and IL18 rs1946518 C>A SNVs were analyzed by real-time PCR and T. cruzi parasitemia by PCR. Results Our data revealed association between a cytokine gene polymorphism and parasitemia never previously reported. The IL6 rs1800795 CG genotype lowered the risk of positive parasitemia (OR = 0.45, 95% CI 0.24–0.86, P = 0.015). Original findings included associations between IL17A rs2275913 AA and IL18 s1946518 AA genotypes with decreased risk of developing cardiomyopathy (OR = 0.27, 95% CI 0.07–0.97, P = 0.044; and OR = 0.35, 95% CI 0.14–0.87, P = 0.023, respectively). IL18 rs1946518 AA and IL1B rs1143627 TC were associated with reduced risk for cardiomyopathy severity, including NYHA (New York Heart Association) class ≥ 2 (OR = 0.21, 95% CI 0.06–0.68, P = 0.009; and OR = 0.48, 95% CI 0.24–0.95, P = 0.036, respectively) and LVEF (left ventricular ejection fraction) <45% for IL18 rs1946518 AA (OR = 0.22, 95% CI 0.05–0.89, P = 0.034). A novel, unexpected protective effect of HIV infection against development/progression of cardiomyopathy was identified, based on a lower risk of developing cardiopathy (OR = 0.48, 95% CI 0.23–0.96, P = 0.039), NYHA class ≥ 2 (OR = 0.15, 95% CI 0.06–0.39, P < 0.001), and LVEF < 45% (OR = 0.03, 95% CI 0.00–0.25, P = 0.001). Digestive involvement was negatively associated with NYHA ≥ 2 and LVEF < 45% (OR = 0.20, 95% CI 0.09–0.47, P < 0.001; and OR = 0.24, 95% CI 0.09–0.62, P = 0.004, respectively). Conclusions Our data support a protective role of IL17A AA, IL18 AA, and IL1B TC genotypes against development/progression of cardiomyopathy and a modulatory effect of the IL6 CG genotype on the risk of parasitemia in Chagas disease. Notably, HIV infection was shown to protect against development/progression of cardiopathy, potentially associated with a synergistic effect of HIV and highly active antiretroviral therapy (HAART), attenuating a Th1-mediated response in the myocardium. This proposed hypothesis requires confirmation, however, in larger and more comprehensive future studies.
Collapse
Affiliation(s)
- Alexandra Gomes Dos Santos
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Elieser Hitoshi Watanabe
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Daiane Tomomi Ferreira
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Jamille Oliveira
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Érika Shimoda Nakanishi
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Claudia Silva Oliveira
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Edimar Bocchi
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Fatima Cruz
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Noemia Barbosa Carvalho
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Paula Keiko Sato
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Edite Hatsumi Yamashiro-Kanashiro
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Departament of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo, São Paulo, Brazil
| | - Vera Lucia Teixeira de Freitas
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Luiz Fernando Onuchic
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Maria Aparecida Shikanai-Yasuda
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Frade-Barros AF, Ianni BM, Cabantous S, Pissetti CW, Saba B, Lin-Wang HT, Buck P, Marin-Neto JA, Schmidt A, Dias F, Hirata MH, Sampaio M, Fragata A, Pereira AC, Donadi E, Rodrigues V, Kalil J, Chevillard C, Cunha-Neto E. Polymorphisms in Genes Affecting Interferon-γ Production and Th1 T Cell Differentiation Are Associated With Progression to Chagas Disease Cardiomyopathy. Front Immunol 2020; 11:1386. [PMID: 32733459 PMCID: PMC7358543 DOI: 10.3389/fimmu.2020.01386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is the most important clinical consequence of T. cruzi infection, while the others remain asymptomatic (ASY). IFN-γ and IFN-γ-producing Th1-type T cells are increased in peripheral blood and CCC myocardium as compared to ASY patients, while the Th1-antagonizing cytokine IL-10 is more expressed in ASY patients. Importantly IFN-γ-producing Th1-type T cells are the most frequent cytokine-producing T cell subset in CCC myocardium, while expression of Th1-antagonizing cytokines IL-10 and IL-4 is unaltered. The control of IFN-γ production by Th1-type T cells may be a key event for progression toward CCC. A genetic component to disease progression was suggested by the familial aggregation of cases and the association of gene polymorphisms with CCC development. We here investigate the role of gene polymorphisms (SNPs) in several genes involved in the control of IFN-γ production and Th1 T cell differentiation in CCC development. Methods: We studied a Brazilian population including 315 CCC cases and 118 ASY subjects. We assessed 35 Tag SNPs designed to represent all the genetic information contained in the IL12B, IL10, IFNG, and IL4 genes. Results: We found 2 IL12 SNPs (rs2546893, rs919766) and a trend of association for a IL10 SNP (rs3024496) to be significantly associated with the ASY group. these associations were confirmed by multivariate analysis and allele tests. The rs919766C, 12rs2546893G, and rs3024496C alleles were associated to an increase risk to CCC development. Conclusions: Our data show that novel polymorphisms affecting IL12B and IL10, but not IFNG or IL4 genes play a role in genetic susceptibility to CCC development. This might indicate that the increased Th1 differentiation and IFN-γ production associated with CCC is genetically controlled.
Collapse
Affiliation(s)
- Amanda Farage Frade-Barros
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Aix-Marseille Université, INSERM, GIMP UMR_S906, Marseille, France.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil.,Bioengineering Program, Instituto Tecnológico, Universidade Brasil, São Paulo, Brazil
| | - Barbara Maria Ianni
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil
| | | | - Cristina Wide Pissetti
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Bruno Saba
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Paula Buck
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil
| | - José Antonio Marin-Neto
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - André Schmidt
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Fabrício Dias
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marcelo Sampaio
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Abílio Fragata
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Alexandre Costa Pereira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil
| | - Eduardo Donadi
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Bioengineering Program, Instituto Tecnológico, Universidade Brasil, São Paulo, Brazil
| | - Christophe Chevillard
- Aix Marseille Université, INSERM, TAGC Theories and Approaches of Genomic Complexity, UMR_1090, Marseille, France
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
5
|
da Mota JB, Echevarria-Lima J, Kyle-Cezar F, Melo M, Bellio M, Scharfstein J, Oliveira AC. IL-18R signaling is required for γδ T cell response and confers resistance to Trypanosoma cruzi infection. J Leukoc Biol 2020; 108:1239-1251. [PMID: 32450614 DOI: 10.1002/jlb.4ma0420-568r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
IFN-γ-producing γδ T cells have been suggested to play an important role in protection against infection with Trypanosoma cruzi. However, little is known about the mechanisms leading to functional differentiation of this T cell subset in this model. In the current work, we investigated the possibility that the IL-18/MyD88 pathway is central for the generation of effector γδ T cells, playing a role for resistance against infection. We found that splenic γδ+ CD3+ cells were rapidly expanded (10-14 days post infection), which was accompanied by an early γδ T cell infiltration into the heart. In the following days, intracardiac parasitism was reduced, the protective immunity being accompanied by decreased γδ T cells tissue infiltration. As predicted, there was a drastic reduction of γδ T cells in Myd88- and Il18r1-deficient mice, both transgenic strains displaying a susceptible phenotype with increased intracardiac parasitism. In vivo and in vitro assays confirmed that IL-18R deficiency hampered γδ T cell proliferation. Further characterization revealed that T. cruzi infection up-regulates IL-18R expression in WT γδ+ T cell population whereas Il18r1-/- mice showed impaired generation of cytotoxic GzB+ and IFN-γ-producing γδ T cells. Consistently, in vitro cytotoxicity assay confirmed that cytolytic function was impaired in Il18r1-deficient γδ T cells. As a proof of concept, adoptive transfer of WT γδ T cells rescues Il18r1-deficient mice from susceptibility, reducing parasitemia and abrogating the mortality. Collectively, our findings implicate the IL-18R-MyD88 signaling in the mechanisms underlying generation of immunoprotective γδ T cells response in experimental Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Julia Barbalho da Mota
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Kyle-Cezar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Matheus Melo
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Laboratório de Imunobiologia, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Mendonça AAS, Gonçalves-Santos E, Souza-Silva TG, González-Lozano KJ, Caldas IS, Gonçalves RV, Diniz LF, Novaes RD. Thioridazine aggravates skeletal myositis, systemic and liver inflammation in Trypanosoma cruzi-infected and benznidazole-treated mice. Int Immunopharmacol 2020; 85:106611. [PMID: 32447223 DOI: 10.1016/j.intimp.2020.106611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
Abstract
While thioridazine (Tio) inhibits the antioxidant defenses of Trypanosoma cruzi, the gold standard antitrypanosomal drug benznidazole (Bz) has potent anti-inflammatory and pro-oxidant properties. The combination of these drugs has never been tested to determine the effect on T. cruzi infection. Thus, we compared the impact of Tio and Bz, administered alone and in combination, on the development of skeletal myositis and liver inflammation in T. cruzi-infected mice. Swiss mice were randomized into six groups: uninfected untreated, infected untreated, treated with Tio (80 mg/kg) alone, Bz (50 or 100 mg/kg) alone, or a combination of Tio and Bz. Infected animals were inoculated with a virulent T. cruzi strain (Y) and treated by gavage for 20 days. Mice untreated or treated with Tio alone developed the most intense parasitemia, highest parasitic load, elevated IL-10, IL-17, IFN-γ, and TNF-α plasma levels, increased N-acetylglucosaminidase and myeloperoxidase activity in the liver and skeletal muscle, as well as severe myositis and liver inflammation (P < 0.05). All parameters were markedly attenuated in animals receiving Bz alone (P < 0.05). However, the co-administration of Tio impaired the response to Bz chemotherapy, causing a decrease in parasitological control (parasitemia and parasite load), skeletal muscle and liver inflammation, and increased microstructural damage, when compared to the group receiving Bz alone (P < 0.05). Altogether, our findings indicated that Tio aggravates systemic inflammation, skeletal myositis and hepatic inflammatory damage in T. cruzi-infected mice. By antagonizing the antiparasitic potential of Bz, Tio limits the anti-inflammatory, myoprotectant and hepatoprotective effects of the reference chemotherapy, aggravating the pathological remodeling of both organs. As the interaction of T. cruzi infection, Bz and Tio is potentially toxic to the liver, inducing inflammation and microvesicular steatosis; this drug combination represents a worrying pharmacological risk factor in Chagas disease.
Collapse
Affiliation(s)
- Andréa A S Mendonça
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Thaiany G Souza-Silva
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Kelly J González-Lozano
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-000, Minas Gerais, Brazil
| | - Lívia F Diniz
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Strauss M, Acosta-Herrera M, Alcaraz A, Casares-Marfil D, Bosch-Nicolau P, Lo Presti MS, Molina I, González CI, Martín J. Association of IL18 genetic polymorphisms with Chagas disease in Latin American populations. PLoS Negl Trop Dis 2019; 13:e0007859. [PMID: 31751351 PMCID: PMC6894881 DOI: 10.1371/journal.pntd.0007859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/05/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Host genetic factors have been suggested to play an important role in the susceptibility to Chagas disease. Given the influence of interleukin 18 (IL-18) in the development of the disease, in the present study, we analyzed three IL18 genetic variants (rs2043055, rs1946518, rs360719) regarding the predisposition to Trypanosoma cruzi infection and the development of chronic Chagas cardiomyopathy (CCC), in different Latin America populations. Genetic data of 3,608 patients from Colombia, Bolivia, Argentina, and Brazil were meta-analyzed to validate previous findings with increased statistical power. Seropositive and seronegative individuals were compared for T. cruzi infection susceptibility. In the Colombian cohort, the allelic frequencies of the three variants showed a significant association, with adjustment for sex and age, and also after applying multiple testing adjustments. Among the Colombian and Argentinean cohorts, rs360719 showed a significant genetic effect in a fixed-effects meta-analysis after a Bonferroni correction (OR: 0.76, CI: 0.66-0.89, P = 0.001). For CCC, the rs2043055 showed an association with protection from cardiomyopathy in the Colombian cohort (OR: 0.79, CI: 0.64-0.99, P = 0.037), with adjustment for sex and age, and after applying multiple testing adjustments. The meta-analysis of the CCC vs. asymptomatic patients from the four cohorts showed no evidence of association. In conclusion, our results validated the association found previously in the Colombian cohort suggesting that IL18 rs360719 plays an important role in the susceptibility to T. cruzi infection and no evidence of association was found between the IL18 genetic variants and CCC in the Latin American population studied.
Collapse
Affiliation(s)
- Mariana Strauss
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, FCM, INICSA-CONICET-UNC, Córdoba, Argentina
| | | | - Alexia Alcaraz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Granada, España
| | - Desiré Casares-Marfil
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Granada, España
| | - Pau Bosch-Nicolau
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d'Hebron, PROSICS, Barcelona, España
| | - María Silvina Lo Presti
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, FCM, INICSA-CONICET-UNC, Córdoba, Argentina
| | - Israel Molina
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d'Hebron, PROSICS, Barcelona, España
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Granada, España
| |
Collapse
|
8
|
Müller U, Schaub GA, Mossmann H, Köhler G, Carsetti R, Hölscher C. Immunosuppression in Experimental Chagas Disease Is Mediated by an Alteration of Bone Marrow Stromal Cell Function During the Acute Phase of Infection. Front Immunol 2018; 9:2794. [PMID: 30619242 PMCID: PMC6295583 DOI: 10.3389/fimmu.2018.02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 01/29/2023] Open
Abstract
After infection with Trypanosoma cruzi, the etiologic agent of Chagas disease, immunosuppression, and apoptosis of mature lymphocytes contribute to the establishment of the parasite in the host and thereby to persistence and pathology in the chronic stage of infection. In a systemic mouse model of experimental Chagas disease, we have demonstrated a strong depletion of mature B cells in the spleen during the first 2 weeks of infection. Remarkably, the decrease in this cell population commenced already in the bone marrow from infected mice and was a concomitant of an increased apoptosis in pro- and pre-B cell populations. Pro- and pre-B cells in the bone marrow showed a significant reduction accompanied by a functional disturbance of bone marrow-derived stromal cells resulting in diminished levels of IL-7, an essential factor for the development of B cell precursors. Ex vivo, stromal cells isolated from the bone marrow of infected mice had a strikingly impaired capacity to maintain the development of pro- and pre-B cells obtained from uninfected animals. Together, the reduction of an active humoral immune response during acute Chagas disease suggests to be an initial immune evasion mechanism of the parasite to establish persistent infection. Therefore, prevention of B cell depletion by rescuing the stromal cells during this early phase, could give rise to new therapeutic approaches.
Collapse
Affiliation(s)
- Uwe Müller
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Institute of Immunology, Veterinary Medicine, University Leipzig Leipzig, Germany
| | - Günter A Schaub
- Department of Animal Ecology, Evolution, and Biodiversity, Ruhr-Universität-Bochum, Bochum, Germany
| | - Horst Mossmann
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gabriele Köhler
- Department of Pathology, University of Freiburg, Freiburg, Germany
| | - Rita Carsetti
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph Hölscher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Infection Immunology, Research Center Borstel, Borstel, Germany
| |
Collapse
|
9
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
10
|
Abad Dar M, Hölscher C. Arginase-1 Is Responsible for IL-13-Mediated Susceptibility to Trypanosoma cruzi Infection. Front Immunol 2018; 9:2790. [PMID: 30555475 PMCID: PMC6281981 DOI: 10.3389/fimmu.2018.02790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Arginase-1 (Arg-1) is a marker for alternatively activated macrophages (AAM) and is mainly induced by the type 2 cytokines interleukin (IL)-4 and IL-13 through the common IL-4 receptor-alpha (Rα) subunit. Both, Arg-1 and AAM undermine macrophage effector functions against intracellular parasites and are therefore implicated in the susceptibility to infection with Trypanosoma cruzi, the causative agent of Chagas' disease. However, the involvement of Arg-1 in promoting intracellular replication of T. cruzi in AAM has not been proven so far in vivo. Because Arg-1 is only moderately expressed in T. cruzi-infected wildtype mice, we elucidated the role of Arg-1 and AAM during infection in IL-13-overexpressing (IL-13tg) mice, which are characterized by an inflammation-induced development of AAM and an accompanied elevated expression of Arg-1. In comparison to wildtype littermates, IL-13tg mice were highly susceptible to T. cruzi infection with enhanced parasitemia and impaired survival. Importantly, T. cruzi-infected IL-13tg mice developed an elevated alternative macrophage activation with increased arginase activity. To proof the hypothesis, that Arg-1 accounts for the increased susceptibility of IL-13tg mice, we blocked arginase activity in infected IL-13tg mice. Because this arginase inhibition resulted in a decreased susceptibility to experimental Chagas disease our study supports in summary the conclusion that IL-13/IL-4Rα-driven Arg-1 expression contributes to the permissiveness of the host to T. cruzi infection.
Collapse
Affiliation(s)
- Mahin Abad Dar
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | | |
Collapse
|
11
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Interferon-γ-dependent protection against Neospora caninum infection conferred by mucosal immunization in IL-12/IL-23 p40-deficient mice. Vaccine 2018; 36:4890-4896. [DOI: 10.1016/j.vaccine.2018.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
|
13
|
Thompson A, Orr SJ. Emerging IL-12 family cytokines in the fight against fungal infections. Cytokine 2018; 111:398-407. [PMID: 29793796 PMCID: PMC6299256 DOI: 10.1016/j.cyto.2018.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/28/2023]
Abstract
IL-12 and IL-23 have established roles during anti-fungal immunity. IL-27 promotes regulatory effector responses during fungal infections. IL-35 drives T cell differentiation to produce anti-inflammatory responses. Increasing evidence for IL-12 family cytokines in maintaining anti-fungal immune homeostasis.
Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus.
Collapse
Affiliation(s)
- Aiysha Thompson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|
14
|
Böhme J, Roßnagel C, Jacobs T, Behrends J, Hölscher C, Erdmann H. Epstein-Barr virus-induced gene 3 suppresses T helper type 1, type 17 and type 2 immune responses after Trypanosoma cruzi infection and inhibits parasite replication by interfering with alternative macrophage activation. Immunology 2016; 147:338-48. [PMID: 26694585 DOI: 10.1111/imm.12565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 12/04/2015] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus-induced gene 3 (EBI3) is a member of the interleukin-12 (IL)-12) family structurally related to the subunit p40 of IL-12 and forms a heterodimer either with the p28 subunit to build IL-27 or with p35 to form IL-35. Interleukin-27 is secreted by antigen-presenting cells whereas IL-35 appears to be produced mainly by regulatory T cells and regulatory B cells but both cytokines negatively regulate inflammatory immune responses. We here analysed the function of EBI3 during infection with the intracellular parasite Trypanosoma cruzi. Compared with C57BL/6 wild-type mice, EBI3-deficient (EBI3(-/-) ) mice showed a higher parasitaemia associated with an increased mortality rate. The EBI3(-/-) mice displayed an elevated inflammatory immune response with an increased production of T helper type 1 (Th1-), Th2- and Th17-derived cytokines. The increased Th2 immune response appears to have over-ridden the otherwise protective Th1 and Th17 immune responses by the induction of arginase-1-expressing alternatively activated macrophages in these mice. Hence, neutralization of IL-4 and arginase-1 activity partially restored protective immune responses in EBI3(-/-) mice. So far, our results demonstrate that EBI3 is an essential general regulator of inflammatory immune responses in experimental Chagas disease and is required for control of T. cruzi infection by inhibiting Th2-dependent alternative macrophage activation. Further studies are needed to dissect the underlying mechanisms and clarify whether EBI3 association with IL-27 or/and IL-35 accounts for its anti-inflammatory character in parasitic disease.
Collapse
Affiliation(s)
- Julia Böhme
- Infection Immunology, Research Centre Borstel, Borstel, Germany.,Cluster of Excellence Inflammation-at-Interfaces, Borstel-Kiel-Lübeck-Plön, Germany.,Singapore Immunology Network, Singapore, Singapore
| | | | - Thomas Jacobs
- Department of Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Jochen Behrends
- Infection Immunology, Research Centre Borstel, Borstel, Germany.,Fluorescence Cytometry Core Unit, Research Centre Borstel, Borstel, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, Borstel, Germany.,Cluster of Excellence Inflammation-at-Interfaces, Borstel-Kiel-Lübeck-Plön, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Centre Borstel, Borstel, Germany.,Cluster of Excellence Inflammation-at-Interfaces, Borstel-Kiel-Lübeck-Plön, Germany
| |
Collapse
|
15
|
IL18 Gene Variants Influence the Susceptibility to Chagas Disease. PLoS Negl Trop Dis 2016; 10:e0004583. [PMID: 27027876 PMCID: PMC4814063 DOI: 10.1371/journal.pntd.0004583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chagas disease is a parasitic disorder caused by the infection with the flagellated protozoan Trypanosoma cruzi. According to the World Health Organization, more than six million people are currently infected in endemic regions. Genetic factors have been proposed to influence predisposition to infection and development of severe clinical phenotypes like chronic Chagas cardiomyopathy (CCC). Interleukin 18 (IL18) encodes a proinflammatory cytokine that has been proposed to be involved in controlling T. cruzi infection. In this study, we analyzed the possible role of six IL18 gene variants (rs5744258, rs360722, rs2043055, rs187238, rs1946518 and rs360719), which cover most of the variation within the locus, in the susceptibility to infection by T. cruzi and/or CCC. In total, 1,171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and CCC (n = 401), were genotyped using TaqMan probes. Significant associations with T. cruzi infection were observed when comparing seronegative and seropositive individuals for rs187238 (P = 2.18E-03, OR = 0.77), rs360719 (P = 1.49E-03, OR = 0.76), rs2043055 (P = 2.52E-03, OR = 1.29), and rs1946518 (P = 0.0162, OR = 1.22). However, dependence analyses suggested that the association was mainly driven by the polymorphism rs360719. This variant is located within the promoter region of the IL18 gene, and it has been described that it creates a binding site for the transcription factor OCT-1 affecting IL-18 expression levels. In addition, no evidence of association was observed between any of the analyzed IL18 gene polymorphisms and the development of CCC. In summary, our data suggest that genetic variation within the promoter region of IL18 is directly involved in the susceptibility to infection by T. cruzi, which provides novel insight into disease pathophysiology and adds new perspectives to achieve a more effective disease control.
Collapse
|
16
|
Lutz MB. Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 2016; 16:13-25. [PMID: 26937228 PMCID: PMC4770096 DOI: 10.4110/in.2016.16.1.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4(+) T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4(+) T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4(+) T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4(+) T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3(-) regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3(+) Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
17
|
Zheng H, Ban Y, Wei F, Ma X. Regulation of Interleukin-12 Production in Antigen-Presenting Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:117-138. [PMID: 27734411 DOI: 10.1007/978-94-024-0921-5_6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Interleukin-12 is a heterodimeric cytokine produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells, during encountering with intracellular microbes. IL-12 plays a key role in the activation of natural killer cells and CD4+ T helper cells in both innate and adaptive immune responses against infectious agents and immunosurveillance against endogenous malignancies. However, the potency of IL-12 makes it a target for stringent regulation. Indeed, the temporal, spatial, and quantitative expression of IL-12 during an immune response in a microenvironment contributes critically to the determination of the type, extent, and ultimate resolution of the reaction. Breaching of the delicate control and balance involving IL-12 frequently leads to autoimmune inflammatory disorders and pathogenesis. Thus, a better understanding of the regulatory mechanisms in the production and control of this cytokine is both scientifically significant and clinically beneficial. Here we provide an update on the research that has been conducted on this subject particularly in the last 10 years since the publication of a major thesis of this nature.
Collapse
Affiliation(s)
- Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Nogueira LG, Frade AF, Ianni BM, Laugier L, Pissetti CW, Cabantous S, Baron M, de Lima Peixoto G, de Melo Borges A, Donadi E, Marin-Neto JA, Schmidt A, Dias F, Saba B, Wang HTL, Fragata A, Sampaio M, Hirata MH, Buck P, Mady C, Martinelli M, Lensi M, Siqueira SF, Pereira AC, Rodrigues V, Kalil J, Chevillard C, Cunha-Neto E. Functional IL18 polymorphism and susceptibility to Chronic Chagas Disease. Cytokine 2015; 73:79-83. [DOI: 10.1016/j.cyto.2015.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/09/2023]
|
19
|
Gomez JC, Yamada M, Martin JR, Dang H, Brickey WJ, Bergmeier W, Dinauer MC, Doerschuk CM. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. Am J Respir Cell Mol Biol 2015; 52:349-64. [PMID: 25100610 DOI: 10.1165/rcmb.2013-0316oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial pneumonia is a common public health problem associated with significant mortality, morbidity, and cost. Neutrophils are usually the earliest leukocytes to respond to bacteria in the lungs. Neutrophils rapidly sequester in the pulmonary microvasculature and migrate into the lung parenchyma and alveolar spaces, where they perform numerous effector functions for host defense. Previous studies showed that migrated neutrophils produce IFN-γ early during pneumonia induced by Streptococcus pneumoniae and that early production of IFN-γ regulates bacterial clearance. IFN-γ production by neutrophils requires Rac2, Hck/Lyn/Fgr Src family tyrosine kinases, and NADPH oxidase. Our current studies examined the mechanisms that regulate IFN-γ production by lung neutrophils during acute S. pneumoniae pneumonia in mice and its function. We demonstrate that IFN-γ production by neutrophils is a tightly regulated process that does not require IL-12. The adaptor molecule MyD88 is critical for IFN-γ production by neutrophils. The guanine nucleotide exchange factor CalDAG-GEFI modulates IFN-γ production. The CD11/CD18 complex, CD44, Toll-like receptors 2 and 4, TRIF, and Nrf2 are not required for IFN-γ production by neutrophils. The recently described neutrophil-dendritic cell hybrid cell, identified by its expression of Ly6G and CD11c, is present at low numbers in pneumonic lungs and is not a source of IFN-γ. IFN-γ produced by neutrophils early during acute S. pneumoniae pneumonia induces transcription of target genes in the lungs, which are critical for host defense. These studies underline the complexity of the neutrophil responses during pneumonia in the acute inflammatory response and in subsequent resolution or initiation of immune responses.
Collapse
Affiliation(s)
- John C Gomez
- 1 Center for Airways Disease, Department of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stahl P, Schwarz RT, Debierre-Grockiego F, Meyer T. Trypanosoma cruzi parasites fight for control of the JAK-STAT pathway by disarming their host. JAKSTAT 2015; 3:e1012964. [PMID: 26413423 DOI: 10.1080/21623996.2015.1012964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
The zoonotic Chagas' disease is caused by infections with the hemoflagellate Trypanosoma cruzi (T. cruzi) which is endemic in Latin America. Despite recent advances in our understanding of the pathogenesis of the disease, the underlying molecular processes involved in host-parasite interactions are only poorly understood. In particular, the mechanisms for parasite persistence in host cells remain largely unknown. Cytokine-driven transcription factors from the family of STAT (signal transducer and activator of transcription) proteins appear to play a central role in the fight against T. cruzi infection. However, amastigotes proliferating in the cytoplasm of infected host cells develop effective strategies to circumvent the attack executed by STAT proteins. This review highlights the interactions between T. cruzi parasites and human host cells in terms of cytokine signaling and, in particular, discusses the impact of STATs on the balance between parasite invasion and clearance.
Collapse
Affiliation(s)
- Philipp Stahl
- Institute of Virology; Parasitology Unit; University of Marburg ; Marburg, Germany
| | - Ralph T Schwarz
- Institute of Virology; Parasitology Unit; University of Marburg ; Marburg, Germany ; Laboratory for Structural and Functional Glycobiology; University of Lille 1 for Sciences and Technologies ; Lille, France
| | - Françoise Debierre-Grockiego
- Mixed Research Unit 1282; François Rabelais University of Tours-INRA; Infectious Diseases and Public Health ; Tours, France
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy; University of Göttingen ; Göttingen, Germany ; German Center for Cardiovascular Research ; Göttingen, Germany
| |
Collapse
|
21
|
Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm 2014; 2014:683230. [PMID: 25210230 PMCID: PMC4152981 DOI: 10.1155/2014/683230] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects ca. 10 million people worldwide. About 30% of Chagas disease patients develop chronic Chagas disease cardiomyopathy (CCC), a particularly lethal inflammatory cardiomyopathy that occurs decades after the initial infection, while most patients remain asymptomatic. Mortality rate is higher than that of noninflammatory cardiomyopathy. CCC heart lesions present a Th1 T-cell-rich myocarditis, with cardiomyocyte hypertrophy and prominent fibrosis. Data suggest that the myocarditis plays a major pathogenetic role in disease progression. Major unmet goals include the thorough understanding of disease pathogenesis and therapeutic targets and identification of prognostic genetic factors. Chagas disease thus remains a neglected disease, with no vaccines or antiparasitic drugs proven efficient in chronically infected adults, when most patients are diagnosed. Both familial aggregation of CCC cases and the fact that only 30% of infected patients develop CCC suggest there might be a genetic component to disease susceptibility. Moreover, previous case-control studies have identified some genes associated to human susceptibility to CCC. In this paper, we will review the immunopathogenesis and genetics of Chagas disease, highlighting studies that shed light on the differential progression of Chagas disease patients to CCC.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, Avenida Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9° Andar, 05406-000 São Paulo, SP, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, 05406-000 São Paulo, SP, Brazil
| | | |
Collapse
|
22
|
Keyel PA. How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine 2014; 69:136-45. [PMID: 24746243 DOI: 10.1016/j.cyto.2014.03.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 12/17/2022]
Abstract
Pro-inflammatory cytokines are crucial for fighting infection and establishing immunity. Recently, other proteins, such as danger-associated molecular patterns (DAMPs), have also been appreciated for their role in inflammation and immunity. Following the formation and activation of multiprotein complexes, termed inflammasomes, two cytokines, IL-1β and IL-18, along with the DAMP High Mobility Group Box 1 (HMGB1), are released from cells. Although these proteins all lack classical secretion signals and are released by inflammasome activation, they each lead to different downstream consequences. This review examines how various inflammasomes promote the release of IL-1β, IL-18 and HMGB1 to combat pathogenic situations. Each of these effector molecules plays distinct roles during sterile inflammation, responding to viral, bacterial and parasite infection, and tailoring the innate immune response to specific threats.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Biology Rm 108, Box 43131, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
23
|
Frade AF, Pissetti CW, Ianni BM, Saba B, Lin-Wang HT, Nogueira LG, de Melo Borges A, Buck P, Dias F, Baron M, Ferreira LRP, Schmidt A, Marin-Neto JA, Hirata M, Sampaio M, Fragata A, Pereira AC, Donadi E, Kalil J, Rodrigues V, Cunha-Neto E, Chevillard C. Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways. BMC Infect Dis 2013; 13:587. [PMID: 24330528 PMCID: PMC3866603 DOI: 10.1186/1471-2334-13-587] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/04/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. METHODS Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. RESULTS The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. CONCLUSIONS Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets.
Collapse
Affiliation(s)
- Amanda Farage Frade
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Aix-Marseille Université, INSERM, GIMP UMR_S906, Faculté de médecine, 27 bd Jean Moulin, Marseille, cedex 05 13385, France
| | - Cristina Wide Pissetti
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro (UFTM), 40 Frei Paulino, Uberaba, MG 48036-180, Brazil
| | - Barbara Maria Ianni
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Bruno Saba
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Hui Tzu Lin-Wang
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Luciana Gabriel Nogueira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
| | - Ariana de Melo Borges
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro (UFTM), 40 Frei Paulino, Uberaba, MG 48036-180, Brazil
| | - Paula Buck
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Fabrício Dias
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - Monique Baron
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Andre Schmidt
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - José Antonio Marin-Neto
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - Mario Hirata
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Marcelo Sampaio
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Abílio Fragata
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Alexandre Costa Pereira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Eduardo Donadi
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, SP 06504-000, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro (UFTM), 40 Frei Paulino, Uberaba, MG 48036-180, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, SP 06504-000, Brazil
| | - Christophe Chevillard
- Aix-Marseille Université, INSERM, GIMP UMR_S906, Faculté de médecine, 27 bd Jean Moulin, Marseille, cedex 05 13385, France
| |
Collapse
|
24
|
Held J, Preuße C, Döser A, Richter L, Heppner FL, Stenzel W. Enhanced acute immune response in IL-12p35-/- mice is followed by accelerated distinct repair mechanisms in Staphylococcus aureus-induced murine brain abscess. J Infect Dis 2013; 208:749-60. [PMID: 23532102 DOI: 10.1093/infdis/jit126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Murine Staphylococcus aureus-mediated brain abscess comprises 2 major phases, an initial phase of cerebritis, followed by a healing phase characterized by capsule formation. METHODS C57BL/6 wild-type (WT) and IL-12p35(-/-) mice were intracerebrally infected with S. aureus to induce brain abscesses. Clinical disease activity and bacterial load were monitored. The cell populations that were involved, as well as their specific mediators, were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and flow cytometry. RESULTS In the acute phase, IL-12p35(-/-) mice were protected from disease. This was associated with enhanced recruitment of granulocytes, accompanied by upregulated expression of Il17a, Csf2 (which encodes granulocyte-macrophage colony-stimulating factor), Cxcl1, and Cxcl5, as well as increased expression of proinflammatory mediators, including Nos2 (which encodes inducible nitric oxide synthase), Ptgs2 (which encodes cyclooxygenase 2), and Tnf, that were primarily produced by granulocytes and activated microglia/macrophages. Furthermore, mechanisms associated with beneficial wound healing, including an accelerated formation of a fibrous capsule, were demonstrated by prominent VEGF-A production and collagen deposition driven by an earlier onset of T-helper 2 immunity in the absence of interleukin 12 (IL-12). CONCLUSIONS Brain abscess development is orchestrated by IL-12 at different stages of disease. Our data indicate that IL-12 has a nonprotective role in the acute phase and that IL-12 deficiency results in the accelerated formation of a protective capsule during the healing phase, which we consider crucial for early recovery from disease.
Collapse
Affiliation(s)
- Josephin Held
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Role of Toll-like receptor 9 signaling in experimental Leishmania braziliensis infection. Infect Immun 2013; 81:1575-84. [PMID: 23439309 DOI: 10.1128/iai.01401-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Leishmania braziliensis causes cutaneous or mucocutaneous leishmaniasis in humans. Toll-like receptor 9 (TLR9) expression has been found in granulomas of lesions in L. braziliensis-infected individuals. L. braziliensis inoculation in mice induces very small lesions that are self-healing, whereas deficiency in the TLR adaptor molecule, MyD88, renders mice susceptible to infection. The TLR involved has not been identified, prompting us to investigate if TLR9 triggering by the parasite contributes to the strong resistance to infection observed in L. braziliensis-inoculated mice. The parasites activated wild-type (WT) dendritic cells (DCs) in vitro but not DCs derived from TLR9(-/-) mice. TLR9(-/-) mice inoculated with L. braziliensis exhibited a transient susceptibility characterized by increased lesion size and parasite burden compared to those of WT mice. Surprisingly, elevated levels of gamma interferon (IFN-γ) were measured at the site of infection and in draining lymph node T cells of TLR9(-/-) mice at the peak of susceptibility, suggesting that unlike observations in vitro, the parasite could induce DC activation leading to the development of Th1 cells in the absence of TLR9 expression. Taken together, these data show that TLR9 signaling is important for the early control of lesion development and parasite burden but is dispensable for the differentiation of Th1 cells secreting IFN-γ, and the high levels of this cytokine are not sufficient to control early parasite replication following L. braziliensis infection.
Collapse
|
26
|
Bombeiro AL, Gonçalves LA, Penha-Gonçalves C, Marinho CRF, D'Império Lima MR, Chadi G, Álvarez JM. IL-12p40 deficiency leads to uncontrolled Trypanosoma cruzi dissemination in the spinal cord resulting in neuronal death and motor dysfunction. PLoS One 2012; 7:e49022. [PMID: 23152844 PMCID: PMC3495776 DOI: 10.1371/journal.pone.0049022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/03/2012] [Indexed: 01/30/2023] Open
Abstract
Chagas’ disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-α, IFN-γ, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-γ were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dulgerian LR, Garrido VV, Stempin CC, Cerbán FM. Programmed death ligand 2 regulates arginase induction and modifies Trypanosoma cruzi survival in macrophages during murine experimental infection. Immunology 2011; 133:29-40. [PMID: 21303364 DOI: 10.1111/j.1365-2567.2011.03406.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The programmed death ligands 1 (PD-L1) and 2 (PD-L2) that bind to programmed death 1 (PD-1) have been involved in peripheral tolerance and in the immune escape mechanisms during chronic viral infections and cancer. However, there are no reports about the role of these molecules during Trypanosoma cruzi infection. We have studied the role of PD-L1 and PD-L2 in T. cruzi infection and their importance in arginase/inducible nitric oxide synthase (iNOS) balance in the immunomodulatory properties of macrophages (Mφ). In this work, we have demonstrated that expression of the PD-1/PD-L pathway is modified during T. cruzi infection on Mφs obtained from peritoneal cavity. The Mφs from T. cruzi-infected mice suppressed T-cell proliferation and this was restored when anti-PD-1 and anti-PD-L1 antibodies were added. Nevertheless, anti-PD-L2 antibody treatment did not re-establish T-cell proliferation. PD-L2 blockade on peritoneal cells from infected mice showed an increase in arginase expression and activity and a decrease in iNOS expression and in nitric oxide (NO) production. Additionally, interleukin-10 production increased whereas interferon-γ production was reduced. As a result, this microenvironment enhanced parasite proliferation. In contrast, PD-1 and PD-L1 blockage increased iNOS expression and NO production on peritoneal Mφs from T. cruzi-infected mice. Besides, PD-L2 knockout infected mice showed an increased in parasitaemia as well as in arginase activity, and a reduction in NO production. Taken together, our results demonstrate that PD-L2 is involved in the arginase/iNOS balance during T. cruzi infection having a protective role in the immune response against the parasite.
Collapse
Affiliation(s)
- Laura R Dulgerian
- CIBICI-CONICET, Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | |
Collapse
|
28
|
Bryan MA, Guyach SE, Norris KA. Specific humoral immunity versus polyclonal B cell activation in Trypanosoma cruzi infection of susceptible and resistant mice. PLoS Negl Trop Dis 2010; 4:e733. [PMID: 20625554 PMCID: PMC2897841 DOI: 10.1371/journal.pntd.0000733] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 05/17/2010] [Indexed: 12/17/2022] Open
Abstract
Background The etiologic agent of Chagas Disease is Trypanosoma cruzi. Acute infection results in patent parasitemia and polyclonal lymphocyte activation. Polyclonal B cell activation associated with hypergammaglobulinemia and delayed specific humoral immunity has been reported during T. cruzi infection in experimental mouse models. Based on preliminary data from our laboratory we hypothesized that variances in susceptibility to T. cruzi infections in murine strains is related to differences in the ability to mount parasite-specific humoral responses rather than polyclonal B cell activation during acute infection. Methodology/Principal Findings Relatively susceptible Balb/c and resistant C57Bl/6 mice were inoculated with doses of parasite that led to similar timing and magnitude of initial parasitemia. Longitudinal analysis of parasite-specific and total circulating antibody levels during acute infection demonstrated that C57Bl/6 mice developed parasite-specific antibody responses by 2 weeks post-infection with little evidence of polyclonal B cell activation. The humoral response in C57Bl/6 mice was associated with differential activation of B cells and expansion of splenic CD21highCD23low Marginal Zone (MZ) like B cells that coincided with parasite-specific antibody secreting cell (ASC) development in the spleen. In contrast, susceptible Balb/c mice demonstrated early activation of B cells and early expansion of MZ B cells that preceded high levels of ASC without apparent parasite-specific ASC formation. Cytokine analysis demonstrated that the specific humoral response in the resistant C57Bl/6 mice was associated with early T-cell helper type 1 (Th1) cytokine response, whereas polyclonal B cell activation in the susceptible Balb/c mice was associated with sustained Th2 responses and delayed Th1 cytokine production. The effect of Th cell bias was further demonstrated by differential total and parasite-specific antibody isotype responses in susceptible versus resistant mice. T cell activation and expansion were associated with parasite-specific humoral responses in the resistant C57Bl/6 mice. Conclusions/Significance The results of this study indicate that resistant C57Bl/6 mice had improved parasite-specific humoral responses that were associated with decreased polyclonal B cell activation. In general, Th2 cytokine responses are associated with improved antibody response. But in the context of parasite infection, this study shows that Th2 cytokine responses were associated with amplified polyclonal B cell activation and diminished specific humoral immunity. These results demonstrate that polyclonal B cell activation during acute experimental Chagas disease is not a generalized response and suggest that the nature of humoral immunity during T. cruzi infection contributes to host susceptibility. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection.
Collapse
Affiliation(s)
- Marianne A. Bryan
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Siobhan E. Guyach
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen A. Norris
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cobb D, Guo S, Lara AM, Manque P, Buck G, Smeltz RB. T-bet-dependent regulation of CD8+ T-cell expansion during experimental Trypanosoma cruzi infection. Immunology 2009; 128:589-99. [PMID: 19824916 DOI: 10.1111/j.1365-2567.2009.03169.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transcription factor T-bet (T-box, expressed in T cells), promotes type I immunity to pathogens through effects involving T cells and dendritic cells. In CD8(+) T cells, many of the functions of T-bet are redundant with those of eomesodermin (Eomes), a paralogue of T-bet. We therefore investigated the role of T-bet in immunity to Trypanosoma cruzi, an intracellular pathogen that causes Chagas disease, and which requires CD8(+) T cells for resistance. T-bet-deficient mice (tbx21(-/-)) were highly susceptible to T. cruzi infection, marked by severe liver pathology. CD8(+) T cells from infected tbx21(-/-) mice expressed typical markers of activation, including CD44 and CD25. In striking contrast, there was a 10-fold reduction in the number of antigen-specific CD8(+) T cells in tbx21(-/-) mice. This reduction was not a consequence of increased apoptosis or altered tissue-specific migration. Further, antigen-presenting cell (APC) functions in tbx21(-/-) mice were normal as we observed comparable levels of B7-1, B7-2 and CD40 expression as well as normal antigen-driven proliferation of wild-type CD8(+) T cells in infected tbx21(-/-) mice. However, adoptive transfer of naïve T cells from tbx21(-/-) donors into infected Rag-2-deficient mice (tbx21(+/+)) demonstrated a similar quantitative defect in CD8(+) T-cell expansion. These data demonstrate that T-bet facilitates immunity to T. cruzi by promoting the expansion of T. cruzi-specific CD8(+) T cells in a T cell-intrinsic manner. They also serve to further illustrate the multifaceted functions of T-box proteins in regulating quantitative aspects of T-cell immunity, in addition to qualitative components such as cytokine production.
Collapse
Affiliation(s)
- Dustin Cobb
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
30
|
Conte E, Nigro L, Fagone E, Drago F, Cacopardo B. Quantitative Evaluation of Interleukin-12 P40 Gene Expression in Peripheral Blood Mononuclear Cells. Immunol Invest 2009; 37:143-51. [DOI: 10.1080/08820130701690824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Guo S, Cobb D, Smeltz RB. T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. THE JOURNAL OF IMMUNOLOGY 2009; 182:6179-86. [PMID: 19414771 DOI: 10.4049/jimmunol.0803821] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) Th17 cells have emerged as a new T cell subset in the Th1/Th2 paradigm, and efforts have shifted toward understanding the factors that regulate their development in vivo. To analyze the role of the transcription factor T-bet in regulation of Th17 cells, we used a murine model of Trypanosoma cruzi infection, a protozoan parasite that causes Chagas disease in humans. Infection of Tbx21(-/-) mice led to normal, unimpaired development of Ag-specific CD4(+) T cells producing IFN-gamma. However, a robust Th17 response developed concomitant with Th1 responses. Despite significant IFN-gamma production, the physiological effects of Th17 responses prevailed as there was a sharp increase in Gr-1(+)Ly6G(+) neutrophils. Adoptive transfer of T cells from infected Tbx21(-/-) mice into Rag-2(-/-) mice (Tbx21(+/+)) revealed that CD4(+) T cells maintained their IL-17-producing phenotype, including those cells capable of producing both IFN-gamma and IL-17. Furthermore, and in contrast to the effects of IL-2 on Th17 development, IL-2 had no effect on IL-17 production by primed T cells. Importantly, adoptive transfer of T cells from naive Tbx21(-/-) mice into infected Rag-2(-/-) mice recapitulated the differentiation of T. cruzi-specific Th17 cells observed in infected Tbx21(-/-) mice. Conversely, transfer of wild-type T cells into infected Tbx21(-/-) mice did not reveal an increase in Th17 development. These results demonstrate that T-bet regulates the differentiation of T. cruzi-specific Th17 cells in vivo in a T cell-intrinsic manner. These data provide important insight into the role of T-bet in regulation of parasite-specific Th17 responses.
Collapse
Affiliation(s)
- Siqi Guo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | |
Collapse
|
32
|
Ooi JD, Phoon RKS, Holdsworth SR, Kitching AR. IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. J Am Soc Nephrol 2009; 20:980-9. [PMID: 19357249 DOI: 10.1681/asn.2008080891] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The autoantigen in Goodpasture disease is the noncollagenous domain of alpha3 type IV collagen [alpha3(IV)NC1]. We previously demonstrated that IL-12p40(-/-) mice are protected from experimental autoimmune anti-glomerular basement membrane (anti-GBM) glomerulonephritis, seemingly defining a role for IL-12 in this disease; however, the recent identification of IL-23, a heterodimer composed of IL-12p40 and IL-23p19 subunits, raises the possibility that IL-23, rather than IL-12, may modulate this disease instead. We immunized wild-type, IL-12p35(-/-) (IL-12 deficient, IL-23 intact), IL-12p40(-/-) (deficient in both IL-12 and IL-23), and IL-23p19(-/-) (IL-12 intact, IL-23 deficient) mice with recombinant mouse alpha3(IV)NC1. Wild-type mice developed autoreactivity to alpha3(IV)NC1: Humoral responses, cellular responses, renal histologic abnormalities, leukocyte accumulation, autoantibody deposition, and IL-17A mRNA expression (a cytokine produced by the IL-23-maintained Th17 subset). IL-23 but not IL-12 was detected in the immune system. Regardless of the presence of IL-12, mice deficient in IL-23 were protected, but mice with IL-23 were not. Both IL-23-deficient strains exhibited lower autoantibody titers, reduced cellular reactivity, diminished cytokine production (IFN-gamma [Th1], IL-17A [Th17], TNF, and monocyte chemoattractant protein 1), and less renal disease and glomerular IgG deposition. The deficient responses in the absence of IL-23 were not due to increased regulatory T cells; IL-12p40(-/-) and IL-23p19(-/-) mice did not show increased proportions of CD4(+)CD25(+)FoxP3(+) cells or IL-10 levels early in the immune response. In conclusion, autoreactivity to the Goodpasture antigen is directed primarily by IL-23, absence of which results in hyporeactivity including but extending beyond a deficient Th17 response.
Collapse
Affiliation(s)
- Joshua D Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | | | | | | |
Collapse
|
33
|
Caetano LC, Brazão V, Filipin MDV, Santello FH, Caetano LN, Toldo MPA, Caldeira JC, do Prado JC. Effects of repetitive stress during the acute phase of Trypanosoma cruzi infection on chronic Chagas' disease in rats. Stress 2009; 12:144-51. [PMID: 18850489 DOI: 10.1080/10253890802168648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The effect of repetitive stress during acute infection with Trypanosoma cruzi (T. cruzi) on the chronic phase of ensuing Chagas' disease was the focus of this investigation. The aim of this study was to evaluate in Wistar rats the influence of repetitive stress during the acute phase of infection (7 days) with the Y strain of T. cruzi on the chronic phase of the infection (at 180 days). Exposure to ether vapor for 1 min twice a day was used as a stressor. Repetitive stress enhanced the number of circulating parasites and cardiac tissue disorganization, from a moderate to a severe diffuse mononuclear inflammatory process and the presence of amastigote burden in the cardiac fibers. Immunological parameters revealed that repetitive stress triggered a reduced concanavalin A induced splenocyte proliferation in vitro with major effects on the late chronic phase. Serum interleukin-12 concentration decreased in both stressed and infected rats in the early phase of infection although it was higher on 180 days post-infection. These results suggest that repetitive stress can markedly impair the host's immune system and enhance the pathological process during the chronic phase of Chagas' disease.
Collapse
Affiliation(s)
- Leony Cristina Caetano
- Laboratório de Parasitologia, Departamento de Análises Clinicas, Toxicológicas e Bromatológicas, Faculdade de Ciéncias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kodama H, Denso, Okazaki F, Ishida S. Protective effect of humus extract against Trypanosoma brucei infection in mice. J Vet Med Sci 2008; 70:1185-90. [PMID: 19057136 DOI: 10.1292/jvms.70.1185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humic substances are formed during the decomposition of organic matter in humus, and are found in many natural environments in which organic materials and microorganisms are present. Oral administration of humus extract to mice successfully induced effective protection against experimental challenge by the two subspecies, Trypanosoma brucei brucei and T. brucei gambiense. Mortality was most reduced among mice who received a 3% humus extract for 21 days in drinking water ad libitum. Spleen cells from humus-administered mice exhibited significant non-specific cytotoxic activity against L1210 mouse leukemia target cells. Also, spleen cells produced significantly higher amounts of Interferon-gamma when stimulated in vitro with Concanavalin A than cells from normal controls. These results clearly show that administration to mice of humus extract induced effective resistance against Trypanosoma infection. Enhancement of the innate immune system may be involved in host defense against trypanosomiasis.
Collapse
Affiliation(s)
- Hiroshi Kodama
- Laboratory of Veterinary Immunology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.
| | | | | | | |
Collapse
|
35
|
Araújo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF. PAS-1, a protein from Ascaris suum, modulates allergic inflammation via IL-10 and IFN-gamma, but not IL-12. Cytokine 2008; 44:335-41. [PMID: 19008120 DOI: 10.1016/j.cyto.2008.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/01/2008] [Accepted: 09/27/2008] [Indexed: 11/26/2022]
Abstract
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris suum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-1 was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA+PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-1 was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect.
Collapse
Affiliation(s)
- C A Araújo
- Laboratory of Immunopathology, Butantan Institute, Av Vital Brasil 1500, 05503-900 São Paulo SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Manna L, Reale S, Picillo E, Vitale F, Gravino AE. Interferon-gamma (INF-gamma), IL4 expression levels and Leishmania DNA load as prognostic markers for monitoring response to treatment of leishmaniotic dogs with miltefosine and allopurinol. Cytokine 2008; 44:288-92. [PMID: 18842424 DOI: 10.1016/j.cyto.2008.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/21/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
In this study, we searched for a connection between Leishmania load and cytokine expression levels in the tissues of Leishmaniainfantum naturally infected dogs and the efficacy of treatment with miltefosine and allopurinol. To this purpose, we exploited a real-time PCR system to detect Leishmania load and the expression levels of IFN-gamma and IL-4 mRNAs at the time of diagnosis and during the follow up post-treatment. In particular, we measured the amount of parasites in blood and lymph node samples, while the expression levels of IFN-gamma and IL-4 cytokines were assessed in the blood of the animals. We employed different targeted real-time PCR assays on 20 naturally infected dogs with clinical signs. Three healthy dogs living in a non-endemic area were selected as negative controls. The overall results obtained demonstrate that the simultaneous evaluation of parasites and cytokine levels in different kinds of tissue might represent a reliable tool to evaluate the immune response, the efficacy of the therapy and to predict the relapses during the treatment.
Collapse
Affiliation(s)
- Laura Manna
- Dipartimento di Scienze Cliniche Veterinarie, Università di Napoli Federico II, Via F. Delpino, n.1, 80137 Napoli, Italy.
| | | | | | | | | |
Collapse
|
37
|
Filipin MDV, Brazão V, Caetano LC, Santello FH, Toldo MPA, Caetano LN, do Prado JC. Trypanosoma cruzi: orchiectomy and dehydroepiandrosterone therapy in infected rats. Exp Parasitol 2008; 120:249-54. [PMID: 18700143 DOI: 10.1016/j.exppara.2008.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/27/2022]
Abstract
The ability of gonadal hormones to influence and induce diverse immunological functions during the course of a number of parasitic infections has been extensively studied in the latest decades. Dehydroepiandrosterone and its sulfate are the most abundant steroid hormones secreted by the human adrenal cortex and are considered potent immune-activators. The effects of orchiectomy on the course of Trypanosoma cruzi infection in rats, treated and untreated with DHEA were examined, by comparing blood and cardiac parasitism, macrophage numbers, nitric oxide and IFN-gamma levels. Orchiectomy enhanced resistance against infection with elevated numbers of macrophages, enhanced concentrations of NO and IFN-gamma and reduced amastigote burdens in heart when compared to control animals. DHEA replacement exerted a synergistic effect, up-modulating the immune response. Male sex steroids appear to play fundamental role in determining the outcome of disease, through the regulation and modulation of the activity of the immune response.
Collapse
Affiliation(s)
- Marina Del Vecchio Filipin
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto FCFRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Patel BA, Gomis S, Dar A, Willson PJ, Babiuk LA, Potter A, Mutwiri G, Tikoo SK. Oligodeoxynucleotides containing CpG motifs (CpG-ODN) predominantly induce Th1-type immune response in neonatal chicks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1041-1049. [PMID: 18395255 DOI: 10.1016/j.dci.2008.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 05/26/2023]
Abstract
Earlier, we demonstrated that intramuscular administration of oligodeoxynucleotides containing CpG motifs (CpG-ODN) induces protection in neonatal chicks against a lethal challenge of Escherichia coli. However, the mechanism of induction of the protection was not clear. In an attempt to elucidate the mechanism of induced protection, we determined the kinetics of expression of cytokines/chemokines in the spleen and bursa of Fabricius of newly hatched chicks that had received intramuscular administration of CpG-ODN or non-CpG ODN compared to saline-treated controls. SyBr green, real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of the RNA demonstrated increased expression of IL-1beta, IL-6, IL-8, IL-10, IL-18, IFN-gamma and MIP-3alpha mRNAs in the spleen and; IL-10 and IFN-alpha in bursa of Fabricious of chicks that had received CpG-ODN. However, non-CpG ODN failed to induce any of the cytokine. The increased level of IL-18 and IFN-gamma but not IL-4 mRNA suggests that the administration of CpG-ODN elicits a Th1 biased immune response, which may be important in inducing protection against infections in neonatal chicks. To our knowledge, this is the first report evaluating the induction of cytokines/chemokines in neonatal chicks following administration of CpG-ODN.
Collapse
Affiliation(s)
- Bhavini A Patel
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zinc supplementation increases resistance to experimental infection by Trypanosoma cruzi. Vet Parasitol 2008; 154:32-7. [PMID: 18394811 DOI: 10.1016/j.vetpar.2008.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/13/2008] [Accepted: 02/21/2008] [Indexed: 11/23/2022]
Abstract
It is well recognized that zinc is an essential trace element for all organisms, influencing growth and affecting the development and integrity of the immune system. It is also well known that the protective response against Trypanosoma cruzi depends on both innate and acquired immunity and for the control of the parasite load and host survival, the participation of special cells such natural killer (NK), T and B lymphocytes and macrophages are required. So the aims of this study were to evaluate the effects of zinc supplementation on the host's immune response infected with T. cruzi. Our data point in the direction that zinc supplementation triggered enhanced thymocyte and splenocyte proliferation as compared to unsupplied group of animals. It is also important to emphasize that interleukin-12 (IL-12) participates in the resistance to several intracellular pathogens including T. cruzi. Our findings demonstrate an enhanced production of IL-12 during the acute phase of infection in zinc-supplied groups. So we conclude that zinc supplementation leads to an effective host's immune response by up-modulating the host's immune response, thus contributing in the reduction of blood parasites and the harmful pathogenic effects of the experimental Chagas' disease.
Collapse
|
40
|
Reiling N, Ehlers S, Hölscher C. MyDths and un-TOLLed truths: sensor, instructive and effector immunity to tuberculosis. Immunol Lett 2007; 116:15-23. [PMID: 18191460 DOI: 10.1016/j.imlet.2007.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 11/13/2007] [Indexed: 01/01/2023]
Abstract
Controversy exists concerning the role of Toll-like receptors and MyD88 in immunity to tuberculosis (TB). This mini-review argues that (i) Toll-like receptors are not essential for an effective immune response against TB, (ii) MyD88 is essential, but not because it transduces signals from TLRs, (iii) adaptive immunity to TB is largely TLR/MyD88-independent. Some of the discrepancies may be resolved by cogent attribution of distinct immune functions to the individual components of the TLR/MyD88 system. In mice, TLRs and MyD88 are fully dispensable in sensing Mtb infection and instructing T cell-mediated adaptive immunity, and while TLRs are also redundant during macrophage effector immunity, MyD88 is essential for efficient killing of mycobacteria. This distinction should help to molecularly pinpoint the MyD88-dependent, yet TLR-independent critical mechanisms of macrophage activation involved in intracellular growth restriction of Mtb. Disrupted IL-1R and/or IFN-gamma signaling pathways likely play a much more prominent role in explaining the exquisite susceptibility of MyD88-deficient mice to TB than the function of MyD88 as a TLR adaptor.
Collapse
Affiliation(s)
- Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | |
Collapse
|
41
|
Torti DC, Feldman SR. Interleukin-12, interleukin-23, and psoriasis: Current prospects. J Am Acad Dermatol 2007; 57:1059-68. [PMID: 17706835 DOI: 10.1016/j.jaad.2007.07.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 03/29/2007] [Accepted: 07/21/2007] [Indexed: 11/17/2022]
Abstract
The clinical phenotype of psoriasis results from infiltration of T cells in the skin and elaboration of inflammatory cytokines. Interleukin (IL)-12 and, more recently, IL-23 have been implicated in the pathogenesis of psoriatic lesions. New therapies, including a monoclonal antibody against a subunit shared by IL-12 and IL-23, have been developed to treat psoriasis. Our purpose was to review the literature on IL-12 and IL-23 as a basis for understanding the use of anti-IL-12/IL-23 therapy for psoriasis. A review of English-language articles was performed using PubMed to identify articles pertaining to IL-12, IL-23, and psoriasis. IL-12 and IL-23 share a common subunit (p40) and have a distinct subunit (p35 and p19, respectively). Transgenic mice that overexpress IL-12 p40 develop inflammatory skin lesions. Both IL-12 knockout mice, which are deficient in IL-12, and human beings with a genetic IL-12 deficiency show increased susceptibility to intracellular pathogens and defective delayed-type hypersensitivity responses. These genetic deficiency states suggest the potential for adverse side effects from clinical administration of anti IL-12 p40 therapy. IL-12 p40 antibody was well tolerated in a phase I clinical trial with few adverse events and substantial improvements in psoriasis in most individuals. There was dose-dependent efficacy and substantial improvement in a larger cohort of patients in a phase II clinical trial. Larger and longer trials of anti IL-12/IL-23 therapies are needed to assess their clinical use and potential for infection and other adverse events.
Collapse
|
42
|
ROMERO JF, IBRAHIM GH, RENGGLI J, HIMMELRICH H, GRABER P, CORRADIN G. IL-12p40-independent induction of protective immunity upon multiple Plasmodium berghei irradiated sporozoite immunizations. Parasite Immunol 2007; 29:541-8. [DOI: 10.1111/j.1365-3024.2007.00972.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Johnson LM, Scott P. STAT1 expression in dendritic cells, but not T cells, is required for immunity to Leishmania major. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:7259-66. [PMID: 17513775 DOI: 10.4049/jimmunol.178.11.7259] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The generation of Th1 responses is important for resistance to intracellular pathogens, including the parasite, Leishmania major. Although IFN-gammaR/STAT1 signaling promotes a Th1 response via the up-regulation of T-bet, the requirement for STAT1 in Th1 cell differentiation remains controversial. Although in some cases Th1 cells develop independently of STAT1, STAT1(-/-) mice fail to develop a Th1 response during L. major infection. However, the interpretation of this result is complicated by the role STAT1 plays in Ag presentation and, more importantly, in elimination of parasites by macrophages, because both defective Ag presentation and increased parasite burden can influence Th cell development. To resolve this issue, we assessed the ability of STAT1(-/-) T cells to become Th1 cells and protect mice against L. major following adoptive transfer into STAT1-sufficient mice. We found that whereas T-bet is critical for the differentiation of protective Th1 cells during L. major infection, IFN-gammaR and STAT1 are dispensable. Given that a STAT1-independent Th1 cell response was generated by STAT1-sufficient APCs, but not by STAT1(-/-) cells, we next addressed whether dendritic cells (DCs) require STAT1 signaling to effectively present Ag. We found that STAT1(-/-) DCs had impaired up-regulation of MHC and costimulatory molecules, and, as a consequence, the absence of STAT1 resulted in reduced Th1 cell priming. Taken together, these results demonstrate that T cell expression of STAT1 is not required for the development of Th1 cells protective against L. major and instead stress the importance of STAT1 signaling in DCs for the optimal induction of Th1 responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/parasitology
- Immunity, Cellular/genetics
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/genetics
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- STAT1 Transcription Factor/biosynthesis
- STAT1 Transcription Factor/deficiency
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/parasitology
- Th1 Cells/immunology
- Th1 Cells/parasitology
- Th1 Cells/pathology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Leanne M Johnson
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
44
|
Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN, Murali-Krishna K. IL-12 and type-I IFN synergize for IFN-gamma production by CD4 T cells, whereas neither are required for IFN-gamma production by CD8 T cells after Listeria monocytogenes infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:4498-505. [PMID: 17372008 PMCID: PMC2626161 DOI: 10.4049/jimmunol.178.7.4498] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Differentiation of Ag-specific T cells into IFN-gamma producers is essential for protective immunity to intracellular pathogens. In addition to stimulation through the TCR and costimulatory molecules, IFN-gamma production is thought to require other inflammatory cytokines. Two such inflammatory cytokines are IL-12 and type I IFN (IFN-I); both can play a role in priming naive T cells to produce IFN-gamma in vitro. However, their role in priming Ag-specific T cells for IFN-gamma production during experimental infection in vivo is less clear. In this study, we examine the requirements for IL-12 and IFN-I, either individually or in combination, for priming Ag-specific T cell IFN-gamma production after Listeria monocytogenes (Lm) infection. Surprisingly, neither individual nor combined defects in IL-12 or IFN-I signaling altered IFN-gamma production by Ag-specific CD8 T cells after Lm infection. In contrast, individual defects in either IL-12 or IFN-I signaling conferred partial ( approximately 50%) reductions, whereas combined deficiency in both IL-12 and IFN-I signaling conferred more dramatic (75-95%) reductions in IFN-gamma production by Ag-specific CD4 T cells. The additive effects of IL-12 and IFN-I signaling on IFN-gamma production by CD4 T cells were further demonstrated by adoptive transfer of transgenic IFN-IR(+/+) and IFN-IR(-/-) CD4 T cells into normal and IL-12-deficient mice, and infection with rLm. These results demonstrate an important dichotomy between the signals required for priming IFN-gamma production by CD4 and CD8 T cells in response to bacterial infection.
Collapse
Affiliation(s)
- Sing Sing Way
- Department of Pediatrics, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Colin Havenar-Daughton
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Ganesh A. Kolumam
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Nural N. Orgun
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Kaja Murali-Krishna
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| |
Collapse
|
45
|
Murray HW, Tsai CW, Liu J, Ma X. Responses to Leishmania donovani in mice deficient in interleukin-12 (IL-12), IL-12/IL-23, or IL-18. Infect Immun 2006; 74:4370-4. [PMID: 16790814 PMCID: PMC1489747 DOI: 10.1128/iai.00422-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-12 (IL-12) orchestrates acquired resistance in intracellular Leishmania donovani infection in the liver, inducing gamma interferon and, in turn, macrophage activation and parasite killing. Nevertheless, testing in IL-18(-/-) mice compared to wild-type mice and in IL-12p40(-/-) compared to IL-12p35(-/-) mice also suggested both early-acting (IL-18) and late-acting (IL-23) antileishmanial effects independent of IL-12.
Collapse
Affiliation(s)
- Henry W Murray
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
46
|
Hölscher C. Aptamers against interleukin-12-related cytokines as novel therapeutics in autoimmune diseases. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.7.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Reyes JL, Terrazas LI, Espinoza B, Cruz-Robles D, Soto V, Rivera-Montoya I, Gómez-García L, Snider H, Satoskar AR, Rodríguez-Sosa M. Macrophage migration inhibitory factor contributes to host defense against acute Trypanosoma cruzi infection. Infect Immun 2006; 74:3170-9. [PMID: 16714544 PMCID: PMC1479264 DOI: 10.1128/iai.01648-05] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF-/- mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF-/- mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF-/- mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-gamma), and IL-1beta, in their sera and reduced production of IL-12, IFN-gamma, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF-/- mice produced comparable levels of IL-10. MIF-/- mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF-/- mice expressed increased transcripts for IFN-gamma, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection.
Collapse
Affiliation(s)
- José L Reyes
- Unidad de Biomedicina, FES-Iztacala, UNAM, Av. De los Barrios #1, Los Reyes Iztacala, 54090 Tlalnepantla, Edo. de México, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sardinha LR, Elias RM, Mosca T, Bastos KRB, Marinho CRF, D'Império Lima MR, Alvarez JM. Contribution of NK, NK T, gamma delta T, and alpha beta T cells to the gamma interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 2006; 74:2031-42. [PMID: 16552032 PMCID: PMC1418886 DOI: 10.1128/iai.74.4.2031-2042.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the present work, we show that intracellular Trypanosoma cruzi is rarely found in the livers of acutely infected mice, but inflammation is commonly observed. The presence of numerous intrahepatic amastigotes in infected gamma interferon (IFN-gamma)-deficient mice corroborates the notion that the liver is protected by an efficient local immunity. The contribution of different cell populations was suggested by data showing that CD4- and CD8-deficient mice were able to restrain liver parasite growth. Therefore, we have characterized the liver-infiltrating lymphocytes and determined the sources of IFN-gamma during acute T. cruzi infection. We observed that natural killer (NK) cells increased by day 7, while T and B cells increased by day 14. Among CD3+ cells, CD4+, CD8+, and CD4- CD8- cell populations were greatly expanded. A large fraction of CD3+ cells were positive for PanNK, a beta1 integrin expressed by NK and NK T cells. However, these lymphocytes were not classic NK T cells because they did not express NK1.1 and showed no preferential usage of Vbeta8. Otherwise, liver NK T (CD3+ NK1.1+) cells were not increased in acutely infected mice. The majority of PanNK+ CD4+ and PanNK+ CD8+ cells expressed T-cell receptor alphabeta (TCRalphabeta), whereas PanNK+ CD4- CD8- cells were positive for TCRgammadelta. In fact, gammadelta T cells showed the most remarkable increase (40- to 100-fold) among liver lymphocytes. Most importantly, intracellular analysis revealed high levels of IFN-gamma production at day 7 by NK cells and at day 14 by CD4+, CD8+, and CD4- CD8- TCRgammadelta+ cells. We concluded that NK cells are a precocious source of IFN-gamma in the livers of acutely infected mice, and, as the disease progresses, conventional CD4+ and CD8+ T cells and gammadelta T cells, but not classic NK-T cells, may provide the IFN-gamma required for liver protection against T. cruzi.
Collapse
MESH Headings
- Acute Disease
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chagas Disease/immunology
- Chagas Disease/pathology
- Chagas Disease/prevention & control
- Female
- Immunophenotyping
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Liver/parasitology
- Liver/pathology
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Trypanosoma cruzi/immunology
Collapse
Affiliation(s)
- Luiz Roberto Sardinha
- Departamento de Imunologia, ICB, Av. Prof. Lineu Prestes, 1730, Universidade de São Paulo, São Paulo, SP CEP-05508-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
49
|
Entleutner M, Traeger T, Westerholt A, Holzmann B, Stier A, Pfeffer K, Maier S, Heidecke CD. Impact of interleukin-12, oxidative burst, and iNOS on the survival of murine fecal peritonitis. Int J Colorectal Dis 2006; 21:64-70. [PMID: 15756596 DOI: 10.1007/s00384-004-0707-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 02/04/2023]
Abstract
Abdominal sepsis due to secondary fecal peritonitis following anastomosis insufficiency is a rare but life threatening complication of colorectal surgery. The induction of IFN-gamma by IL-12 is believed to play a key role in sepsis as it promotes antibacterial effector mechanisms such as oxidative burst or nitric oxide induction. The impact of gene deficiency for IL-12 (IL-12p40 KO), oxidative burst (p47(phox) KO), or NO induction (iNOS KO) on the outcome of fecal peritonitis was characterized using the murine Colon Ascendens Stent Peritonitis model (CASP). In the IL-12p40 KO model, 3 and 12 h after surgery, serum cytokine levels of IL-1beta, TNF, IL-18, and IL-10 were analyzed. Expression of IL-1beta, IL-10, IP-10, and MIP-1alpha was measured in lung and liver by RNAse Protection Assay. IL-12p40 and iNOS-deficient mice exhibited a significantly higher susceptibility to CASP as compared to the controls, whereas no significant difference was observed in p47(phox) KO mice. Absence of IL-12 resulted in delayed expression of proinflammatory cytokines and chemokines in both the liver and the lung, and was associated with significant reduction of IL-1beta levels in the serum 12 h after CASP. IL-12 and iNOS possess protective functions in fecal murine peritonitis. Surprisingly, no significant contribution of oxidative burst to the immune response was observed. Overall, these findings suggest that IL-12 deficiency causes a profound delay of the immune response after polymicrobial challenge resulting in significantly increased susceptibility in the CASP model.
Collapse
Affiliation(s)
- Markus Entleutner
- Chirurgische Klinik und Poliklinik, Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Conte E, Modica A, Cacopardo B, Messina L, Nigro L, Messina A. Ribavirin up-regulates IL-12 p40 gene expression and restores IL-12 levels in Leishmania-treated PBMCs. Parasite Immunol 2005; 27:447-51. [PMID: 16255743 DOI: 10.1111/j.1365-3024.2005.00796.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribavirin, a nucleoside analogue that interferes with viral mRNA synthesis and inhibits the replication of RNA and DNA viruses, has been recently proposed as an effective immune response modulator. In the present report, we studied the effect of ribavirin on IL-12 p40 gene expression in peripheral blood mononuclear cells (PBMCs) of healthy subjects. We also studied ribavirin effects on PBMCs activated with lipopolysaccharide (LPS) and phytohaemagglutinin (PHA) and treated with Leishmania donovani antigens. We provide evidence that ribavirin was able to up-regulate IL-12 p40 gene expression and to restore levels of IL-12 p40 gene expression and IL-12 secretion in fully activated PBMCs that were strongly inhibited by L. donovani antigens. Because effective management of leishmanial disease is usually associated with a prevalent T-helper 1 immune response with elevated production of IL-12,our preliminary results may be of particular interest, provided that they will be confirmed by further in vitro and in vivo studies, when considering a possible use of ribavirin as adjuvant in severe leishmanial disease.
Collapse
Affiliation(s)
- E Conte
- Department of Biomedical Sciences, Section of General Pathology, University of Catania, Italy.
| | | | | | | | | | | |
Collapse
|