1
|
Li R, Lei Y, Rezk A, Diego A Espinoza, Wang J, Feng H, Zhang B, Barcelos IP, Zhang H, Yu J, Huo X, Zhu F, Yang C, Tang H, Goldstein AC, Banwell BL, Hakonarson H, Xu H, Mingueneau M, Sun B, Li H, Bar-Or A. Oxidative phosphorylation regulates B cell effector cytokines and promotes inflammation in multiple sclerosis. Sci Immunol 2024; 9:eadk0865. [PMID: 38701189 DOI: 10.1126/sciimmunol.adk0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yanting Lei
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Huiru Feng
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Bo Zhang
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Isabella P Barcelos
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Zhang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Yu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinrui Huo
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fangyi Zhu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Changxin Yang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hao Tang
- MS Research Unit, Biogen, Cambridge, MA 02142, USA
| | - Amy C Goldstein
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brenda L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongwei Xu
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | | | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- MS Research Unit, Biogen, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
3
|
Shu Y, Hassan F, Ostrowski MC, Mehta KD. Role of hepatic PKCβ in nutritional regulation of hepatic glycogen synthesis. JCI Insight 2021; 6:149023. [PMID: 34622807 PMCID: PMC8525638 DOI: 10.1172/jci.insight.149023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCβ-deficient (PKCβHep-/-) mouse model, we demonstrated the role of hepatic PKCβ in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCβHep-/- mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/β signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCβHep-/- liver compared with controls. The above data strongly imply that hepatic PKCβ deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCβ has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faizule Hassan
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael C Ostrowski
- Department of Biochemistry & Molecular Biology, Holling Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal D Mehta
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Instacare Therapeutics, Dublin, Ohio, USA
| |
Collapse
|
4
|
Lee J, Park H, Lim J, Jin HS, Park Y, Jung YJ, Ko HJ, Yoon SI, Lee GS, Kim PH, Choi SS, Xiao C, Kang SG. GSK3 Restrains Germinal Center B Cells to Form Plasma Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:481-493. [PMID: 33380497 DOI: 10.4049/jimmunol.2000908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023]
Abstract
B cells in the germinal center (GC) are programmed to form plasma cells (PCs) or memory B cells according to signals received by receptors that are translated to carry out appropriate activities of transcription factors. However, the precise mechanism underlying this process to complete the GC reaction is unclear. In this study, we show that both genetic ablation and pharmacological inhibition of glycogen synthase kinase 3 (GSK3) in GC B cells of mice facilitate the cell fate decision toward PC formation, accompanied by acquisition of dark zone B cell properties. Mechanistically, under stimulation with CD40L and IL-21, GSK3 inactivation synergistically induced the transcription factors Foxo1 and c-Myc, leading to increased levels of key transcription factors required for PC differentiation, including IRF4. This GSK3-mediated alteration of transcriptional factors in turn facilitated the dark zone transition and consequent PC fate commitment. Our study thus reveals the upstream master regulator responsible for interpreting external cues in GC B cells to form PCs mediated by key transcription factors.
Collapse
Affiliation(s)
- Jeonghyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyosung Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiwon Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung-Seung Jin
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yoon Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Geun-Shik Lee
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.,College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Pyeung-Hyeun Kim
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.,Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037; and.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; .,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
5
|
Lazarian G, Friedrich C, Quinquenel A, Tran J, Ouriemmi S, Dondi E, Martin A, Mihoub I, Chiron D, Bellanger C, Fleury C, Gélébart P, McCormack E, Ledoux D, Thieblemont C, Marzec J, Gribben JG, Cymbalista F, Varin-Blank N, Gardano L, Baran-Marszak F. Stabilization of β-catenin upon B-cell receptor signaling promotes NF-kB target genes transcription in mantle cell lymphoma. Oncogene 2020; 39:2934-2947. [PMID: 32034308 DOI: 10.1038/s41388-020-1183-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
B-cell receptor (BCR) signaling pathways and interactions with the tumor microenvironment account for mantle cell lymphoma (MCL) cells survival in lymphoid organs. In several MCL cases, the WNT/β-catenin canonical pathway is activated and β-catenin accumulates into the nucleus. As both BCR and β-catenin are important mediators of cell survival and interaction with the microenvironment, we investigated the crosstalk between BCR and WNT/β-catenin signaling and analyzed their impact on cellular homeostasis as well as their targeting by specific inhibitors. β-catenin was detected in all leukemic MCL samples and its level of expression rapidly increased upon BCR stimulation. This stabilization was hampered by the BCR-pathway inhibitor Ibrutinib, supporting β-catenin as an effector of the BCR signaling. In parallel, MCL cells as compared with normal B cells expressed elevated levels of WNT16, a NF-κB target gene. Its expression increased further upon BCR stimulation to participate to the stabilization of β-catenin. Upon BCR stimulation, β-catenin translocated into the nucleus but did not induce a Wnt-like transcriptional response, i.e., TCF/LEF dependent. β-catenin rather participated to the regulation of NF-κB transcriptional targets, such as IL6, IL8, and IL1. Oligo pull down and chromatin immunoprecipitation experiments demonstrated that β-catenin is part of a protein complex that binds the NF-κB DNA consensus sequence, strengthening the idea of an association between the two proteins. An inhibitor targeting β-catenin transcriptional interactions hindered both NF-κB DNA recruitment and induced primary MCL cells apoptosis. Thus, β-catenin likely represents another player through which BCR signaling impacts on MCL cell survival.
Collapse
Affiliation(s)
- Gregory Lazarian
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Chloe Friedrich
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Anne Quinquenel
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Julie Tran
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Souhail Ouriemmi
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Elisabetta Dondi
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Antoine Martin
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'anatomopathologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Imane Mihoub
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - David Chiron
- Centre de Recherches en Cancérologie et Immunologie Nantes-Angers, U1232 INSERM, Centre National de la Recherche Scientifique (CNRS) ERL6001, Université de Nantes, Nantes, France
| | - Céline Bellanger
- Centre de Recherches en Cancérologie et Immunologie Nantes-Angers, U1232 INSERM, Centre National de la Recherche Scientifique (CNRS) ERL6001, Université de Nantes, Nantes, France
| | - Carole Fleury
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Pascal Gélébart
- Department of clinical science, University of Bergen, Bergen, Norway
| | - Emmet McCormack
- Department of clinical science, University of Bergen, Bergen, Norway
| | - Dominique Ledoux
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Catherine Thieblemont
- Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jacek Marzec
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Florence Cymbalista
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Nadine Varin-Blank
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France. .,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France.
| | - Laura Gardano
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Fanny Baran-Marszak
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France. .,Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France. .,Service d'Hématologie Biologique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France.
| |
Collapse
|
6
|
Foster JB, Lashley R, Zhao F, Wang X, Kung N, Askwith CC, Lin L, Shultis MW, Hodgetts KJ, Lin CLG. Enhancement of tripartite synapses as a potential therapeutic strategy for Alzheimer's disease: a preclinical study in rTg4510 mice. Alzheimers Res Ther 2019; 11:75. [PMID: 31439023 PMCID: PMC6706914 DOI: 10.1186/s13195-019-0530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lack of effective treatment options for Alzheimer's disease (AD) is of momentous societal concern. Synaptic loss is the hallmark of AD that correlates best with impaired memory and occurs early in the disease process, before the onset of clinical symptoms. We have developed a small-molecule, pyridazine-based series that enhances the structure and function of both the glial processes and the synaptic boutons that form the tripartite synapse. Previously, we have shown that these pyridazine derivatives exhibit profound efficacy in an amyloid precursor protein AD model. Here, we evaluated the efficacy of an advanced compound, LDN/OSU-0215111, in rTg4510 mice-an aggressive tauopathy model. METHODS rTg4510 mice were treated orally with vehicle or LDN/OSU-0215111 (10 mg/kg) daily from the early symptomatic stage (2 months old) to moderate (4 months old) and severe (8 months old) disease stages. At each time point, mice were subjected to a battery of behavioral tests to assess the activity levels and cognition. Also, tissue collections were performed on a subset of mice to analyze the tripartite synaptic changes, neurodegeneration, gliosis, and tau phosphorylation as assessed by immunohistochemistry and Western blotting. At 8 months of age, a subset of rTg4510 mice treated with compound was switched to vehicle treatment and analyzed behaviorally and biochemically 30 days after treatment cessation. RESULTS At both the moderate and severe disease stages, compound treatment normalized cognition and behavior as well as reduced synaptic loss, neurodegeneration, tau hyperphosporylation, and neuroinflammation. Importantly, after 30 days of treatment cessation, the benefits of compound treatment were sustained, indicating disease modification. We also found that compound treatment rapidly and robustly reduced tau hyperphosphorylation/deposition possibly via the inhibition of GSK3β. CONCLUSIONS The results show that LDN/OSU-0215111 provides benefits for multiple aspects of tauopathy-dependent pathology found in Alzheimer's disease including tripartite synapse normalization and reduction of toxic tau burden, which, in turn, likely accounted for normalized cognition and activity levels in compound-treated rTg4510 mice. This study, in combination with our previous work regarding the benefit of pyridazine derivatives against amyloid-dependent pathology, strongly supports pyridazine derivatives as a viable, clinically relevant, and disease-modifying treatment for many of the facets of Alzheimer's disease.
Collapse
Affiliation(s)
- Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Rashelle Lashley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Nydia Kung
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Candice C. Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Lin Lin
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Michael W. Shultis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Kevin J. Hodgetts
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
7
|
Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol 2019; 29:44-65. [PMID: 30220580 PMCID: PMC7001864 DOI: 10.1016/j.tcb.2018.08.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Deregulated WNT signaling has been shown to favor malignant transformation, tumor progression, and resistance to conventional cancer therapy in a variety of preclinical and clinical settings. Accumulating evidence suggests that aberrant WNT signaling may also subvert cancer immunosurveillance, hence promoting immunoevasion and resistance to multiple immunotherapeutics, including immune checkpoint blockers. Here, we discuss the molecular and cellular mechanisms through which WNT signaling influences cancer immunosurveillance and present potential therapeutic avenues to harness currently available WNT modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo. Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Koopmans T, Eilers R, Menzen M, Halayko A, Gosens R. β-Catenin Directs Nuclear Factor-κB p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle. Front Immunol 2017; 8:1086. [PMID: 28943877 PMCID: PMC5596077 DOI: 10.3389/fimmu.2017.01086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
β-Catenin is a multifunctional protein that apart from its role in proliferative and differentiation events, also acts upon inflammatory processes, mainly via interaction with nuclear factor-κB (NF-κB). However, there is still controversy as to whether β-catenin facilitates or represses NF-κB output. Insights into the molecular mechanisms underlying the interaction between β-catenin and NF-κB have highlighted the cofactors CREB-binding protein (CBP) and p300 as important candidates. Here, we hypothesized that the interaction of β-catenin with CBP/p300 directs NF-κB output. Using human airway smooth muscle (ASM) cells, we found that β-catenin is essential in interleukin -1β (IL-1β)-mediated expression of interleukin-6 (IL-6) by promoting nuclear translocation of the p65 subunit of NF-κB. These effects were independent from WNT pathway activation or other factors that promote β-catenin signaling. In the nucleus, inhibition of either the CBP- or p300-β-catenin interaction could regulate NF-κB output, by enhancing (CBP inhibition) or inhibiting (p300 inhibition) IL-1β-induced expression of IL-6, respectively. Acetylation of p65 by p300 likely underlies these events, as inhibition of the p300-β-catenin interaction diminished levels of acetylated p65 at lysine 310, thereby reducing p65 transcriptional activity. In conclusion, β-catenin is a critical component of NF-κB-mediated inflammation in human ASM, affecting transcriptional output by interacting with the nuclear cofactors CBP and p300. Targeting β-catenin may be an alternative strategy to treat airway inflammation in patients with airway disease, such as asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Roos Eilers
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Mark Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Andrew Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
11
|
Jozic I, Vukelic S, Stojadinovic O, Liang L, Ramirez HA, Pastar I, Tomic Canic M. Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway to Inhibit Wound Closure. J Invest Dermatol 2016; 137:1144-1154. [PMID: 28017831 DOI: 10.1016/j.jid.2016.11.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023]
Abstract
Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, β-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sasa Vukelic
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Immunology, Infection and Inflammation Graduate Program, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Liang Liang
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Horacio A Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Human Genomics and Genetics Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Human Genomics and Genetics Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA; Cellular and Molecular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
12
|
RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease. Neurochem Res 2016; 41:2470-80. [DOI: 10.1007/s11064-016-1960-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
|
13
|
Sertorio M, Amarachintha S, Wilson A, Pang Q. Loss of Fancc Impairs Antibody-Secreting Cell Differentiation in Mice through Deregulating the Wnt Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2016; 196:2986-94. [PMID: 26895835 DOI: 10.4049/jimmunol.1501056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022]
Abstract
Fanconi anemia (FA) is characterized by a progressive bone marrow failure and an increased incidence of cancer. FA patients have high susceptibility to immune-related complications such as infection and posttransplant graft-versus-host disease. In this study, we investigated the effect of FA deficiency in B cell function using the Fancc mouse model. Fancc(-/-) B cells show a specific defect in IgG2a switch and impaired Ab-secreting cell (ASC) differentiation. Global transcriptome analysis of naive B cells by mRNA sequencing demonstrates that FA deficiency deregulates a network of genes involved in immune function. Significantly, many genes implicated in Wnt signaling were aberrantly expressed in Fancc(-/-) B cells. Consistently, Fancc(-/-) B cells accumulate high levels of β-catenin under both resting and stimulated conditions, suggesting hyperactive Wnt signaling. Using an in vivo Wnt GFP reporter assay, we verified the upregulation of Wnt signaling as a potential mechanism responsible for the impaired Fancc(-/-) B cell differentiation. Furthermore, we showed that Wnt signaling inhibits ASC differentiation possibly through repression of Blimp1 and that Fancc(-/-) B cells are hypersensitive to Wnt activation during ASC differentiation. Our findings identify Wnt signaling as a physiological regulator of ASC differentiation and establish a role for the Wnt pathway in normal B cell function and FA immune deficiency.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
14
|
Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas. Oncogene 2016; 35:4269-81. [PMID: 26776161 PMCID: PMC4981874 DOI: 10.1038/onc.2015.493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/26/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
Abstract
Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of β-catenin. The β-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated β-catenin expression. In line, β-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased β-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that β-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis.
Collapse
|
15
|
Yang Q, Modi P, Ramanathan S, Quéva C, Gandhi V. Idelalisib for the treatment of B-cell malignancies. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.978858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Zhao HJ, Ren LL, Wang ZH, Sun TT, Yu YN, Wang YC, Yan TT, Zou W, He J, Zhang Y, Hong J, Fang JY. MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway. Am J Cancer Res 2014; 4:1193-208. [PMID: 25285168 PMCID: PMC4183997 DOI: 10.7150/thno.8712] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/08/2014] [Indexed: 12/22/2022] Open
Abstract
Abstract: Recent studies have increasingly linked microRNAs to colorectal cancer (CRC). MiR-194 has been reported deregulated in different tumor types, whereas the function of miR-194 in CRC largely remains unexplored. Here we investigated the biological effects, mechanisms and clinical significance of miR-194. Functional assay revealed that overexpression of miR-194 inhibited CRC cell viability and invasion in vitro and suppressed CRC xenograft tumor growth in vivo. Conversely, block of miR-194 in APCMin/+ mice promoted tumor growth. Furthermore, miR-194 reduced the expression of AKT2 both in vitro and in vivo. Clinically, the expression of miR-194 gradually decreased from 20 normal colorectal mucosa (N-N) cases through 40 colorectal adenomas (CRA) cases and then to 40 CRC cases, and was negatively correlated with AKT2 and pAKT2 expression. Furthermore, expression of miR-194 in stool samples was gradually decreased from 20 healthy cases, 20 CRA cases, then to 28 CRC cases. Low expression of miR-194 in CRC tissues was associated with large tumor size (P=0.006), lymph node metastasis (P=0.012) and shorter survival (HR =2.349, 95% CI = 1.242 to 4.442; P=0.009). In conclusion, our data indicated that miR-194 acted as a tumor suppressor in the colorectal carcinogenesis via targeting PDK1/AKT2/XIAP pathway, and could be a significant diagnostic and prognostic biomarker for CRC.
Collapse
|
17
|
Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7:46. [PMID: 24904272 PMCID: PMC4033045 DOI: 10.3389/fnmol.2014.00046] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/02/2014] [Indexed: 01/10/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of age-related dementia. The etiology of AD is considered to be multifactorial as only a negligible percentage of cases have a familial or genetic origin. Glycogen synthase kinase-3 (GSK-3) is regarded as a critical molecular link between the two histopathological hallmarks of the disease, namely senile plaques and neurofibrillary tangles. In this review, we summarize current data regarding the involvement of this kinase in several aspects of AD development and progression, as well as key observations highlighting GSK-3 as one of the most relevant targets for AD treatment.
Collapse
Affiliation(s)
| | - Jerónimo Jurado
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain ; Biology Faculty, Autónoma University Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
18
|
Regulation of β-catenin stabilization in human platelets. Biochimie 2013; 95:1252-7. [DOI: 10.1016/j.biochi.2013.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
|
19
|
The effect of Epstein-Barr virus Latent Membrane Protein 2 expression on the kinetics of early B cell infection. PLoS One 2013; 8:e54010. [PMID: 23308294 PMCID: PMC3540077 DOI: 10.1371/journal.pone.0054010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023] Open
Abstract
Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein.
Collapse
|
20
|
Cain CJ, Manilay JO. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies. Exp Hematol 2013; 41:3-16. [DOI: 10.1016/j.exphem.2012.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/19/2022]
|
21
|
Lovatt M, Bijlmakers MJ. Stabilisation of β-catenin downstream of T cell receptor signalling. PLoS One 2010; 5. [PMID: 20862283 PMCID: PMC2940849 DOI: 10.1371/journal.pone.0012794] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/21/2010] [Indexed: 11/23/2022] Open
Abstract
Background The role of TCF/β-catenin signalling in T cell development is well established, but important roles in mature T cells have only recently come to light. Methodology/Principal Findings Here we have investigated the signalling pathways that are involved in the regulation of β-catenin in primary human T cells. We demonstrate that β-catenin expression is upregulated rapidly after T cell receptor (TCR) stimulation and that this involves protein stabilisation rather than an increase in mRNA levels. Similar to events in Wnt signalling, the increase in β-catenin coincides with an inhibition of GSK3, the kinase that is required for β-catenin degradation. β-catenin stabilisation in T cells can also be induced by the activation of PKC with phorbol esters and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PKC). Upon TCR signalling, β-catenin accumulates in the nucleus and, parallel to this, the ratio of TCF1 isoforms is shifted in favour of the longer β-catenin binding isoforms. However, phosphorylated β-catenin, which is believed to be inactive, can also be detected and the expression of Wnt target genes Axin2 and dickkopf is down regulated. Conclusions/Significance These data show that in mature human T cells, TCR signalling via PI3K and PKC can result in the stabilisation of β-catenin, allowing β-catenin to migrate to the nucleus. They further highlight important differences between β-catenin activities in TCR and Wnt signalling.
Collapse
Affiliation(s)
- Matthew Lovatt
- Peter Gorer Department of Immunobiology, School of Medicine at Guy's, King's College and St Thomas' Hospitals, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|
22
|
Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 2010; 237:205-25. [DOI: 10.1111/j.1600-065x.2010.00944.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Schenkel JM, Zloza A, Li W, Narasipura SD, Al-Harthi L. Beta-catenin signaling mediates CD4 expression on mature CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:2013-9. [PMID: 20631314 DOI: 10.4049/jimmunol.0902572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Upon activation, a subset of mature human CD8(+) T cells re-expresses CD4 dimly. This CD4(dim)CD8(bright) T cell population is genuine and enriched in antiviral CD8(+) T cell responses. The signaling pathway that leads to CD4 re-expression on mature CD8(+) T cells is not clear. Given that Wnt/beta-catenin signaling plays a critical role in the transition of CD4(-)CD8(-) to CD4(+)CD8(+) thymocytes, we determined whether beta-catenin mediates CD4 expression on mature CD8(+) T cells. We demonstrate that active beta-catenin expression is 20-fold higher on CD4(dim)CD8(bright) than CD4(-)CD8(+) T cells. Activation of beta-catenin signaling, through LiCl or transfection with a constitutively active construct of beta-catenin, induced CD4 on CD8(+) T cells by approximately 10-fold. Conversely, inhibition of beta-catenin signaling through transfection with a dominant-negative construct for T cell factor-4, a downstream effector of beta-catenin signaling, diminished CD4 expression on CD8(+) T cells by 50% in response to T cell activation. Beta-catenin-mediated induction of CD4 on CD8(+) T cells is transcriptionally regulated, as it induced CD4 mRNA, and T cell factor/lymphoid enhancer factor sites were identified within the human CD4 promoter. Further, beta-catenin expression induced the antiapoptotic factor BcL-xL, suggesting that beta-catenin may mediate protection against activation-induced cell death. Collectively, these data demonstrate that beta-catenin is critical in inducing CD4 expression on mature CD8(+) T cells, suggesting that it is a common pathway for CD4 upregulation among thymocytes and mature CD8(+) T cells.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
24
|
Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia 2010; 12:326-35. [PMID: 20360943 DOI: 10.1593/neo.91972] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/28/2010] [Accepted: 02/02/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lymphoid enhancer factor-1 (lef-1) is overexpressed in B-cell chronic lymphocytic leukemia (CLL) when compared with normal B cells and transcribes several genes implicated in the pathogenesis of CLL. We therefore hypothesize that antagonism of lef-1 might lead to killing of CLL cells. We used two small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling (CGP049090 and PKF115-584) to test our hypothesis. DESIGN AND METHODS Enriched CLL cells and healthy B cells were used in this study. Small interfering RNA (siRNA)-mediated knockdown of lef-1 in primary CLL cells was done using nucleofection, and 50% lethal concentration (LC(50)) of two small molecules was assessed using ATP-based cell viability assay. Apoptotic response was investigated in time course experiments with different apoptotic markers. Specificity of the small molecules was demonstrated by coimmunoprecipitation experiments for the lef-1/beta-catenin interaction. In vivo studies were done in JVM-3 subcutaneous xenograft model. RESULTS Inhibition of lef-1 by siRNA leads to increased apoptosis of CLL cells and inhibited proliferation of JVM-3 cell lines. The two small molecule inhibitors (CGP049090 and PKF115-584) efficiently kill CLL cells (LC(50)<1 microM), whereas normal B cells were not significantly affected. Coimmunoprecipitation showed a selective disruption of beta-catenin/lef-1 interaction. In vivo studies exhibited tumor inhibition of 69% with CGP049090 and 57% with PKF115-584 when compared with vehicle-treated controls, and the intervention was well tolerated. CONCLUSIONS We have demonstrated that targeting lef-1 is a new and selective therapeutic approach in CLL. CGP049090 or PKF115-584 may be attractive compounds for CLL and other malignancies that deserve further (pre)clinical evaluation.
Collapse
|
25
|
Bennett LB, Taylor KH, Arthur GL, Rahmatpanah FB, Hooshmand SI, Caldwell CW. Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics 2010; 2:53-70. [PMID: 20473358 PMCID: PMC2869094 DOI: 10.2217/epi.09.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Certain WNT and WNT network target genes are expressed at higher or lower levels in chronic lymphocytic leukemia compared with normal B-cells. This includes upregulation of nuclear complex genes, as well as genes for cytoplasmic proteins and WNT ligands and their cognate receptors. In addition, epigenetic silencing of several negative regulators of the WNT pathway have been identified. The balance between epigenetic downregulation of negative effector genes and increased expression of positive effector genes demonstrate that the epigenetic downregulation of WNT antagonists is one mechanism, perhaps the main mechanism, that is permissive to active WNT signaling in chronic lymphocytic leukemia. Moreover, constitutive activation of the WNT network and target genes is likely to impact on additional interacting signaling pathways. Based on published studies, we propose a model of WNT signaling that involves mainly permissive expression, and sometimes overexpression, of positive effectors and downregulation of negative regulators in the network. In this model, DNA methylation, histone modifications and altered expression of microRNA molecules interact to allow continuous WNT signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Charles W Caldwell
- Author for correspondence: Department of Pathology & Anatomical Sciences, Ellis Fischel Cancer Center, University of Missouri, 115 Business Loop I-70 West, Columbia, MO 65203, USA, Tel.: +1 573 882 1234, Fax: +1 573 884 5206,
| |
Collapse
|
26
|
Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 2009; 31:24-31. [PMID: 19836308 DOI: 10.1016/j.it.2009.09.007] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022]
Abstract
In just a few years, the view of glycogen synthase kinase-3 (GSK3) has been transformed from an obscure enzyme seldom encountered in the immune literature to one implicated in an improbably large number of roles. GSK3 is a crucial regulator of the balance between pro- and anti-inflammatory cytokine production in both the periphery and the central nervous system, so that GSK3 inhibitors such as lithium can diminish inflammation. GSK3 influences T-cell proliferation, differentiation and survival. Many effects stem from GSK3 regulation of critical transcription factors, such as NF-kappaB, NFAT and STATs. These discoveries led to the rapid application of GSK3 inhibitors to animal models of sepsis, arthritis, colitis, multiple sclerosis and others, demonstrating their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
27
|
de Frias M, Iglesias-Serret D, Cosialls AM, Coll-Mulet L, Santidrián AF, González-Gironès DM, de la Banda E, Pons G, Gil J. Akt inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Haematologica 2009; 94:1698-707. [PMID: 19815839 DOI: 10.3324/haematol.2008.004028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells. DESIGN AND METHODS Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors. We studied the changes induced by Akti-1/2 and A-443654 at the mRNA level by performing reverse transcriptase multiplex ligation-dependent probe amplification. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on chronic lymphocytic leukemia cells by western blotting. Moreover, we analyzed the cytotoxic effect of Akt inhibitors in patients' cells with deleted/mutated TP53. RESULTS Both inhibitors induced apoptosis in chronic lymphocytic leukemia cells in a dose-dependent manner. Moreover, B cells from patients with chronic lymphocytic leukemia were more sensitive to Akt inhibitors than T cells from leukemic patients, and B or T cells from healthy donors. Survival factors for chronic lymphocytic leukemia cells, such as interleukin-4 and stromal cell-derived factor-1alpha, were not able to block the apoptosis induced by either Akt inhibitor. Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. CONCLUSIONS These results demonstrate that Akt inhibitors induce apoptosis of chronic lymphocytic leukemia cells and might be a new therapeutic option for the treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Mercè de Frias
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu M, Sharma A, Wiest DL, Sen JM. Pre-TCR-induced beta-catenin facilitates traversal through beta-selection. THE JOURNAL OF IMMUNOLOGY 2009; 182:751-8. [PMID: 19124717 DOI: 10.4049/jimmunol.182.2.751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pre-TCR induced signals regulate development of the alphabeta TCR lineage cells at the beta-selection checkpoint. We have previously shown that conditional deletion of beta-catenin, a central mediator of Wnt-beta-catenin-T cell factor signaling pathway, impairs traversal through the beta-selection checkpoint. We now provide a molecular basis for the impairment. We demonstrate that pre-TCR signals specifically stabilize beta-catenin in CD4-CD8- double negative thymocytes during beta-selection. Pre-TCR induced Erk activity was required to stabilize beta-catenin. Enforced expression of stabilized beta-catenin was sufficient to mediate aspects of beta-selection including sustained expression of early growth response (Egr) genes. Consistently, deletion of beta-catenin reduced induction of Egr gene expression by the pre-TCR signal and blocked efficient beta-selection. Thus, we demonstrate that pre-TCR induced beta-catenin sustains expression of Egr genes that facilitate traversal through the beta-selection checkpoint.
Collapse
Affiliation(s)
- Mai Xu
- Lymphocyte Development Unit, Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The activation of PI3K (phosphoinositide 3-kinase) family members is a universal event in response to virtually all cytokines, growth factors and hormones. As a result of formation of PtdIns with an added phosphate at the 3 position of the inositol ring, activation of the protein kinases PDK1 (phosphoinositide-dependent kinase 1) and PKB (protein kinase B)/Akt occurs. The PI3K/PKB pathway impinges upon a remarkable array of intracellular events that influence either directly or indirectly whether or not a cell will undergo apoptosis. In this review, the many ways in which PI3K/PKB can control these processes are summarized. Not all of the events described will necessarily play a role in any one cell type, but a subset of these events is probably essential for the survival of every cell.
Collapse
|
30
|
Yu Q, Quinn WJ, Salay T, Crowley JE, Cancro MP, Sen JM. Role of beta-catenin in B cell development and function. THE JOURNAL OF IMMUNOLOGY 2008; 181:3777-83. [PMID: 18768830 DOI: 10.4049/jimmunol.181.6.3777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
beta-Catenin is a central mediator of Wnt signaling pathway, components of which have been implicated in B cell development and function. B cell progenitors and bone marrow stromal cells express Wnt ligands, Frizzled receptors and Wnt antagonists, suggesting fine tuned regulation of this pathway in B cell development. In particular, deletion of Frizzled 9 gene results in developmental defects at the pre-B stage of development and an accumulation of plasma cells. Furthermore, Wnt signals regulate B cell proliferation through lymphocyte enhancer-binding factor-1. However, it is not known whether Wnt signaling in B cell development is mediated by beta-catenin and whether beta-catenin plays a role in mature B cell function. In this report, we show that mice bearing B cell-specific deletion of beta-catenin have normal B cell development in bone marrow and periphery. A modest defect in plasma cell generation in vitro was documented, which correlated with a defective expression of IRF-4 and Blimp-1. However, B cell response to T-dependent and T-independent Ags in vivo was found to be normal. Thus, beta-catenin expression was found to be dispensable for normal B cell development and function.
Collapse
Affiliation(s)
- Qing Yu
- Lymphocyte Development Unit, Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore MD 21224, USA
| | | | | | | | | | | |
Collapse
|
31
|
Salins P, He Y, Olson K, Glazner G, Kashour T, Amara F. TGF-β1 is increased in a transgenic mouse model of familial Alzheimer's disease and causes neuronal apoptosis. Neurosci Lett 2008; 430:81-6. [DOI: 10.1016/j.neulet.2007.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/03/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
32
|
Sengupta S, Jayaraman P, Chilton PM, Casella CR, Mitchell TC. Unrestrained glycogen synthase kinase-3 beta activity leads to activated T cell death and can be inhibited by natural adjuvant. THE JOURNAL OF IMMUNOLOGY 2007; 178:6083-91. [PMID: 17475833 DOI: 10.4049/jimmunol.178.10.6083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40202, USA
| | | | | | | | | |
Collapse
|
33
|
Wang Y, Feng H, Bi C, Zhu L, Pollard JW, Chen B. GSK-3β mediates in the progesterone inhibition of estrogen induced cyclin D2 nuclear localization and cell proliferation in cyclin D1−/− mouse uterine epithelium. FEBS Lett 2007; 581:3069-75. [PMID: 17560576 DOI: 10.1016/j.febslet.2007.05.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 05/25/2007] [Accepted: 05/25/2007] [Indexed: 11/17/2022]
Abstract
We report that glycogen synthase kinase (GSK)-3beta is phosphorylated at ser9 and inactivated in uterine epithelial cells from E(2)-treated cyclin D1 null mutant mice. Simultaneous administration of P(4) together with E(2) blocked this effect. Pharmacological inhibition of GSK-3beta activity in mice treated with P(4)E(2) reversed the nuclear exclusion of cyclin D2 in the uterine epithelial cells and this caused phosphorylation of Rb protein and progression of cells towards S-phase. Our results indicate that GSK-3beta is a major target of E(2) and P(4) in regulation of cyclin D2 localization in the mouse uterine epithelium.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Life Science and National Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Kousteni S, Almeida M, Han L, Bellido T, Jilka RL, Manolagas SC. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor. Mol Cell Biol 2006; 27:1516-30. [PMID: 17158928 PMCID: PMC1800724 DOI: 10.1128/mcb.01550-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.
Collapse
Affiliation(s)
- Stavroula Kousteni
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
35
|
Vilimek D, Duronio V. Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochem Cell Biol 2006; 84:20-9. [PMID: 16462886 DOI: 10.1139/o05-154] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of glycogen synthase kinase-3 (GSK-3) by phosphorylation at inhibitory sites has been well documented. In many, but not all, cases, the phosphatidylinositol 3-kinase pathway, and particularly the downstream kinase protein kinase B (PKB)/akt, have been shown to be responsible for GSK-3 phosphorylation. Given that no studies have ever reported cytokine-mediated phosphorylation of GSK-3, we investigated the phosphorylation of this kinase in several hemopoietic cell types in response to either interleukin (IL)-3, IL-4 or granulocyte-macrophage colony stimulating factor (GM-CSF). Each of the cytokines was able to stimulate phosphorylation of the isoforms GSK-3alpha and GSK-3beta. However, only in the case of IL-4 stimulation was there any dependence on PKB for this phosphorylation. We were clearly able to show that PKB was capable of phosphorylating GSK-3 in these cells, but studies using inhibitors of the protein kinase C (PKC) family of kinases have shown that these enzymes are more likely to play a key role in GSK-3 phosphorylation. Cytokine-mediated generation of diacylglycerol was demonstrated, supporting the possible activation of PKC family members. Thus, cytokine-dependent GSK-3 phosphorylation in hemopoietic cells proceeds primarily through PKB independent pathways.
Collapse
Affiliation(s)
- Dino Vilimek
- Department of Medicine, University of British Columbia, Jack Bell Research Centre, Vancouver, Canada
| | | |
Collapse
|
36
|
Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF, Chiles TC. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 2006; 107:4458-65. [PMID: 16449529 PMCID: PMC1895797 DOI: 10.1182/blood-2005-12-4788] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bioenergetic response of B lymphocytes is subject to rapid changes following antigen encounter in order to provide ATP and anabolic precursors necessary to support growth. However, the pathways involved in glucose acquisition and metabolism are unknown. We find that B lymphocytes rapidly increase glucose uptake and glycolysis following B-cell antigen receptor (BCR) crosslinking. Inhibition of glycolysis blocks BCR-mediated growth. Prior to S-phase entry, glucose metabolism shifts from primarily glycolytic to include the pentose phosphate pathway. BCR-induced glucose utilization is dependent upon phosphatidylinositol 3-kinase (PI-3K) activity as evidenced by inhibition of glucose uptake and glycolysis with LY294002 treatment of normal B cells and impaired glucose utilization in B cells deficient in the PI-3K regulatory subunit p85alpha. Activation of Akt is sufficient to increase glucose utilization in B cells. We find that glucose utilization is inhibited by coengagement of the BCR and FcgammaRIIB, suggesting that limiting glucose metabolism may represent an important mechanism underlying FcgammaRIIB-mediated growth arrest. Taken together, these findings demonstrate that both growth-promoting BCR signaling and growth-inhibitory FcgammaRIIB signaling modulate glucose energy metabolism. Manipulation of these pathways may prove to be useful in the treatment of lymphoproliferative disorders, wherein clonal expansion of B lymphocytes plays a role.
Collapse
Affiliation(s)
- Cheryl A Doughty
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Barandon L, Dufourcq P, Costet P, Moreau C, Allières C, Daret D, Dos Santos P, Daniel Lamazière JM, Couffinhal T, Duplàa C. Involvement of FrzA/sFRP-1 and the Wnt/frizzled pathway in ischemic preconditioning. Circ Res 2005; 96:1299-306. [PMID: 15920021 DOI: 10.1161/01.res.0000171895.06914.2c] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphorylation and subsequent inactivation of glycogen synthase kinase (GSK)-3beta via the Akt/PI3-Kinase pathway during ischemic preconditioning (PC) has been shown to be cardioprotective. As FrzA/sFRP-1, a secreted antagonist of the Wnt/Frizzled pathway, is expressed in the heart and is able to decrease the phosphorylation of GSK-3beta in vitro on vascular cells, we examined its effect during PC using transgenic mouse overexpressing FrzA in cardiomyocytes (alpha-MHC promoter) under a conditional transgene expression approach (tet-off system). Overexpression of FrzA inhibited the increase in GSK-3beta phosphorylation as well as protein kinase C (PKC) epsilon activation in transgenic mice after PC as compared with littermates. Phospho-Akt (P-Akt), phospho-JNK, or the cytoplasmic beta-catenin levels were not modified, phospho-p38 (P-p38) was slightly increased in transgenic mice after PC as compared with littermates. FrzA transgenic mice displayed a larger infarct size and a greater worsening of cardiac function compared with littermates. All these differences were reversed by the addition of doxycycline. This study demonstrates for the first time that disruption of a beta-catenin independent Wnt/Frizzled pathway induces the activation of GSK-3beta and reverses the benefit of preconditioning.
Collapse
Affiliation(s)
- Laurent Barandon
- Department of Cardiovascular Surgery, Hôpital Haut Lévêque, Pessac, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Aoukaty A, Tan R. Role for glycogen synthase kinase-3 in NK cell cytotoxicity and X-linked lymphoproliferative disease. THE JOURNAL OF IMMUNOLOGY 2005; 174:4551-8. [PMID: 15814676 DOI: 10.4049/jimmunol.174.8.4551] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
NK cells from individuals with X-linked lymphoproliferative (XLP) disease exhibit functional defects when stimulated through the NK receptor, 2B4 (CD244). These defects are likely a consequence of aberrant intracellular signaling initiated by mutations of the adaptor molecule SLAM-associated protein. In this report, we show that NK cells from individuals with XLP but not healthy individuals fail to phosphorylate and thereby inactivate glycogen synthase kinase-3 (GSK-3) following 2B4 stimulation. Lack of GSK-3 phosphorylation prevented the accumulation of the transcriptional coactivator beta-catenin in the cytoplasm and its subsequent translocation to the nucleus. Potential signaling pathways leading from 2B4 stimulation to GSK-3 phosphorylation were also investigated. Ligation of 2B4 resulted in the phosphorylation of the guanine nucleotide exchange factor, Vav-1, and subsequent activation of the GTP-binding protein Rac-1 (but not Ras) and the serine-threonine kinase Raf-1 in healthy but not XLP-derived NK cells. In addition, the activity of MEK-2 (but not MEK-1) was up-regulated, and Erk1/2 was phosphorylated in normal NK cells but not those from an individual with XLP suggesting that these proteins relay SLAM-associated protein-dependent signals from 2B4. Finally, inactivation of GSK-3 using a specific inhibitor of GSK-3beta increased the cytotoxicity and cytokine secretion of both healthy and XLP NK cells. These data indicate that the signaling of 2B4 in NK cells is mediated by GSK-3 and beta-catenin, possibly through a signal transduction pathway that involves Vav-1, Rac-1, Raf-1, MEK-2, and Erk1/2 and that this pathway is aberrant in individuals with XLP.
Collapse
Affiliation(s)
- Ala Aoukaty
- Department of Pathology and Laboratory Medicine, British Columbia's Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
39
|
Espada J, Peinado H, Esteller M, Cano A. Direct metabolic regulation of β-catenin activity by the p85α regulatory subunit of phosphoinositide 3-OH kinase. Exp Cell Res 2005; 305:409-17. [PMID: 15817165 DOI: 10.1016/j.yexcr.2005.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 01/14/2005] [Accepted: 01/20/2005] [Indexed: 11/19/2022]
Abstract
Class IA phosphoinositide 3-OH kinases (PI3K) are lipid kinases composed of catalytic and regulatory subunits. These lipid kinases can regulate the metabolic stability and signaling activity of beta-catenin, a central component of the E-cadherin/catenin cell-cell adhesion complex, and of the Wnt signaling pathway. This regulation occurs at the level of glycogen synthase kinase 3 (GSK3), a serine/threonine kinase that marks beta-catenin to enter a destruction pathway. In addition, the regulatory subunit p85alpha directly binds beta-catenin, but the role of this interaction in the context of the lipid kinase regulation of beta-catenin signaling is unknown. Here we report that expression of exogenous p85alpha in mouse keratinocytes increases the metabolic stability and has a strong synergistic effect on the transcriptional activity of beta-catenin. Both effects are associated to the formation of beta-catenin/p85alpha and inhibition of beta-catenin/APC complexes and are independent of GSK3 and PI3K activities. These findings suggest that p85alpha can act as a direct metabolic regulator of beta-catenin activity.
Collapse
Affiliation(s)
- Jesús Espada
- Centro Nacional de Investigaciones Oncológicas, Instituto de Salud Carlos III, Melchor-Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Abstract
The evolutionarily conserved WNT-signalling pathway has pivotal roles during the development of many organ systems, and dysregulated WNT signalling is a key factor in the initiation of various tumours. Recent studies have implicated a role for WNT signal transduction at several stages of lymphocyte development and in the self-renewal of haematopoietic stem cells. Here, we outline new insights into the WNT-signalling pathway, review its role in the self-renewal of haematopoietic stem cells and in the development of T and B cells, and discuss controversies and future developments with regard to WNT signalling in the thymus.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunology, Room Ee 838, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands.
| | | |
Collapse
|
41
|
Donahue AC, Fruman DA. PI3K signaling controls cell fate at many points in B lymphocyte development and activation. Semin Cell Dev Biol 2004; 15:183-97. [PMID: 15209378 DOI: 10.1016/j.semcdb.2003.12.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Many receptors on diverse cell types activate phosphoinositide 3-kinase (PI3K). The lipid products of PI3K, termed 3-phosphoinositides, regulate numerous cellular processes by recruiting specific proteins to membrane signaling complexes. In the B lymphocyte lineage, PI3K activation is a critical control point at various stages of development, proliferation and differentiation. PI3K signaling is promoted by stimulatory receptors such as surface immunoglobulin, CD40, Toll-like receptors and cytokine receptors, and opposed by the inhibitory receptor FcgammaRIIB1. Genetic dissection of the PI3K pathway in mice has indicated that certain B cell functions are regulated by a limited set of PI3K isoforms and downstream effectors. Here we review our current understanding of how signals are relayed to and from PI3K in B cells.
Collapse
Affiliation(s)
- Amber C Donahue
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3242 McGaugh Hall, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
42
|
Bellei B, Pacchiarotti A, Perez M, Faraggiana T. Frequent beta-catenin overexpression without exon 3 mutation in cutaneous lymphomas. Mod Pathol 2004; 17:1275-81. [PMID: 15195109 DOI: 10.1038/modpathol.3800181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Beta-catenin is a ubiquitously cytoplasmic protein that has a critical role in embryonic development and mature tissue homeostasis through its effects on E-cadherin-mediated cell adhesion and Wnt-dependent signal transduction. Mutations that alter specific beta-catenin residues important for GSK-3beta phosphorylation, or increase the half-life of the protein, were identified in human cancer. However, the role of the Wnt pathway in B- and T-cell oncogenesis has not been extensively investigated. To assess the role of beta-catenin defects in primary cutaneous lymphomas, we examined the expression pattern and the genetic alteration of beta-catenin on 79 samples from 74 patients with primary cutaneous lymphomas from B- and T-cell origin. Immunohistochemical analysis revealed beta-catenin deregulation in five primary cutaneous B-cell lymphomas (21%) and in 21 primary cutaneous T-cell lymphomas (42%) without nuclear accumulation suggesting that activation and accumulation of beta-catenin may play an important role in the development of skin lymphomas. Mutation analysis of beta-catenin exon 3, which included the responsible element for Wnt signaling, was therefore done in 19 samples. However, genetic alterations of beta-catenin exon 3 were not detected in any of these cases suggesting that other regulatory mechanisms may be relevant in activating beta-catenin signaling in cutaneous lymphomas.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cytoskeletal Proteins/biosynthesis
- Cytoskeletal Proteins/genetics
- DNA Mutational Analysis
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Exons/genetics
- Female
- Humans
- Immunohistochemistry
- Ki-1 Antigen/biosynthesis
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Male
- Middle Aged
- Mutation
- Mycosis Fungoides/genetics
- Mycosis Fungoides/metabolism
- Mycosis Fungoides/pathology
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- beta Catenin
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Histopathology, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | | | | | | |
Collapse
|
43
|
Portis T, Ikeda M, Longnecker R. Epstein–Barr virus LMP2A: regulating cellular ubiquitination processes for maintenance of viral latency? Trends Immunol 2004; 25:422-6. [PMID: 15275641 DOI: 10.1016/j.it.2004.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Toni Portis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
44
|
Bartholdy B, Matthias P. Transcriptional control of B cell development and function. Gene 2004; 327:1-23. [PMID: 14960357 DOI: 10.1016/j.gene.2003.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/14/2003] [Accepted: 11/07/2003] [Indexed: 12/17/2022]
Abstract
The generation, development, maturation and selection of mammalian B lymphocytes is a complex process that is initiated in the embryo and proceeds throughout life to provide the organism an essential part of the immune system it requires to cope with pathogens. Transcriptional regulation of this highly complex series of events is a major control mechanism, although control is also exerted on all other layers, including splicing, translation and protein stability. This review summarizes our current understanding of transcriptional control of the well-studied murine B cell development, which bears strong similarity to its human counterpart. Animal and cell models with loss of function (gene "knock outs") or gain of function (often transgenes) have significantly contributed to our knowledge about the role of specific transcription factors during B lymphopoiesis. In particular, a large number of different transcriptional regulators have been linked to distinct stages of the life of B lymphocytes such as: differentiation in the bone marrow, migration to the peripheral organs and antigen-induced activation.
Collapse
Affiliation(s)
- Boris Bartholdy
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
45
|
Yusuf I, Zhu X, Kharas MG, Chen J, Fruman DA. Optimal B-cell proliferation requires phosphoinositide 3-kinase-dependent inactivation of FOXO transcription factors. Blood 2004; 104:784-7. [PMID: 15069012 DOI: 10.1182/blood-2003-09-3071] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcription factors of the Forkhead Box, class O (FOXO) family promote cell-cycle arrest and/or apoptosis in a variety of cell types. Mitogenic stimuli inactivate FOXO function by way of an evolutionarily conserved pathway involving the activation of phosphoinositide 3-kinase (PI3K) and its downstream effector, Akt. Although PI3K activation is required for B-lymphocyte proliferation, it is not known whether PI3K-dependent inactivation of FOXO proteins is important for cell-cycle progression and survival of these cells. Here, we show that B-cell receptor (BCR) engagement triggers PI3K-dependent phosphorylation and nuclear export of FOXO1. Furthermore, forced expression of PI3K-independent variants of FOXO1 or FOXO3a in activated B cells induces partial arrest in G1 phase of the cell cycle and increases apoptosis. These findings establish that FOXO inactivation is a functionally important consequence of PI3K signaling in primary B cells.
Collapse
Affiliation(s)
- Isharat Yusuf
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697-3900, USA
| | | | | | | | | |
Collapse
|
46
|
Pfeil K, Eder IE, Putz T, Ramoner R, Culig Z, Ueberall F, Bartsch G, Klocker H. Long-term androgen-ablation causes increased resistance to PI3K/Akt pathway inhibition in prostate cancer cells. Prostate 2004; 58:259-68. [PMID: 14743465 DOI: 10.1002/pros.10332] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND In advanced stages of prostate cancer, the phosphatidylinositol-3' kinase (PI3K)/Akt signaling cascade, one of the major survival pathways in the cell, is frequently constitutively activated due to mutation or loss of the tumor suppressor protein phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Using cell culture models representing different tumor stages, we explored the effect of inhibition of this survival pathway on the induction of apoptosis. METHODS Inhibition of the survival kinase Akt and induction of apoptosis was analyzed in androgen-insensitive DU145 and PC-3 cells, in androgen-responsive LNCaP, and in androgen-independent long-term androgen-ablated LNCaP-abl cells representing therapy-resistant prostate cancer cells. Activated Akt was determined by immunoblotting using a phospho-Akt specific antibody. Induction of apoptosis was analyzed employing annexing V and propidium iodide staining and flow cytometry and measurement of cleavage of the caspases substrate poly-ADP-ribose polymerase (PARP). RESULTS IGF-1, EGF, and heregulin but not PDGF or activators of protein kinase A induced phosphorylation of Akt in DU145 cells and activation was completely blocked by the PI3K inhibitor LY294002. In the hormone-responsive prostate cancer cell line LNCaP that has a constitutively switched-on Akt kinase, LY294002 caused a dose- and time-dependent Akt inhibition, which was absent in long-term androgen-ablated LNCaP sublines. In agreement with the resistance to inhibition of the PI3K/Akt pathway, long-term androgen-ablated LNCaP sublines remained relatively resistant to induction of cell death by LY294002 or the cytotoxic drug etoposide. Inhibition of the PI3K/Akt pathway restored the sensitivity of long-term androgen-ablated cells to induction of apoptosis by a cytotoxic drug almost completely. CONCLUSION These results suggest that long-term androgen ablation therapy for prostate cancer reinforces the PI3K/Akt pathway and impedes its inhibition thus contributing to increased resistance of tumor cells to induction of apoptosis. With regard to treatment of therapy-refractory prostate cancer, these findings suggest effectiveness of a combination of cytotoxic treatment and inhibition of the PI3K-Akt survival pathway in tumor cells after failure of androgen-ablation therapy.
Collapse
Affiliation(s)
- Karina Pfeil
- Department of Urology, University of Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Morrison JA, Klingelhutz AJ, Raab-Traub N. Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol 2003; 77:12276-84. [PMID: 14581564 PMCID: PMC254275 DOI: 10.1128/jvi.77.22.12276-12284.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) functions to maintain latency in EBV-infected B lymphocytes. Although LMP2A is nonessential for the immortalization of B lymphocytes by EBV, its expression in B lymphocytes prevents viral reactivation by blocking B-cell receptor activation and signaling. LMP2A also provides an antiapoptotic signal in transgenic mice that express LMP2A in B lymphocytes. LMP2A activates phosphatidylinositol 3-kinase (PI3K) and the serine/threonine kinase Akt in lymphocytes and epithelial cells. Here we show that EBV LMP2A activates the PI3K and beta-catenin signaling pathways in telomerase-immortalized human foreskin keratinocytes (HFK). LMP2A activated Akt in a PI3K-dependent manner, and the downstream Akt targets glycogen synthase kinase 3beta (GSK3beta) and the Forkhead transcription factor FKHR were phosphorylated and inactivated in LMP2A-expressing HFK cells. GSK3beta is a negative regulator of the Wnt signaling pathway, and inactivation of GSK3beta by LMP2A signaling led to stabilization of beta-catenin, the central oncoprotein of Wnt signaling. In LMP2A-expressing cells, beta-catenin accumulated in the cytoplasm and translocated into the nucleus via a two-step mechanism. The cytoplasmic accumulation of beta-catenin downstream of LMP2A was independent of PI3K signaling, whereas its nuclear translocation was dependent on PI3K signaling. In the nucleus, beta-catenin activated a reporter responsive to T-cell factor, and this activation was augmented by LMP2A coexpression. The Wnt pathway is inappropriately activated in 90% of colon cancers and is dysregulated in several other cancers, and these data suggest that activation of this pathway by LMP2A may contribute to the generation of EBV-associated cancers.
Collapse
Affiliation(s)
- J A Morrison
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
48
|
Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of β-catenin impairs T cell development. Nat Immunol 2003; 4:1177-82. [PMID: 14608382 DOI: 10.1038/ni1008] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 10/15/2003] [Indexed: 11/08/2022]
Abstract
T cells encounter two main checkpoints during development in the thymus. These checkpoints are critically dependent on signals derived from the thymic microenvironment as well as from the pre-T cell receptor (pre-TCR) and the alphabeta TCR. Here we show that T cell-specific deletion of beta-catenin impaired T cell development at the beta-selection checkpoint, leading to a substantial decrease in splenic T cells. In addition, beta-catenin also seemed to be a target of TCR-CD3 signals in thymocytes and mature T cells. These data indicate that beta-catenin-mediated signals are required for normal T cell development.
Collapse
Affiliation(s)
- Youyuan Xu
- Dana Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
49
|
Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AHY, Dang-Lawson M, Lin KBL, Gold MR. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem 2003; 278:41756-67. [PMID: 12904304 DOI: 10.1074/jbc.m303180200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signaling by the B cell antigen receptor (BCR) activates the Rap1 and Rap2 GTPases, putative antagonists of Ras-mediated signaling. Because Ras can activate the Raf-1/ERK pathway and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, we asked whether Rap activation limits the ability of the BCR to signal via these pathways. To do this, we blocked the activation of endogenous Rap1 and Rap2 by expressing the Rap-specific GTPase-activating protein RapGAPII. Preventing Rap activation had no effect on BCR-induced activation of ERK. In contrast, BCR-induced phosphorylation of Akt on critical activating sites was increased 2- to 3-fold when Rap activation was blocked. Preventing Rap activation also increased the ability of the BCR to stimulate Akt-dependent phosphorylation of the FKHR transcription factor on negative regulatory sites and decreased the levels of p27Kip1, a pro-apoptotic factor whose transcription is enhanced by FKHR. Moreover, preventing Rap activation reduced BCR-induced cell death in the WEHI-231 B cell line. Thus activation of endogenous Rap by the BCR limits BCR-induced activation of the PI3K/Akt pathway, opposes the subsequent inhibition of the FKHR/p27Kip1 pro-apoptotic module, and enhances BCR-induced cell death. Consistent with the idea that Rap-GTP is a negative regulator of the PI3K/Akt pathway, expressing constitutively active Rap2 (Rap2V12) reduced BCR-induced phosphorylation of Akt and FKHR. Finally, our finding that Rap2V12 can bind PI3K and inhibit its activity in a manner that depends upon BCR engagement provides a potential mechanism by which Rap-GTP limits activation of the PI3K/Akt pathway, a central regulator of B cell growth and survival.
Collapse
Affiliation(s)
- Sherri L Christian
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Engler TA, Furness K, Malhotra S, Sanchez-Martinez C, Shih C, Xie W, Zhu G, Zhou X, Conner S, Faul MM, Sullivan KA, Kolis SP, Brooks HB, Patel B, Schultz RM, DeHahn TB, Kirmani K, Spencer CD, Watkins SA, Considine EL, Dempsey JA, Ogg CA, Stamm NB, Anderson BD, Campbell RM, Vasudevan V, Lytle ML. Novel, potent and selective cyclin D1/CDK4 inhibitors: indolo[6,7-a]pyrrolo[3,4-c]carbazoles. Bioorg Med Chem Lett 2003; 13:2261-7. [PMID: 12824014 DOI: 10.1016/s0960-894x(03)00461-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis and CDK inhibitory properties of a series of indolo[6,7-a]pyrrolo[3,4-c]carbazoles is reported. In addition to their potent CDK activity, the compounds display antiproliferative activity against two human cancer cell lines. These inhibitors also effect strong G1 arrest in these cell lines and inhibit Rb phosphorylation at Ser780 consistent with inhibition of cyclin D1/CDK4.
Collapse
Affiliation(s)
- Thomas A Engler
- Lilly Research Laboratories, Eli Lilly and Company, 46285, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|