1
|
Vuong LT, Mlodzik M. Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol 2022; 149:59-89. [PMID: 35606062 PMCID: PMC9870056 DOI: 10.1016/bs.ctdb.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt family of secreted glycolipo-proteins signals through multiple signal transduction pathways and is essential for embryonic development and organ development and homeostasis. The Wnt-pathways are conserved and critical in all metazoans. Wnt signaling pathways comprise the canonical Wnt/β-catenin pathway and several non-canonical signaling branches, of which Wnt-Planar Cell Polarity (PCP) signaling and the Wnt/Calcium pathway have received the most attention and are best understood. nterestingly, all Wnt-pathways have a nuclear signaling branch and also can affect many cellular processes independent of its nuclear transcriptional regulation. Canonical Wnt/β-catenin signaling is the most critical for a nuclear transcriptional response, in both development and disease, yet the mechanism(s) on how the "business end" of the pathway, β-catenin, translocates to the nucleus to act as co-activator to the TCF/Lef transcription factor family still remains obscure. Here we discuss and compare the very different strategies on how the respective Wnt signaling pathways activate a nuclear transcriptional response. We also highlight some recent new insights into how β-catenin is translocated to the nucleus via an IFT-A, Kinesin-2, and microtubule dependent mechanism and how this aspect of canonical Wnt-signaling uses ciliary proteins in a cilium independent manner, conserved between Drosophila and mammalian cells.
Collapse
Affiliation(s)
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
Nagao RJ, Marcu R, Shin YJ, Lih D, Xue J, Arang N, Wei L, Akilesh S, Kaushansky A, Himmelfarb J, Zheng Y. Cyclosporine Induces Fenestra-Associated Injury in Human Renal Microvessels In Vitro. ACS Biomater Sci Eng 2021; 8:196-207. [DOI: 10.1021/acsbiomaterials.1c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan J. Nagao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Raluca Marcu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Daniel Lih
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Nadia Arang
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98101, United States
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98101, United States
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98101, United States
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan Himmelfarb
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
- Department of Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
3
|
Ning X, Zhang D, Wang Y, Huo J, Huang Y, Guo Y, Li Z, Zhang Y. The Levels of Wnt5a and Its Receptors Frizzled5 and Frizzled2 as Immunohistochemical Biomarkers of Severity of Psoriasis. Clin Cosmet Investig Dermatol 2021; 14:1651-1656. [PMID: 34785924 PMCID: PMC8590942 DOI: 10.2147/ccid.s334866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
Purpose Psoriasis is a systemic, chronic and inflammatory condition. The exact pathogenesis is unclear. The abnormal expression of Wnt5a pathway in psoriasis vulgaris has been confirmed. Whether it is related to the severity of psoriasis is unclear. Methods Thirty-eight skin lesions from psoriasis vulgaris patients and 22 healthy adult skin tissues were taken. The semi-quantitative immunohistochemistry score of Wnt5a, Frizzled5 and Frizzled2 was evaluated under a microscope by two independent dermatologists. Psoriasis area and severity index (PASI) score system was used to evaluate the disease severity. Results The average PASI score of the patients was 16.25 ± 7.8, and the average duration of disease was 19.6 ± 10.4 months. Wnt5a, Frizzled5 and Frizzled2 were highly expressed in psoriasis lesions. The semi-quantitative immunohistochemistry scores of Wnt5a, Frizzled5 and Frizzled2 were positively correlated with PASI scores (r = 0.71, r = 0.46, r = 0.65, respectively, all P-value < 0.01), but not correlated with duration of disease (r = 0.11, r = 0.17, r = 0.29, respectively, all P-value > 0.05). There were significant positive correlations between Wnt5a and Frizzled5 (r = 0.57, P-value < 0.01), as well as Wnt5a and Frizzled2 (r = 0.59, P-value < 0.01). Conclusion Wnt5a and its receptors play an important role in pathogenesis of psoriasis vulgaris and are positively correlated with the severity of psoriasis, and may be one of the immunohistochemical predictors of the severity of the disease.
Collapse
Affiliation(s)
- Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Yuan Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Jia Huo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Ying Huang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Ying Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Yanfei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| |
Collapse
|
4
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Kim MJ, Huang Y, Park JI. Targeting Wnt Signaling for Gastrointestinal Cancer Therapy: Present and Evolving Views. Cancers (Basel) 2020; 12:E3638. [PMID: 33291655 PMCID: PMC7761926 DOI: 10.3390/cancers12123638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling governs tissue development, homeostasis, and regeneration. However, aberrant activation of Wnt promotes tumorigenesis. Despite the ongoing efforts to manipulate Wnt signaling, therapeutic targeting of Wnt signaling remains challenging. In this review, we provide an overview of current clinical trials to target Wnt signaling, with a major focus on gastrointestinal cancers. In addition, we discuss the caveats and alternative strategies for therapeutically targeting Wnt signaling for cancer treatment.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.K.); (Y.H.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
8
|
Brauer BL, Moon TM, Sheftic SR, Nasa I, Page R, Peti W, Kettenbach AN. Leveraging New Definitions of the LxVP SLiM To Discover Novel Calcineurin Regulators and Substrates. ACS Chem Biol 2019; 14:2672-2682. [PMID: 31633908 PMCID: PMC6925343 DOI: 10.1021/acschembio.9b00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Phosphoprotein Phosphatase Calcineurin (CN, PP2B, PP3) recognizes and binds to two short linear motifs (SLiMs), PxIxIT and LxVP, in its regulators and substrates. These interactions enable CN function in many key biological processes. The identification of SLiMs is difficult because of their short, degenerate sequence and often low binding affinity. Here we combine Structure Based Shape Complementarity (SBSC) analysis and proteome-wide affinity purification-mass spectrometry to identify PxIxIT and LxVP containing CN interactors to expand and thereby redefine the LxVP motif. We find that the new πφ-LxVx primary sequence defines an ensemble of binding competent confirmations and thus the binding on-rate, making it difficult to predict the LxVP binding strength from its sequence. Our analysis confirms existing and, more importantly, identifies novel CN interactors, substrates, and thus biological functions of CN.
Collapse
Affiliation(s)
- Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Thomas M. Moon
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Sarah R. Sheftic
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, United States
| |
Collapse
|
9
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
10
|
Veltri A, Lang C, Lien WH. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells 2017; 36:22-35. [DOI: 10.1002/stem.2723] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/23/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Anthony Veltri
- de Duve Institute, Faculty of Medicine, Université Catholique de Louvain; Brussels Belgium
| | - Christopher Lang
- de Duve Institute, Faculty of Medicine, Université Catholique de Louvain; Brussels Belgium
| | - Wen-Hui Lien
- de Duve Institute, Faculty of Medicine, Université Catholique de Louvain; Brussels Belgium
| |
Collapse
|
11
|
Saul MC, Seward CH, Troy JM, Zhang H, Sloofman LG, Lu X, Weisner PA, Caetano-Anolles D, Sun H, Zhao SD, Chandrasekaran S, Sinha S, Stubbs L. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res 2017; 27:959-972. [PMID: 28356321 PMCID: PMC5453329 DOI: 10.1101/gr.214221.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.
Collapse
Affiliation(s)
- Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Illinois Informatics Institute, Urbana, Illinois 61801, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laura G Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaochen Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Patricia A Weisner
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Derek Caetano-Anolles
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hao Sun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
- Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Computer Science
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Villaseñor T, Madrid-Paulino E, Maldonado-Bravo R, Urbán-Aragón A, Pérez-Martínez L, Pedraza-Alva G. Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Front Immunol 2017; 8:50. [PMID: 28203237 PMCID: PMC5285348 DOI: 10.3389/fimmu.2017.00050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogenic Gram-positive bacterium, is the cause of tuberculosis (TB), a major worldwide human infectious disease. The innate immune system is the first host defense against M. tuberculosis. The recognition of this pathogen is mediated by several classes of pattern recognition receptors expressed on the host innate immune cells, including Toll-like receptors, Nod-like receptors, and C-type lectin receptors like Dectin-1, the Mannose receptor, and DC-SIGN. M. tuberculosis interaction with any of these receptors activates multiple signaling pathways among which the protein kinase C, the MAPK, and the NFκB pathways have been widely studied. These pathways have been implicated in macrophage invasion, M. tuberculosis survival, and impaired immune response, thus promoting a successful infection and disease. Interestingly, the Wnt signaling pathway, classically regarded as a pathway involved in the control of cell proliferation, migration, and differentiation in embryonic development, has recently been involved in immunoregulatory mechanisms in infectious and inflammatory diseases, such as TB, sepsis, psoriasis, rheumatoid arthritis, and atherosclerosis. In this review, we present the current knowledge supporting a role for the Wnt signaling pathway during macrophage infection by M. tuberculosis and the regulation of the immune response against M. tuberculosis. Understanding the cross talk between different signaling pathways activated by M. tuberculosis will impact on the search for new therapeutic targets to fuel the rational design of drugs aimed to restore the immunological response against M. tuberculosis.
Collapse
Affiliation(s)
- Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Edgardo Madrid-Paulino
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Rafael Maldonado-Bravo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Antonio Urbán-Aragón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Leonor Pérez-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Gustavo Pedraza-Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| |
Collapse
|
13
|
Kogut MH, Arsenault RJ. A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens. Front Vet Sci 2015; 2:33. [PMID: 26664962 PMCID: PMC4672200 DOI: 10.3389/fvets.2015.00033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection of chickens by Salmonella are unknown. Recently, we found an expansion of the Treg population and subsequent increased in vitro immunosuppressive functions of the CD4(+)CD25(+) cells isolated from the ceca of the Salmonella-infected chickens by day 4 post-infection that increased steadily throughout the course of the 14 days of infection, whereas the number of CD4(+)CD25(+) cells in the non-infected controls remained steady throughout the study. CD4(+)CD25(+) cells from cecal tonsils of S. enteritidis-infected birds had greater expression of IL-10 mRNA content than the CD4(+)CD25(+) cells from the non-infected controls at all the time points studied. These results suggest the development of a tolerogenic immune response in the cecum of Salmonella-infected chickens may contribute to the persistance of Salmonella cecal colonization. Using a chicken-specific kinome peptide immune array, we have analyzed the signaling pathways altered during the establishment of this tolerogenic state. This analysis has revealed a role for the non-canonical Wnt signaling pathway in the cecum at 4 days post-infection. Infection induced the significant (p < 0.01) phosphorylation of the G-protein-coupled transmembrane protein, Frizzled 1 (FZD1), resulting in an influx of intracellular Ca(2+) and the phosphorylation of the Ca(2+)-dependent effector molecules calcium/calmodulin-dependent kinase II (CamKII), β-catenin, protein kinase C, and the activation of the transcription factor, NFAT. Nuclear translocation of NFAT resulted in a significant increase in the expression of the anti-inflammatory cytokines IL-10 and TGF-β. Increased expression of TGF-β4 mRNA activates the TGF-β signaling pathway that phosphorylates the receptor-activated Smads, Smad2 and Smad3. Combined with the results from our Treg studies, these studies describe kinome-based phenotypic changes in the cecum of chickens during Salmonella Enteritidis infection starting 4 days post-infection that leads to an anti-inflammatory, tolerogenic local environment, and results in the establishment of persistent intestinal colonization.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center (SPARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , College Station, TX , USA
| | - Ryan J Arsenault
- Southern Plains Agricultural Research Center (SPARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , College Station, TX , USA
| |
Collapse
|
14
|
Abstract
In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells--embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells--in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects.
Collapse
Affiliation(s)
- Wen-Hui Lien
- de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
15
|
Naskar D, Maiti G, Chakraborty A, Roy A, Chattopadhyay D, Sen M. Wnt5a-Rac1-NF-κB homeostatic circuitry sustains innate immune functions in macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 192:4386-97. [PMID: 24706725 DOI: 10.4049/jimmunol.1302817] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in innate immunity. Differentiation Ags present on macrophages such as CD14 orchestrate the first line of defense against infection. The basal/homeostatic signaling scheme that keeps macrophages thus groomed for innate immune functions remains unresolved. Wnt5a-Fz5 signaling being a primordial event during cell differentiation, we examined the involvement of Wnt5a-Fz5 signaling in the maintenance of innate immune functions. In this study, we demonstrate that innate immune functions of macrophages ensue at least partly through a homeostatic Wnt5a-Fz5-NF-κB (p65) circuit, which is Rac1 dependent. The autocrine/paracrine Wnt5a-Fz5-Rac1-p65 signaling cascade not only maintains basal levels of the immune defense modulating IFNs and CD14; it also supports macrophage survival. Wnt5a-Fz5-Rac1 signaling mediated p65 homeostasis in turn sustains Wnt5a expression in a feed-forward mode. The natural immune response of macrophages to Escherichia coli/LPS and virus is accordingly sustained. The depiction of sustenance of innate immune functions as an outcome of a homeostatic Wnt5a-p65 axis unfolds previously unidentified details of immune regulation and provides new insight into homeostatic cell signaling.
Collapse
Affiliation(s)
- Debdut Naskar
- Division of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | | | |
Collapse
|
16
|
WNT5A-NFAT signaling mediates resistance to apoptosis in pancreatic cancer. Neoplasia 2013; 15:11-22. [PMID: 23359789 DOI: 10.1593/neo.121312] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION WNT5A belongs to the Wnt family of secreted signaling molecules. Using transcriptional profiling, we previously identified WNT5A as target of the antiapoptotic transcription factor CUX1 and demonstrated high expression levels in pancreatic cancer. However, the impact of WNT5A on drug resistance and the signaling pathways employed by WNT5A remain to be elucidated. OBJECTIVES This project aims to decipher the impact of WNT5A on resistance to apoptosis and the signaling pathways employed by WNT5A in pancreatic cancer. METHODS The impact of WNT5A and its downstream effectors on tumor growth and drug resistance was studied in vitro and in xenograft models in vivo. Tissue microarrays of pancreatic cancer specimens were employed for immunohistochemical studies. RESULTS Knockdown of WNT5A results in a significant increase in drug-induced apoptosis. In contrast, overexpression of WNT5A or addition of recombinant WNT5A mediates resistance to apoptosis in vitro. In our attempt to identify downstream effectors of WNT5A, we identified the transcription factor nuclear factor of activated T cells c2 (NFATc2) as transcriptional target of WNT5A signaling. NFATc2 confers a strong antiapoptotic phenotype mediating at least in part the effects of WNT5A on drug resistance and tumor cell survival. In vivo, WNT5A expression leads to resistance to gemcitabine-induced apoptosis in a xenograft model, which is paralleled by up-regulation of NFATc2. Both WNT5A and NFATc2 proteins are highly expressed in human pancreatic cancer tissues and their expression levels correlated significantly. CONCLUSION We identified the WNT5A-NFATc2 axis as important mediator of drug resistance in pancreatic cancer.
Collapse
|
17
|
Feng Z, Xia Y, Zhang M, Zheng J. MicroRNA-155 regulates T cell proliferation through targeting GSK3β in cardiac allograft rejection in a murine transplantation model. Cell Immunol 2013; 281:141-9. [PMID: 23648819 DOI: 10.1016/j.cellimm.2013.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
Here we investigated the activity and regulation of miR-155 during cardiac allograft rejection (AR), and to examine the feasibility of using miR-155 as a biomarker of graft status. Expression of miR-155 in graft-infiltrating lymphocytes (GIL), T cells isolated from spleen (TFS), and lymphocytes separated from blood (LFB) was significantly increased during cardiac AR while GSK3β was downregulated in GIL and TFS. Inhibition of miR-155 impaired lymphocyte proliferation and enhanced the expression of GSK3β. Moreover, pharmacological inactivation of GSK3β resulted in rescue of the proliferative capability of T cells pretreated with a miR-155 inhibitor. Luciferase reporter assay confirmed that miR-155 interacted with the 3'-untranslated region (UTR) of GSK3β directly. In particular, the miR-155 in LFB can distinguish recipients with AR from syngeneic controls from POD 3 and later. The present study provides a better understanding of the pathophysiological process underlying cardiac AR progression.
Collapse
Affiliation(s)
- Zhiyu Feng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, 1678 Dongfang Road, Pudong, Shanghai 200127, China
| | | | | | | |
Collapse
|
18
|
Kim JY, Lee TR, Lee AY. Reduced WIF-1 Expression Stimulates Skin Hyperpigmentation in Patients with Melasma. J Invest Dermatol 2013; 133:191-200. [DOI: 10.1038/jid.2012.270] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, Haug JS, Peng L, Zhong XB, Suda T, Li L. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 2012; 150:351-65. [PMID: 22817897 DOI: 10.1016/j.cell.2012.05.041] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/18/2012] [Accepted: 05/01/2012] [Indexed: 12/17/2022]
Abstract
Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin(+) osteoblasts (N-cad(+)OBs that enrich osteoprogenitors) in the niche. We further found that N-cad(+)OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca(2+)-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche.
Collapse
Affiliation(s)
- Ryohichi Sugimura
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li Q, Shakya A, Guo X, Zhang H, Tantin D, Jensen PE, Chen X. Constitutive nuclear localization of NFAT in Foxp3+ regulatory T cells independent of calcineurin activity. THE JOURNAL OF IMMUNOLOGY 2012; 188:4268-77. [PMID: 22490438 DOI: 10.4049/jimmunol.1102376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Foxp3 plays an essential role in conferring suppressive functionality to CD4(+)/Foxp3(+) regulatory T cells (Tregs). Although studies showed that Foxp3 has to form cooperative complexes with NFAT to bind to target genes, it remains unclear whether NFAT is available in the nucleus of primary Tregs for Foxp3 access. It is generally believed that NFAT in resting cells resides in the cytoplasm, and its nuclear translocation depends on calcineurin (CN) activation. We report that a fraction of NFAT protein constitutively localizes in the nucleus of primary Tregs, where it selectively binds to Foxp3 target genes. Treating Tregs with CN inhibitor does not induce export of NFAT from the nucleus, indicating that its nuclear translocation is independent of CN activity. Consistently, Tregs are resistant to CN inhibitors in the presence of IL-2 and continue to proliferate in response to anti-CD3 stimulation, whereas proliferation of non-Tregs is abrogated by CN inhibitors. In addition, PMA, which activates other transcription factors required for T cell activation but not NFAT, selectively induces Treg proliferation in the absence of ionomycin. TCR interaction with self-MHC class II is not required for PMA-induced Treg proliferation. Tregs expanded by PMA or in the presence of CN inhibitors maintain Treg phenotype and functionality. These findings shed light on Treg biology, paving the way for strategies to selectively activate Tregs.
Collapse
Affiliation(s)
- Qiuxia Li
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hampton PJ, Jans R, Flockhart RJ, Parker G, Reynolds NJ. Lithium regulates keratinocyte proliferation via glycogen synthase kinase 3 and NFAT2 (nuclear factor of activated T cells 2). J Cell Physiol 2012; 227:1529-37. [PMID: 21678407 PMCID: PMC4150531 DOI: 10.1002/jcp.22872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1-2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis.
Collapse
Affiliation(s)
- Philip J Hampton
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
22
|
Youn MY, Yokoyama A, Fujiyama-Nakamura S, Ohtake F, Minehata KI, Yasuda H, Suzuki T, Kato S, Imai Y. JMJD5, a Jumonji C (JmjC) domain-containing protein, negatively regulates osteoclastogenesis by facilitating NFATc1 protein degradation. J Biol Chem 2012; 287:12994-3004. [PMID: 22375008 DOI: 10.1074/jbc.m111.323105] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoclastogenesis is a highly regulated process governed by diverse classes of regulators. Among them, nuclear factor of activated T-cells calcineurin-dependent 1 (NFATc1) is the primary osteoclastogenic transcription factor, and its expression is transcriptionally induced during early osteoclastogenesis by receptor activation of nuclear factor κB ligand (RANKL), an osteoclastogenic cytokine. Here, we report the novel enzymatic function of JMJD5, which regulates NFATc1 protein stability. Among the tested Jumonji C (JmjC) domain-containing proteins, decreased mRNA expression levels during osteoclastogenesis were found for JMJD5 in RAW264 cells stimulated by RANKL. To examine the functional role of JMJD5 in osteoclast differentiation, we established stable JMJD5 knockdown cells, and osteoclast formation was assessed. Down-regulated expression of JMJD5 led to accelerated osteoclast formation together with induction of several osteoclast-specific genes such as Ctsk and DC-STAMP, suggesting that JMJD5 is a negative regulator in osteoclast differentiation. Although JMJD5 was recently reported as a histone demethylase for histone H3K36me2, no histone demethylase activity was detected in JMJD5 in vitro or in living cells, even for other methylated histone residues. Instead, JMJD5 co-repressed transcriptional activity by destabilizing NFATc1 protein. Protein hydroxylase activity mediated by the JmjC domain in JMJD5 was required for the observed functions of JMJD5. JMJD5 induced the association of hydroxylated NFATc1 with the E3 ubiquitin ligase Von Hippel-Lindau tumor suppressor (VHL), thereby presumably facilitating proteasomal degradation of NFATc1 via ubiquitination. Taken together, the present study demonstrated that JMJD5 is a post-translational co-repressor for NFATc1 that attenuates osteoclastogenesis.
Collapse
Affiliation(s)
- Min-Young Youn
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Direct evidence for inhibition of mitochondrial permeability transition pore opening by sevoflurane preconditioning in cardiomyocytes: Comparison with cyclosporine A. Eur J Pharmacol 2012; 675:40-6. [DOI: 10.1016/j.ejphar.2011.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/21/2011] [Accepted: 11/27/2011] [Indexed: 11/22/2022]
|
24
|
Leitner J, Drobits K, Pickl WF, Majdic O, Zlabinger G, Steinberger P. The effects of Cyclosporine A and azathioprine on human T cells activated by different costimulatory signals. Immunol Lett 2011; 140:74-80. [PMID: 21756939 PMCID: PMC3165200 DOI: 10.1016/j.imlet.2011.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/19/2011] [Accepted: 06/27/2011] [Indexed: 01/08/2023]
Abstract
Immunosuppression is an important treatment modality in transplantation and human diseases that are associated with aberrant T cell activation. There are considerable differences regarding the cellular processes targeted by the immunosuppressive drugs that are in clinical use. Drugs like azathioprine (Aza) mainly act by halting proliferation of fast dividing cells, whereas others like cyclosporine A (CsA) specifically target signaling pathways in T cells. Since the outcome of T cell responses critically depends on the quality and strength of costimulatory signals, this study has addressed the interplay between costimulation and the immunosuppressive agents CsA and Aza during the in vitro activation of human T cells. We used an experimental system that allows analyzing T cells activated in the presence of selected costimulatory ligands to study T cells stimulated via CD28, CD2, LFA-1, ICOS or 4-1BB. The mean inhibitory concentrations (IC50) for Aza and CsA were determined for the proliferation of T cells receiving different costimulatory signals as well as for T cells activated in the absence of costimulation. CD28 signals but not costimulation via CD2, 4-1BB, ICOS or LFA-1 greatly increased the IC50 for CsA. By contrast, the inhibitory effects of Aza were not influenced by T cell costimulatory signals. Our results might have implications for combining standard immunosuppressive drugs with CTLA-4Ig fusion proteins, which act by blocking CD28 costimulation.
Collapse
Affiliation(s)
- Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Massoud O, Heimbach J, Viker K, Krishnan A, Poterucha J, Sanchez W, Watt K, Wiesner R, Charlton M. Noninvasive diagnosis of acute cellular rejection in liver transplant recipients: a proteomic signature validated by enzyme-linked immunosorbent assay. Liver Transpl 2011; 17:723-32. [PMID: 21618694 PMCID: PMC3293624 DOI: 10.1002/lt.22266] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The diagnosis of acute cellular rejection (ACR) requires liver biopsy with its attendant expense and risk. Our first aim was to prospectively determine in an exploratory analysis whether there is a serum proteome signature associated with histologically confirmed ACR. Our second aim was to use simpler and faster enzyme-linked immunosorbent assay (ELISA)-based assays for proteins identified as differentially abundant in the proteomic analysis to identify patients with ACR in a separate validation cohort. We used sequential high-abundance protein depletion and isobaric tag for relative and absolute quantitation liquid chromatography-tandem mass spectrometry to characterize the serum proteome in serum samples of patients with or without ACR. Seven of the 41 proteins identified as differentially abundant [serum amyloid A, complement component 4 (C4), fibrinogen, complement component 1q (C1q), complement component 3, heat shock protein 60 (HSP60), and HSP70] could be measured with ELISA-based assays in a validation cohort consisting of patients with ACR (n = 25) and patients without ACR (n = 21). The mean alanine aminotransferase (ALT) levels in patients with ACR and in patients without ACR were 198 ± 27 and 153 ± 34 U/L, respectively. Among the 7 proteins for which ELISA assays were available, C4 and C1q were both independent predictors of ACR. C4 had the greatest predictivity for differentiating patients with or without ACR. A C4 level ≤ 0.31 g/L had a sensitivity of 97%, a specificity of 62%, a positive predictive value of 74%, and a negative predictive value of 94%. A C4 level ≤ 0.31 g/L and an ALT level ≥ 70 IU/mL together had a sensitivity of 96%, a specificity of 81%, a positive predictive value of 86%, and a negative predictive value of 94%. In summary, in this exploratory analysis, serum C4 and ALT levels were highly predictive of ACR in liver transplant recipients. Confirmation in a prospective, larger, and diverse population is needed.
Collapse
Affiliation(s)
- Omar Massoud
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julie Heimbach
- Division of Transplant Surgery, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Kimberly Viker
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Anuradha Krishnan
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - John Poterucha
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - William Sanchez
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Kymberly Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Russell Wiesner
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Michael Charlton
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Devi TS, Singh LP, Hosoya KI, Terasaki T. GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1080-8. [PMID: 21549192 DOI: 10.1016/j.bbadis.2011.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/11/2023]
Abstract
Various growth factors and cytokines are implicated in endothelial dysfunction and blood-retinal barrier (BRB) breakdown in early diabetic retinopathy (DR). However, cellular and molecular mechanisms that may underlie the pathology of DR are not fully understood yet. We therefore examined the effect of insulin-like growth factor (IGF)-1 on ECM/adhesion molecule expression, cell cycle regulation and monolayer permeability in an endothelial cell line (TR-iBRB2). We investigate whether the action of IGF-1 (1) involves glycogen synthase kinase 3beta (GSK-3β) and cAMP responsive transcription factor (CREB) and (2) alters ECM/adhesion molecule gene expression. Treatment of TR-iBRB2 cell with IGF-1 (100ng/ml for 0-24h) increases phosphorylation of (i) Akt Thr308, and its substrates including GSK-3β at Ser9, which inactivates its kinase function, and (ii) CREB at Ser133 (activation). These phosphorylations correlate positively with enhanced expression of CREB targets such as ECM protein fibronectin and cell cycle progression factor cyclin D1. However, stable transfection of a mutant GSK3β(S9A) or a dominant negative K-CREB in TR-iBRB2 prevents IGF-1-induced fibronectin and cyclin D1 expression. Furthermore, IGF-1 reduces the level of intercellular adherence molecule VE-cadherin and increases monolayer permeability in TR-iBRB2 cells when measured by FITC-dextran leakage. The effect of IGF-1 on VE-cadherin and membrane permeability is absent in TR-iBRB2 cells expressing the GSK-3β(S9A). Similarly, K-CREB reverses IGF-1 down-regulation of VE-cadherin and up-regulation of fibronectin. These results indicate that GSK-3β/CREB axis alters ECM/adhesion molecule expression and cell cycle progression in retinal endothelial cells, and may potentially contribute to endothelial dysfunction and BRB leakage in DR.
Collapse
Affiliation(s)
- Takhellambam S Devi
- Departments of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
27
|
Srinivasan S, Ausk BJ, Prasad J, Threet D, Bain SD, Richardson TS, Gross TS. Rescuing loading induced bone formation at senescence. PLoS Comput Biol 2010; 6:e1000924. [PMID: 20838577 PMCID: PMC2936512 DOI: 10.1371/journal.pcbi.1000924] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/09/2010] [Indexed: 01/27/2023] Open
Abstract
The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+)/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.
Collapse
Affiliation(s)
- Sundar Srinivasan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | |
Collapse
|
28
|
Camilli TC, Weeraratna AT. Striking the target in Wnt-y conditions: intervening in Wnt signaling during cancer progression. Biochem Pharmacol 2010; 80:702-11. [PMID: 20211149 DOI: 10.1016/j.bcp.2010.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 12/30/2022]
Abstract
Wnt signaling can be divided into three pathways, namely the canonical Wnt/beta-catenin pathway, and the non-canonical (or heretical) Wnt/Ca(2+) and planar cell polarity (PCP) pathways. Although the canonical Wnt/beta-catenin pathway is the best described in cancer, increasing data points to the importance of the heretical Wnt pathways in several aspects of tumor progression. The recent advances in understanding the players and mechanisms by which these Wnt pathways contribute to cancer progression have led to the identification of numerous molecules that are already, or could be considered, targets for cancer therapy.
Collapse
Affiliation(s)
- Tura C Camilli
- Laboratory of Immunology and Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
29
|
Romanowska M, Evans A, Kellock D, Bray SE, McLean K, Donandt S, Foerster J. Wnt5a exhibits layer-specific expression in adult skin, is upregulated in psoriasis, and synergizes with type 1 interferon. PLoS One 2009; 4:e5354. [PMID: 19399181 PMCID: PMC2670517 DOI: 10.1371/journal.pone.0005354] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/17/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Wnt5a is a member of the wingless-type patterning regulators important in pre-natal development. The expression and distribution of Wnt5a and its receptors frizzled (fzd) 3 and fzd 5 in adult human skin have not been comprehensively studied to date. METHODOLOGY/PRINCIPAL FINDINGS We here show that Wnt5a, fzd3, fzd5, as well as fzd6 are restricted to specific layers in normal epidermis, analogous to their zonal distribution in hair follicles, suggesting a role in adult skin differentiation. In line, Wnt5a and fzd5 are both overexpressed and re-distributed in the epidermis of psoriasis which involves disturbed keratinocyte differentiation. Functionally, Wnt5a lowers the concentration of IFN required to induce target genes, and increases the magnitude of IFN target gene induction, suggesting a molecular mechanism underlying IFN hypersensitivity in psoriasis. Finally, we identify nedd8 and the amyloid precursor APP, previously shown to be upregulated in psoriasis, as targets of synergistic IFNalpha/Wnt5a induction. CONCLUSIONS/SIGNIFICANCE The present data (i) suggest that Wnt5a regulates epidermal differentiation even in adult skin and (ii) identify synergistic induction of type 1 IFN target genes as a novel mode of Wnt5a action. Targeting Wnt5a in the skin may reduce IFN hypersensitivity and be of therapeutical value.
Collapse
Affiliation(s)
- Malgorzata Romanowska
- Division of Experimental Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alan Evans
- Division of Experimental Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Kellock
- Tayside Tissue Bank, University of Dundee, Dundee, Scotland, United Kingdom
| | - Susan E. Bray
- Tayside Tissue Bank, University of Dundee, Dundee, Scotland, United Kingdom
| | - Kathleen McLean
- Tayside Tissue Bank, University of Dundee, Dundee, Scotland, United Kingdom
| | - Susanne Donandt
- Department of Dermatology, University of Dundee, Dundee, Scotland, United Kingdom
| | - John Foerster
- Division of Experimental Medicine, University of Dundee, Dundee, Scotland, United Kingdom
- Charité Medical University, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Gowda T, Vrudhula S, Kim S. Prediction of pairwise gene interaction using threshold logic. Ann N Y Acad Sci 2009; 1158:276-86. [PMID: 19348649 DOI: 10.1111/j.1749-6632.2008.03763.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The two important problems of computational biology are the modeling of gene regulatory networks and the study of the network structure of complex biological systems. There is an increased use of mathematical and computational theory techniques to solve both these problems. The Boolean circuit model is one of the most popular modeling paradigms used to model gene regulatory networks. In this paper we try to make use of the properties of threshold logic (an alternative to Boolean logic to design digital circuits) to determine the network structure of gene systems. This approach uses the gene-expression data from microarray experiments as input. The proposed method was first used to build the gene network for a set of genes, proteins, and other molecular components based on in silico data. Then, the method was applied to a biological dataset to build the gene regulatory network for a core set of genes associated with melanoma. Some of the interactions found could be verified by earlier biological experiments reported in published literature. Other interactions that could not be validated by existing biological knowledge can provide insights into the investigation of bio-chemical pathways associated with melanoma development.
Collapse
Affiliation(s)
- Tejaswi Gowda
- School of Computing and Informatics, Arizona State University, Tempe, Arizona, USA.
| | | | | |
Collapse
|
31
|
Islet specific Wnt activation in human type II diabetes. EXPERIMENTAL DIABETES RESEARCH 2009; 2008:728763. [PMID: 19165345 PMCID: PMC2628766 DOI: 10.1155/2008/728763] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 10/07/2008] [Indexed: 11/17/2022]
Abstract
The Wnt pathway effector gene TCF7L2 has been linked to type II diabetes, making it important to study the role of Wnt signaling in diabetes pathogenesis. We examined the expression of multiple Wnt pathway components in pancreases from normal individuals and type II diabetic individuals. Multiple members of the Wnt signaling pathway, including TCF7L2, Wnt2b, beta-catenin, pGSK3beta, TCF3, cyclinD1, and c-myc, were undetectable or expressed at low levels in islets from nondiabetic individuals, but were also upregulated specifically in islets of type II diabetic patients. Culture of pancreatic tissue and islet isolation led to Wnt activation that was reversed by the Wnt antagonist sFRP, demonstrating that Wnt activation in that setting was due to soluble Wnt factors. These data support a model in which the Wnt pathway plays a dynamic role in the pathogenesis of type II diabetes and suggest manipulation of Wnt signaling as a new approach to beta-cell-directed diabetes therapy.
Collapse
|
32
|
Sen M, Ghosh G. Transcriptional outcome of Wnt-Frizzled signal transduction in inflammation: evolving concepts. THE JOURNAL OF IMMUNOLOGY 2008; 181:4441-5. [PMID: 18802045 DOI: 10.4049/jimmunol.181.7.4441] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt-Frizzled signaling was first identified as a key event in Drosophila development. Over the years, ample evidence has accumulated regarding the multiple roles of Wnt-Frizzled signaling in mammalian cell differentiation and tissue/organ morphogenesis. It is thus not surprising that variations in the regulatory network of the Wnt signaling scheme would lead to alterations in cellular organization and cell activation and to the development of pathogenic conditions. Several reports have accordingly implied the involvement of Wnt-Frizzled signaling in the activation of proinflammatory mediators in inflammatory disorders. We will discuss how Wnt-Frizzled signaling may initiate/augment inflammation, focusing on its transcriptional outcome.
Collapse
Affiliation(s)
- Malini Sen
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India.
| | | |
Collapse
|
33
|
Kyttälä S, Habermann I, Minami T, Ehninger G, Kiani A. Regulation of Down Syndrome Critical Region 1 expression by Nuclear Factor of Activated T cells in megakaryocytes. Br J Haematol 2008; 144:395-408. [PMID: 19036088 DOI: 10.1111/j.1365-2141.2008.07490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As precursors of platelets, megakaryocytes must fulfil the complex tasks of protein synthesis and platelet assembly. Megakaryocytic dysfunction can lead to neoplastic disorders, such as acute megakaryoblastic leukaemia, an entity with a 500-fold increased incidence in children with Down syndrome (DS). Down Syndrome Critical Region 1 (DSCR1), a member of the calcipressin family of calcineurin inhibitors, is overexpressed in DS, and destabilization of the calcineurin/Nuclear Factor of Activated T cells (NFAT) pathway by overexpression of DSCR1 has been implicated in some of the pathophysiological features of the disease. The roles of NFAT and DSCR1 in megakaryocyte signalling and gene expression, however, are unknown. In this study, we show that calcineurin and NFAT are components of a calcium-induced signalling cascade in megakaryocytes. NFAT activation in megakaryocytes was induced by fibrillar collagen type I and was completely sensitive to the calcineurin inhibitor cyclosporin A. We established DSCR1 as a calcium-induced NFAT target gene in these cells and show that overexpression of DSCR1 in megakaryocytes strongly inhibits NFAT activation as well as NFAT-dependent expression of the Fas ligand gene (FASLG). These results suggest that DSCR1 acts as an endogenous feedback inhibitor of NFAT signalling in megakaryocytes, and may have implications for megakaryocytic gene expression in DS.
Collapse
Affiliation(s)
- Satu Kyttälä
- Department of Medicine I, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
34
|
Harwood BN, Cross SK, Radford EE, Haac BE, De Vries WN. Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos. Dev Dyn 2008; 237:1099-111. [PMID: 18351675 DOI: 10.1002/dvdy.21491] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammalian oocyte-to-embryo transition, characterized by a period of transcriptional silence, is dependent on maternal RNAs and proteins produced during the growth phase of the oocyte. Signaling pathways control timely transcription and translation of RNA, as well as post-translational modification of proteins. The WNT/beta-catenin pathway is clearly not active during preimplantation embryo development. However, alternative Wnt signaling pathways may play a role during early embryo development. This study describes the extensive expression, at the transcript and protein level, of receptors, ligands, and intracellular molecules known to play a role in WNT signaling, as well as those known to negatively regulate the canonical WNT/beta-catenin pathway in developing oocytes and preimplantation embryos. This expression of a wide array of molecules involved in WNT signaling suggests that the alternative WNT pathways may be active during oogenesis and the oocyte-to-embryo transition.
Collapse
|
35
|
Abstract
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.
Collapse
|
36
|
Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 2008; 38:439-46. [PMID: 16099039 DOI: 10.1016/j.ceca.2005.06.022] [Citation(s) in RCA: 555] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 12/12/2022]
Abstract
Wnt signaling is a complex pathway in which beta-catenin is typically viewed as a central mediator. However, within the past 15 years, at least three Wnt-mediated pathways have been proposed that function independent of beta-catenin. One pathway involves activation of calcium/calmodulin-dependent kinase II (CamKII) and protein kinase C (PKC). Another includes recruitment of heterotrimeric GTP-binding proteins to activate phospholipase C (PLC) and phosphodiesterase (PDE). Lastly, a pathway similar to the planar cell polarity (PCP) pathway in Drosophila has been identified that activates the Jun-N-terminal kinase (JNK) and, perhaps, small GTP-binding proteins. Calcium has been implicated as an important second messenger in all of these pathways. This review will focus on the role of calcium in Wnt signaling and, as a consequence, provide a limited overview of beta-catenin-independent Wnt signaling.
Collapse
Affiliation(s)
- Aimee D Kohn
- Howard Hughes Medical Institute, Division of Hematology, Department of Pharmacology, and the Center for Developmental Biology, University of Washington School of Medicine, Box 357750, Seattle, WA 98195, USA
| | | |
Collapse
|
37
|
Cheng CW, Yeh JC, Fan TP, Smith SK, Charnock-Jones DS. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochem Biophys Res Commun 2007; 365:285-90. [PMID: 17986384 DOI: 10.1016/j.bbrc.2007.10.166] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/27/2007] [Indexed: 11/30/2022]
Abstract
Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.
Collapse
Affiliation(s)
- Ching-wen Cheng
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | | | |
Collapse
|
38
|
van der Velden JLJ, Schols AMWJ, Willems J, Kelders MCJM, Langen RCJ. Glycogen synthase kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3. J Biol Chem 2007; 283:358-366. [PMID: 17977834 DOI: 10.1074/jbc.m707812200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle atrophy is a prominent and disabling feature in many chronic diseases. Prevention or reversal of muscle atrophy by stimulation of skeletal muscle growth could be an important therapeutic strategy. Glycogen synthase kinase 3beta (GSK-3beta) has been implicated in the negative regulation of skeletal muscle growth. Since myogenic differentiation is an essential part of muscle growth, we investigated if inhibition of GSK-3beta is sufficient to stimulate myogenic differentiation and whether this depended on regulation of the transcription factor nuclear factor of activated T-cells (NFAT). In both myogenically converted mouse embryonic fibroblasts and C2C12 myoblasts, deficiency of GSK-3beta protein (activity) resulted in enhanced myotube formation and muscle-specific gene expression during differentiation, which was reversed by reintroduction of wild type but not kinase-inactive (K85R) GSK-3beta. In addition, GSK-3beta inhibition restored myogenic differentiation following calcineurin blockade, which suggested the involvement of NFAT. GSK-3beta-deficient mouse embryonic fibroblasts or myoblasts displayed enhanced nuclear translocation of NFATc3 and elevated NFAT-sensitive promoter transactivation, which was reduced by reintroducing wild type, but not K85R GSK-3beta. Overexpression of NFATc3 increased muscle gene promoter transactivation, which was abolished by co-expression of wild type GSK-3beta. Finally, stimulation of muscle gene expression observed following GSK-3beta inhibition was strongly attenuated in NFATc3-deficient myoblasts, indicating that this response requires NFATc3. Collectively, our data demonstrate negative regulation of myogenic differentiation by GSK-3beta through a transcriptional mechanism that depends on NFATc3. Inhibition of GSK-3beta may be a potential strategy in prevention or treatment of muscle atrophy.
Collapse
Affiliation(s)
- Jos L J van der Velden
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Jodil Willems
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
39
|
Wu B, Crampton SP, Hughes CCW. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 2007; 26:227-39. [PMID: 17306568 PMCID: PMC1855210 DOI: 10.1016/j.immuni.2006.12.007] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 11/30/2006] [Accepted: 12/28/2006] [Indexed: 12/24/2022]
Abstract
Wnts are a family of secreted glycoproteins with diverse developmental roles, including regulation of cell migration; however, little is known about wnt signaling in mature T cells. We find that endothelial-cell-derived wnts, acting through Frizzled receptors, induce matrix metalloproteinase (MMP) 2 and MMP9 expression in effector T cells. Blocking wnt signaling, or MMP activity, reduces T cell migration through the basement membrane in vitro and into inflamed skin in vivo. Wnt signaling stabilizes beta-catenin protein in T cells and directly targets the MMP promoters through tandem TCF sites. Thus, our data support a necessary and previously unexpected role for wnt signaling in T cell extravasation.
Collapse
Affiliation(s)
- Beibei Wu
- Center for Immunology, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
40
|
Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD, Shah KV, Hewitt KJ, Rosenthal DT, Indig FE, Jiang Y, Nickoloff BJ, Taub DD, Trent JM, Moon RT, Bittner M, Weeraratna AT. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 2007; 282:17259-71. [PMID: 17426020 PMCID: PMC2263117 DOI: 10.1074/jbc.m700075200] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown that Wnt5A increases the motility of melanoma cells. To explore cellular pathways involving Wnt5A, we compared gain-of-function (WNT5A stable transfectants) versus loss-of-function (siRNA knockdown) of WNT5A by microarray analysis. Increasing WNT5A suppressed the expression of several genes, which were re-expressed after small interference RNA-mediated knockdown of WNT5A. Genes affected by WNT5A include KISS-1, a metastasis suppressor, and CD44, involved in tumor cell homing during metastasis. This could be validated at the protein level using both small interference RNA and recombinant Wnt5A (rWnt5A). Among the genes up-regulated by WNT5A was the gene vimentin, associated with an epithelial to mesenchymal transition (EMT), which involves decreases in E-cadherin, due to up-regulation of the transcriptional repressor, Snail. rWnt5A treatment increases Snail and vimentin expression, and decreases E-cadherin, even in the presence of dominant-negativeTCF4, suggesting that this activation is independent of Wnt/beta-catenin signaling. Because Wnt5A can signal via protein kinase C (PKC), the role of PKC in Wnt5A-mediated motility and EMT was also assessed using PKC inhibition and activation studies. Treating cells expressing low levels of Wnt5A with phorbol ester increased Snail expression inhibiting PKC in cells expressing high levels of Wnt5A decreased Snail. Furthermore, inhibition of PKC before Wnt5A treatment blocked Snail expression, implying that Wnt5A can potentiate melanoma metastasis via the induction of EMT in a PKC-dependent manner.
Collapse
Affiliation(s)
- Samudra K. Dissanayake
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Michael Wade
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | | | - Michael P. O’Connell
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Poloko D. Leotlela
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Amanda D. French
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Kavita V. Shah
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195
| | - Kyle J. Hewitt
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Devin T. Rosenthal
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Fred E. Indig
- Research Resources Branch, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Yuan Jiang
- Cancer Genetics Branch, NHGRI, NIH, Bethesda, Maryland 20892
| | - Brian J. Nickoloff
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153
| | - Dennis D. Taub
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
| | - Jeffrey M. Trent
- The Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Randall T. Moon
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195
| | - Michael Bittner
- The Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Ashani T. Weeraratna
- Laboratory of Immunology, Gerontology Research Center, NIA, National Institutes of Health (NIH), Baltimore, Maryland 21224
- To whom correspondence should be addressed: Laboratory of Immunology, NIA, NIH, 5600 Nathan Shock Dr., Baltimore, MD 21224. Tel.: 410-558-8506; Fax: 410-558-8284; E-mail:
| |
Collapse
|
41
|
Abstract
Cardiac transplantation is the most effective treatment for advanced heart failure. Despite improvements in immunosuppression therapy that prevent acute rejection, cardiac allografts fail at rates of 3% to 5% per posttransplant year. The hallmark morphological lesion of chronically failing cardiac allografts, also seen in chronic renal and liver graft failure, is luminal stenosis of blood vessels, especially of conduit arteries. Late graft failure results from widespread secondary ischemic injury to the graft parenchyma rather than direct immune-mediated damage. Although this process affects the entire graft vasculature, graft arteriosclerosis is a suitable term to describe the problem because it applies to different types of failing organs and because it emphasizes the central feature, namely an accelerated form of arterial injury and remodeling. The precise pathogenesis of graft arteriosclerosis is unknown. In this review, we make the case that the signature T-helper type 1 cytokine, interferon (IFN)-γ, is a key effector in graft arteriosclerosis, which, together with the IFN-γ–inducing cytokine interleukin-12 and IFN-γ–inducible chemokines such as CXCR3 ligands, constitute a positive feedback loop for T-cell activation, differentiation, and recruitment that we refer to as the IFN-γ axis. We evaluate the evidence to support this hypothesis in clinical observational and experimental animal studies. Additionally, we examine the regulation of IFN-γ production within the artery wall, the effects of IFN-γ on vessel wall cells, and the outcome of therapeutic agents on IFN-γ production and signaling. These observations lead us to suggest that new therapies for graft arteriosclerosis should be optimized which focus on reducing IFN-γ synthesis or actions.
Collapse
Affiliation(s)
- George Tellides
- Interdepartmental Program in Vascular Biology and Transplantation, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
42
|
Sonderegger S, Husslein H, Leisser C, Knöfler M. Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 2007; 28 Suppl A:S97-102. [PMID: 17198728 PMCID: PMC2963058 DOI: 10.1016/j.placenta.2006.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 01/08/2023]
Abstract
Canonical Wingless (Wnt) signalling provoked by exogenous and endogenous Wnt ligands was recently shown to play a crucial role in the invasive differentiation of human trophoblasts. To gain insights into the expression pattern of the developmental regulators, we analysed all human Wnt ligands and their frizzled (FZD) receptors in the human placenta and different trophoblast model systems using semi-quantitative PCR. Fourteen out of 19 Wnt ligands and 8 out of 10 FZD receptors were detectable in placental tissues, however, expression patterns varied with gestational age and between different trophoblast subtypes suggesting cell-specific functions. Besides Wnt ligands acting through the canonical pathway, non-canonical ligands such as Wnt-5a, which may also activate alternative Wnt signalling pathways or inhibit canonical Wnt signalling, could be identified. Western blot analyses revealed secretion of Wnt-5a from primary trophoblast cultures and trophoblastic cell lines. To evaluate the potential role of Wnt-5a, SGHPL-5 trophoblast cells were transfected with luciferase reporter plasmids harbouring eight T-cell factor (TCF) DNA-recognition sequences which are exclusively activated through the canonical Wnt signalling pathway. Luciferase assays revealed that Wnt-3a-induced reporter activity was repressed by recombinant Wnt-5a indicating an antagonistic role in trophoblasts. The data suggest that a complex network of Wnt ligands and FZD receptors may regulate developmental processes of the human placenta.
Collapse
Affiliation(s)
| | | | | | - M. Knöfler
- Corresponding author. Tel.: +43 1 40400 2842; fax: +43 1 40400 7842.
| |
Collapse
|
43
|
Shi CS, Huang NN, Harrison K, Han SB, Kehrl JH. The mitogen-activated protein kinase kinase kinase kinase GCKR positively regulates canonical and noncanonical Wnt signaling in B lymphocytes. Mol Cell Biol 2006; 26:6511-21. [PMID: 16914735 PMCID: PMC1592820 DOI: 10.1128/mcb.00209-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt ligands bind receptors of the Frizzled (Fz) family to control cell fate, proliferation, and polarity. Canonical Wnt/Fz signaling stabilizes beta-catenin by inactivating GSK3beta, leading to the translocation of beta-catenin to the nucleus and the activation of Wnt target genes. Noncanonical Wnt/Fz signaling activates RhoA and Rac, and the latter triggers the activation of c-Jun N-terminal kinase (JNK). Here, we show that exposure of B-lymphocytes to Wnt3a-conditioned media activates JNK and raises cytosolic beta-catenin levels. Both the Rac guanine nucleotide exchange factor Asef and the mitogen-activated protein kinase kinase kinase kinase germinal center kinase-related enzyme (GCKR) are required for Wnt-mediated JNK activation in B cells. In addition, we show that GCKR positively affects the beta-catenin pathway in B cells. Reduction of GCKR expression inhibits Wnt3a-induced phosphorylation of GSK3beta at serine 9 and decreases the accumulation of cytosolic beta-catenin. Furthermore, Wnt signaling induces an interaction between GCKR and GSK3beta. Our findings demonstrate that GCKR facilitates both canonical and noncanonical Wnt signaling in B lymphocytes.
Collapse
Affiliation(s)
- Chong-Shan Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
44
|
Dejmek J, Säfholm A, Kamp Nielsen C, Andersson T, Leandersson K. Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 2006; 26:6024-36. [PMID: 16880514 PMCID: PMC1592795 DOI: 10.1128/mcb.02354-05] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/05/2006] [Accepted: 05/17/2006] [Indexed: 02/06/2023] Open
Abstract
Wnt-5a has been shown to influence the metastatic behavior of human breast cancer cells, and the loss of Wnt-5a expression is associated with metastatic disease. We show here that NFAT1, a transcription factor connected with breast cancer metastasis, is activated by Wnt-5a through a Ca2+ signaling pathway in human breast epithelial cells. This activation was simultaneously counteracted by a Wnt-5a-induced Yes/Cdc42 signaling pathway. The observation that inhibition of the Wnt-5a/Yes/Cdc42 signal prolonged the duration of ionomycin-induced NFAT1 activation revealed the general importance of this pathway. The Wnt-5a-induced inhibition of NFAT1 did not require glycogen synthase kinase 3beta, JNK, or Pak1 activity or modulation of the cytoskeleton. Instead, we observed that Wnt-5a induced a complex formation of NFAT1/casein kinase 1alpha, even upon treatment with ionomycin, which was blocked upon inhibition of the Wnt-5a/Yes/Cdc42 signaling pathway. Our results explain why Wnt-5a/Ca2+-induced NFAT activity is hard to detect and suggest a novel mechanism by which Wnt-5a can suppress tumor-specific, agonist-induced NFAT activity and thus the metastatic behavior of breast cancer cells.
Collapse
Affiliation(s)
- Janna Dejmek
- Experimental Pathology, Department of Laboratory Medicine, Lund University, U-MAS, Entrance 78, SE-205 02 Malmö, Sweden
| | | | | | | | | |
Collapse
|
45
|
Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 2006; 108:965-73. [PMID: 16601243 DOI: 10.1182/blood-2005-12-5046] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractMicroarray - assisted gene - expression screens of human macrophages revealed WNT5A, a homolog of Wingless, a key regulator of Drosophila melanogaster embryonic segmentation and patterning, to be consistently up-regulated following stimulation with different mycobacterial species and conserved bacterial structures. The expression of WNT5A required Toll-like receptor signaling and NF-κB activation, which identifies a novel induction pathway for a Wingless homolog. We show that human peripheral-blood mononuclear cells express the WNT5A receptor Frizzled-5 (FZD5). Both WNT5A and FZD5 also were detected in granulomatous lesions in the lungs of Mycobacterium tuberculosis–infected patients. Functional studies showed that WNT5A and FZD5 regulate the microbially induced interleukin-12 response of antigen-presenting cells and interferon-γ production by mycobacterial antigenstimulated T cells. Our findings implicate the evolutionarily conserved WNT/Frizzled signaling system in bridging innate and adaptive immunity to infections.
Collapse
Affiliation(s)
- Antje Blumenthal
- Division of Molecular Infection Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 2006; 4:e115. [PMID: 16602827 PMCID: PMC1420652 DOI: 10.1371/journal.pbio.0040115] [Citation(s) in RCA: 993] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/10/2006] [Indexed: 01/04/2023] Open
Abstract
The Wnts comprise a large class of secreted proteins that control essential developmental processes such as embryonic patterning, cell growth, migration, and differentiation. In the most well-understood “canonical” Wnt signaling pathway, Wnt binding to Frizzled receptors induces β-catenin protein stabilization and entry into the nucleus, where it complexes with T-cell factor/lymphoid enhancer factor transcription factors to affect the transcription of target genes. In addition to the canonical pathway, evidence for several other Wnt signaling pathways has accumulated, in particular for Wnt5a, which has therefore been classified as a noncanonical Wnt family member. To study the alternative mechanisms by which Wnt proteins signal, we purified the Wnt5a protein to homogeneity. We find that purified Wnt5a inhibits Wnt3a protein–induced canonical Wnt signaling in a dose-dependent manner, not by influencing β-catenin levels but by downregulating β-catenin–induced reporter gene expression. The Wnt5a signal is mediated by the orphan tyrosine kinase Ror2, is pertussis toxin insensitive, and does not influence cellular calcium levels. We show that in addition to its inhibitory function, Wnt5a can also activate β-catenin signaling in the presence of the appropriate Frizzled receptor, Frizzled 4. Thus, this study shows for the first time that a single Wnt ligand can initiate discrete signaling pathways through the activation of two distinct receptors. Based on these and additional observations, we propose a model wherein receptor context dictates Wnt signaling output. In this model, signaling by different Wnt family members is not intrinsically regulated by the Wnt proteins themselves but by receptor availability. Understanding signaling by Wnt proteins has been hampered by a history of conflicting data. The authors reconcile previous findings concerning Wnt signaling by using purified Wnt5a to probe the signaling pathways it activates.
Collapse
Affiliation(s)
- Amanda J Mikels
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- 2Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roel Nusse
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- 2Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
47
|
Muckenfuss H, Hamdorf M, Avots A, Sanzenbacher R, Tschulena U, Cichutek K, Flory E. IL-2 induction by simian immunodeficiency virus involves MAP kinase signaling but is independent of calcineurin/NF-AT activity. Mol Immunol 2006; 43:1172-82. [PMID: 16125242 DOI: 10.1016/j.molimm.2005.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Indexed: 11/16/2022]
Abstract
The major T cell growth factor interleukin-2 (IL-2) is secreted by activated T cells in response to antigenic stimulation. This requires signal transduction via the CD3/TCR complex and the CD28 coreceptor, leading to activation of mitogen-activated protein kinase (MAPK) and calcineurin/NF-AT signaling pathways. We observed that simian immunodeficiency virus derived from African green monkeys (SIVagm3) is a potent activator of IL-2 gene expression. IL-2 promoter studies in A3.01 T cells demonstrated that SIVagm3 induced an up to 38-fold increased transcriptional activation of the IL-2 promoter. Inhibition of MAPK signaling pathways using inhibitors of MEK, JNK or p38 abolished SIVagm3-induced IL-2 activation in a dose-dependent manner. In contrast, the immunosuppressive drug cyclosporin A (CyA), a classical IL-2 inhibitor that blocks calcineurin activity, had no effect. Consistent with this finding, the nuclear factor of activated T cells (NF-AT), which is activated by calcineurin, was not induced by SIVagm3. Analyzing further transcription factor binding sites located on the IL-2 promoter we found that SIVagm3 did mainly promote transcriptional activation of the CD28/AP-1 and NF-kappaB responsive elements. These DNA elements were also induced by the viral transactivator protein (Tat) and expression of Tat was sufficient to activate IL-2 induction in stimulated cells. Our results show that SIVagm3 is capable of stimulating IL-2 gene expression via molecular mechanisms different from those induced during classical T cell activation.
Collapse
Affiliation(s)
- Heide Muckenfuss
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Reinhold MI, Kapadia RM, Liao Z, Naski MC. The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem 2005; 281:1381-8. [PMID: 16293629 DOI: 10.1074/jbc.m504875200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wnt signaling is essential for many developmental processes, including skeletogenesis. To investigate the effects of Wnt signaling during skeletogenesis we studied the effects of Wnt on cultured chondrocytic cells and differentiating limb-bud mesenchyme. We showed that Wnt3a strongly repressed chondrogenesis and chondrocyte gene expression. Canonical Wnt signaling was responsible for the repression of differentiation, as evidenced by results showing that inhibition of glycogen synthase kinase 3 or expression of beta-catenin caused similar repression of differentiation. Significantly, we showed that the transcription repressor Twist1 is induced by canonical Wnt signaling. Expression of Twist1 strongly inhibited chondrocyte gene expression and short hairpin RNA knockdown of Twist1 transcript levels caused increased expression of the chondrocyte-specific genes aggrecan and type II collagen. Interestingly, Twist1 interfered with BMP2-induced expression of aggrecan and type II collagen expression and knockdown of Twist1 augmented BMP2-induced aggrecan and type II collagen expression. These data support the conclusions that Twist1 contributes to the repression of chondrogenesis and chondrocyte gene expression resulting from canonical Wnt signaling and that Twist1 interferes with BMP-dependent signaling.
Collapse
Affiliation(s)
- Martina I Reinhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
49
|
Choi J, Walker J, Talbert-Slagle K, Wright P, Pober JS, Alexander L. Endothelial cells promote human immunodeficiency virus replication in nondividing memory T cells via Nef-, Vpr-, and T-cell receptor-dependent activation of NFAT. J Virol 2005; 79:11194-204. [PMID: 16103171 PMCID: PMC1193601 DOI: 10.1128/jvi.79.17.11194-11204.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endothelial cells (ECs) enhance human immunodeficiency virus (HIV) replication within CD4(+) memory T cells by 50,000-fold in a Nef-dependent manner. Here, we report that EC-mediated HIV type 1 replication is also dependent on an intact vpr gene. Moreover, we demonstrate that despite a requirement for engaging major histocompatibility complex (MHC) class II molecules and costimulators, EC-stimulated virus-producing cells (p24(high) T cells) do not proliferate, nor are they arrested in the cell cycle. Rather, they are minimally activated, sometimes expressing CD69 but not CD25, HLA-DR, VLA-1, or effector cytokines. Blocking antibodies to interleukin 2 (IL-2), IL-6, IL-7, or tumor necrosis factor do not inhibit viral replication. Cyclosporine effectively inhibits viral replication, as does disruption of the NFAT binding site in the viral long terminal repeat. Furthermore, in the presence of ECs, suboptimal T-cell receptor (TCR) stimulation with phytohemagglutinin L supports efficient viral replication, and suboptimal stimulation with toxic shock syndrome toxin 1 leads to viral replication selectively in the TCR-stimulated, Vbeta2-expressing T cells. Collectively, these data indicate that ECs provide signals that promote Nef- and Vpr-dependent HIV replication in memory T cells that have been minimally activated through their TCRs. Our studies suggest a mechanism for HIV replication in vivo within the reservoir of circulating memory CD4(+) T cells that persist despite antiretroviral therapy and further suggest that maintenance of immunological memory by MHC class II-expressing ECs via TCR signaling may contribute to HIV rebound following cessation of antiretroviral therapy.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Section of Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
50
|
Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ. Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci U S A 2005; 102:2643-8. [PMID: 15695591 PMCID: PMC548977 DOI: 10.1073/pnas.0406874102] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systemic acidosis has detrimental effects on the skeleton, and local acidosis coincides with bone destruction in inflammatory and metastatic diseases. Acidification dramatically enhances osteoclastic resorption, although the underlying mechanism has remained elusive. We investigated the effect of acidosis on the osteoclastogenic transcription factor NFATc1, which upon dephosphorylation translocates from the cytoplasm to nuclei. Lowering extracellular pH dramatically increased accumulation of NFATc1 in nuclei of rat and rabbit osteoclasts to levels comparable with those induced by the proresorptive cytokine receptor activator of NF-kappaB ligand (RANKL). Activation of NFATc1 by RANKL was mediated by means of prolonged stimulation of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin. In contrast, NFATc1 activation by acidosis involved stimulation of calcineurin and suppression of NFATc1 inactivation. Acidosis, like RANKL, induced transient elevation of cytosolic free Ca2+ concentration ([Ca2+]i), which persisted in Ca2+-free media and was abolished by inhibition of phospholipase C or depletion of intracellular Ca2+ stores. Real-time-PCR of osteoclast-like cells generated from RAW 264.7 cells revealed high levels of expression of ovarian cancer G protein-coupled receptor 1, which links extracellular acidification to elevation of [Ca2+]i. In addition, the calcineurin inhibitor cyclosporin A suppressed the stimulatory effect of acidification on resorption, implicating NFAT in mediating the actions of acidosis on osteoclast activity. In summary, acidification and RANKL induce signals in osteoclasts that converge on the Ca2+/calcineurin/NFAT pathway. Acidosis acts directly on osteoclasts to activate NFATc1 and stimulate resorption.
Collapse
Affiliation(s)
- Svetlana V Komarova
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Faculty of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | |
Collapse
|