1
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
2
|
Corinaldesi C, Holmes AB, Shen Q, Grunstein E, Pasqualucci L, Dalla-Favera R, Basso K. Tracking Immunoglobulin Repertoire and Transcriptomic Changes in Germinal Center B Cells by Single-Cell Analysis. Front Immunol 2022; 12:818758. [PMID: 35095922 PMCID: PMC8789751 DOI: 10.3389/fimmu.2021.818758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
In response to T-cell-dependent antigens, mature B cells in the secondary lymphoid organs are stimulated to form germinal centers (GCs), which are histological structures deputed to antibody affinity maturation, a process associated with immunoglobulin gene editing by somatic hypermutation (SHM) and class switch recombination (CSR). GC B cells are heterogeneous and transition across multiple stages before being eliminated by apoptosis or committing to post-GC differentiation as memory B cells or plasma cells. In order to explore the dynamics of SHM and CSR during the GC reaction, we identified GC subpopulations by single-cell (sc) transcriptomics and analyzed the load of immunoglobulin variable (V) region mutations as well as the isotype class distribution in each subpopulation. The results showed that the large majority of GC B cells display a quantitatively similar mutational load in the V regions and analogous IGH isotype class distribution, except for the precursors of memory B cells (PreM) and plasma cells (PBL). PreM showed a bimodal pattern with about half of the cells displaying high V region germline identity and enrichment for unswitched IGH, while the rest of the cells carried a mutational load similar to the bulk of GC B cells and showed a switched isotype. PBL displayed a bias toward expression of IGHG and higher V region germline identity compared to the bulk of GC B cells. Genes implicated in SHM and CSR were significantly induced in specific GC subpopulations, consistent with the occurrence of SHM in dark zone cells and suggesting that CSR can occur within the GC.
Collapse
Affiliation(s)
| | - Antony B. Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Eli Grunstein
- Department of Otolaringology Head and Neck Surgery, Columbia University, New York, NY, United States
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
4
|
Ratliff ML, Mishra M, Frank MB, Guthridge JM, Webb CF. The Transcription Factor ARID3a Is Important for In Vitro Differentiation of Human Hematopoietic Progenitors. THE JOURNAL OF IMMUNOLOGY 2015; 196:614-23. [PMID: 26685208 DOI: 10.4049/jimmunol.1500355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
We recently reported that the transcription factor ARID3a is expressed in a subset of human hematopoietic progenitor stem cells in both healthy individuals and in patients with systemic lupus erythematosus. Numbers of ARID3a(+) lupus hematopoietic stem progenitor cells were associated with increased production of autoreactive Abs when those cells were introduced into humanized mouse models. Although ARID3a/Bright knockout mice died in utero, they exhibited decreased numbers of hematopoietic stem cells and erythrocytes, indicating that ARID3a is functionally important for hematopoiesis in mice. To explore the requirement for ARID3a for normal human hematopoiesis, hematopoietic stem cell progenitors from human cord blood were subjected to both inhibition and overexpression of ARID3a in vitro. Inhibition of ARID3a resulted in decreased B lineage cell production accompanied by increases in cells with myeloid lineage markers. Overexpression of ARID3a inhibited both myeloid and erythroid differentiation. Additionally, inhibition of ARID3a in hematopoietic stem cells resulted in altered expression of transcription factors associated with hematopoietic lineage decisions. These results suggest that appropriate regulation of ARID3a is critical for normal development of both myeloid and B lineage pathways.
Collapse
Affiliation(s)
| | - Meenu Mishra
- Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mark B Frank
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | - Carol F Webb
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
5
|
Ward JM, James JA, Zhao YD, Webb CF. Antibody Reactivity of B Cells in Lupus Patients with Increased Disease Activity and ARID3a Expression. Antibodies (Basel) 2015; 4:354-368. [PMID: 28580178 PMCID: PMC5451160 DOI: 10.3390/antib4040354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Earlier studies showed that the DNA-binding protein, Bright/ARID3a bound to a subset of human and mouse immunoglobulin heavy chain promoters where it enhanced expression. Indeed, mice with transgenic expression of ARID3a in all B lymphocytes have expanded MZ B cells and produce anti-nuclear antibodies (ANAs). Consistent with our findings in mice, we observed that human systemic lupus erythematosus (SLE) patients had expanded numbers of peripheral blood ARID3a+ B cells that were associated with increased disease activity (p = 0.0038). We hypothesized that ARID3a+ naïve B cells would eventually produce autoantibodies, explaining associations between ARID3a expression and disease activity in lupus. Unlike healthy controls, ARID3a was expressed in the naïve B cell population in SLE patients, and we hypothesized that these might represent expansions of autoreactive cells. Therefore, monoclonal antibodies were generated from single-sorted naïve B cells derived from patients with normal (ARID3aN) and high (ARID3aH) numbers of ARID3a+ B cells. We found that ARID3a expression did not correlate with autoantibody expression. Furthermore, measures of antigen specificities of autoreactive antibodies did not reveal skewing toward particular proteins. These data suggest that the association of increased disease activity in SLE with numbers of ARID3a+ B lymphocytes may be mediated by an antibody-independent mechanism.
Collapse
Affiliation(s)
- Julie M. Ward
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Judith A. James
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Departments of Medicine and Pathology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carol F. Webb
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Author to whom correspondence should be addressed;
| |
Collapse
|
6
|
Hardy RR, Hayakawa K. Perspectives on fetal derived CD5+ B1 B cells. Eur J Immunol 2015; 45:2978-84. [PMID: 26339791 DOI: 10.1002/eji.201445146] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
CD5(+) B-cell origins and their predisposition to lymphoma are long-standing issues. Transfer of fetal and adult liver BM Pro-B cells generates B cells with distinct phenotypes: fetal cells generate IgM(high) IgD(low) CD5(+) , whereas adult cells IgM(low) IgD(high) CD5(-) . This suggests a developmental switch in B lymphopoiesis, similar to the switch in erythropoiesis. Comparison of mRNA and miRNA expression in fetal and adult Pro-B cells revealed differential expression of Lin28b mRNA and Let-7 miRNA, providing evidence that this regulatory axis functions in the switch. Recent work has shown that Arid3a is a key transcription factor mediating fetal-type B-cell development. Lin28b-promoted fetal development generates CD5(+) B cells as a consequence of positively selected self-reactivity. CD5(+) B cells play important roles in clearance of apoptotic cells and in protective immune responses, but also pose a risk of progression to leukemia/lymphoma. Differential Lin28b expression in fetal and adult human B-cell precursors showed that human B-cell development may resemble mouse, with self-reactive "innate-like" B cells generated early in life. It remains to be determined whether such human B cells have a higher propensity to leukemic progression. This review describes our recent research with CD5(+) B cells and presents our perspective on their role in disease.
Collapse
|
7
|
Zhou Y, Li YS, Bandi SR, Tang L, Shinton SA, Hayakawa K, Hardy RR. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. ACTA ACUST UNITED AC 2015; 212:569-80. [PMID: 25753579 PMCID: PMC4387290 DOI: 10.1084/jem.20141510] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/11/2015] [Indexed: 01/24/2023]
Abstract
Zhou et al. demonstrate a requirement for the Let-7–Lin28b axis regulating a shift in development between fetal liver and bone marrow B lymphocyte progenitors in the generation of B1 versus B2 B cells. Specifically, the transcription factor Arid3a, induced by Lin28b and a target of Let-7 miRNA, is sufficient to recapitulate fetal B cell development from bone marrow progenitors. Mouse B cell precursors from fetal liver and adult bone marrow (BM) generate distinctive B cell progeny when transplanted into immunodeficient recipients, supporting a two-pathway model for B lymphopoiesis, fetal “B-1” and adult “B-2.” Recently, Lin28b was shown to be important for the switch between fetal and adult pathways; however, neither the mechanism of Lin28b action nor the importance of B cell antigen receptor (BCR) signaling in this process was addressed. Here, we report key advances in our understanding of the regulation of B-1/B-2 development. First, modulation of Let-7 in fetal pro-B cells is sufficient to alter fetal B-1 development to produce B cells resembling the progeny of adult B-2 development. Second, intact BCR signaling is required for the generation of B1a B cells from Lin28b-transduced BM progenitors, supporting a requirement for ligand-dependent selection, as is the case for normal B1a B cells. Third, the VH repertoire of Lin28b-induced BM B1a B cells differs from that of normal B1a, suggesting persisting differences from fetal progenitors. Finally, we identify the Arid3a transcription factor as a key target of Let-7, whose ectopic expression is sufficient to induce B-1 development in adult pro-B cells and whose silencing by knockdown blocks B-1 development in fetal pro-B cells.
Collapse
Affiliation(s)
- Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | | | | | | | | | |
Collapse
|
8
|
Ratliff ML, Templeton TD, Ward JM, Webb CF. The Bright Side of Hematopoiesis: Regulatory Roles of ARID3a/Bright in Human and Mouse Hematopoiesis. Front Immunol 2014; 5:113. [PMID: 24678314 PMCID: PMC3958700 DOI: 10.3389/fimmu.2014.00113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation , Oklahoma City, OK , USA
| | - Troy D Templeton
- Department of Cell Biology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Julie M Ward
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Carol F Webb
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation , Oklahoma City, OK , USA ; Department of Cell Biology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| |
Collapse
|
9
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
10
|
Matheson LS, Corcoran AE. Local and global epigenetic regulation of V(D)J recombination. Curr Top Microbiol Immunol 2012; 356:65-89. [PMID: 21695632 DOI: 10.1007/82_2011_137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite using the same Rag recombinase machinery expressed in both lymphocyte lineages, V(D)J recombination of immunoglobulins only occurs in B cells and T cell receptor recombination is confined to T cells. This vital segregation of recombination targets is governed by the coordinated efforts of several epigenetic mechanisms that control both the general chromatin accessibility of these loci to the Rag recombinase, and the movement and synapsis of distal gene segments in these enormous multigene AgR loci, in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments and AgR domains, and globally over large distances in the nucleus. Here we will discuss the roles of several epigenetic components that regulate V(D)J recombination of the immunoglobulin heavy chain locus in B cells, both in the context of the locus itself, and of its 3D nuclear organization, focusing in particular on non-coding RNA transcription. We will also speculate about how several newly described epigenetic mechanisms might impact on AgR regulation.
Collapse
Affiliation(s)
- Louise S Matheson
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | |
Collapse
|
11
|
Danilova N, Saunders HL, Ellestad KK, Magor BG. The zebrafish IgH locus contains multiple transcriptional regulatory regions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:352-9. [PMID: 21055416 PMCID: PMC3031712 DOI: 10.1016/j.dci.2010.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 05/06/2023]
Abstract
Many fish have, in addition to IgM and IgD, a third isotype called IgZ or IgT. The ζ-chain locus is embedded among the Ig heavy chain V-, D- and J-elements in a manner reminiscent of the TcR δ/α locus. Isotype selection thus occurs during VDJ recombination, a process that is facilitated by intralocus transcription. Using in silico analyses and enhancer reporter vectors we identified 3 new regions within the zebrafish IgH locus through which transcription can be activated in catfish B-cell lines. Two of these, termed Eζi (Jζ to Cζ1 intronic) and Eζ3' regions flank the ζ-chain constant domain exons. A third region, Eδ3', resides downstream of the δ-chain exons. All regions contain predicted binding sites for transcription factors that contribute to B-cell specific transcription in fish and mammals. Each region also has proximal matrix attachment regions, which may further contribute to transcriptional activation and chromatin remodeling. We discuss possible roles for these regions during VDJ recombination.
Collapse
Affiliation(s)
- N. Danilova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - H. L. Saunders
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| | - K. K. Ellestad
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| | - B. G. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| |
Collapse
|
12
|
Nakka KK, Chattopadhyay S. Modulation of chromatin by MARs and MAR binding oncogenic transcription factor SMAR1. Mol Cell Biochem 2010; 336:75-84. [PMID: 19802523 DOI: 10.1007/s11010-009-0262-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 09/15/2009] [Indexed: 11/29/2022]
Abstract
The orchestration of the events in the cell during the progression of the cell cycle is modulated by various phenomenon which are regulated by structural modules of the cell. The nucleus is a major hub for all these regulatory units which harbour the nuclear matrix, matrix proteins and chromatin. The histone modifications etch a complex code on the chromatin and the matrix proteins in consort with the histone code regulate the gene expression. SMAR1 is a matrix attachment region binding protein that interacts with chromatin modulators like HDAC1, Sin3A and causes chromatin condensation. SMAR1 modulates the chromatin at the Vbeta locus and plays a prominent role in V(D)J recombination. Such indispensable function of SMAR1 by the modulation of chromatin in the context of malignancy and V(D)J recombination emphasizes that MAR binding proteins regulate the complex events of the cell and perturbed expression causes disease conditions.
Collapse
Affiliation(s)
- Kiran K Nakka
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India
| | | |
Collapse
|
13
|
Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 2008; 412:84-94. [PMID: 18313863 DOI: 10.1016/j.gene.2008.01.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 01/19/2023]
Abstract
Cux (Cut homeobox) genes are present in all metazoans. Early reports described many phenotypes caused by cut mutations in Drosophila melanogaster. In vertebrates, CUX1 was originally characterized as the CCAAT-displacement protein (CDP). Another line of investigation revealed the presence of CUX1 within a multi-protein complex called the histone nuclear factor D (HiNF-D). Recent studies led to the identification of several CUX1 isoforms with distinct DNA binding and transcriptional properties. While the CCAAT-displacement activity was implicated in the transcriptional repression of several genes, some CUX1 isoforms were found to participate in the transcriptional activation of some genes. The expression and activity of CUX1 was shown to be regulated through the cell cycle and to be a target of TGF-beta signaling. Mechanisms of regulation include alternative transcription initiation, proteolytic processing, phosphorylation and acetylation. Cell-based assays have established a role for CUX1 in the control of cell cycle progression, cell motility and invasion. In the mouse, gene inactivation as well as over-expression in transgenic mice has revealed phenotypes in multiple organs and cell types. While some phenotypes could be explained by the presumed functions of CUX1 in the affected cells, other phenotypes invoked non-cell-autonomous effects that suggest regulatory functions with an impact on cell-cell interactions. The implication of CUX1 in cancer was suggested first from its over-expression in primary tumors and cancer cell lines and was later confirmed in mouse models.
Collapse
|
14
|
Kubota T, Maezawa S, Koiwai K, Hayano T, Koiwai O. Identification of functional domains in TdIF1 and its inhibitory mechanism for TdT activity. Genes Cells 2007; 12:941-59. [PMID: 17663723 DOI: 10.1111/j.1365-2443.2007.01105.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TdT interacting factor 1 (TdIF1) was identified as a protein that binds to terminal deoxynucleotidyltransferase (TdT) to negatively regulate TdT activity. TdT is a template-independent DNA polymerase that catalyzes the incorporation of deoxynucleotides to the 3'-hydroxyl end of DNA templates to increase the junctional diversity of immunoglobulin or T-cell receptor (TcR) genes. Here, using bioinformatics analysis, we identified the TdT binding, DNA binding and dimerization regions, and nuclear localization signal (NLS) in TdIF1. TdIF1 bound to double-stranded DNA (dsDNA) through three DNA binding regions: residues 1-75, the AT-hook-like motif (ALM) and the predicted helix-turn-helix (HTH) motif. ALM in TdIF1 preferentially bound to AT-rich DNA regions. NLS was of the bipartite type and overlapped ALM. TdIF1 bound to the Pol beta-like region in TdT and blocked TdT access to DNA ends. In the presence of dsDNA, however, TdIF1 bound to dsDNA to release TdT from the TdIF1/TdT complex and to exhibit TdT activity, implying that active TdT released microenvironmentally concentrates around AT-rich DNA to synthesize DNA.
Collapse
Affiliation(s)
- Takashi Kubota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Kathryn Calame
- Department of Microbiology, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
16
|
Kim D, Probst L, Das C, Tucker PW. REKLES is an ARID3-restricted multifunctional domain. J Biol Chem 2007; 282:15768-77. [PMID: 17400556 DOI: 10.1074/jbc.m700397200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bright/Dril1/ARID3a is a B cell-specific, matrix association (or attachment) region-binding transcriptional regulator of immunoglobulin heavy chain genes and of E2F1-dependent cell cycle progression. Bright contains a central DNA binding domain termed ARID (AT-rich interacting domain) and a C-terminal region termed REKLES (for a conserved amino acid motif). The ARID domain has been identified in seven highly conserved families of metazoan proteins (ARID1-5 and JARID1-2), whereas REKLES is found only in the ARID3 subfamily (composed of Bright/ARID3a, Bdp/ARID3b, and Bright-like/ARID3c). REKLES consists of two subdomains: a modestly conserved N-terminal REKLESalpha and a highly conserved (among ARID3 orthologous proteins) C-terminal REKLESbeta. Previously we showed that Bright undergoes nucleocytoplasmic shuttling and that REKLESalpha and -beta were required, respectively, for nuclear import and Crm1-dependent nuclear export. Here we show that Bright further requires REKLESbeta for self-association or paralogue association and for nuclear matrix targeting. REK-LES promotes and regulates the extent of Bright multimerization, which occurs in the absence or presence of target DNA and is necessary for specific DNA binding. REKLESbeta-mediated interaction of Bright with Bdp, which localizes strictly to the nucleus, traps Bright within the nucleus via neutralization of its nuclear export activity. These results identify REKLES as a multifunctional domain that has co-evolved with and regulates functional properties of the ARID3 DNA binding domain.
Collapse
Affiliation(s)
- Dongkyoon Kim
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas, Austin, Texas 78712-0162, USA
| | | | | | | |
Collapse
|
17
|
Lin D, Ippolito GC, Zong RT, Bryant J, Koslovsky J, Tucker P. Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer. Mol Cancer 2007; 6:23. [PMID: 17386101 PMCID: PMC1852116 DOI: 10.1186/1476-4598-6-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/26/2007] [Indexed: 01/27/2023] Open
Abstract
Bright/ARID3A is a nuclear matrix-associated transcription factor that stimulates immunoglobulin heavy chain (IgH) expression and Cyclin E1/E2F-dependent cell cycle progression. Bright positively activates IgH transcriptional initiation by binding to ATC-rich P sites within nuclear matrix attachment regions (MARs) flanking the IgH intronic enhancer (Eμ). Over-expression of Bright in cultured B cells was shown to correlate with DNase hypersensitivity of Eμ. We report here further efforts to analyze Bright-mediated Eμ enhancer activation within the physiological constraints of chromatin. A system was established in which VH promoter-driven in vitro transcription on chromatin- reconstituted templates was responsive to Eμ. Bright assisted in blocking the general repression caused by nucleosome assembly but was incapable of stimulating transcription from prebound nucleosome arrays. In vitro transcriptional derepression by Bright was enhanced on templates in which Eμ is flanked by MARs and was inhibited by competition with high affinity Bright binding (P2) sites. DNase hypersensitivity of chromatin-reconstituted Eμ was increased when prepackaged with B cell nuclear extract supplemented with Bright. These results identify Bright as a contributor to accessibility of the IgH enhancer.
Collapse
Affiliation(s)
- Danjuan Lin
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gregory C Ippolito
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Rui-Ting Zong
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - James Bryant
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Janet Koslovsky
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Philip Tucker
- Section of Molecular Genetics and Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Shankar M, Nixon JC, Maier S, Workman J, Farris AD, Webb CF. Anti-nuclear antibody production and autoimmunity in transgenic mice that overexpress the transcription factor Bright. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:2996-3006. [PMID: 17312145 PMCID: PMC2705967 DOI: 10.4049/jimmunol.178.5.2996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The B cell-restricted transcription factor, B cell regulator of Ig(H) transcription (Bright), up-regulates Ig H chain transcription 3- to 7-fold in activated B cells in vitro. Bright function is dependent upon both active Bruton's tyrosine kinase and its substrate, the transcription factor, TFII-I. In mouse and human B lymphocytes, Bright transcription is down-regulated in mature B cells, and its expression is tightly regulated during B cell differentiation. To determine how Bright expression affects B cell development, transgenic mice were generated that express Bright constitutively in all B lineage cells. These mice exhibited increases in total B220(+) B lymphocyte lineage cells in the bone marrow, but the relative percentages of the individual subpopulations were not altered. Splenic immature transitional B cells were significantly expanded both in total cell numbers and as increased percentages of cells relative to other B cell subpopulations. Serum Ig levels, particularly IgG isotypes, were increased slightly in the Bright-transgenic mice compared with littermate controls. However, immunization studies suggest that responses to all foreign Ags were not increased globally. Moreover, 4-wk-old Bright-transgenic mice produced anti-nuclear Abs. Older animals developed Ab deposits in the kidney glomeruli, but did not succumb to further autoimmune sequelae. These data indicate that enhanced Bright expression results in failure to maintain B cell tolerance and suggest a previously unappreciated role for Bright regulation in immature B cells. Bright is the first B cell-restricted transcription factor demonstrated to induce autoimmunity. Therefore, the Bright transgenics provide a novel model system for future analyses of B cell autoreactivity.
Collapse
Affiliation(s)
- Malini Shankar
- Immunobiology and Cancer, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jamee C. Nixon
- Immunobiology and Cancer, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shannon Maier
- Arthritis and Immunology Programs, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer Workman
- Arthritis and Immunology Programs, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Immunology Programs, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Medical Research Foundation, Department of Microbiology and Immunobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carol F. Webb
- Immunobiology and Cancer, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Medical Research Foundation, Department of Microbiology and Immunobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Pawlitzky I, Angeles CV, Siegel AM, Stanton ML, Riblet R, Brodeur PH. Identification of a candidate regulatory element within the 5' flanking region of the mouse Igh locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1, Pax5, and E2A. THE JOURNAL OF IMMUNOLOGY 2006; 176:6839-51. [PMID: 16709844 DOI: 10.4049/jimmunol.176.11.6839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Igh locus is controlled by cis-acting elements, including Emu and the 3' IgH regulatory region which flank the C region genes within the well-studied 3' part of the locus. Although the presence of additional control elements has been postulated to regulate rearrangements of the VH gene array that extends to the 5' end of the locus, the 5' border of Igh and its flanking region have not been characterized. To facilitate the analysis of this unexplored region and to identify potential novel control elements, we physically mapped the most D-distal VH segments and scanned 46 kb of the immediate 5' flanking region for DNase I hypersensitive sites. Our studies revealed a cluster of hypersensitive sites 30 kb upstream of the most 5' VH gene. Detection of one site, HS1, is restricted to pro-B cell lines and HS1 is accessible to restriction enzyme digestion exclusively in normal pro-B cells, the stage defined by actively rearranging Igh-V loci. Sequence motifs within HS1 for PU.1, Pax5, and E2A bind these proteins in vitro and these factors are recruited to HS1 sequence only in pro-B cells. Transient transfection assays indicate that the Pax5 binding site is required for the repression of transcriptional activity of HS1-containing constructs. Thus, our characterization of the region 5' of the VH gene cluster demonstrated the presence of a single cluster of DNase I hypersensitive sites within the 5' flanking region, and identified a candidate Igh regulatory region defined by pro-B cell-specific hypersensitivity and interaction with factors implicated in regulating VDJ recombination.
Collapse
Affiliation(s)
- Inka Pawlitzky
- Immunology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rajaiya J, Nixon JC, Ayers N, Desgranges ZP, Roy AL, Webb CF. Induction of immunoglobulin heavy-chain transcription through the transcription factor Bright requires TFII-I. Mol Cell Biol 2006; 26:4758-68. [PMID: 16738337 PMCID: PMC1489113 DOI: 10.1128/mcb.02009-05] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/30/2005] [Accepted: 04/01/2006] [Indexed: 02/04/2023] Open
Abstract
Bright/ARID3a/Dril1, a member of the ARID family of transcription factors, is expressed in a highly regulated fashion in B lymphocytes, where it enhances immunoglobulin transcription three- to sixfold. Recent publications from our lab indicated that functional, but not kinase-inactive, Bruton's tyrosine kinase (Btk) is critical for Bright activity in an in vitro model system, yet Bright itself is not appreciably tyrosine phosphorylated. These data suggested that a third protein, and Btk substrate, must contribute to Bright-enhanced immunoglobulin transcription. The ubiquitously expressed transcription factor TFII-I was identified as a substrate for Btk several years ago. In this work, we show that TFII-I directly interacts with human Bright through amino acids in Bright's protein interaction domain and that specific tyrosine residues of TFII-I are essential for Bright-induced activity of an immunoglobulin reporter gene. Moreover, inhibition of TFII-I function in a B-cell line resulted in decreased heavy-chain transcript levels. These data suggest that Bright functions as a three-component protein complex in the immunoglobulin locus and tie together previous data indicating important roles for Btk and TFII-I in B lymphocytes.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Research Program, 825 N. E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
21
|
Johnston CM, Wood AL, Bolland DJ, Corcoran AE. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:4221-34. [PMID: 16547259 DOI: 10.4049/jimmunol.176.7.4221] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms that regulate variable (V) gene selection during the development of the mouse IgH repertoire are not fully understood, due in part to the absence of the complete locus sequence. To better understand these processes, we have assembled the entire 2.5-Mb mouse IgH (Igh) V region sequence of the C57BL/6 strain from public sequences and present the first complete annotated map of the region, including V genes, pseudogenes, repeats, and nonrepetitive intergenic sequences. In so doing, we have discovered a new V gene family, VH16. We have identified clusters of conserved region-specific intergenic sequences and have verified our assembly by genic and intergenic Southern blotting. We have observed that V pseudogenes are not evenly spread throughout the V region, but rather cluster together. The largest J558 family, which spans more than half of the locus, has two strikingly different domains, which suggest points of evolutionary divergence or duplication. The 5' end contains widely spaced J558 genes interspersed with 3609 genes and is pseudogene poor. The 3' end contains closely spaced J558 genes, no 3609 genes, and is pseudogene rich. Each occupies a different branch of the phylogenetic tree. Detailed analysis of 500-bp upstream of all functional genes has revealed several conserved binding sites, general and B cell-specific, as well as key differences between families. This complete and definitive assembly of the mouse Igh V region will facilitate detailed study of promoter function and large-scale mechanisms associated with V(D)J recombination including locus contraction and antisense intergenic transcription.
Collapse
Affiliation(s)
- Colette M Johnston
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Cambridge, UK
| | | | | | | |
Collapse
|
22
|
Kim D, Tucker PW. A regulated nucleocytoplasmic shuttle contributes to Bright's function as a transcriptional activator of immunoglobulin genes. Mol Cell Biol 2006; 26:2187-201. [PMID: 16507996 PMCID: PMC1430300 DOI: 10.1128/mcb.26.6.2187-2201.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/08/2005] [Accepted: 12/21/2005] [Indexed: 11/20/2022] Open
Abstract
Bright/ARID3a has been implicated in mitogen- and growth factor-induced up-regulation of immunoglobulin heavy-chain (IgH) genes and in E2F1-dependent G1/S cell cycle progression. For IgH transactivation, Bright binds to nuclear matrix association regions upstream of certain variable region promoters and flanking the IgH intronic enhancer. While Bright protein was previously shown to reside within the nuclear matrix, we show here that a significant amount of Bright resides in the cytoplasm of normal and transformed B cells. Leptomycin B, chromosome region maintenance 1 (CRM1) overexpression, and heterokaryon experiments indicate that Bright actively shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. We mapped the functional nuclear localization signal to the N-terminal region of REKLES, a domain conserved within ARID3 paralogues. Residues within the C terminus of REKLES contain its nuclear export signal, whose regulation is primarily responsible for Bright shuttling. Growth factor depletion and cell synchronization experiments indicated that Bright shuttling during S phase of the cell cycle leads to an increase in its nuclear abundance. Finally, we show that shuttle-incompetent Bright point mutants, even if sequestered within the nucleus, are incapable of transactivating an IgH reporter gene. Therefore, regulation of Bright's cellular localization appears to be required for its function.
Collapse
Affiliation(s)
- Dongkyoon Kim
- University of Texas at Austin, Molecular Genetics and Microbiology, 1 University Station A5000, Room ESB-532, Austin, TX 78712-0162, USA
| | | |
Collapse
|
23
|
Yeh TY, Chuang JZ, Sung CH. Dynein light chain rp3 acts as a nuclear matrix-associated transcriptional modulator in a dynein-independent pathway. J Cell Sci 2005; 118:3431-43. [PMID: 16079286 DOI: 10.1242/jcs.02472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cytoplasmic dynein is a motor protein complex involved in microtubule-based cargo movement. Previous biochemical evidence suggests that dynein light chain subunits also exist outside the dynein complex. Here we show that the dynein light chain rp3 is present in both the cytoplasm and the nucleus. Nuclear rp3 binds to and assembles with the transcription factor SATB1 at nuclear matrix-associated structures. Dynein intermediate chain was also detected in the nucleus, but it was dispensable for the rp3-SATB1 interaction. SATB1 facilitates the nuclear localization of rp3, whereas rp3 and dynein motor activity are not essential for nuclear accumulation of SATB1. The nuclear rp3-SATB1 protein complex is assembled with a DNA element of the matrix attachment region of the Bcl2 gene. Finally, rp3 is involved in SATB1-mediated gene repression of Bcl2. Our data provide evidence that dynein subunit rp3 has functions independent of the dynein motor.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
24
|
Huang CJ, Chang JG, Wu SC, Choo KB. Negative transcriptional modulation and silencing of the bi-exonic Rnf35 gene in the preimplantation embryo. Binding of the CCAAT-displacement protein/Cux to the untranslated exon 1 sequence. J Biol Chem 2005; 280:30681-8. [PMID: 15994318 DOI: 10.1074/jbc.m413144200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous works have indicated promiscuous transcription from the zygotic genome immediately after fertilization. The mouse Rnf35 gene is bi-exonic in structure and is transcribed in the preimplantation embryo until it is permanently silenced at the blastocyst stage of development. We have previously shown that Rnf35 transcription is positively regulated by the nuclear factor Y. Using the uniquely permissive Chinese hamster ovary-K1 cell line in transient transfection assays, we demonstrate in this work that the Rnf35 promoter was negatively modulated by a cis-cognate repressor element, designated as the downstream exon 1 repressor, or DER, residing between +72 and +95 in the untranslated exon 1 of the Rnf35 gene. Simultaneous mutagenesis of the two half-sections, DER1 and DER2, of the DER sequence was required for derepression suggesting participation of multiple proteins in the DER-dependent transcriptional repression. Electrophoretic mobility shift assays demonstrated that the 3'-half of DER (DER2) was targeted by the repressor CCAAT-displacement protein (CDP)/Cux. Chromatin immunoprecipitation experiments further demonstrated in vivo CDP-DER association in the blastocyst and the 8.5 day embryo. Furthermore, the DER-dependent repression was partially relieved in vivo in co-transfection with an antisense CDP construct. Transcription of the Cdp gene was shown to first occur between the eight-cell and the blastocyst stages, correlating and possibly explaining the onset of Rnf35 silencing at the blastocyst stage. Taken together, our results suggest that the evolutionarily acquired exon 1 of Rnf35, and possibly exon 1 of other similarly structured bi-exonic early embryonic genes, contributes to transcriptional modulation and silencing in the developing mouse embryo.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science and Graduate Institute of Biotechnology, College of Agriculture, Chinese Culture University, Taipei 111, Taiwan 111
| | | | | | | |
Collapse
|
25
|
Sayegh CE, Sayegh C, Jhunjhunwala S, Riblet R, Murre C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev 2005; 19:322-7. [PMID: 15687256 PMCID: PMC546510 DOI: 10.1101/gad.1254305] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The immunoglobulin heavy-chain (IgH) locus undergoes large-scale contraction in B cells poised to undergo IgH V(D)J recombination. We considered the possibility that looping of distinct IgH V regions plays a role in promoting long-range interactions. Here, we simultaneously visualize three subregions of the IgH locus, using three-dimensional fluorescence in situ hybridization. Looping within the IgH locus was observed in both B- and T-lineage cells. However, monoallelic looping of IgH V regions into close proximity of the IgH DJ cluster was detected in developing B cells with significantly higher frequency when compared with hematopoietic progenitor or CD8+ T-lineage cells. Looping of a subset of IgH V regions, albeit at lower frequency, was also observed in RAG-deficient pro-B cells. Based on these observations, we propose that Ig loci are repositioned by a looping mechanism prior to IgH V(D)J rearrangement to facilitate the joining of Ig variable, diversity, and joining segments.
Collapse
Affiliation(s)
- Camil E Sayegh
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
26
|
Kaul-Ghanekar R, Majumdar S, Jalota A, Gulati N, Dubey N, Saha B, Chattopadhyay S. Abnormal V(D)J recombination of T cell receptor beta locus in SMAR1 transgenic mice. J Biol Chem 2004; 280:9450-9. [PMID: 15623522 DOI: 10.1074/jbc.m412206200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scaffold/matrix-associated region-1-binding protein (SMAR1) specifically interacts with the MARbeta sequence, which is located 400-bp upstream of the murine TCRbeta enhancer and is highly expressed during the DP stage of thymocyte development. To further analyze the functions of SMAR1, transgenic mice were generated that express SMAR1 in a tissue-independent manner. SMAR1-overexpressing mice exhibit severely altered frequency of the T cells expressing commonly used Vbetas (Vbeta5.1/5.2 and Vbeta8.1/8.2/8.3). The rearrangements of Vbeta5.1/5.2, Vbeta8.1/8.2/8.3 loci are also reduced in SMAR1 transgenic mice. The T cells in SMAR1 transgenic mice exhibit a mild perturbation at the early DN stage. SMAR1 transgenic mice exhibit hypercellular lymph nodes and spleen accompanied with prominent architectural defects in these organs. These results indicate that SMAR1 plays an important role in the regulation of T cell development as well as V(D)J recombination besides maintaining the architecture of the lymphoid organs.
Collapse
Affiliation(s)
- Ruchika Kaul-Ghanekar
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Puthier D, Joly F, Irla M, Saade M, Victorero G, Loriod B, Nguyen C. A General Survey of Thymocyte Differentiation by Transcriptional Analysis of Knockout Mouse Models. THE JOURNAL OF IMMUNOLOGY 2004; 173:6109-18. [PMID: 15528347 DOI: 10.4049/jimmunol.173.10.6109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thymus is the primary site of T cell lymphopoiesis. To undergo proper differentiation, developing T cells follow a well-ordered genetic program that strictly depends on the heterogeneous and highly specialized thymic microenvironment. In this study, we used microarray technology to extensively describe transcriptional events regulating alphabeta T cell fate. To get an integrated view of these processes, both whole thymi from genetically engineered mice together with purified thymocytes were analyzed. Using mice exhibiting various transcriptional perturbations and developmental blockades, we performed a transcriptional microdissection of the organ. Multiple signatures covering both cortical and medullary stroma as well as various thymocyte maturation intermediates were clearly defined. Beyond the definition of histological and functional signatures (proliferation, rearrangement), we provide the first evidence that such an approach may also highlight the complex cross-talk events that occur between maturing T cells and stroma. Our data constitute a useful integrated resource describing the main gene networks set up during thymocyte development and a first step toward a more systematic transcriptional analysis of genetically modified mice.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Transformed
- Cell Proliferation
- DNA Helicases
- Gene Expression Profiling/methods
- Gene Rearrangement, T-Lymphocyte
- Genes, T-Cell Receptor alpha/genetics
- Leukemia P388
- Mice
- Mice, Inbred C57BL
- Mice, Knockout/genetics
- Mice, Knockout/immunology
- Models, Animal
- Multigene Family/immunology
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Receptor, Notch1
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Interleukin-2/biosynthesis
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factor RelB
- Transcription Factors/biosynthesis
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Denis Puthier
- Technologies Avancées pour le Génome et la Clinique/ERM 206, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system. BMC Genomics 2004; 5:82. [PMID: 15504237 PMCID: PMC534115 DOI: 10.1186/1471-2164-5-82] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 10/25/2004] [Indexed: 12/30/2022] Open
Abstract
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions.
Collapse
|
29
|
Abstract
In the mammalian immune system, V(D)J rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes is regulated in a lineage- and stage-specific fashion. Because each of the seven loci capable of rearrangement utilizes the same recombination machinery, it is thought that V(D)J recombination of each antigen receptor locus is regulated through the differential accessibility of each locus to the V(D)J recombination machinery. Accumulating evidence indicates that chromatin remodeling mediated by DNA methylation and demethylation plays important roles in regulating V(D)J recombination and germline transcription through the Ig and TCR loci. DNA demethylation within the antigen receptor loci appears to be regulated by cis-elements also required for coordinated V(D)J recombination and germline transcription. In this paper, we critically examine the relationship between demethylation and V(D)J recombination as well as the mechanism to regulate DNA demethylation within the antigen receptor loci.
Collapse
Affiliation(s)
- Matthew Inlay
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
30
|
Abstract
The design of drugs for treatment of virus infections and the exploitation of viruses as drugs for treatment of diseases could be made more successful by understanding the molecular mechanisms of virus-specific events. The process of assembly, and more specifically packaging of the genome into a capsid, is an obligatory step leading to future infections. To enhance our understanding of the molecular mechanism of packaging, it is necessary to characterize the viral components necessary for the event. In the case of adenovirus, sequences between nucleotides 200 and 400 at the left end of the genome are essential for packaging. This region contains a series of redundant bipartite sequences, termed A repeats, that function in packaging. Synthetic packaging sequences made of multimers of a single A repeat substitute for the authentic adenovirus packaging domain. A repeats are binding sites for the CCAAT displacement protein and the viral protein IVa2. Several lines of evidence implicate these proteins in the packaging process. It was not known, however, whether other cis-acting elements play a role in the packaging process as well. We utilized an in vivo approach to address the role of the inverted terminal repeats and the covalently linked terminal proteins in packaging of the adenovirus genome. Our results show that these elements are not necessary for efficient packaging of the viral genome. A significant implication of these results applicable to gene therapy vector design is that the linkage of the adenovirus packaging domain to heterologous DNA sequences should suffice for targeting to the viral capsid.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, New York 11794-5222, USA
| | | |
Collapse
|
31
|
Bergman Y, Fisher A, Cedar H. Epigenetic mechanisms that regulate antigen receptor gene expression. Curr Opin Immunol 2003; 15:176-81. [PMID: 12633667 DOI: 10.1016/s0952-7915(03)00016-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Functional immunoglobulin and T-cell receptor genes are generated from germline V, D and J gene segments by a series of site-specific recombination events. This process is regulated by the availability of recombination machinery and by the ordered accessibility of appropriate target gene segments. Recent studies highlight the importance of chromatin remodelling and locus positioning for controlling antigen receptor gene expression and recombination.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Experimental Medicine and Cancer Research, PO Box 12272, Hebrew University, Jerusalem 91120, Israel.
| | | | | |
Collapse
|