1
|
Hamdan TA. The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. Immune Netw 2024; 24:e29. [PMID: 39246620 PMCID: PMC11377952 DOI: 10.4110/in.2024.24.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.
Collapse
Affiliation(s)
- Thamer A Hamdan
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
2
|
Dulmovits BM, Olson TS. Does immune destruction drive all forms of bone marrow failure? J Clin Invest 2022; 132:161288. [PMID: 35912855 PMCID: PMC9337821 DOI: 10.1172/jci161288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Current paradigms of bone marrow failure (BMF) pathophysiology suggest that immune-mediated destruction of hematopoietic stem and progenitor cells (HSPCs) drives acquired aplastic anemia. In contrast, loss of HSPCs due to senescence and/or apoptosis causes BMF in inherited BMF syndromes. In this issue of the JCI, Casado and colleagues challenge this dichotomous conception by demonstrating that NK cell–dependent, immune-mediated hematopoietic suppression and HSPC clearance drive BMF in Fanconi anemia (FA). They show that genotoxic stress upregulates natural killer group 2 member D ligands (NKG2D-L) on FA HSPCs leading to NK cell cytotoxicity through NKG2D receptor activation. Inhibition of NKG2D–NKG2D-L interactions enhanced FA HSPC clonogenic potential and improved cytopenias in vivo. These results provide alternative targets for the development of immunosuppressive therapies to reduce HSPC loss and mitigate the risk of hematologic malignancies in FA.
Collapse
Affiliation(s)
- Brian M Dulmovits
- Cell Therapy and Transplant Section, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy S Olson
- Cell Therapy and Transplant Section, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Recognition of Tumor Nidogen-1 by Neutrophil C-Type Lectin Receptors. Biomedicines 2022; 10:biomedicines10040908. [PMID: 35453656 PMCID: PMC9030733 DOI: 10.3390/biomedicines10040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Neutrophil-mediated cytotoxicity toward tumor cells requires cell contact and is mediated by hydrogen peroxide. We have recently shown that Cathepsin G expressed on the neutrophil surface interacts with tumor RAGE, and this interaction facilitates neutrophil cytotoxicity. Interruption of the Cathepsin G–RAGE interaction led to 50–80% reduction in cytotoxicity, suggesting that additional interactions are also involved. Here we show that blocking antibodies to the C-type lectin receptors (CLRs) Clec4e and Dectin-1, but not those to NKG2D, attenuated murine neutrophil cytotoxicity towards murine tumor cells, suggesting a contributing role for these CLRs in neutrophil recognition of tumor cells. We further observed that the CLRs interact with tumor Nidogen-1 and Hspg2, two sulfated glycoproteins of the basement membrane. Both Nidogen-1 and Hspg2 were found to be expressed on the tumor cell surface. The knockdown of Nidogen-1, but not that of Hspg2, led to reduced susceptibility of the tumor cells to neutrophil cytotoxicity. Altogether, this study suggests a role for CLR–Nidogen-1 interaction in the recognition of tumor cells by neutrophils, and this interaction facilitates neutrophil-mediated killing of the tumor cells.
Collapse
|
4
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
5
|
Piersma SJ, Brizić I. Natural killer cell effector functions in antiviral defense. FEBS J 2021; 289:3982-3999. [PMID: 34125493 DOI: 10.1111/febs.16073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells involved in the control of tumors and viral infections. They provide protection by producing cytokines and by directly lysing target cells. Both effector mechanisms have been identified to contribute to viral control, depending on the context of infection. Activation of NK cells depends on the integration of signals received by cytokine receptors and activation and inhibitory receptors recognizing ligands expressed by virus-infected cells. While the control of viral infections by NK cells is well established, the signals perceived by NK cells and how these signals integrate to mediate optimal viral control have been focus of ongoing research. Here, we discuss the current knowledge on NK cell activation and integration of signals that lead to interferon gamma production and cytotoxicity in viral infections. We review NK cell interactions with viruses, with particular focus on murine cytomegalovirus studies, which helped elucidate crucial aspects of antiviral NK cell immunity.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
6
|
Louis C, Souza-Fonseca-Guimaraes F, Yang Y, D'Silva D, Kratina T, Dagley L, Hediyeh-Zadeh S, Rautela J, Masters SL, Davis MJ, Babon JJ, Ciric B, Vivier E, Alexander WS, Huntington ND, Wicks IP. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J Exp Med 2020; 217:133838. [PMID: 32097462 PMCID: PMC7201918 DOI: 10.1084/jem.20191421] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Despite increasing recognition of the importance of GM-CSF in autoimmune disease, it remains unclear how GM-CSF is regulated at sites of tissue inflammation. Using GM-CSF fate reporter mice, we show that synovial NK cells produce GM-CSF in autoantibody-mediated inflammatory arthritis. Synovial NK cells promote a neutrophilic inflammatory cell infiltrate, and persistent arthritis, via GM-CSF production, as deletion of NK cells, or specific ablation of GM-CSF production in NK cells, abrogated disease. Synovial NK cell production of GM-CSF is IL-18–dependent. Furthermore, we show that cytokine-inducible SH2-containing protein (CIS) is crucial in limiting GM-CSF signaling not only during inflammatory arthritis but also in experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. Thus, a cellular cascade of synovial macrophages, NK cells, and neutrophils mediates persistent joint inflammation via production of IL-18 and GM-CSF. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor. These findings shed new light on GM-CSF biology in sterile tissue inflammation and identify several potential therapeutic targets.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Yuyan Yang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Damian D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Tobias Kratina
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Laura Dagley
- Medical Biology, University of Melbourne, Parkville, Australia.,Systems Biology and Personalized Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Soroor Hediyeh-Zadeh
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jai Rautela
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Seth Lucian Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Melissa J Davis
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jeffrey J Babon
- Medical Biology, University of Melbourne, Parkville, Australia.,Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University. Philadelphia, PA
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Warren S Alexander
- Medical Biology, University of Melbourne, Parkville, Australia.,Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nicholas D Huntington
- Medical Biology, University of Melbourne, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
7
|
Ly49R activation receptor drives self-MHC-educated NK cell immunity against cytomegalovirus infection. Proc Natl Acad Sci U S A 2019; 116:26768-26778. [PMID: 31843910 DOI: 10.1073/pnas.1913064117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells mediate vital control of cancer and viral infection. They rely on MHC class I (MHC I)-specific self-receptors to identify and lyse diseased cells without harming self-MHC I-bearing host cells. NK cells bearing inhibitory self-receptors for host MHC I also undergo education, referred to as licensing, which causes them to become more responsive to stimulation via activation receptor signaling. Previous work has shown that licensed NK cells selectively expand during virus infections and they are associated with improved clinical response in human patients experiencing certain chronic virus infections, including HIV and hepatitis C virus. However, the importance of inhibitory self-receptors in NK-mediated virus immunity is debated as they also limit signals in NK cells emanating from virus-specific activation receptors. Using a mouse model of MHC I-dependent (H-2Dk) virus immunity, we discovered that NK cells depend on the Ly49G2 inhibitory self-receptor to mediate virus control, which coincided with host survival during murine cytomegalovirus infection. This antiviral effect further requires active signaling in NK cells via the Ly49R activation receptor that also binds H-2Dk In tandem, these functionally discordant Ly49 self-receptors increase NK cell proliferation and effector activity during infection, resulting in selective up-regulation of CD25 and KLRG1 in virus-specific Ly49R+ Ly49G2+ NK cells. Our findings establish that paired self-receptors act as major determinants of NK cell-mediated virus sensing and immunity.
Collapse
|
8
|
Vandenhaute J, Avau A, Filtjens J, Malengier-Devlies B, Imbrechts M, Van den Berghe N, Ahmadzadeh K, Mitera T, Boon L, Leclercq G, Wouters C, Matthys P. Regulatory Role for NK Cells in a Mouse Model of Systemic Juvenile Idiopathic Arthritis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3339-3348. [PMID: 31676671 DOI: 10.4049/jimmunol.1900510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Mice deficient in IFN-γ (IFN-γ knockout [KO] mice) develop a systemic inflammatory syndrome in response to CFA, in contrast to CFA-challenged wild-type (WT) mice who only develop a mild inflammation. Symptoms in CFA-challenged IFN-γ KO resemble systemic juvenile idiopathic arthritis (sJIA), a childhood immune disorder of unknown cause. Dysregulation of innate immune cells is considered to be important in the disease pathogenesis. In this study, we used this murine model to investigate the role of NK cells in the pathogenesis of sJIA. NK cells of CFA-challenged IFN-γ KO mice displayed an aberrant balance of activating and inhibitory NK cell receptors, lower expression of cytotoxic proteins, and a defective NK cell cytotoxicity. Depletion of NK cells (via anti-IL-2Rβ and anti-Asialo-GM1 Abs) or blockade of the NK cell activating receptor NKG2D in CFA-challenged WT mice resulted in increased severity of systemic inflammation and appearance of sJIA-like symptoms. NK cells of CFA-challenged IFN-γ KO mice and from anti-NKG2D-treated mice showed defective degranulation capacities toward autologous activated immune cells, predominantly monocytes. This is in line with the increased numbers of activated inflammatory monocytes in these mice which was particularly reflected in the expression of CCR2, a chemokine receptor, and in the expression of Rae-1, a ligand for NKG2D. In conclusion, NK cells are defective in a mouse model of sJIA and impede disease development in CFA-challenged WT mice. Our findings point toward a regulatory role for NK cells in CFA-induced systemic inflammation via a NKG2D-dependent control of activated immune cells.
Collapse
Affiliation(s)
- Jessica Vandenhaute
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Anneleen Avau
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Maya Imbrechts
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Nathalie Van den Berghe
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | | | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium; and
| | - Carine Wouters
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
9
|
Piersma SJ, Pak-Wittel MA, Lin A, Plougastel-Douglas B, Yokoyama WM. Activation Receptor-Dependent IFN-γ Production by NK Cells Is Controlled by Transcription, Translation, and the Proteasome. THE JOURNAL OF IMMUNOLOGY 2019; 203:1981-1988. [PMID: 31444264 DOI: 10.4049/jimmunol.1900718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
NK cells can recognize target cells such as virus-infected and tumor cells through integration of activation and inhibitory receptors. Recognition by NK cells can lead to direct lysis of the target cell and production of the signature cytokine IFN-γ. However, it is unclear whether stimulation through activation receptors alone is sufficient for IFN-γ production. In this study, we show that NK activation receptor engagement requires additional signals for optimal IFN-γ production, which could be provided by IFN-β or IL-12. Stimulation of murine NK cells with soluble Abs directed against NK1.1, Ly49H, Ly49D, or NKp46 required additional stimulation with cytokines, indicating that a range of activation receptors with distinct adaptor molecules require additional stimulation for IFN-γ production. The requirement for multiple signals extends to stimulation with primary m157-transgenic target cells, which triggers the activation receptor Ly49H, suggesting that NK cells do require multiple signals for IFN-γ production in the context of target cell recognition. Using quantitative PCR and RNA flow cytometry, we found that cytokines, not activating ligands, act on NK cells to express Ifng transcripts. Ly49H engagement is required for IFN-γ translational initiation. Results using inhibitors suggest that the proteasome-ubiquitin-IKK-TPL2-MNK1 axis was required during activation receptor engagement. Thus, this study indicates that activation receptor-dependent IFN-γ production is regulated on the transcriptional and translational levels.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Melissa A Pak-Wittel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrea Lin
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Beatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
10
|
Tumor mechanisms of resistance to immune attack. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:61-100. [PMID: 31383409 DOI: 10.1016/bs.pmbts.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system plays a key role in the interactions between host and tumor. Immune selection pressure is a driving force behind the sculpting and evolution of malignant cancer cells to escape this immune attack. Several common tumor cell-based mechanisms of resistance to immune attack have been identified and can be broadly categorized into three main classes: loss of antigenicity, loss of immunogenicity, and creation of an immunosuppressive microenvironment. In this review, we will discuss in detail the relevant literature associated with each class of resistance and will describe the relevance of these mechanisms to human cancer patients. To conclude, we will outline the implications these mechanisms have for the treatment of cancer using currently available therapeutic approaches. Immunotherapy has been a successful addition to current treatment approaches, but many patients either do not respond or quickly become resistant. This reflects the ability of tumors to continue to adapt to immune selection pressure at all stages of development. Additional study of immune escape mechanisms and immunotherapy resistance mechanisms will be needed to inform future treatment approaches.
Collapse
|
11
|
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018; 23:181-192.e5. [PMID: 30082067 PMCID: PMC6084450 DOI: 10.1016/j.stem.2018.06.002] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling. NK cells derived from human iPSCs that express this CAR (NK-CAR-iPSC-NK cells) have a typical NK cell phenotype and demonstrate improved anti-tumor activity compared with T-CAR-expressing iPSC-derived NK cells (T-CAR-iPSC-NK cells) and non-CAR-expressing cells. In an ovarian cancer xenograft model, NK-CAR-iPSC-NK cells significantly inhibited tumor growth and prolonged survival compared with PB-NK cells, iPSC-NK cells, or T-CAR-iPSC-NK cells. Additionally, NK-CAR-iPSC-NK cells demonstrate in vivo activity similar to that of T-CAR-expressing T cells, although with less toxicity. These NK-CAR-iPSC-NK cells now provide standardized, targeted "off-the-shelf" lymphocytes for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David L Hermanson
- Department of Medicine, University of Minnesota Minneapolis, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Gotru SK, Gil-Pulido J, Beyersdorf N, Diefenbach A, Becker IC, Vögtle T, Remer K, Chubanov V, Gudermann T, Hermanns HM, Nieswandt B, Kerkau T, Zernecke A, Braun A. Cutting Edge: Imbalanced Cation Homeostasis in MAGT1-Deficient B Cells Dysregulates B Cell Development and Signaling in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:2529-2534. [PMID: 29581357 DOI: 10.4049/jimmunol.1701467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/27/2018] [Indexed: 11/19/2022]
Abstract
Cation homeostasis, in relation to various immune-suppressive diseases, is a novel field of investigation. Recently, patients with a loss-of-function mutation in magnesium transporter 1 (MAGT1) were reported to present a dysregulated Mg2+ homeostasis in T lymphocytes. Using Magt1-knockout mice (Magt1-/y ), we show that Mg2+ homeostasis was impaired in Magt1-/y B cells and Ca2+ influx was increased after BCR stimulation, whereas T and NK cell function was unaffected. Consequently, mutant B cells displayed an increased phosphorylation of BCR-related proteins differentially affecting protein kinase C activation. These in vitro findings translated into increased frequencies of CD19+ B cells and marginal zone B cells and decreased frequencies of plasma cells among CD45+ splenocytes in vivo. Altogether, our study demonstrates for the first time, to our knowledge, that abolished MAGT1 function causes imbalanced cation homeostasis and developmental responses in B cells. Therefore, this study might contribute to a further understanding of B cell-related pathologies.
Collapse
Affiliation(s)
- Sanjeev Kiran Gotru
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Jesus Gil-Pulido
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Andreas Diefenbach
- Institute of Microbiology and Infection Immunology, Charité - University Medicine Berlin, 12203 Berlin, Germany
| | - Isabelle C Becker
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Katharina Remer
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilian University of Munich, 80539 Munich, Germany; and
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilian University of Munich, 80539 Munich, Germany; and
| | - Heike M Hermanns
- Department of Hepatology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany.,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Attila Braun
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; .,Rudolf Virchow Centre, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Wensveen FM, Jelenčić V, Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front Immunol 2018; 9:441. [PMID: 29568297 PMCID: PMC5852076 DOI: 10.3389/fimmu.2018.00441] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 01/11/2023] Open
Abstract
NKG2D is an activating receptor that is mostly expressed on cells of the cytotoxic arm of the immune system. Ligands of NKG2D are normally of low abundance, but can be induced in virtually any cell in response to stressors, such as infection and oncogenic transformation. Engagement of NKG2D stimulates the production of cytokines and cytotoxic molecules and traditionally this receptor is, therefore, viewed as a molecule that mediates direct responses against cellular threats. However, accumulating evidence indicates that this classical view is too narrow. During NK cell development, engagement of NKG2D has a long-term impact on the expression of NK cell receptors and their responsiveness to extracellular cues, suggesting a role in NK cell education. Upon chronic NKG2D engagement, both NK and T cells show reduced responsiveness of a number of activating receptors, demonstrating a role of NKG2D in induction of peripheral tolerance. The image that emerges is that NKG2D can mediate both inhibitory and activating signals, which depends on the intensity and duration of ligand engagement. In this review, we provide an overview of the impact of NKG2D stimulation during hematopoietic development and during acute and chronic stimulation in the periphery on responsiveness of other receptors than NKG2D. We propose that NKG2D interprets the context of the immunological environment through detection of cellular cues and in response sets the appropriate activation threshold for a large number of immune receptors. This perspective is of particular importance for future therapies that aim to exploit NKG2D signaling to fight tumors or infection.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
14
|
The role of interleukin-2, all-trans retinoic acid, and natural killer cells: surveillance mechanisms in anti-GD2 antibody therapy in neuroblastoma. Cancer Immunol Immunother 2018; 67:615-626. [PMID: 29327110 DOI: 10.1007/s00262-017-2108-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023]
Abstract
Although anti-disialoganglioside (GD2) antibodies are successfully used for neuroblastoma therapy, a third of patients with neuroblastoma experience treatment failure or serious toxicity. Various strategies have been employed in the clinic to improve antibody-dependent cell-mediated cytotoxicity (ADCC), such as the addition of interleukin (IL)-2 to enhance natural killer (NK) cell function, adoptive transfer of allogeneic NK cells to exploit immune surveillance, and retinoid-induced differentiation therapy. Nevertheless, these mechanisms are not fully understood. We developed a quantitative assay to test ADCC induced by the anti-GD2 antibody Hu14.18K322A in nine neuroblastoma cell lines and dissociated cells from orthotopic patient-derived xenografts (O-PDXs) in culture. IL-2 improved ADCC against neuroblastoma cells, and differentiation with all-trans retinoic acid stabilized GD2 expression on tumor cells and enhanced ADCC as well. Degranulation was highest in licensed NK cells that expressed CD158b (P < 0.001) and harbored a killer-cell immunoglobulin-like receptor (KIR) mismatch against the tumor-specific human leukocyte antigen (HLA; P = 0.016). In conclusion, IL-2 is an important component of immunotherapy because it can improve the cytolytic function of NK cells against neuroblastoma cells and could lower the antibody dose required for efficacy, thereby reducing toxicity. The effect of IL-2 may vary among individuals and a biomarker would be useful to predict ADCC following IL-2 activation. Sub-populations of NK cells may have different levels of activity dependent on their licensing status, KIR expression, and HLA-KIR interaction. Better understanding of HLA-KIR interactions and the molecular changes following retinoid-induced differentiation is necessary to delineate their role in ADCC.
Collapse
|
15
|
Adams NM, O'Sullivan TE, Geary CD, Karo JM, Amezquita RA, Joshi NS, Kaech SM, Sun JC. NK Cell Responses Redefine Immunological Memory. THE JOURNAL OF IMMUNOLOGY 2017; 197:2963-2970. [PMID: 27824591 DOI: 10.4049/jimmunol.1600973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 01/16/2023]
Abstract
Immunological memory has traditionally been regarded as a unique trait of the adaptive immune system. Nevertheless, there is evidence of immunological memory in lower organisms and invertebrates, which lack an adaptive immune system. Despite their innate ability to rapidly produce effector cytokines and kill virally infected or transformed cells, NK cells also exhibit adaptive characteristics such as clonal expansion, longevity, self-renewal, and robust recall responses to antigenic or nonantigenic stimuli. In this review, we highlight the intracellular and extracellular requirements for memory NK cell generation and describe the emerging evidence for memory precursor NK cells and their derivation.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenny M Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
16
|
Arefanian S, Schäll D, Chang S, Ghasemi R, Higashikubo R, Zheleznyak A, Guo Y, Yu J, Asgharian H, Li W, Gelman AE, Kreisel D, French AR, Zaher H, Plougastel-Douglas B, Maggi L, Yokoyama W, Beer-Hammer S, Krupnick AS. Deficiency of the adaptor protein SLy1 results in a natural killer cell ribosomopathy affecting tumor clearance. Oncoimmunology 2016; 5:e1238543. [PMID: 28123874 PMCID: PMC5215235 DOI: 10.1080/2162402x.2016.1238543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Individuals with robust natural killer (NK) cell function incur lower rates of malignancies. To expand our understanding of genetic factors contributing to this phenomenon, we analyzed NK cells from cancer resistant and susceptible strains of mice. We identified a correlation between NK levels of the X-chromosome-located adaptor protein SLy1 and immunologic susceptibility to cancer. Unlike the case for T or B lymphocytes, where SLy1 shuttles between the cytoplasm and nucleus to facilitate signal transduction, in NK cells SLy1 functions as a ribosomal protein and is located solely in the cytoplasm. In its absence, ribosomal instability results in p53-mediated NK cell senescence and decreased clearance of malignancies. NK defects are reversible under inflammatory conditions and viral clearance is not impacted by SLy1 deficiency. Our work defines a previously unappreciated X-linked ribosomopathy that results in a specific and subtle NK cell dysfunction leading to immunologic susceptibility to cancer.
Collapse
Affiliation(s)
- Saeed Arefanian
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Schäll
- Department of Pharmacology and Experimental Therapy, Institute for Pharmacology and Toxicology, University of Tübingen, Germany
| | - Stephanie Chang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Reza Ghasemi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryuji Higashikubo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Zheleznyak
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yizhan Guo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinsheng Yu
- Genome Technology Access Center at Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hosseinali Asgharian
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony R. French
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Wayne Yokoyama
- Department of Internal Medicine, St. Louis, MO, USA
- The Howard Hughes Institute of Washington University School of Medicine, St. Louis, MO, USA
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute for Pharmacology and Toxicology, University of Tübingen, Germany
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin Siteman Cancer Center of Washington University School of Medicine, St. Louis, MO, USA
- The John Cochran VA Medical Center, St. Louis, MO, USA
| |
Collapse
|
17
|
Ghasemi R, Lazear E, Wang X, Arefanian S, Zheleznyak A, Carreno BM, Higashikubo R, Gelman AE, Kreisel D, Fremont DH, Krupnick AS. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nat Commun 2016; 7:12878. [PMID: 27650575 PMCID: PMC5036003 DOI: 10.1038/ncomms12878] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
Despite over 20 years of clinical use, IL-2 has not fulfilled expectations as a safe and effective form of tumour immunotherapy. Expression of the high affinity IL-2Rα chain on regulatory T cells mitigates the anti-tumour immune response and its expression on vascular endothelium is responsible for life threatening complications such as diffuse capillary leak and pulmonary oedema. Here we describe the development of a recombinant fusion protein comprised of a cowpox virus encoded NKG2D binding protein (OMCP) and a mutated form of IL-2 with poor affinity for IL-2Rα. This fusion protein (OMCP-mutIL-2) potently and selectively activates IL-2 signalling only on NKG2D-bearing cells, such as natural killer (NK) cells, without broadly activating IL-2Rα-bearing cells. OMCP-mutIL-2 provides superior tumour control in several mouse models of malignancy and is not limited by mouse strain-specific variability of NK function. In addition, OMCP-mutIL-2 lacks the toxicity and vascular complications associated with parental wild-type IL-2.
Collapse
Affiliation(s)
- Reza Ghasemi
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Eric Lazear
- Department of Pathology &Immunology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Xiaoli Wang
- Department of Pathology &Immunology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Saeed Arefanian
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Alexander Zheleznyak
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Beatriz M Carreno
- Department of Medicine, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Ryuji Higashikubo
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.,Department of Pathology &Immunology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.,Department of Pathology &Immunology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Daved H Fremont
- Department of Pathology &Immunology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.,Department of Molecular Microbiology, and Biochemistry &Molecular Biophysics, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.,The Alvin Siteman Cancer Center of Washington University School of Medicine, 4921 Parkview Place, St Louis, Missouri 63110, USA
| | - Alexander Sasha Krupnick
- Department of Surgery, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.,Department of Pathology &Immunology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.,The Alvin Siteman Cancer Center of Washington University School of Medicine, 4921 Parkview Place, St Louis, Missouri 63110, USA
| |
Collapse
|
18
|
Phillips LK, Gould EA, Babu H, Krams SM, Palmer TD, Martinez OM. Natural killer cell-activating receptor NKG2D mediates innate immune targeting of allogeneic neural progenitor cell grafts. Stem Cells 2014; 31:1829-39. [PMID: 23733329 DOI: 10.1002/stem.1422] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/10/2013] [Indexed: 12/25/2022]
Abstract
Cell replacement therapy holds promise for a number of untreatable neurological or psychiatric diseases but the immunogenicity of cellular grafts remains controversial. Emerging stem cell and reprogramming technologies can be used to generate autologous grafts that minimize immunological concerns but autologous grafts may carry an underlying genetic vulnerability that reduces graft efficacy or survival. Healthy allogeneic grafts are an attractive and commercially scalable alternative if immunological variables can be controlled. Stem cells and immature neural progenitor cells (NPC) do not express major histocompatibility complex (MHC) antigens and can evade adaptive immune surveillance. Nevertheless, in an experimental murine model, allogeneic NPCs do not survive and differentiate as well as syngeneic grafts, even when traditional immunosuppressive treatments are used. In this study, we show that natural killer (NK) cells recognize the lack of self-MHC antigens on NPCs and pose a barrier to NPC transplantation. NK cells readily target both syngeneic and allogeneic NPC, and killing is modulated primarily by NK-inhibiting "self" class I MHC and NK-activating NKG2D-ligand expression. The absence of NKG2D signaling in NK cells significantly improves NPC-derived neuron survival and differentiation. These data illustrate the importance of innate immune mechanisms in graft outcome and the potential value of identifying and targeting NK cell-activating ligands that may be expressed by stem cell derived grafts.
Collapse
Affiliation(s)
- Lori K Phillips
- Program in Immunology Stanford University School of Medicine University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hansen DS, Ryg-Cornejo V, Ioannidis LJ, Chiu CY, Ly A, Nie CQ, Scalzo AA, Schofield L. The contribution of natural killer complex loci to the development of experimental cerebral malaria. PLoS One 2014; 9:e93268. [PMID: 24691125 PMCID: PMC3972225 DOI: 10.1371/journal.pone.0093268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/01/2014] [Indexed: 11/27/2022] Open
Abstract
Background The Natural Killer Complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic and allelic variability of various NKC loci has been demonstrated in inbred mice, providing evidence for NKC haplotypes. Using BALB.B6-Cmv1r congenic mice, in which NKC genes from C57BL/6 mice were introduced into the BALB/c background, we have previously shown that the NKC is a genetic determinant of malarial pathogenesis. C57BL/6 alleles are associated with increased disease-susceptibility as BALB.B6-Cmv1r congenic mice had increased cerebral pathology and death rates during P. berghei ANKA infection than cerebral malaria-resistant BALB/c controls. Methods To investigate which regions of the NKC are involved in susceptibility to experimental cerebral malaria (ECM), intra-NKC congenic mice generated by backcrossing recombinant F2 progeny from a (BALB/c x BALB.B6-Cmv1r) F1 intercross to BALB/c mice were infected with P. berghei ANKA. Results Our results revealed that C57BL/6 alleles at two locations in the NKC contribute to the development of ECM. The increased severity to severe disease in intra-NKC congenic mice was not associated with higher parasite burdens but correlated with a significantly enhanced systemic IFN-γ response to infection and an increased recruitment of CD8+ T cells to the brain of infected animals. Conclusions Polymorphisms within the NKC modulate malarial pathogenesis and acquired immune responses to infection.
Collapse
Affiliation(s)
- Diana S. Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail:
| | - Victoria Ryg-Cornejo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa J. Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Chris Y. Chiu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Anthony A. Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
20
|
Hu J, Zhu S, Xia X, Zhang L, Kleinerman ES, Li S. CD8+T cell-specific induction of NKG2D receptor by doxorubicin plus interleukin-12 and its contribution to CD8+T cell accumulation in tumors. Mol Cancer 2014; 13:34. [PMID: 24565056 PMCID: PMC3938086 DOI: 10.1186/1476-4598-13-34] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/03/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Increased infiltration of CD8+T cells into tumors has a positive impact on survival. Our previous study showed that doxorubicin (Dox) plus interleukin-12 (IL-12) boosted the accumulation of CD8+T cells in tumors and had a greater antitumor effect than did either agent alone. The purpose of this study was to determine the impact of NKG2D expression on CD8+T cell infiltration and antitumor efficacy. METHODS Tumor-bearing mice were administered Dox, IL-12 plasmid DNA, or both via intraperitoneal injection or intramuscular electroporation. The induction of NKG2D on CD8+T cells and other lymphocytes was analyzed via flow cytometry, and NKG2D-positive CD8+T cell-specific localization in tumors was determined by using immunofluorescence staining in various types of immune cell-depleted mice. RESULTS The combination of Dox plus IL-12 specifically increased expression of NKG2D in CD8+T cells but not in other types of immune cells, including NK cells, which naturally express NKG2D. This induced NKG2D expression in CD8+T cells was associated with increased accumulation of CD8+T cells in murine tumors. Administration of NKG2D-blocking antibody or CD8+T cell-depletion antibody abrogated the NKG2D+CD8+T cell detection in tumors, whereas administration of NK cell-depletion antibody had no effect. Increased NKG2D expression in CD8+T cells was associated with increased antitumor efficacy in vivo. CONCLUSION We conclude that Dox plus IL-12 induces NKG2D in CD8+T cells in vivo and boosts NKG2D+CD8+T-dependent antitumor immune surveillance. This discovery reveals a novel mechanism for how chemoimmunotherapy synergistically promotes T cell-mediated antitumor immune surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
21
|
The p36 isoform of murine cytomegalovirus m152 protein suffices for mediating innate and adaptive immune evasion. Viruses 2013; 5:3171-91. [PMID: 24351798 PMCID: PMC3967166 DOI: 10.3390/v5123171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1γ complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1γ interface.
Collapse
|
22
|
Liu KY, Comstock SS, Shunk JM, Monaco MH, Donovan SM. Natural killer cell populations and cytotoxic activity in pigs fed mother's milk, formula, or formula supplemented with bovine lactoferrin. Pediatr Res 2013; 74:402-7. [PMID: 23868366 DOI: 10.1038/pr.2013.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/15/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Natural killer (NK) cells are components of the innate immune defense system, and their levels differ between breast and formula-fed (FF) infants. Lactoferrin (Lf) modulates NK cell cytotoxicity ex vivo. We hypothesized that dietary bovine Lf (bLf) would increase NK cell populations and cytotoxicity. METHODS Piglets were sow-reared (SR), FF, or 1 g/l bLf-fed (LF) for 21 d. NK cells (CD3(-)CD4(-)CD8(+)) in blood (peripheral blood mononuclear cells (PBMCs)), spleen, and mesenteric lymph node (MLN) were determined by flow cytometry. PBMC NK cells were tested for cytotoxic activity against target K562 cells ex vivo in the presence of media (unstimulated), interleukin-2, or bLf. NK cell mRNA expression was determined by reverse transcription-quantitative PCR. RESULTS SR and LF piglets had more NK cells in MLN (P = 0.0097) and spleen (P = 0.0980) than FF piglets. In PBMCs, SR piglets had more NK cells than FF piglets (P = 0.0072); LF piglets were intermediate and not different from FF or SR piglets. NK cell intelectin-2 mRNA expression was 2.5-fold higher (P = 0.0095) in LF than SR or FF piglets. NK cells in SR piglets exhibited greater (P < 0.0001) cytotoxic activity than those in LF or FF piglets, which was supported by greater perforin mRNA expression. CONCLUSION Dietary bLf increased blood NK cell populations and NK Lf receptor expression but not NK cell cytotoxicity.
Collapse
Affiliation(s)
- Kilia Y Liu
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | | | | | | | | |
Collapse
|
23
|
Zheng Q, Zhou L, Mi QS. MicroRNA miR-150 is involved in Vα14 invariant NKT cell development and function. THE JOURNAL OF IMMUNOLOGY 2012; 188:2118-26. [PMID: 22287707 DOI: 10.4049/jimmunol.1103342] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD1d-restricted Vα14 invariant NKT (iNKT) cells play an important role in the regulation of diverse immune responses. MicroRNA-mediated RNA interference is emerging as a crucial regulatory mechanism in the control of iNKT cell differentiation and function. Yet, roles of specific microRNAs in the development and function of iNKT cells remain to be further addressed. In this study, we identified the gradually increased expression of microRNA-150 (miR-150) during the maturation of iNKT cells in thymus. Using miR-150 knockout (KO) mice, we found that miR-150 deletion resulted in an interruption of iNKT cell final maturation in both thymus and periphery. Upon activation, iNKT cells from miR-150KO mice showed significantly increased IFN-γ production compared with wild-type iNKT cells. Bone marrow-transferring experiments demonstrated the cell-intrinsic characteristics of iNKT cell maturation and functional defects in mice lacking miR-150. Furthermore, miR-150 target c-Myb was significantly upregulated in miR-150KO iNKT cells, which potentially contribute to iNKT cell defects in miR-150KO mice. Our data define a specific role of miR-150 in the development and function of iNKT cells.
Collapse
Affiliation(s)
- Quanhui Zheng
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | |
Collapse
|
24
|
Natural killer cells recognize friend retrovirus-infected erythroid progenitor cells through NKG2D-RAE-1 interactions In Vivo. J Virol 2011; 85:5423-35. [PMID: 21411527 DOI: 10.1128/jvi.02146-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells function as early effector cells in the innate immune defense against viral infections and also participate in the regulation of normal and malignant hematopoiesis. NK cell activities have been associated with early clearance of viremia in experimental simian immunodeficiency virus and clinical human immunodeficiency virus type 1 (HIV-1) infections. We have previously shown that NK cells function as major cytotoxic effector cells in vaccine-induced immune protection against Friend virus (FV)-induced leukemia, and NK cell depletion totally abrogates the above protective immunity. However, how NK cells recognize retrovirus-infected cells remains largely unclear. The present study demonstrates a correlation between the expression of the products of retinoic acid early transcript-1 (RAE-1) genes in target cells and their susceptibility to killing by NK cells isolated from FV-infected animals. This killing was abrogated by antibodies blocking the NKG2D receptor in vitro. Further, the expression of RAE-1 proteins on erythroblast surfaces increased early after FV inoculation, and administration of an RAE-1-blocking antibody resulted in increased spleen infectious centers and exaggerated pathology, indicating that FV-infected erythroid cells are recognized by NK cells mainly through the NKG2D-RAE-1 interactions in vivo. Enhanced retroviral replication due to host gene-targeting resulted in markedly increased RAE-1 expression in the absence of massive erythroid cell proliferation, indicating a direct role of retroviral replication in RAE-1 upregulation.
Collapse
|
25
|
Babić M, Pyzik M, Zafirova B, Mitrović M, Butorac V, Lanier LL, Krmpotić A, Vidal SM, Jonjić S. Cytomegalovirus immunoevasin reveals the physiological role of "missing self" recognition in natural killer cell dependent virus control in vivo. J Exp Med 2010; 207:2663-73. [PMID: 21078887 PMCID: PMC2989764 DOI: 10.1084/jem.20100921] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/18/2010] [Indexed: 12/14/2022] Open
Abstract
Cytomegaloviruses (CMVs) are renowned for interfering with the immune system of their hosts. To sidestep antigen presentation and destruction by CD8(+) T cells, these viruses reduce expression of major histocompatibility complex class I (MHC I) molecules. However, this process sensitizes the virus-infected cells to natural killer (NK) cell-mediated killing via the "missing self" axis. Mouse cytomegalovirus (MCMV) uses m152 and m06 encoded proteins to inhibit surface expression of MHC I molecules. In addition, it encodes another protein, m04, which forms complexes with MHC I and escorts them to the cell surface. This mechanism is believed to prevent NK cell activation and killing by restoring the "self" signature and allowing the engagement of inhibitory Ly49 receptors on NK cells. Here we show that MCMV lacking m04 was attenuated in an NK cell- and MHC I-dependent manner. NK cell-mediated control of the infection was dependent on the presence of NK cell subsets expressing different inhibitory Ly49 receptors. In addition to providing evidence for immunoevasion strategies used by CMVs to avoid NK cell control via the missing-self pathway, our study is the first to demonstrate that missing self-dependent NK cell activation is biologically relevant in the protection against viral infection in vivo.
Collapse
Affiliation(s)
- Marina Babić
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Michal Pyzik
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Biljana Zafirova
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Mitrović
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Višnja Butorac
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94115
| | - Astrid Krmpotić
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Stipan Jonjić
- Department of Histology and Embryology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
26
|
Carayannopoulos LN, Barks JL, Yokoyama WM, Riley JK. Murine trophoblast cells induce NK cell interferon-gamma production through KLRK1. Biol Reprod 2010; 83:404-14. [PMID: 20484740 PMCID: PMC2924803 DOI: 10.1095/biolreprod.110.084509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/05/2010] [Accepted: 05/06/2010] [Indexed: 12/21/2022] Open
Abstract
Murine models suggest that natural killer (NK) cells are important for normal implantation site development, in part, through the production of interferon gamma (IFNG). As KLRK1 (NKG2D) is expressed on human and murine uterine NK (uNK) cells, we examined the role of KLRK1 in the interaction between murine trophoblasts and NK cells. Flow cytometric analysis revealed that both murine trophoblast stem (TS) cells and differentiated trophoblast giant cells expressed the KLRK1 ligand retinoic acid early transcript 1, or RAET1. Coculture of activated NK cells with either TS cells or giant cells led to the production of IFNG, as measured by ELISA. In addition, coculture with TS cells led to the downregulation of KLRK1. Both responses were inhibited by soluble KLRK1 ligand, but not by irrelevant protein. Further studies demonstrated the presence of KLRK1 ligand on uterine cells derived from either virgin or pregnant mice, although uterine RAET1 protein expression was upregulated in vitro by progesterone, but not estradiol. We suggest that the interaction of KLRK1 and RAET1 may be involved in IFNG production by uNK cells, and thus, this receptor-ligand pair may contribute to successful murine implantation site development.
Collapse
Affiliation(s)
- Leonidas N. Carayannopoulos
- Department of Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Division of Rheumatology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer L. Barks
- Department of Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Division of Rheumatology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Wayne M. Yokoyama
- Department of Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Division of Rheumatology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Joan K. Riley
- Department of Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Division of Rheumatology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
De Colvenaer V, Taveirne S, Hamann J, de Bruin AM, De Smedt M, Taghon T, Vandekerckhove B, Plum J, van Lier R, Leclercq G. Continuous CD27 triggering in vivo strongly reduces NK cell numbers. Eur J Immunol 2010; 40:1107-17. [PMID: 20140903 DOI: 10.1002/eji.200939251] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NK cells are important mediators of the early defense. In mice, immature and mature NK (mNK) cells constitutively express the TNF receptor family member CD27; however, mNK cells eventually lose CD27 expression and become resting NK cells. Interaction of CD27 with its ligand, CD70, enhances proliferation and effector functions of NK cells. We used mice that constitutively express CD70 on B cells (CD70-Tg) to study the in vivo effects of continuous triggering of CD27 on NK cells. Continuous CD70-CD27 interaction resulted in strongly down-modulated CD27 expression on NK cells and gradually reduced absolute NK cell numbers. This reduction was most prominent in the mNK cell subpopulation and was at least partially due to increased apoptosis. Residual NK cells showed lower expression of activating Ly49 receptors and normal (liver) or decreased (spleen) IFN-gamma production. Nevertheless, NK cells from CD70-Tg mice displayed higher YAC-1 killing capacities. CD70-Tg NK cells exhibited up-regulated expression of NKG2D, which is in accordance with the increased YAC-1 lysis, as this is mainly NKG2D-dependent. Taken together, this study is the first to demonstrate that continuous CD70 triggering of CD27 on NK cells in vivo results in a severe reduction of NK cells. On a single cell basis, however, residual NK cells display enhanced cytotoxicity.
Collapse
Affiliation(s)
- Veerle De Colvenaer
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo Y, Tian W, Cai L, Wang Y, Zhang J, Teng H, Du J, Sun ZS. Expression profiling reveals a positive regulation by mPer2 on circadian rhythm of cytotoxicity receptors: Ly49C and Nkg2d. Chronobiol Int 2010; 26:1514-44. [PMID: 20030538 DOI: 10.3109/07420520903553435] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mammalian circadian gene, mPer2, an indispensable component of the mammalian circadian clock, not only modulates endogenous circadian rhythms but also plays a crucial role in regulating innate immune function. Previously, we showed that mPer2 plays a crucial role in regulating cytotoxic response. To investigate the molecular mechanism for mPer2-controlled cytotoxic response, in the present study we conducted mRNA expression for 11 genes participating in cytotoxicity regulation in wild-type (WT) and mPer2 knockout (mPer2(-/-)) mice bone marrow, that is, Dap-10, Ly49C, Ly49I, Rac1, Mapk1, Map2k1, Nkg2d, Shp-1, Pak1, Pik3ca, and Vav1. The mRNA levels of Ly49C (p < 0.001), Ly49I (p = 0.039), and Nkg2d (p = 0.038) were significantly downregulated in mPer2(-/-) mice. Time-dependence of expression profiling was then conducted for four core clock genes (Per1, Bmal1, Clock, Rev-erbalpha), and six out of these 11 cytotoxic regulation genes (Ly49C, Ly49I, Mapk1, Nkg2d, Shp-1, Pik3ca) in WT and mPer2(-/-) entrained in light/dark (LD) or dark/dark (DD) cycles. Consistently, circadian oscillations were observed for Per1, Rev-erbalpha, Ly49C, and Nkg2d in WT mice under LD and DD cycles. However, these rhythmic expressions were either disrupted or dampened in mPer2(-/-) mice. Comparison of gene expression between WT and mPer2(-/-) mice showed that mPer2 knockout had systematically downregulated the mRNA expression of two cytotoxicity regulators, Ly49C and Nkg2d. FACS analysis further confirmed that the circadian expression of these genes was not due to the daily difference in cell numbers of NK, NKT, or T cells in bone marrow. Taken together, our results reveal that mPer2 is a critical clock component in modulating circadian rhythms in bone marrow. Furthermore, it implies that Ly49C and Nkg2d are two clock-controlled genes that may play an important role in mediating mPer2-controlled cytotoxic response.
Collapse
Affiliation(s)
- Yonglun Luo
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yokoyama WM, Altfeld M, Hsu KC. Natural killer cells: tolerance to self and innate immunity to viral infection and malignancy. Biol Blood Marrow Transplant 2010; 16:S97-S105. [PMID: 19835969 PMCID: PMC3900292 DOI: 10.1016/j.bbmt.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells are lymphocytes whose ability to identify and kill virally infected and malignant cells while sparing normal cells was poorly understood until the late 1980’s and the introduction of the “missing self’ hypothesis. According to this hypothesis, downregulation of major histocompatibility complex (MHC) class I molecules during viral infection or malignant transformation triggers NK activation (1 ). Since this hypothesis was first proposed, much has been learned about NK cell surface receptors, their role in the molecular basis of missing-self recognition, and the mechanisms underlying NK cell tolerance. In this review, we will discuss these mechanisms, as well as their relevance to viral infection and tumor immunity and stem cell transplantation.
Collapse
Affiliation(s)
- Wayne M Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Center, St Louis, Missouri, USA
| | | | | |
Collapse
|
30
|
Chan CJ, Andrews DM, McLaughlin NM, Yagita H, Gilfillan S, Colonna M, Smyth MJ. DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. THE JOURNAL OF IMMUNOLOGY 2009; 184:902-11. [PMID: 20008292 DOI: 10.4049/jimmunol.0903225] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A role for NK cells in therapeutic intervention for hematologic malignancies, such as acute myeloid leukemia and multiple myeloma, and nonhematologic malignancies, such as melanoma, is becoming more apparent. DNAM-1 is an NK cell receptor whose importance in facilitating activation signals received by NK cells in natural and cytokine-driven responses to tumor metastases in vivo is poorly explored. In this study, we used matched tumor lines expressing a variety of relevant ligands, neutralizing monoclonal Abs, and DNAM-1 gene-targeted mice to determine the relative importance of DNAM-1-ligand interactions in controlling tumor metastases. Our results demonstrate that NK cells require DNAM-1 for natural or cytokine (IL-2, IL-12, or IL-21) suppression of tumor metastases or their variants expressing CD70 or CD80. In contrast, DNAM-1 was dispensable when tumor cells were targets of Ab-dependent cellular cytotoxicity or presented ligands for NKG2D. CD155 appeared to be a key ligand recognized by DNAM-1 in NK cell-mediated suppression of metastases, and DNAM-1-mediated suppression coincided with perforin activity. Overall, these data implied a general role for DNAM-1-CD155 interactions in NK cell-mediated killing of tumors, even in the presence of tumor CD70 or CD80 expression, and further defined the optimal efficacy requirements of cytokines that directly activate NK cells.
Collapse
Affiliation(s)
- Christopher J Chan
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Yokoyama WM, Altfeld M, Hsu KC. Natural killer cells: tolerance to self and innate immunity to viral infection and malignancy. BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION : JOURNAL OF THE AMERICAN SOCIETY FOR BLOOD AND MARROW TRANSPLANTATION 2009. [PMID: 19835969 DOI: 10.1016/j.bbmt.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wayne M Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Center, St Louis, Missouri, USA
| | | | | |
Collapse
|
32
|
Zafirova B, Mandarić S, Antulov R, Krmpotić A, Jonsson H, Yokoyama WM, Jonjić S, Polić B. Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 2009; 31:270-82. [PMID: 19631564 PMCID: PMC2782462 DOI: 10.1016/j.immuni.2009.06.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 03/17/2009] [Accepted: 06/01/2009] [Indexed: 11/17/2022]
Abstract
NKG2D is a potent activating receptor on natural killer (NK) cells and acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor-transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D caused faster division of NK cells, perturbation in size of some NK cell subpopulations, and their augmented sensitivity to apoptosis. As expected, Klrk1(-/-) NK cells are less responsive to tumor targets expressing NKG2D ligands. Klrk1(-/-) mice, however, showed an enhanced NK cell-mediated resistance to mouse cytomegalovirus infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for regulatory function of NKG2D in NK cell physiology.
Collapse
Affiliation(s)
- Biljana Zafirova
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Sanja Mandarić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Ronald Antulov
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Helena Jonsson
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Centre, 660 S. Euclid Ave, Box 8045, St. Louis, MO 63110 U.S.A
| | - Wayne M. Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Centre, 660 S. Euclid Ave, Box 8045, St. Louis, MO 63110 U.S.A
| | - Stipan Jonjić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| |
Collapse
|
33
|
Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperthermia 2009; 24:41-56. [DOI: 10.1080/02656730701858297] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Dibra D, Cutrera JJ, Xia X, Birkenbach MP, Li S. Expression of WSX1 in tumors sensitizes IL-27 signaling-independent natural killer cell surveillance. Cancer Res 2009; 69:5505-13. [PMID: 19549909 PMCID: PMC2706921 DOI: 10.1158/0008-5472.can-08-4311] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well known that the interleukin (IL)-27 receptor WSX1 is expressed in immune cells and induces an IL-27-dependent immune response. Opposing this conventional dogma, this study reveals a much higher level of WSX1 expression in multiple types of epithelial tumor cells when compared with normal epithelial cells. Expression of exogenous WSX1 in epithelial tumor cells suppresses tumorigenicity in vitro and inhibits tumor growth in vivo. Different from the role of WSX1 in immune cells, the antitumor activity of WSX1 in epithelial tumor cells is independent of IL-27 signaling but is mainly dependent on natural killer (NK) cell surveillance. Deficiency of either the IL-27 subunit EBV-induced gene 3 or the IL-27 receptor WSX1 in the host animals had no effect on tumor growth inhibition induced by WSX1 expression in tumor cells. Expression of WSX1 in epithelial tumor cells enhances NK cell cytolytic activity against tumor cells, whereas the absence of functional NK cells impairs the WSX1-mediated inhibition of epithelial tumor growth. The underlying mechanism by which WSX1 expression in tumor cells enhances NK cytolytic activity is dependent on up-regulation of NKG2D ligand expression. Our results reveal an IL-27-independent function of WSX1: sensitizing NK cell-mediated antitumor surveillance via a NKG2D-dependent mechanism.
Collapse
Affiliation(s)
- Denada Dibra
- Department of Comparative Biomedical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803
| | - Jeffry J. Cutrera
- Department of Comparative Biomedical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803
| | - Xueqing Xia
- Department of Comparative Biomedical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803
| | - Mark P. Birkenbach
- Department of Pathology, Temple University School of Medicine, 3401 N. Broad Street, Philadelphia, PA 19140
| | - Shulin Li
- Department of Comparative Biomedical Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803
| |
Collapse
|
35
|
Abstract
The NKG2D receptor is one of the most potent activating natural killer cell receptors involved in antiviral responses. The mouse NKG2D ligands MULT-1, RAE-1, and H60 are regulated by murine cytomegalovirus (MCMV) proteins m145, m152, and m155, respectively. In addition, the m138 protein interferes with the expression of both MULT-1 and H60. We show here that one of five RAE-1 isoforms, RAE-1delta, is resistant to downregulation by MCMV and that this escape has functional importance in vivo. Although m152 retained newly synthesized RAE-1delta and RAE-1gamma in the endoplasmic reticulum, no viral regulator was able to affect the mature RAE-1delta form which remains expressed on the surfaces of infected cells. This differential susceptibility to downregulation by MCMV is not a consequence of faster maturation of RAE-1delta compared to RAE-1gamma but rather an intrinsic property of the mature surface-resident protein. This difference can be attributed to the absence of a PLWY motif from RAE-1delta. Altogether, these findings provide evidence for a novel mechanism of host escape from viral immunoevasion of NKG2D-dependent control.
Collapse
|
36
|
Carreno BM, Garbow JR, Kolar GR, Jackson EN, Engelbach JA, Becker-Hapak M, Carayannopoulos LN, Piwnica-Worms D, Linette GP. Immunodeficient mouse strains display marked variability in growth of human melanoma lung metastases. Clin Cancer Res 2009; 15:3277-86. [PMID: 19447870 PMCID: PMC2697956 DOI: 10.1158/1078-0432.ccr-08-2502] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunodeficient mice serve as critical hosts for transplantation of xenogeneic cells for in vivo analysis of various biological processes. Because investigators typically select one or two immunodeficient mouse strains as recipients, no comprehensive study has been published documenting differences in human tumor engraftment. Taking advantage of the increased metastatic potential of RhoC-expressing human (A375) melanoma cells, we evaluate four immunodeficient mouse strains: severe combined immunodeficiency (scid), nonobese diabetic (NOD)-scid, NOD-scid beta2m(null), and NOD-scid IL2Rgamma(null) as xenograft tumor recipients. EXPERIMENTAL DESIGN Bioluminescence, magnetic resonance imaging, and histopathology were used to monitor serial tumor growth. Natural killer (NK) cell function was examined in each mouse strain using standard (51)Chromium release assays. RESULTS Melanoma metastases growth is delayed and variable in scid and NOD-scid mice. In contrast, NOD-scid beta2m(null) and NOD-scid IL2Rgamma(null) mice show rapid tumor engraftment, although tumor growth is variable in NOD-scid beta2m(null) mice. NK cells were detected in all strains except NOD-scid IL2Rgamma(null), and in vitro activated scid, NOD-scid, and NOD-scid beta2m(null) NK cells kill human melanoma lines and primary melanoma cells. Expression of human NKG2D ligands MHC class I chain-related A and B molecules renders melanoma susceptible to murine NK cell-mediated cytotoxicity and killing is inhibited by antibody blockade of murine NKG2D. CONCLUSIONS Murine NKG2D recognition of MICA/B is an important receptor-ligand interaction used by NK cells in immunodeficient strains to limit engraftment of human tumors. The absolute NK deficiency in NOD-scid IL2Rgamma(null) animals makes this strain an excellent recipient of melanoma and potentially other human malignancies.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cytotoxicity, Immunologic/immunology
- Flow Cytometry
- GPI-Linked Proteins
- Graft Survival
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin Receptor Common gamma Subunit/metabolism
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Luciferases/genetics
- Luciferases/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Transplantation, Heterologous
- Tumor Burden
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoC GTP-Binding Protein
Collapse
Affiliation(s)
- Beatriz M Carreno
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu JD, Atteridge CL, Wang X, Seya T, Plymate SR. Obstructing shedding of the immunostimulatory MHC class I chain-related gene B prevents tumor formation. Clin Cancer Res 2009; 15:632-40. [PMID: 19147769 PMCID: PMC2775521 DOI: 10.1158/1078-0432.ccr-08-1305] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Clinical observations have suggested that shedding of the MHC class I chain-related molecule (MIC) may be one of the mechanisms by which tumors evade host immunosurveillance and progress. However, this hypothesis has never been proven. In this study, we tested this hypothesis using a prostate tumor model and investigated the effect of shedding of MIC on tumor development. EXPERIMENTAL DESIGN We generated a shedding-resistant noncleavable form of MICB (MICB.A2). We overexpressed MICB.A2, the wild-type MICB, and the recombinant soluble MICB (rsMICB) in mouse prostate tumor TRAMP-C2 (TC2) cells and implanted these cells into severe combined immunodeficient mice. RESULTS No tumors were developed in animals that were implanted with TC2-MICB.A2 cells, whereas all the animals that were implanted with TC2, TC2-MICB, or TC2-rsMICB cells developed tumors. When a NKG2D-specific antibody CX5 or purified rsMICB was administered to animals before tumor implantation, all animals that were implanted with TC2-MICB.A2 cells developed tumors. In vitro cytotoxicity assay revealed the loss of NKG2D-mediated natural killer cell function in these prechallenged animals, suggesting that persistent levels of soluble MICB in the serum can impair natural killer cell function and thus allow tumor growth. CONCLUSIONS These data suggest that MIC shedding may contribute significantly to tumor formation by transformed cells and that inhibition of MIC shedding to sustain the NKG2D receptor-MIC ligand recognition may have potential clinical implication in targeted cancer treatment.
Collapse
Affiliation(s)
- Jennifer D Wu
- Department of Medicine, University of Washington, 325 9th Avenue, Box 359625, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Armed with potent cytotoxic and immunostimulatory effector functions, natural killer (NK) cells have the potential to cause significant damage to normal self cells unless controlled by self-tolerance mechanisms. NK cells identify and attack target cells based on integration of signals from activation and inhibitory receptors, whose ligands exhibit complex expression and/or binding patterns. Preservation of NK cell self-tolerance must therefore go beyond mere engagement of inhibitory receptors during effector functions. Herein, we review recent work that has uncovered a number of mechanisms to ensure self-tolerance of NK cells. For example, licensing of NK cells allows only NK cells that can engage self-MHC to become functionally competent, or licensed. The molecular mechanism of this phenomenon appears to require signaling by receptors that were originally identified in effector inhibition. However, the nature of the signaling event has not yet been defined, but new interpretations of several published experiments provide valuable clues. In addition, several other cell-intrinsic and -extrinsic mechanisms of NK cell tolerance are discussed, including activation receptor cooperation and synergy, cytokine stimulation, and the opposing roles of accessory and regulatory cells. Finally, NK cell tolerance is discussed as it relates to the clinic, such as KIR-HLA disease associations, tumor immunotherapy, and fetal tolerance.
Collapse
|
39
|
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that monitor cell surfaces of autologous cells for an aberrant expression of MHC class I molecules and cell stress markers. Since their first description more than 30 years ago, NK cells have been implicated in the immune defence against tumours. Here, we review the broadly accumulating evidence for a crucial contribution of NK cells to the immunosurveillance of tumours and the molecular mechanisms that allow NK cells to distinguish malignant from healthy cells. Particular emphasis is placed on the activating NK receptor NKG2D, which recognizes a variety of MHC class I-related molecules believed to act as 'immuno-alerters' on malignant cells, and on tumour-mediated counterstrategies promoting escape from NKG2D-mediated recognition.
Collapse
Affiliation(s)
- I Waldhauer
- Department of Immunology, Interfacultary Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
40
|
Tripathy SK, Keyel PA, Yang L, Pingel JT, Cheng TP, Schneeberger A, Yokoyama WM. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. ACTA ACUST UNITED AC 2008; 205:1829-41. [PMID: 18606857 PMCID: PMC2525593 DOI: 10.1084/jem.20072446] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Natural killer (NK) cell tolerance mechanisms are incompletely understood. One possibility is that they possess self-specific activation receptors that result in hyporesponsiveness unless modulated by self–major histocompatability complex (MHC)–specific inhibitory receptors. As putative self-specific activation receptors have not been well characterized, we studied a transgenic C57BL/6 mouse that ubiquitously expresses m157 (m157-Tg), which is the murine cytomegalovirus (MCMV)–encoded ligand for the Ly49H NK cell activation receptor. The transgenic mice were more susceptible to MCMV infection and were unable to reject m157-Tg bone marrow, suggesting defects in Ly49H+ NK cells. There was a reversible hyporesponsiveness of Ly49H+ NK cells that extended to Ly49H-independent stimuli. Continuous Ly49H–m157 interaction was necessary for the functional defects. Interestingly, functional defects occurred when mature wild-type NK cells were adoptively transferred to m157-Tg mice, suggesting that mature NK cells may acquire hyporesponsiveness. Importantly, NK cell tolerance caused by Ly49H–m157 interaction was similar in NK cells regardless of expression of Ly49C, an inhibitory receptor specific for a self-MHC allele in C57BL/6 mice. Thus, engagement of self-specific activation receptors in vivo induces an NK cell tolerance effect that is not affected by self-MHC–specific inhibitory receptors.
Collapse
Affiliation(s)
- Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine and Howard Hughes Medical Institute, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Natural killer (NK) cells play a fundamental role in the innate immune response through their ability to secrete cytokines and kill target cells without prior sensitization. These effector functions are central to NK cell anti-viral and anti-tumor abilities. Due to their cytotoxic nature, it is vital that NK cells have the capacity to recognize normal self-tissue and thus prevent their destruction. In addition to their role in host defense, NK cells accumulate at the maternal-fetal interface and are thought to play a critical role during pregnancy. The close proximity of uterine NK (uNK) cells to fetal trophoblast cells of the placenta would seemingly lead to catastrophic consequences, as the trophoblast cells are semi-allogeneic. A fundamental enigma of pregnancy is that the fetal cells constitute an allograft but, in normal pregnancies, they are in effect not perceived as foreign and are not rejected by the maternal immune system. Although the mechanisms involved in achieving NK cell tolerance are becoming increasingly well-defined, further clarification is required, given the clinical implications of this work in the areas of infection, transplantation, cancer and pregnancy. Herein, we discuss several mechanisms of NK cell tolerance and speculate as to how they may apply to uNK cells at the maternal-fetal interface.
Collapse
Affiliation(s)
- Joan K Riley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Jonjic S, Krmpotic A, Arapovic J, Koszinowski UH. Dissection of the antiviral NK cell response by MCMV mutants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 415:127-49. [PMID: 18370152 DOI: 10.1007/978-1-59745-570-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Our understanding of virus control by natural killer (NK) cells relies mainly on in vitro observations. The significance of these findings for virus control in vivo is not yet fully understood. Complexity is added by the fact that many viruses, particularly herpesviruses, are equipped with sets of genes that, dependent on the genetic background of the host, modify the NK cell response. The advent of recombinant DNA technology and mutagenesis procedures for BAC-cloned viral genomes has made it possible not only to screen for viral proteins with such functions but also to assess their biological relevance. Mutant viruses with gene defects reveal the efficacy and complexity of NK cell control. Here, we describe procedures to assess the NK cell response to mouse cytomegalovirus (MCMV), a prominent virus model for studying NK cell functions in vivo.
Collapse
Affiliation(s)
- Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | |
Collapse
|
43
|
Cmv1 and natural killer cell responses to murine cytomegalovirus infection. Curr Top Microbiol Immunol 2008; 321:101-22. [PMID: 18727489 DOI: 10.1007/978-3-540-75203-5_5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dissection of genetic resistance to murine cytomegalovirus infection in inbred laboratory mouse strains led to the identification of a natural killer cell activation receptor that recognizes a virus-encoded protein. Herein, we summarize the genetic approach and findings that have provided novel insights into innate immune control of virus infections.
Collapse
|
44
|
Choi BK, Kim YH, Kang WJ, Lee SK, Kim KH, Shin SM, Yokoyama WM, Kim TY, Kwon BS. Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res 2007; 67:8891-9. [PMID: 17875731 DOI: 10.1158/0008-5472.can-07-1056] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-4-1BB-mediated anticancer effects were potentiated by depletion of CD4+ cells in B16F10 melanoma-bearing C57BL/6 mice. Anti-4-1BB induced the expansion and differentiation of polyclonal tumor-specific CD8+ T cells into IFN-gamma-producing CD11c+CD8+ T cells. The CD4+ cell depletion was responsible for facilitating immune cell infiltration into tumor tissues and removing some regulatory barriers such as T regulatory and indoleamine-2,3-dioxygenase (IDO)+ dendritic cells. Both monoclonal antibodies (mAb) contributed to the efficient induction of MHC class I molecules on the tumor cells in vivo. The effectors that mediated the anti-4-1BB effect were NKG2D+KLRG1+CD11c+CD8+ T cells that accumulated preferentially in the tumor tissues. Blocking NKG2D reduced the therapeutic effect by 20% to 26%, which may indicate that NKG2D contributes partially to tumor killing by the differentiated CD8+ T cells. Our results indicate that the combination of the two mAbs, agonistic anti-4-1BB and depleting anti-CD4, results in enhanced production of efficient tumor-killing CTLs, facilitation of their infiltration, and production of a susceptible tumor microenvironment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD11c Antigen/immunology
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Immunization, Passive/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Beom K Choi
- The Immunomodulation Research Center, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007; 450:903-7. [PMID: 18026089 DOI: 10.1038/nature06309] [Citation(s) in RCA: 992] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/24/2007] [Indexed: 12/19/2022]
Abstract
The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods.
Collapse
Affiliation(s)
- Catherine M Koebel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hyka-Nouspikel N, Lucian L, Murphy E, McClanahan T, Phillips JH. DAP10 deficiency breaks the immune tolerance against transplantable syngeneic melanoma. THE JOURNAL OF IMMUNOLOGY 2007; 179:3763-71. [PMID: 17785813 DOI: 10.4049/jimmunol.179.6.3763] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DAP10, an activating adaptor protein, associates with the NKG2D protein to form a multisubunit receptor complex that is expressed in lymphoid and myeloid cells. The ligands for NKG2D-DAP10 receptor are expressed in both normal and tumor cells, suggesting distinct roles for this receptor in autoimmunity and cancer. In this study, we report that constitutive DAP10 activating signaling is part of regulatory mechanisms that control immunity against tumors. Mice lacking DAP10 (DAP10KO), showed enhanced immunity against melanoma malignancies due to hyperactive functioning of NK1.1+CD3+ NKT cells. DAP10 deficiency resulted in substantially increased NKT cell functions, including cytokine production and cytotoxicity, leading to efficient killing of melanoma tumors. Moreover, the antitumor phenotype of DAP10KO mice correlated with impaired activation status of CD4+CD25+ T regulatory cells (Tregs). Upon activation, DAP10KO Tregs maintained higher levels of IL-2 and produced significantly lower amounts of IL-10 and IFN-gamma cytokines when compared with wild-type Tregs. Our data suggest that DAP10 signaling is involved in adjusting the activation threshold and generation of NKT cells and Tregs to avoid autoreactivity, but also modulates antitumor mechanisms.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Immune Tolerance/genetics
- Immunophenotyping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Lymphocyte Activation/genetics
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/prevention & control
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Transplantation
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Nevila Hyka-Nouspikel
- Cellular Immunology Laboratory, Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
47
|
Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E, Repasky EA. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol 2007; 82:1322-31. [PMID: 17711975 DOI: 10.1189/jlb.1106699] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Circulating NK cells normally experience temperature gradients as they move about the body, but the onset of inflammation can expose them and their targets to febrile temperatures for several hours. We found that exposure of human peripheral blood NK cells and target cells to fever-range temperatures significantly enhances lysis of Colo205 target cells. A similar effect was not observed when NK cell lines or IL-2-activated peripheral blood NK cells were used as effectors, indicating that thermal sensitivity of effectors is maturation or activation state-dependent. Use of blocking antibodies revealed that this effect is also dependent on the function of the activating receptor NKG2D and its ligand MHC class I-related chain A (MICA). On NK cells, it was observed that thermal exposure does not affect the total level of NKG2D surface expression, but does result in its distinct clustering, identical to that which occurs following IL-2-induced activation. On tumor target cells, a similar, mild temperature elevation results in transcriptional up-regulation of MICA in a manner that correlates with increased sensitivity to cytolysis. Overall, these data reveal that NK cells possess thermally responsive regulatory elements, which facilitate their ability to capitalize on reciprocal, stress-induced changes simultaneously occurring on target cells during inflammation and fever.
Collapse
Affiliation(s)
- Julie R Ostberg
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
48
|
Hamby K, Trexler A, Pearson TC, Larsen CP, Rigby MR, Kean LS. NK cells rapidly reject allogeneic bone marrow in the spleen through a perforin- and Ly49D-dependent, but NKG2D-independent mechanism. Am J Transplant 2007; 7:1884-96. [PMID: 17617852 DOI: 10.1111/j.1600-6143.2007.01864.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have used a sensitive and specific in vivo killing assay to monitor the kinetics, anatomic location and mechanisms controlling NK-mediated rejection of Balb/c bone marrow by C57BL/6 natural killer (NK) cells. We find that NK killing of fully allogeneic bone marrow is a rapid, highly efficient process, leading to substantial rejection of transplanted marrow within 6 h of transplant and elimination of 85% of the transplanted cells within 2 days. NK-mediated rejection occurred predominantly in the spleen, with sparing of rejection in the bone marrow and lymph nodes. Rejection was dependent on Perforin gene function, but was independent of interferon-gamma. Finally, rejection of Balb/c bone marrow by B6 NK cells required signaling through the Ly49D receptor, but occurred despite blockade of NKG2D, which distinguishes these results from previous studies using semiallogeneic transplant pairs. These results identify NK cells as highly active mediators of bone marrow rejection, and suggest that inhibiting NK function early during transplantation may increase the efficiency of engraftment and allow successful engraftment of limiting doses of donor bone marrow.
Collapse
MESH Headings
- Animals
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Antigens, Surface
- Bone Marrow Cells/immunology
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation/immunology
- Bone Marrow Transplantation/pathology
- Chimerism
- Connexins/metabolism
- Disease Models, Animal
- Eye Proteins/metabolism
- Flow Cytometry
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- Immunity, Cellular
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily A
- NK Cell Lectin-Like Receptor Subfamily K
- Perforin
- Pore Forming Cytotoxic Proteins/metabolism
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Receptors, Natural Killer Cell
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Transplantation, Homologous
Collapse
Affiliation(s)
- K Hamby
- The Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Campbell JA, Trossman DS, Yokoyama WM, Carayannopoulos LN. Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. ACTA ACUST UNITED AC 2007; 204:1311-7. [PMID: 17548517 PMCID: PMC2118624 DOI: 10.1084/jem.20062026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
NK and T lymphocytes express both activating and inhibiting receptors for various members of the major histocompatibility complex class I superfamily (MHCISF). To evade immunologic cytotoxicity, many viruses interfere with the function of these receptors, generally by altering the displayed profile of MHCISF proteins on host cells. Using a structurally constrained hidden Markov model, we discovered an orthopoxvirus protein, itself distantly class I-like, that acts as a competitive antagonist of the NKG2D activating receptor. This orthopoxvirus MHC class I-like protein (OMCP) is conserved among cowpox and monkeypox viruses, secreted by infected cells, and bound with high affinity by NKG2D of rodents and humans (K(D) approximately 30 and 0.2 nM, respectively). OMCP blocks recognition of host-encoded ligands and inhibits NKG2D-dependent killing by NK cells. This finding represents a novel mechanism for viral interference with NKG2D and sheds light on intercellular recognition events underlying innate immunity against emerging orthopoxviruses.
Collapse
Affiliation(s)
- Jessica A Campbell
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
50
|
Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR, Ley TJ. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007; 26:798-811. [PMID: 17540585 DOI: 10.1016/j.immuni.2007.04.010] [Citation(s) in RCA: 348] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/28/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Although activated murine NK cells can use the granule exocytosis pathway to kill target cells immediately upon recognition, resting murine NK cells are minimally cytotoxic for unknown reasons. Here, we showed that resting NK cells contained abundant granzyme A, but little granzyme B or perforin; in contrast, the mRNAs for all three genes were abundant. Cytokine-induced in vitro activation of NK cells resulted in potent cytotoxicity associated with a dramatic increase in granzyme B and perforin, but only minimal changes in mRNA abundance for these genes. The same pattern of regulation was found in vivo with murine cytomegalovirus infection as a physiologic model of NK cell activation. These data suggest that resting murine NK cells are minimally cytotoxic because of a block in perforin and granzyme B mRNA translation that is released by NK cell activation.
Collapse
Affiliation(s)
- Todd A Fehniger
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|