1
|
Lung Lipidomic Alterations in Beagle Dogs Infected with Toxocara canis. Animals (Basel) 2022; 12:ani12223080. [PMID: 36428308 PMCID: PMC9686702 DOI: 10.3390/ani12223080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Toxocariasis, mainly caused by Toxocara canis, and to a lesser extent, Toxocara cati, is a neglected parasitic zoonosis. The mechanisms that underlie the changes in lipid metabolism of T. canis infection in Beagle dogs' lungs remain unclear. Lipidomics is a rapidly emerging approach that enables the global profiling of lipid composition by mass spectrometry. In this study, we performed a non-targeted lipidomic analysis of the lungs of Beagle dogs infected with the roundworm T. canis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1197 lipid species were identified, of which 63, 88, and 157 lipid species were significantly altered at 24 h post-infection (hpi), 96 hpi, and 36 days post-infection (dpi), respectively. This global lipidomic profiling identified infection-specific lipid signatures for lung toxocariasis, and represented a comprehensive comparison between the lipid composition of dogs' lungs in the presence and absence of T. canis infection. The potential roles of the identified lipid species in the pathogenesis of T. canis are discussed, which has important implications for better understanding the interaction mechanism between T. canis and the host lung.
Collapse
|
2
|
Shaping of Monocyte-Derived Dendritic Cell Development and Function by Environmental Factors in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222413670. [PMID: 34948462 PMCID: PMC8708154 DOI: 10.3390/ijms222413670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Dendritic cells (DC) are heterogeneous cell populations essential for both inducing immunity and maintaining immune tolerance. Chronic inflammatory contexts, such as found in rheumatoid arthritis (RA), severely affect the distribution and the function of DC, contributing to defective tolerance and fueling inflammation. In RA, the synovial fluid of patients is enriched by a subset of DC that derive from monocytes (Mo-DC), which promote deleterious Th17 responses. The characterization of environmental factors in the joint that impact on the development and the fate of human Mo-DC is therefore of great importance in RA. When monocytes leave the blood and infiltrate inflamed synovial tissues, the process of differentiation into Mo-DC can be influenced by interactions with soluble factors such as cytokines, local acidosis and dysregulated synoviocytes. Other molecular factors, such as the citrullination process, can also enhance osteoclast differentiation from Mo-DC, favoring bone damages in RA. Conversely, biotherapies used to control inflammation in RA, modulate also the process of monocyte differentiation into DC. The identification of the environmental mediators that control the differentiation of Mo-DC, as well as the underlying molecular signaling pathways, could constitute a major breakthrough for the development of new therapies in RA.
Collapse
|
3
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
5
|
Palviainen M, Saari H, Kärkkäinen O, Pekkinen J, Auriola S, Yliperttula M, Puhka M, Hanhineva K, Siljander PRM. Metabolic signature of extracellular vesicles depends on the cell culture conditions. J Extracell Vesicles 2019; 8:1596669. [PMID: 31007875 PMCID: PMC6461113 DOI: 10.1080/20013078.2019.1596669] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography-mass spectrometry (LC-MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects.
Collapse
Affiliation(s)
- Mari Palviainen
- EV-group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
| | - Heikki Saari
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Olli Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
| | - Jenna Pekkinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marjo Yliperttula
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maija Puhka
- EV-core, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
| | - Pia R.-M. Siljander
- EV-group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int J Mol Sci 2019; 20:ijms20051149. [PMID: 30845751 PMCID: PMC6429061 DOI: 10.3390/ijms20051149] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Lin Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 10449, Taiwan.
| | - Gopal K Marathe
- Department of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India.
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
7
|
Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol 2018; 9:2379. [PMID: 30459758 PMCID: PMC6232773 DOI: 10.3389/fimmu.2018.02379] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern Recognition Receptors (PRRs) are proteins capable of recognizing molecules frequently found in pathogens (the so-called Pathogen-Associated Molecular Patterns—PAMPs), or molecules released by damaged cells (the Damage-Associated Molecular Patterns—DAMPs). They emerged phylogenetically prior to the appearance of the adaptive immunity and, therefore, are considered part of the innate immune system. Signals derived from the engagement of PRRs on the immune cells activate microbicidal and pro-inflammatory responses required to eliminate or, at least, to contain infectious agents. Molecularly controlled forms of cell death are also part of a very ancestral mechanism involved in key aspects of the physiology of multicellular organism, including the elimination of unwanted, damaged or infected cells. Interestingly, each form of cell death has its particular effect on inflammation and on the development of innate and adaptive immune responses. In this review article, we discuss some aspects of the molecular interplay between the cell death machinery and signals initiated by the activation of PRRs by PAMPs and DAMPs.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Sandy Adjemian
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Migliari Branco
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil.,Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Larissa C Zanetti
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Karina R Bortoluci
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil.,Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell Oncol (Dordr) 2018; 41:223-252. [PMID: 29667069 DOI: 10.1007/s13402-018-0378-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules. CONCLUSIONS This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.
Collapse
|
9
|
Gray DW, Welsh MD, Mansoor F, Doherty S, Chevallier OP, Elliott CT, Mooney MH. DIVA metabolomics: Differentiating vaccination status following viral challenge using metabolomic profiles. PLoS One 2018; 13:e0194488. [PMID: 29621258 PMCID: PMC5886402 DOI: 10.1371/journal.pone.0194488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/05/2018] [Indexed: 12/20/2022] Open
Abstract
Bovine Respiratory Disease (BRD) is a major source of economic loss within the agricultural industry. Vaccination against BRD-associated viruses does not offer complete immune protection and vaccine failure animals present potential routes for disease spread. Serological differentiation of infected from vaccinated animals (DIVA) is possible using antigen-deleted vaccines, but during virus outbreaks DIVA responses are masked by wild-type virus preventing accurate serodiagnosis. Previous work by the authors has established the potential for metabolomic profiling to reveal metabolites associated with systemic immune responses to vaccination. The current study builds on this work by demonstrating for the first time the potential to use plasma metabolite profiling to differentiate between vaccinated and non-vaccinated animals following infection-challenge. Male Holstein Friesian calves were intranasally vaccinated (Pfizer RISPOVAL®PI3+RSV) and subsequently challenged with Bovine Parainfluenza Virus type-3 (BPI3V) via nasal inoculation. Metabolomic plasma profiling revealed that viral challenge led to a shift in acquired plasma metabolite profiles from day 2 to 20 p.i., with 26 metabolites identified whose peak intensities were significantly different following viral challenge depending on vaccination status. Elevated levels of biliverdin and bilirubin and decreased 3-indolepropionic acid in non-vaccinated animals at day 6 p.i. may be associated with increased oxidative stress and reactive oxygen scavenging at periods of peak virus titre. During latter stages of infection, increased levels of N-[(3α,5β,12α)-3,12-dihydroxy-7,24-dioxocholan-24-yl]glycine and lysophosphatidycholine and decreased enterolactone in non-vaccinated animals may reflect suppression of innate immune response mechanisms and progression to adaptive immune responses. Levels of hexahydrohippurate were also shown to be significantly elevated in non-vaccinated animals from days 6 to 20 p.i. These findings demonstrate the potential of metabolomic profiling to identify plasma markers that can be employed in disease diagnostic applications to both differentially identify infected non-vaccinated animals during disease outbreaks and provide greater information on the health status of infected animals.
Collapse
Affiliation(s)
- Darren W. Gray
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast (QUB), Belfast, Northern Ireland, United Kingdom
- * E-mail:
| | - Michael D. Welsh
- Veterinary Sciences Division (VSD), Agri-Food and Biosciences Institute (AFBI), Belfast, Northern Ireland, United Kingdom
| | - Fawad Mansoor
- Veterinary Sciences Division (VSD), Agri-Food and Biosciences Institute (AFBI), Belfast, Northern Ireland, United Kingdom
| | - Simon Doherty
- Veterinary Sciences Division (VSD), Agri-Food and Biosciences Institute (AFBI), Belfast, Northern Ireland, United Kingdom
| | - Olivier P. Chevallier
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast (QUB), Belfast, Northern Ireland, United Kingdom
| | - Christopher T. Elliott
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast (QUB), Belfast, Northern Ireland, United Kingdom
| | - Mark H. Mooney
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast (QUB), Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
10
|
The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018; 40:439-452. [PMID: 29616308 PMCID: PMC6208666 DOI: 10.1007/s00281-018-0681-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Collapse
|
11
|
Park SY, Seo KS, Karm MH. Perioperative red blood cell transfusion in orofacial surgery. J Dent Anesth Pain Med 2017; 17:163-181. [PMID: 29090247 PMCID: PMC5647818 DOI: 10.17245/jdapm.2017.17.3.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 01/28/2023] Open
Abstract
In the field of orofacial surgery, a red blood cell transfusion (RBCT) is occasionally required during double jaw and oral cancer surgery. However, the question remains whether the effect of RBCT during the perioperative period is beneficial or harmful. The answer to this question remains challenging. In the field of orofacial surgery, transfusion is performed for the purpose of oxygen transfer to hypoxic tissues and plasma volume expansion when there is bleeding. However, there are various risks, such as infectious complications (viral and bacterial), transfusion-related acute lung injury, ABO and non-ABO associated hemolytic transfusion reactions, febrile non-hemolytic transfusion reactions, transfusion associated graft-versus-host disease, transfusion associated circulatory overload, and hypersensitivity transfusion reaction including anaphylaxis and transfusion-related immune-modulation. Many studies and guidelines have suggested RBCT is considered when hemoglobin levels recorded are 7 g/dL for general patients and 8-9 g/dL for patients with cardiovascular disease or hemodynamically unstable patients. However, RBCT is occasionally an essential treatment during surgeries and it is often required in emergency cases. We need to comprehensively consider postoperative bleeding, different clinical situations, the level of intra- and postoperative patient monitoring, and various problems that may arise from a transfusion, in the perspective of patient safety. Since orofacial surgery has an especially high risk of bleeding due to the complex structures involved and the extensive vascular distribution, measures to prevent bleeding should be taken and the conditions for a transfusion should be optimized and appropriate in order to promote patient safety.
Collapse
Affiliation(s)
- So-Young Park
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwang-Suk Seo
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Myong-Hwan Karm
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Republic of Korea
| |
Collapse
|
12
|
Carey AN, Zhang W, Setchell KD, Simmons JE, Shi T, Lages CS, Mullen M, Carroll K, Karns R, Bessho K, Sheridan R, Zhao X, Weber SN, Miethke AG. Hepatic MDR3 expression impacts lipid homeostasis and susceptibility to inflammatory bile duct obstruction in neonates. Pediatr Res 2017; 82:122-132. [PMID: 28355206 PMCID: PMC5509537 DOI: 10.1038/pr.2017.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
BackgroundHeterozygous mutations in the gene ABCB4, encoding the phospholipid floppase MDR3 (Mdr2 in mice), are associated with various chronic liver diseases. Here we hypothesize that reduced ABCB4 expression predisposes to extrahepatic biliary atresia (EHBA).MethodsLivers from neonatal wild-type (wt) and heterozygous Mdr2-deficient mice were subjected to mass spectrometry-based lipidomics and RNA sequencing studies. Following postnatal infection with rhesus rotavirus (RRV), liver immune responses and EHBA phenotype were assessed. Hepatic microarray data from 40 infants with EHBA were mined for expression levels of ABCB4.ResultsPhosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased, whereas the PC/PE ratio was decreased in neonatal Mdr2+/- mice compared with wt mice. Following RRV challenge, hepatic expression of IFNγ and infiltration with CD8+ and NK+ lymphocytes were increased in Mdr2+/- mice. Plasma total bilirubin levels and prevalence of complete ductal obstruction were higher in these mice. In infants with EHBA, hepatic gene expression of ABCB4 was downregulated in those with an inflammatory compared with a fibrosing molecular phenotype.ConclusionDecreased expression of ABCB4 causes dysregulation in (phospho)lipid homeostasis, and predisposes to aberrant pro-inflammatory lymphocyte responses and an aggravated phenotype of EHBA in neonatal mice. Downregulated ABCB4 is associated with an inflammatory transcriptome signature in infants with EHBA.
Collapse
Affiliation(s)
- Alexandra N. Carey
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julia E. Simmons
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Tiffany Shi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Celine S. Lages
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Mary Mullen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | | | | | - Kazuhiko Bessho
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Rachel Sheridan
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | | | - Alexander G. Miethke
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Balance Between the Proinflammatory and Anti-Inflammatory Immune Responses with Blood Transfusion in Sepsis. Crit Care Nurs Clin North Am 2017; 29:331-340. [PMID: 28778292 DOI: 10.1016/j.cnc.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood product transfusion may exacerbate the initial immunosuppressive response of sepsis. Nurses and other patient care providers must be diligent in recognizing and managing a worsening immune status, using flow cytometry to monitor patients' immune status. This type of monitoring may be instrumental in reducing morbidity and mortality in persons with sepsis. This article discusses the recent literature on the associated inflammatory responses that occur with blood transfusion and provides an analysis of alterations in key inflammatory pathways in response to transfusion in a sepsis population.
Collapse
|
14
|
Goubran H, Sheridan D, Radosevic J, Burnouf T, Seghatchian J. Transfusion-related immunomodulation and cancer. Transfus Apher Sci 2017; 56:336-340. [PMID: 28606449 DOI: 10.1016/j.transci.2017.05.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood and blood-component therapy triggers immunological reactions in recipients. Transfusion-related immunomodulation [TRIM] is an important complex biological immune reaction to transfusion culminating in immunosuppression. The mechanisms underlying TRIM include the presence of residual leukocytes and apoptotic cells, the transfusion of immunosuppressive cytokines either present in donor components or generated during blood processing, the transfer of metabolically active growth factor-loaded microparticles and extracellular vesicles and the presence of free hemoglobin or extracellular vesicle-bound hemoglobin. TRIM variables include donor-specific factors as well as processing variables. TRIM may explain, at least in part, the controversial negative clinical outcomes observed in cancer patients receiving transfusion in the context of curative-intent surgeries. The use of novel technologies including metabolomics and proteomics on stored blood may pave the way for a deeper understanding of TRIM in general and its impact on cancer progression.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada.
| | - David Sheridan
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | | | - Thierry Burnouf
- Graduate Institute of Biological Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
15
|
Simbari F, McCaskill J, Coakley G, Millar M, Maizels RM, Fabriás G, Casas J, Buck AH. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. J Extracell Vesicles 2016; 5:30741. [PMID: 27389011 PMCID: PMC4937767 DOI: 10.3402/jev.v5.30741] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) mediate communication between cells and organisms across all 3 kingdoms of life. Several reports have demonstrated that EVs can transfer molecules between phylogenetically diverse species and can be used by parasites to alter the properties of the host environment. Whilst the concept of vesicle secretion and uptake is broad reaching, the molecular composition of these complexes is expected to be diverse based on the physiology and environmental niche of different organisms. Exosomes are one class of EVs originally defined based on their endocytic origin, as these derive from multivesicular bodies that then fuse with the plasma membrane releasing them into the extracellular environment. The term exosome has also been used to describe any small EVs recovered by high-speed ultracentrifugation, irrespective of origin since this is not always well characterized. Here, we use comparative global lipidomic analysis to examine the composition of EVs, which we term exosomes, that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus, in relation to exosomes secreted by cells of its murine host. Ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) analysis reveals a 9- to 62-fold enrichment of plasmalogens, as well as other classes of ether glycerophospholipids, along with a relative lack of cholesterol and sphingomyelin (SM) in the nematode exosomes compared with those secreted by murine cells. Biophysical analyses of the membrane dynamics of these exosomes demonstrate increased rigidity in those from the nematode, and parallel studies with synthetic vesicles support a role of plasmalogens in stabilizing the membrane structure. These results suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids, including cholesterol and SM. This work also illuminates the prevalence of plasmalogens in some EVs, which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication.
Collapse
Affiliation(s)
- Fabio Simbari
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jana McCaskill
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gillian Coakley
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marissa Millar
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, UK
| | - Gemma Fabriás
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish Council for Scientific Research (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish Council for Scientific Research (IQAC-CSIC), Barcelona, Spain
| | - Amy H Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK;
| |
Collapse
|
16
|
Leucoreduction of blood components: an effective way to increase blood safety? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 14:214-27. [PMID: 26710353 DOI: 10.2450/2015.0154-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/31/2015] [Indexed: 02/08/2023]
Abstract
Over the past 30 years, it has been demonstrated that removal of white blood cells from blood components is effective in preventing some adverse reactions such as febrile non-haemolytic transfusion reactions, immunisation against human leucocyte antigens and human platelet antigens, and transmission of cytomegalovirus. In this review we discuss indications for leucoreduction and classify them into three categories: evidence-based indications for which the clinical efficacy is proven, indications based on the analysis of observational clinical studies with very consistent results and indications for which the clinical efficacy is partial or unproven.
Collapse
|
17
|
Lysophosphatidylcholine exacerbates Leishmania major-dendritic cell infection through interleukin-10 and a burst in arginase1 and indoleamine 2,3-dioxygenase activities. Int Immunopharmacol 2015; 25:1-9. [DOI: 10.1016/j.intimp.2015.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/01/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
|
18
|
Wiltz DC, Han RI, Wilson RL, Kumar A, Morrisett JD, Grande-Allen KJ. Differential Aortic and Mitral Valve Interstitial Cell Mineralization and the Induction of Mineralization by Lysophosphatidylcholine In Vitro.. Cardiovasc Eng Technol 2014; 5:371-383. [PMID: 25419248 PMCID: PMC4235965 DOI: 10.1007/s13239-014-0197-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Calcific aortic valve disease (CAVD) is a serious condition with vast uncertainty regarding the precise mechanism leading to valve calcification. This study was undertaken to examine the role of the lipid lysophosphatidylcholine (LPC) in a comparison of aortic and mitral valve cellular mineralization. METHODS The proportion of LPC in differentially calcified regions of diseased aortic valves was determined using thin layer chromatography (TLC). Next, porcine valvular interstitial cells (pVICs) from the aortic (paVICs) and mitral valve (pmVICs) were cultured with LPC (10-1 - 105 nM) and analyzed for cellular mineralization, alkaline phosphatase activity (ALPa), proliferation, and apoptosis. RESULTS TLC showed a higher percentage of LPC in calcified regions of tissue compared to non-calcified regions. In pVIC cultures, with the exception of 105 nM LPC, increasing concentrations of LPC led to an increase in phosphate mineralization. Increased levels of calcium content were exhibited at 104 nm LPC application compared to baseline controls. Compared to pmVIC cultures, paVIC cultures had greater total phosphate mineralization, ALPa, calcium content, and apoptosis, under both a baseline control and LPC-treated conditions. CONCLUSIONS This study showed that LPC has the capacity to promote pVIC calcification. Also, paVICs have a greater propensity for mineralization than pmVICs. LPC may be a key factor in the transition of the aortic valve from a healthy to diseased state. In addition, there are intrinsic differences that exist between VICs from different valves that may play a key role in heart valve pathology.
Collapse
Affiliation(s)
- Dena C. Wiltz
- Rice University, Department of Bioengineering, Houston, TX
| | - Richard I. Han
- Rice University, Department of Bioengineering, Houston, TX
- Baylor College of Medicine, Departments of Medicine and Biochemistry, Houston, TX
| | - Reid L. Wilson
- Rice University, Department of Bioengineering, Houston, TX
- Baylor College of Medicine, Departments of Medicine and Biochemistry, Houston, TX
| | - Aditya Kumar
- Rice University, Department of Bioengineering, Houston, TX
| | - Joel D. Morrisett
- Baylor College of Medicine, Departments of Medicine and Biochemistry, Houston, TX
| | | |
Collapse
|
19
|
Liu A, Ming JY, Fiskesund R, Ninio E, Karabina SA, Bergmark C, Frostegård AG, Frostegård J. Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: involvement of heat shock proteins. Arterioscler Thromb Vasc Biol 2014; 35:197-205. [PMID: 25395618 DOI: 10.1161/atvbaha.114.304342] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Atherosclerosis is an inflammatory disease, where activated immunocompetent cells, including dendritic cells (DCs) and T cells are abundant in plaques. Low-density lipoprotein modified either by oxidation (oxLDL) or by human group X-secreted phospholipase A2 (LDLx) and heat shock proteins (HSP), especially HSP60 and 90, have been implicated in atherosclerosis. We previously reported that Annexin A5 inhibits inflammatory effects of phospholipids, decreases vascular inflammation and improves vascular function in apolipoprotein E(-/-) mice. Here, we focus on the LDLx effects on human DCs and T cells. APPROACH AND RESULTS Human DCs were differentiated from peripheral blood monocytes, stimulated by oxLDL or LDLx. Naive autologous T cells were cocultured with pretreated DCs. oxLDL and LDLx, in contrast to LDL, induced DC-activation and T-cell proliferation. T cells exposed to LDLx-treated DCs produced interferon-γ, interleukin (IL)-17 but not IL-4 and IL-10. Annexin A5 abrogated LDLx effects on DCs and T cells and increased production of transforming growth factor-β and IL-10. Furthermore, IL-10 producing T cells suppressed primary T-cell activation via soluble IL-10, transforming growth factor-β, and cell-cell contact. Lentiviral-mediated shRNA knock-down HSP60 and 90 in DCs attenuated the effect of LDLx on DCs and subsequent T-cell proliferation. Experiments on DC and T cells derived from carotid atherosclerotic plaques gave similar results. CONCLUSIONS Our data show that modified forms of LDL such as LDLx but not native LDL activate human T cells through DCs. HSP60 and 90 contribute to such T-cell activation. Annexin A5 promotes induction of regulatory T cells and is potentially interesting as a therapeutic agent.
Collapse
Affiliation(s)
- Anquan Liu
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.).
| | - Julia Yue Ming
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| | - Roland Fiskesund
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| | - Ewa Ninio
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| | - Sonia-Athina Karabina
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| | - Claes Bergmark
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| | - Anna G Frostegård
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| | - Johan Frostegård
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.L., J.Y.M., R.F., A.G.F., J.F.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, Paris, France (E.N.); Sorbonne Universités, UPMC University Paris 06, INSERM UMR_933, Hôpital Armand-Trousseau, Paris, France (S.-A.K.); Division of Vascular Surgery, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (C.B.); and Division of Acute Internal Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden (J.F.)
| |
Collapse
|
20
|
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:108-20. [PMID: 24140720 DOI: 10.1016/j.bbalip.2013.10.004] [Citation(s) in RCA: 602] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse (CRCT), Team "Sterol Metabolism and Therapeutic Innovation in Oncology", BP3028, CHU Purpan, Toulouse F-31300, France; Institut Claudius Regaud, 20-24 Rue du Pont Saint-Pierre, 31052 Toulouse Cedex, France; Université Paul Sabatier Toulouse 3, 118 Route de Narbonne, Toulouse, France.
| | | | | | | |
Collapse
|
21
|
Cata JP, Wang H, Gottumukkala V, Reuben J, Sessler DI. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth 2013; 110:690-701. [PMID: 23599512 DOI: 10.1093/bja/aet068] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Debate on appropriate triggers for transfusion of allogeneic blood products and their effects on short- and long-term survival in surgical and critically ill patients continue with no definitive evidence or decisive resolution. Although transfusion-related immune modulation (TRIM) is well established, its influence on immune competence in the recipient and its effects on cancer recurrence after a curative resection remains controversial. An association between perioperative transfusion of allogeneic blood products and risk for recurrence has been shown in colorectal cancer in randomized trials; whether the same is true for other types of cancer remains to be determined. This article focuses on the laboratory, animal, and clinical evidence to date on the mechanistic understanding of inflammatory and immune-modulatory effects of blood products and their significance for recurrence in the cancer surgical patient.
Collapse
Affiliation(s)
- J P Cata
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, 1515 Holcombe Blvd, Unit 409, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
22
|
Lysoglycerophospholipids in chronic inflammatory disorders: The PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:42-60. [DOI: 10.1016/j.bbalip.2012.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
|
23
|
The use of sequential staining for detection of heterogeneous intracellular response of individual Jurkat cells to lysophosphatidylcholine. J Immunol Methods 2013; 387:96-106. [DOI: 10.1016/j.jim.2012.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022]
|
24
|
Perrin-Cocon L, Diaz O, André P, Lotteau V. Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 2012; 95:103-8. [PMID: 22959067 DOI: 10.1016/j.biochi.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Both physiological and pathological situations can result in biochemical changes of low-density lipoproteins (LDL). Because they can deliver signals to dendritic cells (DC), these modified lipoproteins now appear as regulators of the immune response. Among these modified lipoproteins, oxidized LDL (oxLDL) that accumulate during inflammatory conditions have been extensively studied. Numerous studies have shown that oxLDL induce the maturation of DC, enhancing their ability to activate IFNγ secretion by T cells. LDL treated by secreted phospholipase A(2) also promote DC maturation. Among the bioactive lipids generated by oxidation or phospholipase treatment of LDL, lysophosphatidylcholine (LPC) and some saturated fatty acids induce DC maturation whereas some unsaturated fatty acids or oxidized derivatives have opposite effects. Among other factors, the nuclear receptor peroxisome-proliferator activated receptor γ (PPARγ) plays a crucial role in this regulation. Non-modified lipoproteins also contribute to the regulation of DC function, suggesting that the balance between native and modified lipoproteins, as well as the biochemical nature of the LDL modifications, can regulate the activation threshold of DC. Here we discuss two pathological situations in which the impact of LDL modifications on inflammation and immunity could play an important role. During atherosclerosis, modified LDL accumulating in the arterial intima may interfere with DC maturation and function, promoting a Th1 immune response and a local inflammation favoring the development of the pathology. In patients chronically infected, the hepatitis C virus (HCV) interferes with lipoprotein metabolism resulting in the production of infectious modified lipoproteins. These lipo-viral-particles (LVP) are modified low-density lipoproteins containing viral material that can alter DC maturation and affect specific toll-like receptor signaling. In conclusion, lipoprotein modifications play an important role in the regulation of immunity by delivering signals of danger to DC and modulating their function.
Collapse
|
25
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
26
|
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 76:442-6. [PMID: 22296764 DOI: 10.1016/j.humimm.2015.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is triggered when innate immune cells detect infection or tissue injury. Surveillance mechanisms involve pattern recognition receptors (PRRs) on the cell surface and in the cytoplasm. Most PRRs respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) by triggering activation of NF-κB, AP1, CREB, c/EBP, and IRF transcription factors. Induction of genes encoding enzymes, chemokines, cytokines, adhesion molecules, and regulators of the extracellular matrix promotes the recruitment and activation of leukocytes, which are critical for eliminating foreign particles and host debris. A subset of PRRs activates the protease caspase-1, which causes maturation of the cytokines IL1β and IL18. Cell adhesion molecules and chemokines facilitate leukocyte extravasation from the circulation to the affected site, the chemokines stimulating G-protein-coupled receptors (GPCRs). Binding initiates signals that regulate leukocyte motility and effector functions. Other triggers of inflammation include allergens, which form antibody complexes that stimulate Fc receptors on mast cells. Although the role of inflammation is to resolve infection and injury, increasing evidence indicates that chronic inflammation is a risk factor for cancer.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
27
|
High-density lipoprotein phospholipids interfere with dendritic cell Th1 functional maturation. Immunobiology 2012; 217:91-9. [DOI: 10.1016/j.imbio.2011.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 02/03/2023]
|
28
|
Cho WH, Park T, Park YY, Huh JW, Lim CM, Koh Y, Song DK, Hong SB. Clinical significance of enzymatic lysophosphatidylcholine (LPC) assay data in patients with sepsis. Eur J Clin Microbiol Infect Dis 2011; 31:1805-10. [PMID: 22167258 DOI: 10.1007/s10096-011-1505-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 01/06/2023]
Abstract
Lysophosphatidylcholine (LPC) has been suggested to serve as a useful prognostic marker for sepsis. However, existing LPC assays are complicated, time-consuming, and of limited application in real clinical situations. Thus, we investigated the serum LPC levels in sepsis patients using an enzymatic assay and analyzed the correlations between the serum LPC concentration and clinical characteristics. We prospectively collected blood samples from suspected sepsis patients, commencing on day 1 of sepsis. We analyzed all samples using an enzymatic assay. Additionally, we analyzed the serum LPC concentrations in a control group of 21 healthy blood donors. A total of 105 patients who fulfilled the sepsis criteria were included. The mean serum LPC concentration was 43.49 ± 33.09 μmol/L in sepsis patients, which was much lower than that of 21 healthy controls (234.68 ± 30.33 μmol/L, p<0.001). Bacteremic sepsis was associated with a lower serum LPC concentration than non-bacteremic sepsis (34.8 ± 26.85 vs. 49.05 ± 35.63 μmol/L, p<0.05). No difference in serum LPC concentration was evident between survivors and non-survivors. The serum LPC concentration tended to decrease with the severity of sepsis. The day 1 serum LPC concentration was decreased in patients with sepsis, especially when bacteremia was present. However, the serum LPC level did not correlate with disease severity and did not predict mortality from sepsis.
Collapse
Affiliation(s)
- W H Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol 2011; 2011:842849. [PMID: 22190973 PMCID: PMC3235485 DOI: 10.1155/2011/842849] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/28/2011] [Indexed: 12/15/2022]
Abstract
Exosomes are endosome-derived, 30–100 nm small membrane vesicles released by most cell types including tumor cells. They are enriched in a selective repertoire of proteins and nucleic acids from parental cells and are thought to be actively involved in conferring intercellular signals. Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce antitumor immune responses. However, tumor-derived exosomes also have been found to possess immunosuppressive properties and are able to facilitate tumor growth, metastasis, and the development of drug resistance. These different effects of tumor-derived exosomes contribute to the pathogenesis of cancer. This review will discuss the roles of tumor-derived exosomes in cancer pathogenesis, therapy, and diagnostics.
Collapse
|
30
|
Oberländer U, Pletinckx K, Döhler A, Müller N, Lutz MB, Arzberger T, Riederer P, Gerlach M, Koutsilieri E, Scheller C. Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci 2011; 12:116. [PMID: 22085464 PMCID: PMC3225309 DOI: 10.1186/1471-2202-12-116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/15/2011] [Indexed: 12/25/2022] Open
Abstract
Background Parkinson's disease (PD) is characterized at the cellular level by a destruction of neuromelanin (NM)-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs), the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN) from human subjects or with synthetic dopamine melanin (DAM). DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh). NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.
Collapse
Affiliation(s)
- Uwe Oberländer
- University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hasegawa H, Lei J, Matsumoto T, Onishi S, Suemori K, Yasukawa M. Lysophosphatidylcholine enhances the suppressive function of human naturally occurring regulatory T cells through TGF-β production. Biochem Biophys Res Commun 2011; 415:526-31. [PMID: 22074829 DOI: 10.1016/j.bbrc.2011.10.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 11/30/2022]
Abstract
Naturally occurring CD4(+)CD25(+) regulatory T cells (nTregs) play a pivotal role in the maintenance of self-tolerance and immune homeostasis. To gain insight into the mechanism of action of nTregs in pathological and physiological immune responses, it is important to analyze bioactive molecules that modulate the maintenance and function of nTregs. From a library of bioactive lipids, we obtained lysophosphatidylcholine (LPC) as a molecule that enhanced the Foxp3 expression and suppressive function of human nTregs significantly in comparison with those of DMSO-treated nTregs (control). The expression levels of TGF-β1 mRNA and protein in LPC-treated nTregs were significantly higher than those in control nTregs. After treatment with anti-TGF-β1 antibody, the increases in Foxp3 expression and the suppressive properties of LPC-treated nTregs returned to the levels observed in control nTregs. These findings indicate that LPC enhances Foxp3 expression and the suppressive function of nTregs through TGF-β1 produced by nTregs themselves. Experimental knockdown of G2A and GPR4 showed that this LPC-induced TGF-β1 expression in nTregs was due to G2A signaling, and did not involve GPR4. Moreover, JNK was a major contributor to LPC-induced TGF-β1 expression in nTregs, although LPC activated MAPKs including ERK1/2, p38 MAPK, and JNK via G2A. LPC is a bioactive lysolipid highly abundant in the circulation. Therefore, LPC may contribute to the maintenance and function of human nTregs in vivo.
Collapse
Affiliation(s)
- Hitoshi Hasegawa
- Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 2010; 15:1007-28. [PMID: 20157780 DOI: 10.1007/s10495-010-0472-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue homeostasis in metazoa requires the rapid and efficient clearance of dying cells by professional or semi-professional phagocytes. Impairment of this finely regulated, fundamental process has been implicated in the development of autoimmune diseases, such as systemic lupus erythematosus. Various studies have provided us a detailed understanding of the interaction between dying cells and phagocytes as well as the current concept that apoptotic cell removal leads to a non- or anti-inflammatory response, whereas necrotic cell removal stimulates a pro-inflammatory reaction. In contrast, our knowledge about the soluble factors released from dying cells is rather limited, although meanwhile it is generally accepted that not only the dying cell itself but also the substances liberated during cell death contribute to the process of corpse clearance and the subsequent immune response. This review article is intended as an up-to-date survey over attraction and danger signals of apoptotic, primary and secondary necrotic cells, their function as chemoattractants in phagocyte recruitment, additional effects on the immune system, and the receptors, which are engaged in this scenario.
Collapse
|
33
|
Kikuchi T, El Shikh MM, El Sayed RM, Purkall DB, Elaasser MM, Sarraf A, Barbour SE, Schenkein HA, Tew JG. Anti-phosphorylcholine-opsonized low-density lipoprotein promotes rapid production of proinflammatory cytokines by dendritic cells and natural killer cells. J Periodontal Res 2010; 45:720-30. [PMID: 20572914 DOI: 10.1111/j.1600-0765.2010.01292.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological and animal studies suggest that periodontal infections increase atherosclerosis risk. Periodontitis patients have elevated levels of anti-phosphorylcholine (anti-PC) reactive not only with numerous periodontal organisms but also with minimally modified low-density lipoprotein (mmLDL). Dendritic cells (DCs) reside in arterial walls and accumulate in atherosclerotic lesions. The ability of anti-PC to bind mmLDL prompted the hypothesis that opsonized mmLDL would stimulate DCs and enhance the production of proinflammatory cytokines that promote atherogenic plaque development. MATERIAL AND METHODS Monocyte-derived DCs (mDCs) were generated using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, then stimulated with mmLDL or with anti-PC-opsonized mmLDL. The anti-PC effect was determined using flow cytometry, cofocal microscopy and cytokine assays. The production of CD83, IL-12p35 mRNA, IL-12p40 mRNA, IL-12p70 and IL-10 by DCs was monitored. RESULTS Dendritic cells stimulated with mmLDL expressed little CD83 and produced little IL-12p70. However, anti-PC-opsonized mmLDL enhanced DC maturation, as indicated by upregulated CD83 and rapid (≤ 48 h) production of IL-12p70 if a source of interferon-γ (IFN-γ) was available. In leukocyte cultures, natural killer (NK) cells rapidly produced IFN-γ (≤ 48 h) when interacting with IL-12-producing DCs activated by anti-PC-opsonized mmLDL. Moreover, IFN-γ promoted DC IL-12 responses that were further augmented when mmLDL was opsonized with anti-PC. CONCLUSION Minimally modified LDL-stimulated DCs and NK cells were mutually stimulatory, with DC IL-12p70 needed by NK cells and with NK cell IFN-γ needed by DCs. Moreover, production of these proinflammatory cytokines was markedly enhanced when LDL was opsonized by anti-PC. In short, the data suggest that the elevated anti-PC levels in periodontitis patients could promote a mechanism that facilitates atherosclerosis.
Collapse
Affiliation(s)
- T Kikuchi
- Clinical Research Center for Periodontal Diseases, School of Dentistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bühligen J, Himmel M, Gebhardt C, Simon JC, Ziegler W, Averbeck M. Lysophosphatidylcholine-mediated functional inactivation of syndecan-4 results in decreased adhesion and motility of dendritic cells. J Cell Physiol 2010; 225:905-14. [PMID: 20607801 DOI: 10.1002/jcp.22301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Following antigen contact, maturation and migration of DCs into lymphatic tissues are crucial to the developing immune response or maintenance of tolerance. Lysophosphatidylcholine (LysoPC) is generated during apoptosis of cells and acts as a "find-and-eat-me" signal thought to prevent autoimmunity. Moreover, LysoPC can activate PKCδ and initiates a signaling cascade that leads to phosphorylation and inactivation of syndecan-4 (SDC4), a heparansulfate proteoglycan integrin co-receptor. In human monocyte-derived DCs, we recently demonstrated that SDC4 is upregulated during maturation thereby stimulating DC motility. Here, we investigate the effects of LysoPC on DC motility as well as on the involvement of PKCδ phosphorylation-dependent regulation of DC motility by SDC4 and PKCα. Employing a static adhesion assay and videomicroscopy, we show that LysoPC inhibits adhesion of DCs to fibronectin and motility of DCs by decreasing podosome formation. Moreover, DC podosome formation and motility, which both are regulated by SDC4 and subject to control by PKCδ-dependent phosphorylation of SDC4, were inhibited in LysoPC-matured DCs. Thus, these DC are defective in adhesion and migration. Based on our results, we hypothesize that LysoPC released during apoptosis might delay DC migration to lymphoid organs and thus prevent autoimmunity.
Collapse
Affiliation(s)
- Johannes Bühligen
- Department of Dermatology, Venerology and Allergology, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Muñoz LE, Peter C, Herrmann M, Wesselborg S, Lauber K. Scent of dying cells: The role of attraction signals in the clearance of apoptotic cells and its immunological consequences. Autoimmun Rev 2010; 9:425-30. [DOI: 10.1016/j.autrev.2009.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 11/16/2009] [Indexed: 01/09/2023]
|
36
|
Wu JM, Xu Y, Skill NJ, Sheng H, Zhao Z, Yu M, Saxena R, Maluccio MA. Autotaxin expression and its connection with the TNF-alpha-NF-kappaB axis in human hepatocellular carcinoma. Mol Cancer 2010; 9:71. [PMID: 20356387 PMCID: PMC2867819 DOI: 10.1186/1476-4598-9-71] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 03/31/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autotaxin (ATX) is an extracellular lysophospholipase D that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Both ATX and LPA have been shown to be involved in many cancers. However, the functional role of ATX and the regulation of ATX expression in human hepatocellular carcinoma (HCC) remain elusive. RESULTS In this study, ATX expression was evaluated in tissues from 38 human HCC and 10 normal control subjects. ATX was detected mainly in tumor cells within tissue sections and its over-expression in HCC was specifically correlated with inflammation and liver cirrhosis. In addition, ATX expression was examined in normal human hepatocytes and liver cancer cell lines. Hepatoma Hep3B and Huh7 cells displayed stronger ATX expression than hepatoblastoma HepG2 cells and normal hepatocytes did. Proinflammtory cytokine tumor necrosis factor alpha (TNF-alpha) promoted ATX expression and secretion selectively in Hep3B and Huh7 cells, which led to a corresponding increase in lysophospholipase-D activity. Moreover, we explored the mechanism governing the expression of ATX in hepatoma cells and established a critical role of nuclear factor-kappa B (NF-kappaB) in basal and TNF-alpha induced ATX expression. Further study showed that secreted enzymatically active ATX stimulated Hep3B cell invasion. CONCLUSIONS This report highlights for the first time the clinical and biological evidence for the involvement of ATX in human HCC. Our observation that links the TNF-alpha/NF-kappaB axis and the ATX-LPA signaling pathway suggests that ATX is likely playing an important role in inflammation related liver tumorigenesis.
Collapse
Affiliation(s)
- Jian-Min Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Single lysophosphatidylcholine components exhibit adjuvant activities in vitro and in vivo. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:429-38. [PMID: 20071492 DOI: 10.1128/cvi.00420-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Improving vaccine immunogenicity by developing new adjuvant formulations has long been a goal of vaccinologists. It has previously been shown that a natural mix of lysophosphatidylcholine (LPC) from chicken eggs promotes mature dendritic cell (DC) generation in vitro and primes antigen-specific immune responses in mice. In the present study, we dissected the adjuvant potentials of five individual LPC components found in the chicken egg mixture. In vitro analyses of the impact of the individual components on the maturation of human DCs were performed by means of phenotypic analysis, chemokine secretion analysis, and analysis of the ability of mature DC to stimulate T lymphocytes. Two components, C16:0-LPC and C18:0-LPC, were identified to be capable of the upregulation of expression of CD86, HLA-DR, and CD40 on in vitro-cultured monocyte-derived DCs from healthy donors. Both induced the release of chemokines to high concentrations (macrophage inflammatory protein 1, monocyte chemoattractant protein 1) or moderate concentrations (interleukin-8 [IL-8], gamma interferon-inducible protein 10). In addition, C16:0-LPC engaged naïve T cells to produce gamma interferon. This suggests that C16:0-LPC and C18:0-LPC have the capacity to promote, at least in vitro, a Th1-oriented response. The intravenous injection of C16:0-LPC or C18:0-LPC into mice resulted in the detectable secretion of IL-6 and IL-5 in sera. Both LPC components were tested for their capacities to act as adjuvants for two selected immunogens: the hepatitis B virus surface antigen and the hepatitis C virus NS3 helicase. The secretion of specific IgG1 was observed with either or both C16:0-LPC and C18:0-LPC, depending on the immunogen tested, and was observed at an efficiency comparable to that of alum. These data identify C16:0-LPC and C18:0-LPC as the active components of the LPC natural mixture. Although discrepancies between the results of the in vitro and in vivo analyses existed, studies with animals suggest that these components can trigger significant and specific humoral-mediated immunity.
Collapse
|
38
|
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2009; 17:381-97. [PMID: 20019744 DOI: 10.1038/cdd.2009.195] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis serves as one of the key processes involved in development, maintenance of tissue homeostasis, as well as in eliminating pathogens from an organism. Under normal physiological conditions, dying cells (e.g., apoptotic and necrotic cells) and pathogens (e.g., bacteria and fungi) are rapidly detected and removed by professional phagocytes such as macrophages and dendritic cells (DCs). In most cases, specific receptors and opsonins are used by phagocytes to recognize and bind their target cells, which can trigger the intracellular signalling events required for phagocytosis. Depending on the type of target cell, phagocytes may also release both immunomodulatory molecules and growth factors to orchestrate a subsequent immune response and wound healing process. In recent years, evidence is growing that opsonins and receptors involved in the removal of pathogens can also aid the disposal of dying cells at all stages of cell death, in particular plasma membrane-damaged cells such as late apoptotic and necrotic cells. This review provides an overview of the molecular mechanisms and the immunological outcomes of late apoptotic/necrotic cell removal and highlights the striking similarities between late apoptotic/necrotic cell and pathogen clearance.
Collapse
Affiliation(s)
- I K H Poon
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
| | | | | |
Collapse
|
39
|
Parrish WR, Gallowitsch-Puerta M, Czura CJ, Tracey KJ. Experimental therapeutic strategies for severe sepsis: mediators and mechanisms. Ann N Y Acad Sci 2009; 1144:210-36. [PMID: 19076379 DOI: 10.1196/annals.1418.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severe sepsis is the leading cause of mortality in intensive care units. The limited ability of current therapies to reduce sepsis mortality rates has fueled research efforts for the development of novel treatment strategies. Through the close collaboration between clinicians and scientists, progress can be seen in the struggle to develop effective therapeutic approaches for the treatment of sepsis and other immune and inflammatory disorders. Indeed, significant advances in intensive care, such as lung protective mechanical ventilation, improved antibiotics, and superior monitoring of systemic perfusion, are improving patient survival. Nonetheless, specific strategies that target the pathophysiological disorders in sepsis patients are essential to further improve clinical outcomes. This article reviews current clinical management approaches and experimental interventions that target pleiotropic or late-acting inflammatory mediators like caspases, C5a, MIF, and HMGB1, or the body's endogenous inflammatory control mechanisms such as the cholinergic anti-inflammatory pathway. These inflammatory mediators and anti-inflammatory mechanisms, respectively, show significant potential for the development of new experimental therapies for the treatment of severe sepsis and other infectious and inflammatory disorders.
Collapse
Affiliation(s)
- William R Parrish
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | |
Collapse
|
40
|
Nickel T, Schmauss D, Hanssen H, Sicic Z, Krebs B, Jankl S, Summo C, Fraunberger P, Walli AK, Pfeiler S, Weis M. oxLDL uptake by dendritic cells induces upregulation of scavenger-receptors, maturation and differentiation. Atherosclerosis 2009; 205:442-50. [PMID: 19203752 DOI: 10.1016/j.atherosclerosis.2009.01.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 12/30/2008] [Accepted: 01/04/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies have proposed a pathogenic role for oxidized LDL (oxLDL) in atherosclerosis. We tested the hypothesis whether oxLDL modulates dendritic cells (DCs), since these important antigen-presenting cells have been implicated in atherogenesis. We investigated the uptake of oxLDL by DCs, the scavenger-receptors involved and the resulting changes in phenotype and cytokine-spectra. In addition, we analyzed the impact of oxLDL on the nuclear transcription factor-kappa B (NF-kappaB)-pathway. METHODS AND RESULTS oxLDL (10microg/ml) increased the expression of the scavenger-receptors CD205 and CD36 and decreased the mannose-receptor expression. The lectin-like oxLDL-receptor (LOX-1)-expression was not affected. The endocytotic capacity of dextran and lucifer-yellow was moderately decreased by oxLDL. Blockage of the scavenger-receptors CD36, LOX-1 and CD205 reduced oxLDL uptake. Furthermore, oxLDL induced DC-maturation and triggered differentiation of DCs in myeloid and plasmacytoid DCs. oxLDL decreased IL-10 secretion and increased IL-6 release. Finally, oxLDL induced an activation of the NF-kappaB-pathway. Inhibition of IkappaBalpha-phosphorylation diminished the oxLDL-induced DC-maturation and -differentiation. CONCLUSION oxLDL uptake by DCs is mediated by the scavenger-receptors LOX-1, CD36, and CD205. oxLDL induces a proinflammatory cytokine profile in human DCs leading to DC-maturation and -differentiation which can, in part, be explained by an activation of the NF-kappaB-pathway. These results support the hypothesis that vascular inflammation may be aggravated by oxLDL induced DC-activation.
Collapse
Affiliation(s)
- Thomas Nickel
- Medizinische Klinik und Poliklinik I, University Hospital Munich-Grosshadern, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ibeas E, Fuentes L, Martín R, Hernández M, Nieto ML. Secreted phospholipase A2 type IIA as a mediator connecting innate and adaptive immunity: new role in atherosclerosis. Cardiovasc Res 2008; 81:54-63. [PMID: 18755682 DOI: 10.1093/cvr/cvn234] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Human atherosclerotic plaques express markers of macrophage/dendritic cells as well as high levels of inflammatory proteins such as secreted phospholipase A(2) type IIA (sPLA(2)-IIA). To understand the cellular changes associated with the progress of atherosclerosis, we evaluated the role of sPLA(2)-IIA in mediating monocyte recruitment and differentiation into antigen-presenting cells. METHODS AND RESULTS The effect of sPLA(2)-IIA on monocyte differentiation was evaluated in human THP-1 cells, a cellular line widely used as a model for monocyte-macrophage differentiation. Changes in functional processes, morphology and expression of antigens, characteristic of differentiated cells, were monitored over a 1-3 day period. sPLA(2)-IIA inhibited CD14 expression in a time- and concentration-dependent manner and upregulated dendritic cell-specific ICAM-3 grabbing non-integrin levels at the cell surface, findings that were the same for human monocytes. In addition, sPLA(2)-IIA-differentiated cells showed a dendritic cell phenotype characterized by the generation of fine dendritic protrusions and an increase in surface markers such as CD40, CD83, CD54, CD61, and CD62L. Furthermore, cell adhesion, migration, endocytic activity, and allogeneic T cell proliferation capacity were markedly increased after sPLA(2)-IIA treatment. CONCLUSION sPLA(2)-IIA induces the differentiation of mononuclear cells and increases their adhesive and migratory capabilities, which suggests a novel function for sPLA(2)-IIA as a mediator connecting innate and adaptive immunity. These findings may provide insight into the immuno-inflammatory processes occurring in atherosclerosis, helping us to understand the cellular changes associated with the development of atherosclerosis.
Collapse
Affiliation(s)
- Elvira Ibeas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas/Universidad de Valladolid, C/ Sanz y Fores s/n., 47005 Valladolid, Spain
| | | | | | | | | |
Collapse
|
42
|
Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. EMBO J 2008; 27:2353-62. [PMID: 18716631 PMCID: PMC2525841 DOI: 10.1038/emboj.2008.160] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/24/2008] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are sentinels of the immune system and represent a heterogeneous cell population. The existence of distinct DC subsets is due to their inherent plasticity and to the changing microenvironment modulating their immunological properties. Numerous signalling pathways have impacts on DCs. It appears that besides cytokines/chemokines, lipid mediators also have profound effects on the immunogenicity of DCs. Some of these lipid mediators exert an effect through nuclear hormone receptors. Interestingly, more recent findings suggest that DCs are able to convert precursors to active hormones, ligands for nuclear receptors. Some of these DC-derived lipids, in particular retinoic acid (RA), have a central function in shaping T-cell development and effector functions. In this review, we summarize and highlight the function of a set of nuclear receptors (PPARγ, RA receptor, vitamin D receptor and glucocorticoid receptor) in DC biology. Defining the contribution of nuclear hormone receptor signalling in DCs can help one to understand the regulatory logic of lipid signalling and allow the exploitation of their potential for therapeutic intervention in various immunological diseases.
Collapse
|
43
|
Retra K, van Riet E, Adegnika AA, Everts B, van Geest S, Kremsner PG, van Hellemond JJ, van der Kleij D, Tielens AGM, Yazdanbakhsh M. Immunologic activity of schistosomal and bacterial TLR2 ligands in Gabonese children. Parasite Immunol 2008; 30:39-46. [PMID: 18086015 DOI: 10.1111/j.1365-3024.2007.01000.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Schistosomes carry lipid moieties that interact with the immune system. To understand the consequence of interactions in terms of polarizing the cytokine profiles, the effect of two Toll-like receptor-2 (TLR2) activating schistosomal lipid fractions was studied on whole blood from Gabonese children living in a schistosomiasis endemic area. One fraction contained lysophosphatidylserine [monoacylglycerophosphoserine (lysoGPSer)] plus diacylphosphatidylserine [diacylglycerophosphoserine (GPSer)] while the other contained lysoGPSer and only a trace of GPSer. The effect of these schistosomal lipid fractions was compared with the known bacterial TLR2 ligands PAM3CSK4 and MALP-2. PAM3CSK4 and MALP-2 had preferential IL-10-activating capacities, while the fraction containing lysoGPSer plus GPSer had a strong TNF-alpha-inducing capacity. The fraction containing lysoGPSer was neutral with respect to pro- vs. anti-inflammatory effects. When Th1 and Th2 cytokines were analysed, the schistosomal lipid fraction containing lysoGPSer plus GPSer showed a stronger Th2 response compared to PAM3CSK4, MALP-2 and lysoGPSer alone. Therefore, the study indicates that not only TLR2 ligands derived from bacteria or from parasites can generate distinct cytokine profiles but also that the composition of lipid entities reaching the immune system can be important in leading to different immune outcomes. This information may be important for exploitation of immune modulatory molecules.
Collapse
Affiliation(s)
- K Retra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Vré EA, Bult H, Hoymans VY, Van Tendeloo VF, Vrints CJ, Bosmans JM. Human C-Reactive Protein Activates Monocyte-Derived Dendritic Cells and Induces Dendritic Cell-Mediated T-Cell Activation. Arterioscler Thromb Vasc Biol 2008; 28:511-8. [DOI: 10.1161/atvbaha.107.157016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective—
Recent studies proposed a pathogenic role for C-reactive protein (CRP), an independent predictor of cardiovascular disease (CVD), in atherosclerosis. Therefore, we tested whether CRP may modulate dendritic cell (DC) function, because these professional antigen-presenting cells have been implicated in atherogenesis.
Methods and Results—
Human monocyte-derived immature DCs were cultured with human CRP (0 to 60 μg/mL) for 24 hours. Thereafter, activation markers were measured by flow-cytometry and DCs were cocultured with CFSE-labeled lymphocytes to measure T-cell proliferation and interferon (IFN)-γ secretion after 8 days. Exposure to 60 μg/mL CRP (n=5) induced an activated cell morphology and significant (CD40 increase MFI 5.23±0.28,
P
<0.01 paired
t
test; CD80 6.18±0.51,
P
<0.01) to modest (CD83 1.38±0.17,
P
<0.05, CCR7 1.60±0.29,
P
=0.05) upregulation of DC activation markers. The expression of CD86 and HLA-DR was high, but not affected. T-lymphocytes incubated with CRP-pulsed DCs displayed increased IFN-γ secretion and proliferation (
P
<0.001). DC activation was concentration-dependent and detected from 2 μg/mL CRP; the maximum effect was equivalent to that seen with 0.1 μg/mL lipopolysaccharide (LPS). Polymyxin B abolished the LPS response, without influencing CRP effects. Finally, immunohistochemistry could demonstrate DC/CRP colocalization in human atherosclerotic lesions.
Conclusions—
These findings suggest that CRP in plaques or found circulating in CVD patients can influence DC function during atherogenesis.
Collapse
Affiliation(s)
- Emily A. Van Vré
- From the Departments of Cardiology (E.A.V.V., C.J.V., J.B.) and Pharmacology (H.B.), University of Antwerp, Wilrijk, Belgium and the Centre for Regenerative Medicine and Cell Therapy, Departments of Cardiology (V.Y.H., C.J.V., J.B.) and Experimental Haematology (V.F.I.V.T.), University Hospital of Antwerp, Edegem, Belgium
| | - Hidde Bult
- From the Departments of Cardiology (E.A.V.V., C.J.V., J.B.) and Pharmacology (H.B.), University of Antwerp, Wilrijk, Belgium and the Centre for Regenerative Medicine and Cell Therapy, Departments of Cardiology (V.Y.H., C.J.V., J.B.) and Experimental Haematology (V.F.I.V.T.), University Hospital of Antwerp, Edegem, Belgium
| | - Vicky Y. Hoymans
- From the Departments of Cardiology (E.A.V.V., C.J.V., J.B.) and Pharmacology (H.B.), University of Antwerp, Wilrijk, Belgium and the Centre for Regenerative Medicine and Cell Therapy, Departments of Cardiology (V.Y.H., C.J.V., J.B.) and Experimental Haematology (V.F.I.V.T.), University Hospital of Antwerp, Edegem, Belgium
| | - Viggo F.I. Van Tendeloo
- From the Departments of Cardiology (E.A.V.V., C.J.V., J.B.) and Pharmacology (H.B.), University of Antwerp, Wilrijk, Belgium and the Centre for Regenerative Medicine and Cell Therapy, Departments of Cardiology (V.Y.H., C.J.V., J.B.) and Experimental Haematology (V.F.I.V.T.), University Hospital of Antwerp, Edegem, Belgium
| | - Christiaan J. Vrints
- From the Departments of Cardiology (E.A.V.V., C.J.V., J.B.) and Pharmacology (H.B.), University of Antwerp, Wilrijk, Belgium and the Centre for Regenerative Medicine and Cell Therapy, Departments of Cardiology (V.Y.H., C.J.V., J.B.) and Experimental Haematology (V.F.I.V.T.), University Hospital of Antwerp, Edegem, Belgium
| | - Johan M. Bosmans
- From the Departments of Cardiology (E.A.V.V., C.J.V., J.B.) and Pharmacology (H.B.), University of Antwerp, Wilrijk, Belgium and the Centre for Regenerative Medicine and Cell Therapy, Departments of Cardiology (V.Y.H., C.J.V., J.B.) and Experimental Haematology (V.F.I.V.T.), University Hospital of Antwerp, Edegem, Belgium
| |
Collapse
|
45
|
Takatera A, Takeuchi A, Saiki K, Morioka I, Yokoyama N, Matsuo M. Blood lysophosphatidylcholine (LPC) levels and characteristic molecular species in neonates: prolonged low blood LPC levels in very low birth weight infants. Pediatr Res 2007; 62:477-82. [PMID: 17667851 DOI: 10.1203/pdr.0b013e31814625ca] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lysophosphatidylcholine (LPC) has various stimulatory effects on many types of immune cells. The purpose of our study was to characterize blood LPC levels and to determine the composition of LPC molecular species (LPCs) in the neonatal period. Thirty-six neonates were enrolled in this study and then grouped according to birth-weight as follows: non-very low birth weight (NVLBW); >or=1,500 g (n=17), and very low birth weight (VLBW); <1,500 g (n=19). Sixteen healthy normal adults were used as controls. Levels of total blood LPC and LPCs (16:0-, 18:0-, 18:1-, 18:2-, and 20:4-LPC species) were measured using HPLC coupled with tandem mass spectrometry. Total blood LPC levels at birth in neonates in both groups (NVLBW and VLBW) were significantly lower than those of adult levels. In NVLBW infants, LPC levels reached adult levels at postnatal day 3 compared with VLBW infants, who attained adult levels after postnatal day 57 (around full-term). The composition of the LPCs was different not only between neonates and adults, but between NVLBW and VLBW infants. These findings may be associated with the difference of immunity among adults, NVLBW, and VLBW infants.
Collapse
Affiliation(s)
- Akihiro Takatera
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Ceballos A, Sabatté J, Nahmod K, Martínez D, Salamone G, Vermeulen M, Maggini J, Salomón H, Geffner J. Sphingosylphosphorylcholine activates dendritic cells, stimulating the production of interleukin-12. Immunology 2007; 121:328-36. [PMID: 17371542 PMCID: PMC2265955 DOI: 10.1111/j.1365-2567.2007.02578.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 11/30/2022] Open
Abstract
Compared with other lysophospholipid mediators such as sphingosine-1-phosphate and lysophosphatidic acid, little is known about the physiological significance of the related bioactive lysosphingolipid sphingosylphosphorylcholine (SPC), which is present in high-density lipoprotein particles. The present study was undertaken to evaluate the effect of SPC on human immature dendritic cells (DCs). Reverse transcription-polymerase chain reaction and flow cytometry assays revealed that DCs express two putative receptors for SPC, ovarian cancer G-protein-coupled receptor 1 and G-protein-coupled receptor 4. Exposure to SPC induced a rapid and transient increase in intracellular free calcium concentrations but did not stimulate endocytosis or chemotaxis of DCs. SPC increased the expression of HLA-DR, CD86 and CD83 and improved the T-cell priming ability of DCs, as well as the ability of DCs to stimulate the production of interferon-gamma by allogeneic peripheral blood mononuclear cells during the mixed lymphocyte reaction. Consistent with these results, we also observed that SPC stimulated the production of interleukin (IL)-12 and IL-18 by DCs. Taken together, our results support the notion that the accumulation of SPC in peripheral tissues during the course of inflammatory processes may favour the development of T helper type 1 immunity.
Collapse
Affiliation(s)
- Ana Ceballos
- National Reference Center for AIDS, Department of Microbiology, Buenos Aires University School of MedicineBuenos Aires, Argentina
| | - Juan Sabatté
- National Reference Center for AIDS, Department of Microbiology, Buenos Aires University School of MedicineBuenos Aires, Argentina
| | - Karen Nahmod
- Institute of Hematologic Research, National Academy of MedicineBuenos Aires, Argentina
| | - Diego Martínez
- Institute of Hematologic Research, National Academy of MedicineBuenos Aires, Argentina
| | - Gabriela Salamone
- Institute of Hematologic Research, National Academy of MedicineBuenos Aires, Argentina
| | - Mónica Vermeulen
- Institute of Hematologic Research, National Academy of MedicineBuenos Aires, Argentina
| | - Julián Maggini
- Institute of Hematologic Research, National Academy of MedicineBuenos Aires, Argentina
| | - Horacio Salomón
- National Reference Center for AIDS, Department of Microbiology, Buenos Aires University School of MedicineBuenos Aires, Argentina
| | - Jorge Geffner
- National Reference Center for AIDS, Department of Microbiology, Buenos Aires University School of MedicineBuenos Aires, Argentina
- Institute of Hematologic Research, National Academy of MedicineBuenos Aires, Argentina
| |
Collapse
|
47
|
Agaugué S, Perrin-Cocon L, André P, Lotteau V. Hepatitis C lipo-Viro-particle from chronically infected patients interferes with TLR4 signaling in dendritic cell. PLoS One 2007; 2:e330. [PMID: 17389921 PMCID: PMC1828622 DOI: 10.1371/journal.pone.0000330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/18/2007] [Indexed: 01/27/2023] Open
Abstract
Background Hepatitis C virus (HCV) can be purified from serum of chronically-infected patients in the form of Lipo-Viro-Particles (LVP), which are triglycerid-rich lipoprotein-like particles containing viral RNA and proteins. Since LVP is a constant feature of chronically infected patients, we asked whether purified LVP could interfere with the immune response by acting directly on dendritic cell (DC) function. Methods and Findings We have analyzed the impact of LVP on the maturation monocyte-derived DC induced by TLR3 or TLR4 ligands. Following incubation with LVP, immature DC supported weak transient HCV-RNA replication and type I IFN synthesis. This, however, did not lead to viral particle production nor to maturation of DC. LVP-treatment prior to TLR3 stimulation by polyI:C only enhanced the secretion of IL-12, IL-6 and TNFα yielding typical mature DC. In contrast, LVP-treated DC activated by the TLR4 ligand LPS yielded phenotypically mature DC with reduced capacity to secrete both pro- and anti-inflammatory cytokines. Their ability to stimulate allogeneic T lymphocytes was strongly affected since activated T cells produced IL-5 and IL-13 instead of IFNγ. Addition of IFNα prevented the effect of LVP on DC function. Restoration of IFNγ secretion by T cells was obtained by blocking ERK activation in DC, while induction of IL-5 and IL-13 secretion was inhibited by blocking the p38-MAPK pathway in DC. Conclusions LVP can interfere with TLR4-triggered maturation of DC, inducing a shift in DC function that stimulates Th2 cells instead of Th1, by a mechanism that is ERK- and p38-MAPK-dependent. The effect of LVP on DC polarization was reversed by IFNα, providing an additional rationale for the interferon therapy of chronically-infected patients. By acting on TLR4 pathway with LVP, HCV may thus exploit a natural protective mechanism of the liver and the intestine normally used to control inflammation and immunity to commensal microorganisms.
Collapse
Affiliation(s)
- Sophie Agaugué
- Institut National de la Santé et de la Recherche Médicale (INSERM), U851, Lyon, France
- Université de Lyon, Lyon-Gerland, France
| | - Laure Perrin-Cocon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U851, Lyon, France
- Université de Lyon, Lyon-Gerland, France
| | - Patrice André
- Institut National de la Santé et de la Recherche Médicale (INSERM), U851, Lyon, France
- Université de Lyon, Lyon-Gerland, France
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Laboratoire de Virologie, France
| | - Vincent Lotteau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U851, Lyon, France
- Université de Lyon, Lyon-Gerland, France
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Laboratoire de Virologie, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Sabatté J, Maggini J, Nahmod K, Amaral MM, Martínez D, Salamone G, Ceballos A, Giordano M, Vermeulen M, Geffner J. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007; 18:5-17. [PMID: 17321783 DOI: 10.1016/j.cytogfr.2007.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are the only antigen-presenting cell capable of activating naïve T lymphocytes, and hence they play a crucial role in the induction of adaptive immunity. Immature DCs sample and process antigens, and efficiently sense a large variety of signals from the surrounding environment. Upon activation, they become capable to activate naïve T cells and to direct the differentiation and polarization of effector T lymphocytes. It is becoming increasingly clear that different signals are able to determine distinct programs of DC differentiation and different forms of immunity and tolerance. In the past few years many advances have been made in addressing the action exerted by pathogen-associated molecular patterns (PAMPs), cytokines, chemokines, and other less characterized stress molecules on the activity of DCs. In this review we focus on the multiplicity of innate signals able to modulate the functional profile of DCs.
Collapse
Affiliation(s)
- Juan Sabatté
- Institute of Haematological Research, National Academy of Medicine and National Reference Centre for AIDS, Department of Microbiology, Buenos Aires University School of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lu T, Newton C, Perkins I, Friedman H, Klein TW. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 2006; 319:269-76. [PMID: 16837556 DOI: 10.1124/jpet.106.108381] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Marijuana cannabinoids, such as delta-9-tetrahydrocannabinoid (THC), suppress type 1 T-helper 1 (Th1) immunity in a variety of models, including infection with the intracellular pathogen Legionella pneumophila (Lp). To examine the cellular mechanism of this effect, bone marrow-derived dendritic cells (DCs) were purified from BALB/c mice and studied following infection and drug treatment. DCs infected in vitro with Lp were able to protect mice when injected prior to a lethal Lp infection; however, the immunization potential of the Lp-loaded cells along with Th1 cytokine production was attenuated by THC treatment at the time of in vitro infection. In addition, THC-treated and Lp-loaded DCs were poorly stimulated in culture-primed splenic CD4(+) T cells to produce interferon-gamma; however, this stimulating deficiency was reversed by adding recombinant interleukin (IL)-12p40 protein to the cultures. Moreover, THC treatment inhibited the expression of DC maturation markers, such as major histocompatibility complex class II and costimulatory molecules CD86 and CD40 as determined by flow cytometry and suppressed the Notch ligand, Del-ta4, as determined by reverse transcription-polymerase chain reaction. However, THC treatment did not affect other DC functions, such as intracellular killing of Lp, determined by colony-forming unit counts of bacteria, and Lp-induced apoptosis, determined by annexin V staining. In conclusion, the data suggest that THC inhibits Th1 activation by targeting essential DC functions, such as IL-12p40 secretion, maturation, and expression of costimulatory and polarizing molecules.
Collapse
Affiliation(s)
- Tangying Lu
- Department of Medical Microbiology and Immunology, MDC 10 University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
50
|
Krönke G, Leitinger N. Oxidized phospholipids at the interface of innate and adaptive immunity. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.5.623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|