1
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
2
|
Darboe F, Reijneveld JF, Maison DP, Martinez L, Suliman S. Unmasking the hidden impact of viruses on tuberculosis risk. Trends Immunol 2024; 45:649-661. [PMID: 39181733 PMCID: PMC11769684 DOI: 10.1016/j.it.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Tuberculosis (TB) is a leading cause of mortality from an infectious disease. In this opinion article, we focus on accumulating scientific evidence indicating that viral infections may contribute to TB progression, possibly allowing novel preventive interventions. Viruses can remodel the mammalian immune system, potentially modulating the risk of reactivating latent microbes such as Mycobacterium tuberculosis (Mtb). Evidence is mixed regarding the impact of emergent viruses such as SARS-CoV-2 on the risk of TB. Therefore, we posit that important knowledge gaps include elucidating which viral families increase TB risk and whether these provide unique or shared immune mechanisms. We also propose potential future research to define the contribution of viruses to TB pathogenesis.
Collapse
Affiliation(s)
- Fatoumatta Darboe
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Josephine F Reijneveld
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David P Maison
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Leonardo Martinez
- Boston University School of Public Health, Department of Epidemiology, Boston, MA, USA.
| | - Sara Suliman
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Lee AM, Nathan CF. Type I interferon exacerbates Mycobacterium tuberculosis induced human macrophage death. EMBO Rep 2024; 25:3064-3089. [PMID: 38866980 PMCID: PMC11239827 DOI: 10.1038/s44319-024-00171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Type I interferons (IFN-I) are implicated in exacerbation of tuberculosis (TB), but the mechanisms are unclear. Mouse macrophages infected with Mycobacterium tuberculosis (Mtb) produce IFN-I, which contributes to their death. Here we investigate whether the same is true for human monocyte-derived macrophages (MDM). MDM prepared by a conventional method markedly upregulate interferon-stimulated genes (ISGs) upon Mtb infection, while MDM prepared to better restrict Mtb do so much less. A mixture of antibodies inhibiting IFN-I signaling prevents ISG induction. Surprisingly, secreted IFN-I are undetectable until nearly two days after ISG induction. These same antibodies do not diminish Mtb-infected MDM death. MDM induce ISGs in response to picogram/mL levels of exogenous IFN-I while depleting similar quantities from the medium. Exogenous IFN-I increase the proportion of dead MDM. We speculate that Mtb-infected MDM produce and respond to minute levels of IFN-I, and that only some of the resultant signaling is susceptible to neutralizing antibodies. Many types of cells may secrete IFN-I in patients with TB, where IFN-I is likely to promote the death of infected macrophages.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Bataduwaarachchi VR, Hansanie SMN, Rockwood N, D'Cruz LG. Immunomodulatory properties of morphine and the hypothesised role of long-term opioid use in the immunopathogenesis of tuberculosis. Front Immunol 2023; 14:1265511. [PMID: 37942336 PMCID: PMC10628761 DOI: 10.3389/fimmu.2023.1265511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Epidemiological studies have shown high tuberculosis (TB) prevalence among chronic opioid users. Opioid receptors are found on multiple immune cells and immunomodulatory properties of opioids could be a contributory factor for ensuing immunosuppression and development or reactivation of TB. Toll-like receptors (TLR) mediate an immune response against microbial pathogens, including Mycobacterium tuberculosis. Mycobacterial antigens and opioids co-stimulate TLRs 2/4/9 in immune cells, with resulting receptor cross-talk via multiple cytosolic secondary messengers, leading to significant immunomodulatory downstream effects. Blockade of specific immune pathways involved in the host defence against TB by morphine may play a critical role in causing tuberculosis among chronic morphine users despite multiple confounding factors such as socioeconomic deprivation, Human immunodeficiency virus co-infection and malnutrition. In this review, we map out immune pathways involved when immune cells are co-stimulated with mycobacterial antigens and morphine to explore a potential immunopathological basis for TB amongst long-term opioid users.
Collapse
Affiliation(s)
- Vipula R. Bataduwaarachchi
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Research and Innovation Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - SMN Hansanie
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Neesha Rockwood
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Leon Gerard D'Cruz
- Research and Innovation Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
5
|
Wu X, Liu K, Li S, Ren W, Wang W, Shang Y, Zhang F, Huang Y, Pang Y, Gao M. Integrated bioinformatics analysis of dendritic cells hub genes reveal potential early tuberculosis diagnostic markers. BMC Med Genomics 2023; 16:214. [PMID: 37684607 PMCID: PMC10492340 DOI: 10.1186/s12920-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) are most potent antigen-processing cells and play key roles in host defense against Mycobacterium tuberculosis (MTB) infection. In this study, hub genes in DCs during MTB infection were first investigated using bioinformatics approaches and further validated in Monocyte-derived DCs. METHODS Microarray datasets were obtained from Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) and immune infiltration analysis were performed to select suitable samples for further analysis. Differential analysis and functional enrichment analysis were conducted on DC samples, comparing live MTB-infected and non-infected (NI) groups. The CytoHubba plugin in Cytoscape was used to identify hub genes from the differentially expressed genes (DEGs). The expression of the hub genes was validated using two datasets and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in human monocyte-derived DCs. Enzyme-linked immunosorbent assay (ELISA) was used to validate interferon (IFN) secretion. Transcription factors (TFs) and microRNAs (miRNAs) that interact with the hub genes were predicted using prediction databases. The diagnostic value of the hub genes was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) values. RESULTS A total of 1835 common DEGs among three comparison groups (18 h, 48 h, 72 h after MTB infection) were identified. Six DEGs (IFIT1, IFIT2, IFIT3, ISG15, MX1, and RSAD2) were determined as hub genes. Functions enrichment analysis revealed that all hub genes all related to IFN response. RT-qPCR showed that the expression levels of six hub genes were significantly increased after DC stimulated by live MTB. According to the results of ELISA, the secretion of IFN-γ, but not IFN-α/β, was upregulated in MTB-stimulated DCs. AUC values of six hub genes ranged from 84 to 94% and AUC values of 5 joint indicators of two hub genes were higher than the two hub genes alone. CONCLUSION The study identified 6 hub genes associated with IFN response pathway. These genes may serve as potential diagnostic biomarkers in tuberculosis (TB). The findings provide insights into the molecular mechanisms involved in the host immune response to MTB infection and highlight the diagnostic potential of these hub genes in TB.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Kewei Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Fuzhen Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Yingying Huang
- Jining Medical University, Shandong, 272002, China
- Qingdao Mental Health Center, Shandong, 266034, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China.
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China.
| |
Collapse
|
6
|
Teque F, Wegehaupt A, Roufs E, Killian MS. CD8+ Lymphocytes from Healthy Blood Donors Secrete Antiviral Levels of Interferon-Alpha. Viruses 2023; 15:v15040894. [PMID: 37112874 PMCID: PMC10144965 DOI: 10.3390/v15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The adaptive immune response to viral infections features the antigen-driven expansion of CD8+ T cells. These cells are widely recognized for their cytolytic activity that is mediated through the secretion of cytokines such as perforin and granzymes. Less appreciated is their ability to secrete soluble factors that restrict virus replication without killing the infected cells. In this study we measured the ability of primary anti-CD3/28-stimulated CD8+ T cells from healthy blood donors to secrete interferon-alpha. Supernatants collected from CD8+ T cell cultures were screened for their ability to suppress HIV-1 replication in vitro and their interferon-alpha concentrations were measured by ELISA. Interferon-alpha concentrations in the CD8+ T cell culture supernatants ranged from undetectable to 28.6 pg/mL. The anti-HIV-1 activity of the cell culture supernatants was observed to be dependent on the presence of interferon-alpha. Appreciable increases in the expression levels of type 1 interferon transcripts were observed following T cell receptor stimulation, suggesting that the secretion of interferon-alpha by CD8+ T cells is an antigen-driven response. In 42-plex cytokine assays, the cultures containing interferon-alpha were also found to contain elevated levels of GM-CSF, IL-10, IL-13, and TNF-alpha. Together, these results demonstrate that the secretion of anti-viral levels of interferon-alpha is a common function of CD8+ T cells. Furthermore, this CD8+ T cell function likely plays broader roles in health and disease.
Collapse
|
7
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Systemic Levels of Pro-Inflammatory Cytokines and Post-Treatment Modulation in Tuberculous Lymphadenitis. Trop Med Infect Dis 2023; 8:tropicalmed8030150. [PMID: 36977151 PMCID: PMC10053505 DOI: 10.3390/tropicalmed8030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Pro-inflammatory cytokines are potent stimulators of inflammation and immunity and markers of infection severity and bacteriological burden in pulmonary tuberculosis (PTB). Interferons could have both host-protective and detrimental effects on tuberculosis disease. However, their role has not been studied in tuberculous lymphadenitis (TBL). Thus, we evaluated the systemic pro-inflammatory (interleukin (IL)-12, IL-23, interferon (IFN)α, and IFNβ) cytokine levels in TBL, latent tuberculosis (LTBI), and healthy control (HC) individuals. In addition, we also measured the baseline (BL) and post-treatment (PT) systemic levels in TBL individuals. We demonstrate that TBL individuals are characterized by increased pro-inflammatory (IL-12, IL-23, IFNα, IFNβ) cytokines when compared to LTBI and HC individuals. We also show that after anti-tuberculosis treatment (ATT) completion, the systemic levels of pro-inflammatory cytokines were significantly modulated in TBL individuals. A receiver operating characteristic (ROC) analysis revealed IL-23, IFNα, and IFNβ significantly discriminated TBL disease from LTBI and/or HC individuals. Hence, our study demonstrates the altered systemic levels of pro-inflammatory cytokines and their reversal after ATT, suggesting that they are markers of disease pathogenesis/severity and altered immune regulation in TBL disease.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai 600 031, India
- National Institute for Research in Tuberculosis (NIRT), Chennai 600 031, India
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Solna, Sweden
- Correspondence:
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai 600 031, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai 600 031, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai 600 031, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| |
Collapse
|
8
|
Wang Z, Li T, Gong Z, Xie J. Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection. Cell Signal 2022; 94:110329. [PMID: 35390466 DOI: 10.1016/j.cellsig.2022.110329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
ISG15 encoded by a type I interferon (IFN) inducible gene mediates an important cellular process called ISGylation. ISGylation emerges as a powerful host tactic against intracellular pathogens like Mycobacterium tuberculosis (Mtb). However, the exact role of ISGylation in immunity remains elusive. To shed light on how ISGylation, which is both interesting and complex, participates in immunity against Mtb, this manuscript summarized the current knowledge about the structural characteristics and targets of ISG15 and how ISGylation cross-talks with other host post-translational modifications to exert its effect.
Collapse
Affiliation(s)
- Zilu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, central laboratory Chongqing, 400030, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
10
|
Yi F, Hu J, Zhu X, Wang Y, Yu Q, Deng J, Huang X, Ma Y, Xie Y. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Stimulated by Mycobacterium tuberculosis PPE57 Identifies Characteristic Genes Associated With Type I Interferon Signaling. Front Cell Infect Microbiol 2021; 11:716809. [PMID: 34490145 PMCID: PMC8416891 DOI: 10.3389/fcimb.2021.716809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 02/05/2023] Open
Abstract
Proline-glutamic acid (PE)- and proline-proline-glutamic acid (PPE)-containing proteins are exclusive to Mycobacterium tuberculosis (MTB), the leading cause of tuberculosis (TB). In this study, we performed global transcriptome sequencing (RNA-Seq) on PPE57-stimulated peripheral blood mononuclear cells (PBMCs) and control samples to quantitatively measure the expression level of key transcripts of interest. A total of 1367 differentially expressed genes (DEGs) were observed in response to a 6 h exposure to PPE57, with 685 being up-regulated and 682 down-regulated. Immune-related gene functions and pathways associated with these genes were evaluated, revealing that the type I IFN signaling pathway was the most significantly enriched pathway in our RNA-seq dataset, with 14 DEGs identified therein including ISG15, MX2, IRF9, IFIT3, IFIT2, OAS3, IFIT1, IFI6, OAS2, OASL, RSAD2, OAS1, IRF7, and MX1. These PPE57-related transcriptomic profiles have implications for a better understanding of host global immune mechanisms underlying MTB infection outcomes. However, more studies regarding these DEGs and type I IFN signaling in this infectious context are necessary to more fully clarify the underlying mechanisms that arise in response to PPE57 during MTB infection.
Collapse
Affiliation(s)
- Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuedong Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Taneja V, Kalra P, Goel M, Khilnani GC, Saini V, Prasad GBKS, Gupta UD, Krishna Prasad H. Impact and prognosis of the expression of IFN-α among tuberculosis patients. PLoS One 2020; 15:e0235488. [PMID: 32667932 PMCID: PMC7363073 DOI: 10.1371/journal.pone.0235488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection stimulates the release of cytokines, including interferons (IFNs). IFNs are initiators, regulators, and effectors of innate and adaptive immunity. Accordingly, the expression levels of Type I (α, β) and II (γ) IFNs, among untreated tuberculosis (TB) patients and household contacts (HHC) clinically free of TB was assessed. A total of 264 individuals (TB patients-123; HHC-86; laboratory volunteers-55; Treated TB patients-36) were enrolled for this study. IFN-α mRNA expression levels predominated compared to IFN-γ and IFN-β among untreated TB patients. IFN-α transcripts were ~3.5 folds higher in TB patients compared to HHC, (p<0.0001). High expression of IFN-α was seen among 46% (56/ 123) of the TB patients and 26%, (22/86) of HHCs. The expression levels of IFN-α correlated with that of IFN transcriptional release factor 7 (IRF) (p<0.0001). In contrast, an inverse relationship exists between PGE2 and IFN-α expression levels; high IFN-α expressers were associated with low levels of PGE2 and vice-versa (Spearman’s rho = -0.563; p<0.0001). In-vitro, IFN-α failed to restrict the replication of intracellular M.tb. The anti-mycobacterial activity of IFN-γ was compromised in the presence of IFN-α, but not by IFN-β. The expression of IFN-α and β diminished or is absent, among successfully treated TB patients. These observations suggest the utility of assessment of Type I IFNs expression levels as a prognostic marker to monitor tuberculosis patient response to chemotherapy because changes in Type I IFNs expression are expected to precede the clearance and /reduction in bacterial load.
Collapse
Affiliation(s)
- Vibha Taneja
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Goel
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Gopi Chand Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - G. B. K. S. Prasad
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Umesh Datta Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | |
Collapse
|
12
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Defective Influenza A Virus RNA Products Mediate MAVS-Dependent Upregulation of Human Leukocyte Antigen Class I Proteins. J Virol 2020; 94:JVI.00165-20. [PMID: 32321802 PMCID: PMC7307169 DOI: 10.1128/jvi.00165-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell. Influenza A virus (IAV) increases the presentation of class I human leukocyte antigen (HLA) proteins that limit antiviral responses mediated by natural killer (NK) cells, but molecular mechanisms for these processes have not yet been fully elucidated. We observed that infection with A/Fort Monmouth/1/1947(H1N1) IAV significantly increased the presentation of HLA-B, -C, and -E on lung epithelial cells. Virus entry was not sufficient to induce HLA upregulation because UV-inactivated virus had no effect. Aberrant internally deleted viral RNAs (vRNAs) known as mini viral RNAs (mvRNAs) and defective interfering RNAs (DI RNAs) expressed from an IAV minireplicon were sufficient for inducing HLA upregulation. These defective RNAs bind to retinoic acid-inducible gene I (RIG-I) and initiate mitochondrial antiviral signaling (MAVS) protein-dependent antiviral interferon (IFN) responses. Indeed, MAVS was required for HLA upregulation in response to IAV infection or ectopic mvRNA/DI RNA expression. The effect was partially due to paracrine signaling, as we observed that IAV infection or mvRNA/DI RNA-expression stimulated production of IFN-β and IFN-λ1 and conditioned media from these cells elicited a modest increase in HLA surface levels in naive epithelial cells. HLA upregulation in response to aberrant viral RNAs could be prevented by the Janus kinase (JAK) inhibitor ruxolitinib. While HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein; we determined that NS1 limits cell-intrinsic and paracrine mechanisms of HLA upregulation. Taken together, our findings indicate that aberrant IAV RNAs stimulate HLA presentation, which may aid viral evasion of innate immunity. IMPORTANCE Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell.
Collapse
|
14
|
Guan G, Song B, Zhang J, Chen K, Hu H, Wang M, Chen D. An Effective Cationic Human Serum Albumin-Based Gene-Delivery Carrier Containing the Nuclear Localization Signal. Pharmaceutics 2019; 11:E608. [PMID: 31766300 PMCID: PMC6920835 DOI: 10.3390/pharmaceutics11110608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Considerable effort has been devoted to the development of gene carriers over the years. However, toxicity, immunogenicity, and low transfection efficiency are still major barriers. How to overcome these obstacles has become a burning question in gene delivery. In the present study, a simple cationic human serum albumin (CHSA)-based gene-delivery system containing nuclear localization signals (NLSs) was constructed to conquer the limitations. CHSA/NLS/plasmid DNA (pDNA) complexes were prepared and characterized by Hoechst 33258 intercalation, gel retardation assay, morphological analysis, circular dichroism (CD) spectroscopy, particle size, and zeta potential measurements. Results showed that CHSA/NLS/pDNA complexes were able to condense and protect pDNA with high encapsulation efficiency. The complexes displayed a nutritional effect on cells at a low concentration and there was no significant cytotoxicity or immunogenicity. In addition, CHSA/NLS/pDNA complexes exhibited excellent cellular uptake rates and the mechanism was mainly the clathrin or macropinocytosis-dependent endocytosis pathway. Furthermore, CHSA/NLS/pDNA significantly enhanced gene expression efficiency in vitro. More importantly, CHSA/NLS/pDNA complexes showed a desired antitumor effect in vivo, exhibiting the highest inhibition rate (57.3%) and significant upregulation in p53 protein. All these results confirm that CHSA/NLS/pDNA complexes have a bright future as a safe and effective delivery system for gene therapy.
Collapse
Affiliation(s)
- Guannan Guan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Baohui Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Jie Zhang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing 314001, China;
| | - Kang Chen
- Department of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China;
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| | - Mingyue Wang
- Department of Pharmacy, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; (G.G.); (B.S.); (H.H.)
| |
Collapse
|
15
|
Zhou X, Yang J, Zhang Z, Zhang L, Lie L, Zhu B, Xu L, Gao Y, Du X, Huang Y, Wang R, Liu H, Li Y, Hu S, Zhou C, Wen Q, Pan Q, Ma L. Interferon regulatory factor 1 eliminates mycobacteria by suppressing p70 S6 kinase via mechanistic target of rapamycin signaling. J Infect 2019; 79:262-276. [DOI: 10.1016/j.jinf.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 06/12/2019] [Indexed: 01/21/2023]
|
16
|
Zhao M, Li J, Ji H, Chen D, Hu H. A versatile endosome acidity-induced sheddable gene delivery system: increased tumor targeting and enhanced transfection efficiency. Int J Nanomedicine 2019; 14:6519-6538. [PMID: 31616142 PMCID: PMC6698616 DOI: 10.2147/ijn.s215250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Polycation carriers show great foreground in the developing efficient and safe gene delivery; nevertheless, they are cytotoxic and unstable in vivo because of the excess cationic charge. PEGylation improves the biocompatibility and stability of polycation, whereas PEGylation restrains the endosomal escape to some extent. MATERIALS AND METHODS To address this issue and promote the transfection in vivo, a pH-sensitive conjugate folate-polyethylene glycol-carboxylated chitosan (shorten as FA-PEG-CCTS) was designed and coated on the surface of PEI/NLS/pDNA (PNDs), forming a versatile gene carrier FA-PEG-CCTS/PEI/NLS/pDNA (FPCPNDs). The novel carrier exhibited a few picturesque characteristics, including (i) neutral surface charge to restrain nonspecific interactions; (ii) folate receptors (FR)-mediated endocytosis to augment cellular uptake; (iii) dual proton sponge effect to realize endosome escape, and (iv) nuclear localization sequences (NLS) to enhance the transfection of pDNA. RESULTS FPCPNDs could compress and protect pDNA from degradation. FPCPNDs energetically targeted tumor cells because of their high binding affinity between FA and highly expressed FR on the tumor surface, accordingly enhancing the cellular uptake. In the acidic endosomes, FA-PEG-CCTS segment dissociated from PNDs. Then, PNDs realized endosomal escape through the proton sponge effect of PEI. Furthermore, FPCPNDs showed admirable transfection efficiency with the aid of NLS peptides. What's more, in vivo studies revealed that FPCPNDs had supreme antitumor activity among the whole preparations. CONCLUSION In vitro and in vivo assays thus demonstrate that FPCPNDs is a hopeful strategy for gene delivery.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Hongrui Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| |
Collapse
|
17
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Wang J, Teng Y, Zhao G, Li F, Hou A, Sun B, Kong W, Gao F, Cai L, Jiang C. Exosome-Mediated Delivery of Inducible miR-423-5p Enhances Resistance of MRC-5 Cells to Rabies Virus Infection. Int J Mol Sci 2019; 20:ijms20071537. [PMID: 30934732 PMCID: PMC6479321 DOI: 10.3390/ijms20071537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
The human diploid cell line Medical Research Council -5 (MRC-5) is commonly utilized for vaccine development. Although a rabies vaccine developed in cultured MRC-5 cells exists, the poor susceptibility of MRC-5 cells to the rabies virus (RABV) infection limits the potential yield of this vaccine. The underlying mechanism of MRC-5 cell resistance to RABV infection remains unknown. In this study, we demonstrate that viral infection increased exosomal release from MRC-5 cells; conversely, blocking exosome release promoted RABV infection in MRC-5 cells. Additionally, RABV infection up-regulated microRNA (miR)-423-5p expression in exosomes, resulting in feedback inhibition of RABV replication by abrogating the inhibitory effect of suppressor of cytokine signaling 3 (SOCS3) on type I interferon (IFN) signaling. Furthermore, intercellular delivery of miR-423-5p by exosomes inhibited RABV replication in MRC-5 cells. We also show that RABV infection increased IFN-β production in MRC-5 cells and that blocking the type I IFN receptor promoted RABV infection. In conclusion, MRC-5 cells were protected from RABV infection by the intercellular delivery of exosomal miR-423-5p and the up-regulation of IFN-β. These findings reveal novel antiviral mechanisms in MRC-5 cells against RABV infection. miR-423-5p, exosomes, and IFN signaling pathways may therefore be potential targets for improving MRC-5 cell-based rabies vaccine production.
Collapse
Affiliation(s)
- Jingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yawei Teng
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
| | - Guanshu Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
| | - Fang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
19
|
Different Signaling Pathways Define Different Interferon-Stimulated Gene Expression during Mycobacteria Infection in Macrophages. Int J Mol Sci 2019; 20:ijms20030663. [PMID: 30717477 PMCID: PMC6387094 DOI: 10.3390/ijms20030663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) represents one of the greatest threats to human health., Interferons (IFNs) in combination with the first-line of anti-TB drugs have been used for treating TB for decades in the clinic, but how Mtb infection regulates interferon-stimulated genes (ISGs) in human macrophages (Mϕs) remains unknown. In this study, we investigated the expression-signature and associated innate signaling mechanisms of ISGs in Mtb-infected human monocyte-derived Mϕs (hMDMs) and THP-1-derived Mϕs (THP-1-Mϕs). Among 28 of the detected ISGs, 90% of them exerted a significant increase in Mtb-infected Mϕs. Additionally, we found that cytosolic cyclic (GMP-AMP) synthase (cGAS), toll-like receptor-2 (TLR-2) and TLR-4 signaling pathways participated in ISG induction. Their downstream elements of TANK-binding kinase 1 (TBK1), nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase-signal transducer and activator of transcription (JAK-STAT) were selectively involved in Mtb-mediated ISG production. Finally, the numerous types of ISG expression in hMDMs of TB patients were more susceptible to restimulation of Mtb infection or/and IFN treatment than that of healthy people. Hence, different signaling pathways define different ISG expression during Mtb infection and this helps to illustrate how ISGs are elucidated and to better understand the host immune responses to Mtb infection in Mϕs.
Collapse
|
20
|
Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, Di Timoteo G, Dattilo D, Dominici C, Bozzoni I. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 2019; 38:3843-3854. [PMID: 30670781 PMCID: PMC6544520 DOI: 10.1038/s41388-019-0699-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed RNAs, derived from non-canonical splicing events, which are expressed in all eukaryotes and often conserved among different species. We previously showed that the circRNA originating from the ZNF609 locus (circ-ZNF609) acts as a crucial regulator of human primary myoblast growth: indeed, the downregulation of the circRNA, and not of its linear counterpart, strongly reduced the proliferation rate of in vitro cultured myoblasts. To deepen our knowledge about circ-ZNF609 role in cell cycle regulation, we studied its expression and function in rhabdomyosarcoma (RMS), a pediatric skeletal muscle malignancy. We found that circ-ZNF609 is upregulated in biopsies from the two major RMS subtypes, embryonal (ERMS) and alveolar (ARMS). Moreover, we discovered that in an ERMS-derived cell line circ-ZNF609 knock-down induced a specific block at the G1-S transition, a strong decrease of p-Akt protein level and an alteration of the pRb/Rb ratio. Regarding p-Akt, we were able to show that circ-ZNF609 acts by counteracting p-Akt proteasome-dependent degradation, thus working as a new regulator of cell proliferation-related pathways. As opposed to ERMS-derived cells, the circRNA depletion had no cell cycle effects in ARMS-derived cells. Since in these cells the p53 gene resulted downregulated, with a concomitant upregulation of its cell cycle-related target genes, we suggest that this could account for the lack of circ-ZNF609 effect in ARMS.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | | | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy. .,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
21
|
Zhang X, Sun Y, He C, Qiu X, Zhou D, Ye Z, Long Y, Tang T, Su X, Ma J. The immune characterization of interferon-β responses in tuberculosis patients. Microbiol Immunol 2018; 62:281-290. [PMID: 29504148 PMCID: PMC5947646 DOI: 10.1111/1348-0421.12583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 12/30/2022]
Abstract
We aimed to assess the immunoregulatory effects of IFN‐β in patients with tuberculous pleurisy. IFN‐β, IFN‐γ and IL‐17 expression levels were detected, and correlations among these factors in different culture groups were analyzed. Pleural fluid mononuclear cells (PFMC) from tuberculous pleural effusions, but not peripheral blood mononuclear cells (PBMC) from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ. Moreover, exogenous IFN‐β significantly inhibited the expression of IL‐17 in PFMC. By contrast, IFN‐β simultaneously enhanced the levels of IFN‐γ. To further investigate the regulation of IL‐17 and IFN‐γ by endogenous IFN‐β, an IFN‐β neutralizing antibody was simultaneously added to bacillus Calmette‐Guérin (BCG)‐stimulated PFMC. IL‐17 expression was significantly increased, but IFN‐γ production was markedly decreased in the experimental group supplemented with the IFN‐β neutralizing antibody. Simultaneously, IL‐17 production was remarkably increased in the experimental group supplemented with the IFN‐γ neutralizing antibody. Taken together, in our study, we first found that freshly isolated PFMC, but not PBMC from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ in vivo. Moreover, IFN‐β suppressed IL‐17 expression and increased IFN‐γ production. Furthermore, both IFN‐β and IFN‐γ down‐regulated IL‐17 expression. These observations suggest that caution is required when basing anti‐tuberculosis treatment on the inhibition of IFN‐β signaling.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi Sun
- Pediatric, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Caiyun He
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaofen Qiu
- Department of Clinical Nursing, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dalei Zhou
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zulu Ye
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yakang Long
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Tang
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuan Su
- State Key Laboratory of Oncology in South China, Department of Head and Neck, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjun Ma
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
22
|
Donovan ML, Schultz TE, Duke TJ, Blumenthal A. Type I Interferons in the Pathogenesis of Tuberculosis: Molecular Drivers and Immunological Consequences. Front Immunol 2017; 8:1633. [PMID: 29230217 PMCID: PMC5711827 DOI: 10.3389/fimmu.2017.01633] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a major global health threat. Urgent needs in the fight against TB include improved and innovative treatment options for drug-sensitive and -resistant TB as well as reliable biological indicators that discriminate active from latent disease and enable monitoring of treatment success or failure. Prominent interferon (IFN) inducible gene signatures in TB patients and animal models of Mycobacterium tuberculosis infection have drawn significant attention to the roles of type I IFNs in the host response to mycobacterial infections. Here, we review recent developments in the understanding of the innate immune pathways that drive type I IFN responses in mycobacteria-infected host cells and the functional consequences for the host defense against M. tuberculosis, with a view that such insights might be exploited for the development of targeted host-directed immunotherapies and development of reliable biomarkers.
Collapse
Affiliation(s)
- Meg L Donovan
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas E Schultz
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Taylor J Duke
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Interleukin 1-Beta (IL-1β) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients. J Acquir Immune Defic Syndr 2017; 74:213-220. [PMID: 27654812 DOI: 10.1097/qai.0000000000001181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a major cause of global morbidity and mortality, especially in the context of HIV coinfection because immunity is not completely restored following antiretroviral therapy (ART). The identification of immune correlates of risk for TB disease could help in the design of host-directed therapies and clinical management. This study aimed to identify innate immune correlates of TB recurrence in HIV+ ART-treated individuals with a history of previous successful TB treatment. METHODS Twelve participants with a recurrent episode of TB (cases) were matched for age, sex, time on ART, pre-ART CD4 count with 12 participants who did not develop recurrent TB in 60 months of follow-up (controls). Cryopreserved peripheral blood mononuclear cells from time-points before TB recurrence were stimulated with ligands for Toll-like receptors (TLR) including TLR-2, TLR-4, and TLR-7/8. Multicolor flow cytometry and intracellular cytokine staining were used to detect IL-1β, TNF-α, IL-12, and IP10 responses from monocytes and myeloid dendritic cells (mDCs). RESULTS Elevated production of IL-1β from monocytes following TLR-2, TLR-4, and TLR-7/8 stimulation was associated with reduced odds of TB recurrence. In contrast, production of IL-1β from both monocytes and mDCs following Bacillus Calmette-Guérin (BCG) stimulation was associated with increased odds of TB recurrence (risk of recurrence increased by 30% in monocytes and 42% in mDCs, respectively). CONCLUSION Production of IL-1β by innate immune cells following TLR and BCG stimulations correlated with differential TB recurrence outcomes in ART-treated patients and highlights differences in host response to TB.
Collapse
|
24
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
25
|
Kimmey JM, Campbell JA, Weiss LA, Monte KJ, Lenschow DJ, Stallings CL. The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect 2017; 19:249-258. [PMID: 28087453 PMCID: PMC5403610 DOI: 10.1016/j.micinf.2016.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis infection results in 1.5 million deaths annually. Type I interferon (IFN) signaling through its receptor IFNAR correlates with increased severity of disease, although how this increases susceptibility to M. tuberculosis remains uncertain. ISG15 is one of the most highly induced interferon stimulated genes (ISGs) during M. tuberculosis infection. ISG15 functions by conjugation to target proteins (ISGylation), by noncovalent association with intracellular proteins, and by release from the cell. Recent studies indicated that ISG15 can function via conjugation-independent mechanisms to suppress the type I IFN response. These data raised the question of whether ISG15 may have diverse and sometimes opposing functions during M. tuberculosis infection. To address this, we analyzed ISGylation during M. tuberculosis infection and show that ISGylated proteins accumulate following infection in an IFNAR-dependent manner. Type I IFN and ISG15 both play transient roles in promoting bacterial replication. However, as the disease progresses, ISGylation deviates from the overall effect of type I IFN and, ultimately, mice deficient in ISGylation are significantly more susceptible than IFNAR mice. Our data demonstrate that ISGs can both protect against and promote disease and are the first to report a role for ISGylation during M. tuberculosis infection.
Collapse
Affiliation(s)
- Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jessica A Campbell
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leslie A Weiss
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen J Monte
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah J Lenschow
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
26
|
Travar M, Petkovic M, Verhaz A. Type I, II, and III Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection. Arch Immunol Ther Exp (Warsz) 2015; 64:19-31. [PMID: 26362801 DOI: 10.1007/s00005-015-0365-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Interferons (IFNs) are cytokines released by host cells in response to the presence of pathogens or tumor cells. The aim of this review was to present the previously known and new findings about the role of interferons type I and II, and recently discovered type III in Mycobacterium tuberculosis (M. tuberculosis) infection control. Infection of various cell types with M. tuberculosis induce both IFN-α and IFN-β synthesis. The majority of the studies support the findings that IFN type I actually promotes infection with M. tuberculosis. It has been well establish that IFN-γ has protective function against M. tuberculosis and the other mycobacteria and that the primary source of this cytokine are CD4(+) and CD8(+) T cells. Recently, it has been shown that also the innate lymphocytes, γδ T cells, natural killer (NK) T cells, and NK cells can also be the source of IFN-γ in response to mycobacterial infection. Several studies have shown that CD4(+) T cells protect mice against M. tuberculosis independently of IFN-γ. The balance between IFN-γ and different cytokines such as IL-10 and other Th2 cell cytokines is likely to influence disease outcome. Type I IFN appears to be detrimental through at least three separate, but overlapping, type I IFN-mediated mechanisms: induction of excessive apoptosis, specific suppression of Th1 and IFN-γ responses, and dampening of the immune response by strong IL-10 induction. Recently it has been found that M. tuberculosis infection in A549 lung epithelial cells stimulate up-regulation of IFN-λ genes in vitro. IFN-λs also have a role in modulation of Th1/Th2 response. IFN-λs are not essential for M. tuberculosis infection control, but can give some contribution in immune response to this pathogen.
Collapse
Affiliation(s)
- Maja Travar
- Department of Microbiology, University Hospital Clinical Centre Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina. .,Department of Microbiology and Immunology, Faculty of Medicine, Banja Luka University, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Miroslav Petkovic
- Department of Microbiology and Immunology, Faculty of Medicine, Banja Luka University, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Antonija Verhaz
- Clinic for Infectious Diseases, University Hospital Clinical Centre Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
27
|
Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin Immunol 2014; 26:543-51. [DOI: 10.1016/j.smim.2014.09.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
|
28
|
Yamashiro LH, Oliveira SC, Báfica A. Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 2014; 16:991-7. [PMID: 25284681 DOI: 10.1016/j.micinf.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Endosomal and cytosolic receptors engage recognition of mycobacterial-derived nucleic acids (MyNAs). In contrast, virulent mycobacteria may utilize nucleic acid recognition pathways to escape the host immune system. This short review will summarize the mechanisms by which MyNAs are sensed and how they influence host protective responses.
Collapse
Affiliation(s)
- Lívia Harumi Yamashiro
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil
| | - Sérgio Costa Oliveira
- Laboratory of Immunology and Infectious Diseases, Federal University of Minas Gerais, Brazil
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil.
| |
Collapse
|
29
|
Lozza L, Farinacci M, Bechtle M, Stäber M, Zedler U, Baiocchini A, Del Nonno F, Kaufmann SHE. Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4(+) T Cell Stimulation. Front Immunol 2014; 5:324. [PMID: 25071784 PMCID: PMC4094910 DOI: 10.3389/fimmu.2014.00324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/27/2014] [Indexed: 02/03/2023] Open
Abstract
Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells.
Collapse
Affiliation(s)
- Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Maura Farinacci
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Marina Bechtle
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Manuela Stäber
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| | - Andrea Baiocchini
- Pathology Division, National Institute for Infectious Disease 'Lazzaro Spallanzani' , Rome , Italy
| | - Franca Del Nonno
- Pathology Division, National Institute for Infectious Disease 'Lazzaro Spallanzani' , Rome , Italy
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology , Berlin , Germany
| |
Collapse
|
30
|
Bekeredjian-Ding I, Greil J, Ammann S, Parcina M. Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus. Front Immunol 2014; 5:238. [PMID: 24904586 PMCID: PMC4033153 DOI: 10.3389/fimmu.2014.00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination.
Collapse
Affiliation(s)
| | - Johann Greil
- Institute for Microbiology, Immunology and Parasitology, University Hospital Bonn , Bonn , Germany ; Department of Pediatrics, University Hospital Heidelberg , Heidelberg , Germany
| | - Sandra Ammann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Marijo Parcina
- Institute for Microbiology, Immunology and Parasitology, University Hospital Bonn , Bonn , Germany
| |
Collapse
|
31
|
Ma J, Yang B, Yu S, Zhang Y, Zhang X, Lao S, Chen X, Li B, Wu C. Tuberculosis antigen-induced expression of IFN-α in tuberculosis patients inhibits production of IL-1β. FASEB J 2014; 28:3238-48. [PMID: 24675363 DOI: 10.1096/fj.13-247056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanism by which IFN-α regulates the host response to Mycobacterium tuberculosis (M.tb) infection in humans is poorly understood. In the present study, we found that freshly isolated pleural fluid mononuclear cells (PFMCs) from tuberculous pleural effusion but not peripheral blood mononuclear cells (PBMCs) spontaneously expressed IFN-α and IL-1β in vivo. In addition, exogenous IFN-α significantly inhibited production of IL-1β in PFMCs after stimulation with Bacillus Calmette-Guérin (BCG). To further evaluate the effect of endogenous IFN-α on BCG-induced IL-1β production, a neutralizing antibody to IFN-α was added to the cultures of BCG-stimulated PFMCs. As expected, neutralization of IFN-α by antibody significantly enhanced the production of IL-1β. Notably, we showed that IFN-α inhibited production of IL-1β through 2 distinct mechanisms: IFN-α signaling, via the STAT1 transcription factor, suppressed caspase-1-dependent IL-1β maturation, and IFN-α induced the production of IL-10 in a STAT1-dependent manner in which IL-10 reduced the abundance of IL-1β. In contrast, we found that IFN-α enhanced the production of IFN-γ, and IFN-γ also suppressed IL-1β production in the PFMCs during BCG stimulation. Our findings demonstrate that IFN-α employs distinct pathways for regulating IL-1β production and reveal that in the case of M.tb infection, the induction of IFN-α and IFN-γ might be associated with M.tb immune escape and disease progression in infected humans.-Ma, J., Yang, B., Yu, S., Zhang, Y., Zhang, X., Lao, S., Chen, X., Li, B., Wu, C. Tuberculosis antigen-induced expression of IFN-α in tuberculosis patients inhibits production of IL-1β.
Collapse
Affiliation(s)
- Jiangjun Ma
- Institute of Immunology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yannan Zhang
- Institute of Immunology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | - Suihua Lao
- Chest Hospital of Guangzhou, Guangzhou, China
| | - Xinchun Chen
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China; and
| | - Baiqing Li
- Department of Immunology, Research Center of Immunology, Bengbu Medical College, Bengbu, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|
32
|
Systems approaches to studying the immune response in tuberculosis. Curr Opin Immunol 2013; 25:579-87. [DOI: 10.1016/j.coi.2013.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/22/2013] [Indexed: 01/24/2023]
|
33
|
Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis. Infect Immun 2013; 81:1928-39. [PMID: 23509145 DOI: 10.1128/iai.01317-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis, a major porcine pathogen, can be transmitted to humans and cause severe symptoms. A large human outbreak associated with an unusual streptococcal toxic shock-like syndrome (STSLS) was described in China. Albeit an early burst of proinflammatory cytokines following Chinese S. suis infection was suggested to be responsible for STSLS case severity, the mechanisms involved are still poorly understood. Using a mouse model, the host response to S. suis infection with a North American intermediately pathogenic strain, a European highly pathogenic strain, and the Chinese epidemic strain was investigated by a whole-genome microarray approach. Proinflammatory genes were expressed at higher levels in mice infected with the Chinese strain than those infected with the European strain. The Chinese strain induced a fast and strong gamma interferon (IFN-γ) response by natural killer (NK) cells. In fact, IFN-γ-knockout mice infected with the Chinese strain showed significantly better survival than wild-type mice. Conversely, infection with the less virulent North American strain resulted in an IFN-β-subjugated, low inflammatory response that might be beneficial for the host to clear the infection. Overall, our data suggest that a highly virulent epidemic strain has evolved to massively activate IFN-γ production, mainly by NK cells, leading to a rapid and lethal STSLS.
Collapse
|
34
|
Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 2012; 8:1357-70. [PMID: 22885411 DOI: 10.4161/auto.20881] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.
Collapse
Affiliation(s)
- Alessandra Romagnoli
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Julian MW, Shao G, Bao S, Knoell DL, Papenfuss TL, VanGundy ZC, Crouser ED. Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA. THE JOURNAL OF IMMUNOLOGY 2012; 189:433-43. [PMID: 22675199 DOI: 10.4049/jimmunol.1101375] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are potent APCs known to regulate immune responses to self-Ags, particularly DNA. The mitochondrial fraction of necrotic cells was found to most potently promote human pDC activation, as reflected by type I IFN release, which was dependent upon the presence of mitochondrial DNA and involved TLR9 and receptors for advanced glycation end products. Mitochondrial transcription factor A (TFAM), a highly abundant mitochondrial protein that is functionally and structurally homologous to high mobility group box protein 1, was observed to synergize with CpG-containing oligonucleotide, type A, DNA to promote human pDC activation. pDC type I IFN responses to TFAM and CpG-containing oligonucleotide, type A, DNA indicated their engagement with receptors for advanced glycation end products and TLR9, respectively, and were dependent upon endosomal processing and PI3K, ERK, and NF-κB signaling. Taken together, these results indicate that pDC contribute to sterile immune responses by recognizing the mitochondrial component of necrotic cells and further incriminate TFAM and mitochondrial DNA as likely mediators of pDC activation under these circumstances.
Collapse
Affiliation(s)
- Mark W Julian
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Wu K, Dong D, Fang H, Levillain F, Jin W, Mei J, Gicquel B, Du Y, Wang K, Gao Q, Neyrolles O, Zhang J. An interferon-related signature in the transcriptional core response of human macrophages to Mycobacterium tuberculosis infection. PLoS One 2012; 7:e38367. [PMID: 22675550 PMCID: PMC3366933 DOI: 10.1371/journal.pone.0038367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/03/2012] [Indexed: 11/23/2022] Open
Abstract
The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature (“THP1r2Mtb-induced signature”). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen.
Collapse
Affiliation(s)
- Kang Wu
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Dong
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai Fang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florence Levillain
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Wen Jin
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Mei
- Department of Tuberculosis Control, Shanghai Municipal CDC, Shanghai, China
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
| | - Yanzhi Du
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- * E-mail: (ON); (JZ)
| | - Ji Zhang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (ON); (JZ)
| |
Collapse
|
37
|
|
38
|
Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, Myers TG, Rabin RL, Trinchieri G, Sher A, Feng CG. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 187:2540-7. [PMID: 21784976 DOI: 10.4049/jimmunol.1100926] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis is a virulent intracellular pathogen that survives in macrophages even in the presence of an intact adaptive immune response. Type I IFNs have been shown to exacerbate tuberculosis in mice and to be associated with disease progression in infected humans. Nevertheless, the mechanisms by which type I IFNs regulate the host response to M. tuberculosis infection are poorly understood. In this study, we show that M. tuberculosis induces an IFN-related gene expression signature in infected primary human macrophages, which is dependent on host type I IFN signaling as well as the mycobacterial virulence factor, region of difference-1. We further demonstrate that type I IFNs selectively limit the production of IL-1β, a critical mediator of immunity to M. tuberculosis. This regulation occurs at the level of IL1B mRNA expression, rather than caspase-1 activation or autocrine IL-1 amplification and appears to be preferentially used by virulent mycobacteria since avirulent M. bovis bacillus Calmette-Guérin (BCG) fails to trigger significant expression of type I IFNs or release of mature IL-1β protein. The latter property is associated with decreased caspase-1-dependent IL-1β maturation in the BCG-infected macrophages. Interestingly, human monocytes in contrast to macrophages produce comparable levels of IL-1β in response to either M. tuberculosis or BCG. Taken together, these findings demonstrate that virulent and avirulent mycobacteria employ distinct pathways for regulating IL-1β production in human macrophages and reveal that in the case of M. tuberculosis infection the induction of type I IFNs is a major mechanism used for this purpose.
Collapse
Affiliation(s)
- Aleksey Novikov
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sasindran SJ, Torrelles JB. Mycobacterium Tuberculosis Infection and Inflammation: what is Beneficial for the Host and for the Bacterium? Front Microbiol 2011; 2:2. [PMID: 21687401 PMCID: PMC3109289 DOI: 10.3389/fmicb.2011.00002] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/05/2011] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis is still a major health problem in the world. Initial interactions between Mycobacterium tuberculosis and the host mark the pathway of infection and the subsequent host inflammatory response. This inflammatory response is tightly regulated by both the host and the bacterium during different stages of infection. As infection progresses, the initial intense pro-inflammatory response observed is regulated by suppressive mediators balancing inflammation. In this environment, M. tuberculosis battles to survive interfering with the host inflammatory response. In this review we discuss the major effector molecules involved in inflammation in relation to the different stages of M. tuberculosis infection.
Collapse
Affiliation(s)
- Smitha J. Sasindran
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State UniversityColumbus, OH, USA
| | - Jordi B. Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
40
|
Gafa V, Remoli ME, Giacomini E, Severa M, Grillot R, Coccia EM. Enhancement of anti-Aspergillus T helper type 1 response by interferon-β-conditioned dendritic cells. Immunology 2011; 131:282-8. [PMID: 20518826 DOI: 10.1111/j.1365-2567.2010.03302.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although data show the importance of type I interferons (IFNs) in the regulation of the innate and adaptive immunity elicited in response to viral, bacterial and parasitic infections, the functional activities of these cytokines during fungal infections are poorly understood. We examined here the impact of IFN-β on the response of human monocyte-derived dendritic cells (DCs) infected in vitro with Aspergillus fumigatus. Having found that A. fumigatus-infected DCs do not express IFN-β, we evaluated the effect of the exogenous addition of IFN-β on the maturation of human DCs induced by the infection with A. fumigatus conidia. Although the phagocytosis of the fungus was not affected by IFN-β treatment, the expression of CD86 and CD83 induced upon A. fumigatus challenge was enhanced in IFN-β-conditioned DCs, which also showed an increased expression of IL-27 and IL-12p70, members of IL-12 family. Through these modifications, IFN-β improved the capacity of DCs to promote an anti-Aspergillus T helper type 1 response, as evaluated by mixed leucocyte reaction, which plays a crucial role in the control of invasive aspergillosis. Our results identified a novel effect of IFN-β on anti-Aspergillus immune responses which, in turn, might open new perspectives on the use of IFN-β in immunotherapy for fungal infections aimed at enhancing the immunological functions of DCs.
Collapse
Affiliation(s)
- Valérie Gafa
- Department of Infectious, Parasitic, Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Expression of proinflammatory and regulatory cytokines via NF-κB and MAPK-dependent and IFN regulatory factor-3-independent mechanisms in human primary monocytes infected by Mycobacterium tuberculosis. Clin Dev Immunol 2010; 2011:841346. [PMID: 21197399 PMCID: PMC3010679 DOI: 10.1155/2011/841346] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/26/2010] [Indexed: 12/24/2022]
Abstract
Knowledge of the molecular events regulating the innate response to Mycobacterium tuberculosis (Mtb) is critical for understanding immunological pathogenesis and protection from tuberculosis. To this aim, the regulation and the expression of regulatory and proinflammatory cytokines were investigated in human primary monocytes upon Mtb infection. We found that Mtb-infected monocytes preferentially express a proinflammatory cytokine profile, including IL-6, TNF-α, and IL-1β. Conversely, among the regulatory cytokines, Mtb elicited IL-10 and IL-23 release while no expression of IL-12p70, IL-27, and IFN-β was observed. The analysis of the signalling pathways leading to this selective cytokine expression showed that in monocytes Mtb activates MAPK and NF-κB but is unable to stimulate IRF-3 phosphorylation, a transcription factor required for IL-12p35 and IFN-β gene expression. Thus, by inducing a specific cytokine profile, Mtb can influence the immunoregulatory properties of monocytes, which represent important target of novel vaccinal strategies against Mtb infection.
Collapse
|
42
|
Bystander inhibition of dendritic cell differentiation by
Mycobacterium tuberculosis
‐induced IL‐10. Immunol Cell Biol 2010; 89:437-46. [DOI: 10.1038/icb.2010.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Simmons DP, Canaday DH, Liu Y, Li Q, Huang A, Boom WH, Harding CV. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. THE JOURNAL OF IMMUNOLOGY 2010; 185:2405-15. [PMID: 20660347 DOI: 10.4049/jimmunol.0904005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) cross process exogenous Ags and present them by class I MHC (MHC-I) molecules to CD8(+) T cells specific for Ags from viruses and bacteria such as Mycobacterium tuberculosis. Unmethylated CpG DNA signals through TLR9 to induce type I IFN (IFN-alpha/beta), which enhances MHC-I Ag cross processing, but lipoproteins that signal through TLR2 do not induce IFN-alpha/beta. In these studies we observed that M. tuberculosis, which expresses agonists of both TLR9 and TLR2, did not induce production of IFN-alpha/beta or cross processing by murine DCs. Furthermore, M. tuberculosis and TLR2 agonists inhibited induction of IFN-alpha/beta and DC cross processing by CpG DNA. Exogenous IFN-alpha/beta effectively enhanced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA, bypassing the inhibition of induction of endogenous IFN-alpha/beta. In addition, inhibition of TLR9-induced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA could be circumvented by pretreating cells with CpG DNA to induce IFN-alpha/beta and MHC-I cross processing before inhibitory mycobacterial TLR2 agonists were present. Inhibition of the response to one TLR by another may affect the ultimate response to pathogens like M. tuberculosis that express agonists of multiple TLRs, including TLR2 and TLR9. This mechanism may contribute to immune evasion and explain why IFN-alpha/beta provides little contribution to host immunity to M. tuberculosis. However, downregulation of certain TLR responses may benefit the host by preventing detrimental excessive inflammation that may occur in the presence of persistent infection.
Collapse
Affiliation(s)
- Daimon P Simmons
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Antonios D, Rousseau P, Larangé A, Kerdine-Römer S, Pallardy M. Mechanisms of IL-12 Synthesis by Human Dendritic Cells Treated with the Chemical Sensitizer NiSO4. THE JOURNAL OF IMMUNOLOGY 2010; 185:89-98. [DOI: 10.4049/jimmunol.0901992] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010; 92:425-44. [PMID: 20159032 PMCID: PMC7117016 DOI: 10.1016/j.biochi.2010.02.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
Abstract
STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) α, and thereafter found to be a major component of the cellular response to IFNγ. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein–Barr virus, have evolved a strategy which uses STAT1 activation.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM Unité 978, SMBH, 74 rue Marcel Cachin, Bobigny-cedex 93017, France.
| | | |
Collapse
|
46
|
Type I interferon induction is detrimental during infection with the Whipple's disease bacterium, Tropheryma whipplei. PLoS Pathog 2010; 6:e1000722. [PMID: 20090833 PMCID: PMC2798751 DOI: 10.1371/journal.ppat.1000722] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN) response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection. Innate immune cells are sentinels allowing the host to sense invading pathogens. Among them, macrophages are highly microbicidal and are able to kill microorganisms. However, several pathogens have evolved strategies to hijack macrophage responses in order to survive or replicate. Tropheryma whipplei is the agent of Whipple's disease, a systemic disease that associates arthropathy, weight loss and gastrointestinal symptoms. It has been known for several years that this bacterium has a tropism for macrophages, in which it replicates. In this study, we have shown that T. whipplei induces host cell apoptosis and a surprising macrophage activation, characterized by anti-inflammatory molecules and type I interferon (IFN) signaling, which is generally associated to viral infections. We demonstrate that this type I IFN response is critical for bacterial pathogenicity, as it is required for bacterial replication and provides the first step of the apoptotic program of infected macrophages. By identifying these signaling events induced in macrophage by T. whipplei, we can now better understand the molecular basis of the pathophysiology of Whipple's disease, of interest for clinical and therapeutic ends.
Collapse
|
47
|
Jiang H, van de Ven C, Baxi L, Satwani P, Cairo MS. Differential gene expression signatures of adult peripheral blood vs cord blood monocyte-derived immature and mature dendritic cells. Exp Hematol 2009; 37:1201-15. [PMID: 19647780 DOI: 10.1016/j.exphem.2009.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Our previous studies have demonstrated differentially expressed genetic signature patterns in adult peripheral blood (APB) monocytes (Mos) vs cord blood (CB) Mos. MATERIALS AND METHODS In this study, we examined the differential gene expression profiles of APB vs CB immature dendritic cells (iDCs) and mature dendritic cells (mDCs) derived from Mos. RESULTS By utilizing oligonucleotide microarray, significant differential gene expression signature patterns were identified in APB vs CB mDCs, including increased expression of chemokines, cytokine receptors, and cell surface molecules. Additionally, signaling protein genes were significantly overexpressed in APB vs CB mDCs. There was also a significant amplification of expression of transcription factor interferon (IFN) regulatory factors and structure regulatory genes in APB vs CB mDCs. In contrast, there were genes expressed significantly higher in CB vs APB mDCs, including cell-cycle regulators and signaling molecule gene. CONCLUSION Taken together, these results suggest that specific genetic signatures might be responsible for differential DC differentiation and maturation between APB vs CB, and may provide insight into molecular mechanisms regulating differential immune responses between neonates and adults.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Pediatrics, Morgan Stanley Children's Hospital New York Presbyterian, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
48
|
NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 2009; 5:e1000500. [PMID: 19578435 PMCID: PMC2698121 DOI: 10.1371/journal.ppat.1000500] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 06/05/2009] [Indexed: 01/01/2023] Open
Abstract
While the recognition of microbial infection often occurs at the cell surface via Toll-like receptors, the cytosol of the cell is also under surveillance for microbial products that breach the cell membrane. An important outcome of cytosolic recognition is the induction of IFNalpha and IFNbeta, which are critical mediators of immunity against both bacteria and viruses. Like many intracellular pathogens, a significant fraction of the transcriptional response to Mycobacterium tuberculosis infection depends on these type I interferons, but the recognition pathways responsible remain elusive. In this work, we demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway that responds to bacterial peptidoglycan, and this event requires membrane damage that is actively inflicted by the bacterium. Unexpectedly, this recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depend entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
Collapse
|
49
|
Lee SH, Kim JS, Jun HK, Lee HR, Lee D, Choi BK. The major outer membrane protein of a periodontopathogen induces IFN-beta and IFN-stimulated genes in monocytes via lipid raft and TANK-binding kinase 1/IFN regulatory factor-3. THE JOURNAL OF IMMUNOLOGY 2009; 182:5823-35. [PMID: 19380831 DOI: 10.4049/jimmunol.0802765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surface molecules of pathogens play an important role in stimulating host immune responses. Elucidation of the signaling pathways activated by critical surface molecules in host cells provides insight into the molecular pathogenesis resulting from bacteria-host interactions. MspTL is the most abundant outer membrane protein of Treponema lecithinolyticum, which is associated with periodontitis, and induces expression of a variety of proinflammatory factors. Although bacteria and bacterial components like LPS and flagellin are known to induce IFN-beta, induction by bacterial surface proteins has not been reported. In the present study, we investigated MspTL-mediated activation of signaling pathways stimulating up-regulation of IFN-beta and IFN-stimulated genes in a human monocytic cell line, THP-1 cells, and primary cultured human gingival fibroblasts. MspTL treatment of the cells induced IFN-beta and the IFN-stimulated genes IFN-gamma-inducible protein-10 (IP-10) and RANTES. A neutralizing anti-IFN-beta Ab significantly reduced the expression of IP-10 and RANTES, as well as STAT-1 activation, which was also induced by MspTL. Experiments using specific small interfering RNA showed that MspTL activated TANK-binding kinase 1 (TBK1), but not inducible IkappaB kinase (IKKi). MspTL also induced dimerization of IFN regulatory factor-3 (IRF-3) and translocation into the nucleus. The lipid rapid-disrupting agents methyl-beta-cyclodextrin, nystatin, and filipin inhibited the MspTL internalization and cellular responses, demonstrating that lipid raft activation was a prerequisite for MspTL cellular signaling. Our results demonstrate that MspTL, the major outer protein of T. lecithinolyticum, induced IFN-beta expression and subsequent up-regulation of IP-10 and RANTES via TBK1/IRF-3/STAT-1 signaling secondary to lipid raft activation.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Lehmann C, Taubert D, Jung N, Fätkenheuer G, van Lunzen J, Hartmann P, Romerio F. Preferential upregulation of interferon-alpha subtype 2 expression in HIV-1 patients. AIDS Res Hum Retroviruses 2009; 25:577-81. [PMID: 19500019 DOI: 10.1089/aid.2008.0238] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Humans tailor virus-specific immune responses through modulated expression of 12 different interferon (IFN)-alpha subtypes. However, exacerbated expression of certain IFN-alpha subtypes causes immunopathology in the context of autoimmune conditions and chronic viral infections. We showed that progression to AIDS is associated with elevated expression of IFN-alpha in unstimulated peripheral blood mononuclear cells. Here, we sought to determine whether distinct IFN-alpha subtypes are involved in this phenomenon. We used quantitative RT-PCR to assess expression levels of 12 IFN-alpha subtypes in peripheral blood mononuclear cells from normal donors and HIV-1 patients at CDC stage A and stage C of the disease. Three patterns of IFN-alpha subtype expression emerged. First, IFN-alpha2 and IFN-alpha6 mRNA levels were elevated in both patient groups. Second, IFN-alpha1/13, IFN-alpha8, IFN-alpha14, IFN-alpha16, IFN-alpha17, and IFN-alpha21 were upregulated in stage C but not stage A patients. Third, expression levels of IFN-alpha4, IFN-alpha5, IFN-alpha7, and IFN-alpha10 did not change among the three groups of volunteers. Among all other subtypes, IFN-alpha2 was preferentially upregulated, showing >60-fold higher levels in stage A and >400-fold in stage C patients compared with controls, which correlated with declining CD4 counts. Our results demonstrate that distinct IFN-alpha subtypes are sequentially activated during HIV-1 infection, which may be predictive of disease progression.
Collapse
Affiliation(s)
- C. Lehmann
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - D. Taubert
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | - N. Jung
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - G. Fätkenheuer
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Jan van Lunzen
- University Medical Center Hamburg-Eppendorf and Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - P. Hartmann
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - F. Romerio
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|