1
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2025; 292:1868-1883. [PMID: 39428707 PMCID: PMC12001177 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C. Sinton
- Division of Immunology, Immunity to Infection and Respiratory MedicineUniversity of ManchesterUK
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterUK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
2
|
Chiba N, Ohnishi T, Matsuguchi T. Hypoxia-Inducible Factor 1 Alpha Potentiates Lipopolysaccharide-Induced Expression of IL-13 and IL-33 in Mast Cells Under Hypoxia. Microbiol Immunol 2025; 69:247-255. [PMID: 39945318 DOI: 10.1111/1348-0421.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 04/08/2025]
Abstract
Lipopolysaccharide (LPS) is an exacerbating factor for allergic airway inflammation at least partly due to the activation of mast cells (MCs). LPS stimulates MCs to express both pro-inflammatory and type 2 cytokines, among which interleukin (IL)-13 is essential for the generation of allergic diseases. LPS also induces the expression of "alarmins" such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) from various cell types including epithelial cells, and increased serum IL-33 levels were reported to correlate with disease severity of asthma. MCs reside in peripheral tissues where the oxygen concentration is significantly lower than that in the air and further decreased by inflammation and bronchoconstriction in asthma. However, the effects of hypoxia on LPS-induced cytokine expression in MCs have not been fully elucidated. Here we show that LPS induces Il4, Il6, Il13, Il33, Tnf, and Tslp mRNAs in MCs. Notably, hypoxia robustly enhanced expressions of Il13 and Il33, but not the other cytokines in LPS-stimulated MCs. We also found that this promotive effect is dependent on the presence of hypoxia-inducible factor (HIF) 1α protein. Our study will provide new insight on the role of MCs in the LPS-associated pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
3
|
Cho DE, Hong JP, Kim Y, Sim JY, Kim HS, Kim SR, Lee B, Cho HS, Cho IH, Shin S, Yeom M, Kwon SK, Lee IS, Park H, Kim K, Hahm DH. Role of gut-derived bacterial lipopolysaccharide and peripheral TLR4 in immobilization stress-induced itch aggravation in a mouse model of atopic dermatitis. Sci Rep 2024; 14:6263. [PMID: 38491103 PMCID: PMC10942979 DOI: 10.1038/s41598-024-56936-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Psychological stress and intestinal leakage are key factors in atopic dermatitis (AD) recurrence and exacerbation. Here, we demonstrate the mechanism underlying bacterial translocation across intestinal epithelial barrier damaged due to stress and further aggravation of trimellitic anhydride (TMA)-induced itch, which remain unclear, in AD mice. Immobilization (IMO) stress exacerbated scratching bouts and colon histological damage, and increased serum corticosterone and lipopolysaccharide (LPS). Orally administered fluorescein isothiocyanate (FITC)-dextran and surgically injected (into the colon) Cy5.5-conjugated LPS were detected in the serum and skin after IMO stress, respectively. The relative abundance of aerobic or facultative anaerobic bacteria was increased in the colon mucus layer, and Lactobacillus murinus, E. coli, Staphylococcus nepalensis, and several strains of Bacillus sp. were isolated from the spleens and mesenteric lymph nodes. Oral antibiotics or intestinal permeability blockers, such as lubiprostone (Lu), 2,4,6-triaminopyrimidine (TAP) and ML-7, inhibited IMO stress-associated itch; however, it was reinduced through intradermal or i.p. injection of LPS without IMO stress. I.p. injection of TAK-242 (resatorvid), a TLR4 inhibitor, abrogated IMO stress-associated itch, which was also confirmed in TLR4-KO mice. IMO stress alone did not cause itch in naïve mice. IMO stress-induced itch aggravation in TMA-treated AD mice might be attributed to the translocation of gut-derived bacterial cells and LPS, which activates peripheral TLR4 signaling.
Collapse
Affiliation(s)
- Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joon-Pyo Hong
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ju Yeon Sim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Heenam Stanley Kim
- Division of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Song-Rae Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo-Sung Cho
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sooan Shin
- ACCURIEBIO Co., IRIS Lab., 6th Floor, Sangwon 12-gil 34, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (Brain Korea 21 PLUS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - In-Seon Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hijoon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Erofeeva LM, Mnikhovich MV, Bezuglova TB. Morphofunctional Parameters of Mast Cell Population in Experimentally Induced Breast Cancer in Rats. Bull Exp Biol Med 2023; 175:513-518. [PMID: 37776399 DOI: 10.1007/s10517-023-05897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 10/02/2023]
Abstract
Structural and functional parameters of mast cells (MC) in rat mammary glands during experimentally provoked breast cancer were studied by the cytogram, index of cell saturation with secretory products, and degranulation index. The cytogram was calculated in histological sections stained with toluidine blue. The functional conditions of MC were determined by electron microscopy. The study revealed expansion of MC population and activation of their functional state evidenced by significant prevalence of cells with high degranulation degree and reduced saturation index. At the ultrastructural level, MC were characterized by deformation, polymorphism, paleness of secretory granules, and elevation of the number of lacunae in the cytoplasm. The study showed that MC are active players in tumor microenvironment. Remembering heteromorphism of MC, further study of their role in pathogenesis of various tumor diseases seems promising.
Collapse
Affiliation(s)
- L M Erofeeva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia.
| | - M V Mnikhovich
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - T B Bezuglova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
5
|
Ma X, Kuai L, Song J, Luo Y, Ru Y, Wang M, Gao C, Jiang W, Liu Y, Bai Y, Li B. Therapeutic effects and mechanisms of Ku-Gan formula on atopic dermatitis: A pilot clinical study and modular pharmacology analysis with animal validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116194. [PMID: 36716903 DOI: 10.1016/j.jep.2023.116194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a persistent, recurrent inflammatory skin disorder with a rapid upward trend worldwide. The first-line treatment for AD consists of topical medicines such as topical corticosteroids (TCSs). However, long-term use of conventional topical medicine results in side effects and recurrence, presenting therapeutic challenges for the management of AD. Ku-Gan formula (KG) has been extensively used to treat skin diseases since the Song dynasty. In particular, topical administration of the KG alleviates the cutaneous symptoms of AD and reduces recurrence rates with a good safety profile; however, the mechanisms of the KG's action remain unknown. AIM OF THE STUDY The current study aimed to evaluate the efficacy and safety of KG in AD patients and to investigate the molecular mechanisms that underlie the efficacy of KG in the treatment of AD. MATERIALS AND METHODS A single-arm prospective pilot study with historical controls was conducted. This study evaluated 11 patients with mild to moderate AD, who underwent topical KG treatment. The primary outcome was the change in local eczema area and severity index (EASI) scores. The secondary outcomes included the recurrence rate and safety. The recurrence rate were compared to those of a matched historical control group. Secondly, modular pharmacology analysis was used to elucidate the therapeutic mechanism of KG in AD treatment by identifying the hub genes and kernel pathways. Moreover, we evaluated treatment effects and verified modular pharmacology-based findings using the calcipotriol (MC903)-induced mouse model and bioinformatics analysis. RESULTS Our clinical pilot study demonstrated that the KG wet wrapping could effectively ameliorate skin lesions in AD patients with a significant drop from 4.18 to 1.63 in local EASI. Compared to the historical controls, KG had a reduced recurrence rate (36%) and a longer median time to relapse (>12 weeks). Modular pharmacology analysis identified the hub genes including IL6, IL1B, VEGFA, STAT3, JUN, TIMP1 and ARG1, and kernel pathway including IL-17 signaling pathway of KG. Pharmacodynamic results suggested that KG ameliorated skin symptoms and demonstrated no less efficacy than halcinonide (HC) in MC903-induced AD-like mice. In addition, KG regulated the mRNA expression of hub genes as well as the related genes involved in IL-17 signaling pathway including Il25, Il17a,Traf3ip2, and Traf6, in skin lesions of AD-like mice. CONCLUSION These results showed that KG is a safe and effective topical treatment for AD with low recurrence. In addition, our study identified potential molecular pathways and therapeutic candidate targets of the KG formula, providing evidence for its clinical applicability in AD.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yun Bai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
6
|
Kawakami Y, Kimura M, Widjaja C, Kasakura K, Ando T, Kawakami Y, Obar JJ, Kawakami T. Regulation of Syk activity by antiviral adaptor MAVS in FcεRI signaling pathway. FRONTIERS IN ALLERGY 2023; 4:1098474. [PMID: 37168500 PMCID: PMC10165108 DOI: 10.3389/falgy.2023.1098474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Background Mast cells are the major effector cell type for IgE-mediated allergic reactions. Recent studies revealed a role for mast cells in orchestrating the host response to viral infections. Objective We studied the relationship between FcεRI (high-affinity IgE receptor) and RIG-I-like receptor (RLR)-mediated antiviral signaling pathways. Methods Mast cells (BMMCs) were cultured from bone marrow cells from mice deficient in MAVS or other RLR signaling molecules. MAVS expression was restored by retroviral transduction of MAVS-deficient BMMCs. These cells were stimulated with IgE and antigen and their activation (degranulation and cytokine production/secretion) was quantified. FcεRI-mediated signaling events such as protein phosphorylation and Ca2+ flux were analyzed by western blotting and enzyme assays. WT and mutant mice as well as mast cell-deficient KitW-sh/W-sh mice engrafted with BMMCs were subjected to passive cutaneous anaphylaxis. Results Unexpectedly, we found that mast cells devoid of the adaptor molecule MAVS exhibit dramatically increased cytokine production upon FcεRI stimulation, despite near-normal degranulation. Consistent with these observations, MAVS inhibited tyrosine phosphorylation, thus catalytic activity of Syk kinase, the key signaling molecule for FcεRI-mediated mast cell activation. By contrast, mast cells deficient in RIG-I, MDA5 or IRF3, which are antiviral receptor and signaling molecules upstream or downstream of MAVS, exhibited reduced or normal mast cell activation. MAVS-deficient mice showed enhanced late-phase responses in passive cutaneous anaphylaxis. Conclusion This study demonstrates that the adaptor MAVS in the RLR innate immune pathway uniquely intersects with the adaptive immune FcεRI signaling pathway.
Collapse
Affiliation(s)
- Yuko Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Miho Kimura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Christella Widjaja
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Kazumi Kasakura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Tomoaki Ando
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Correspondence: Toshiaki Kawakami
| |
Collapse
|
7
|
Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Ibarra-Sánchez A, González-Espinosa C, Pérez-Tapia SM, Flores-Borja F, Estrada-Parra S, Chávez-Blanco AD, Chacón-Salinas R. Valproic acid restricts mast cell activation by Listeria monocytogenes. Sci Rep 2022; 12:15685. [PMID: 36127495 PMCID: PMC9489790 DOI: 10.1038/s41598-022-20054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando No. 22. Col. Sección XVI, C.P. 14080, México City, México.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
8
|
Zhang Z, Ernst PB, Kiyono H, Kurashima Y. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 2022; 13:937120. [PMID: 36189267 PMCID: PMC9518231 DOI: 10.3389/fimmu.2022.937120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells widely distributed in the body, accompanied by diverse phenotypes and functions. Committed mast cell precursors (MCPs) leave the bone marrow and enter the blood circulation, homing to peripheral sites under the control of various molecules from different microenvironments, where they eventually differentiate and mature. Partly attributable to the unique maturation mechanism, MCs display high functional heterogeneity and potentially plastic phenotypes. High plasticity also means that MCs can exhibit different subtypes to cope with different microenvironments, which we call “the peripheral immune education system”. Under the peripheral immune education system, MCs showed a new character from previous cognition in some cases, namely regulation of allergy and inflammation. In this review, we focus on the mucosal tissues, such as the gastrointestinal tract, to gain insights into the mechanism underlying the migration of MCs to the gut or other organs and their heterogeneity, which is driven by different microenvironments. In particular, the immunosuppressive properties of MCs let us consider that positively utilizing MCs may be a new way to overcome inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, San Diego, CA, United States
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Empowering Next Generation Allergist/immunologist toward Global Excellence Task Force toward 2030 (ENGAGE)-Task Force, Tokyo, Japan
| |
Collapse
|
9
|
Accarie A, Toth J, Wauters L, Farré R, Tack J, Vanuytsel T. Estrogens Play a Critical Role in Stress-Related Gastrointestinal Dysfunction in a Spontaneous Model of Disorders of Gut-Brain Interaction. Cells 2022; 11:cells11071214. [PMID: 35406778 PMCID: PMC8997409 DOI: 10.3390/cells11071214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Disorders of the gut-brain interaction (DGBI), such as irritable bowel syndrome and functional dyspepsia, are more prevalent in women than in men, with a ratio of 2:1. Furthermore, stressful life events have been reported as one of the triggers for symptoms in DGBI patients. METHODS Here, we studied the effect of an early-life stressor (maternal separation (MS)) on jejunal and colonic alterations, including colonic sensitivity and immune cells infiltration and activation in a validated spontaneous model of DGBI (BBDP-N), and investigated the involvement of β-estradiol on stress-worsened intestinal alterations. RESULTS We found that maternal separation exacerbated colonic sensitivity and mast cell and eosinophil infiltration and activation in females only. Ovariectomy partially rescued the stress phenotype by decreasing colonic sensitivity, which was restored by β-estradiol injections and did not impact immune cells infiltration and activation. Stressed males exposed to β-estradiol demonstrated similar intestinal alterations as MS females. CONCLUSION Estrogen plays a direct critical role in colonic hypersensitivity in a spontaneous animal model of DGBI, while for immune activation, estrogen seems to be involved in the first step of their recruitment and activation. Our data point towards a complex interaction between stress and β-estradiol in DGBI.
Collapse
Affiliation(s)
- Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Joran Toth
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
10
|
Kim HJ, Lee EH, Lim YH, Jeong D, Na HS, Jung Y. Pathophysiological Role of TLR4 in Chronic Relapsing Itch Induced by Subcutaneous Capsaicin Injection in Neonatal Rats. Immune Netw 2022; 22:e20. [PMID: 35573151 PMCID: PMC9066010 DOI: 10.4110/in.2022.22.e20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high prevalence of chronic dermatitis and the accompanied intractable itch, therapeutics that specifically target itching have low efficacy. Increasing evidence suggests that TLRs contribute to immune activation and neural sensitization; however, their roles in chronic itch remain elusive. Here, we show that the RBL-2H3 mast cell line expresses TLR4 and that treatment with a TLR4 antagonist opposes the LPS dependent increase in mRNA levels of Th2 and innate cytokines. The pathological role of TLR4 activation in itching was studied in neonate rats that developed chronic itch due to neuronal damage after receiving subcutaneous capsaicin injections. Treatment with a TLR4 antagonist protected these rats with chronic itch against scratching behavior and chronic dermatitis. TLR4 antagonist treatment also restored the density of cutaneous nerve fibers and inhibited the histopathological changes that are associated with mast cell activation after capsaicin injection. Additionally, the expression of IL-1β, IL-4, IL-5, IL-10, and IL-13 mRNA in the lesional skin decreased after TLR4 antagonist treatment. Based on these data, we propose that inhibiting TLR4 alleviated itch in a rat model of chronic relapsing itch, and the reduction in the itch was associated with TLR4 signaling in mast cells and nerve fibers.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
| | - Eun-Hui Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
| | - Yoon Hee Lim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
| | - Dongil Jeong
- Department of Dermatology, Gachon Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Heung Sik Na
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, Korea
| |
Collapse
|
11
|
Dolitzky A, Shapira G, Grisaru-Tal S, Hazut I, Avlas S, Gordon Y, Itan M, Shomron N, Munitz A. Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Front Immunol 2022; 12:802839. [PMID: 34970274 PMCID: PMC8712732 DOI: 10.3389/fimmu.2021.802839] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct “Type 1” and “Type 2” phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.
Collapse
Affiliation(s)
- Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmulik Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Micahl Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Soria-Castro R, Alfaro-Doblado ÁR, Rodríguez-López G, Campillo-Navarro M, Meneses-Preza YG, Galán-Salinas A, Alvarez-Jimenez V, Yam-Puc JC, Munguía-Fuentes R, Domínguez-Flores A, Estrada-Parra S, Pérez-Tapia SM, Chávez-Blanco AD, Chacón-Salinas R. TLR2 Regulates Mast Cell IL-6 and IL-13 Production During Listeria monocytogenes Infection. Front Immunol 2021; 12:650779. [PMID: 34194428 PMCID: PMC8238461 DOI: 10.3389/fimmu.2021.650779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1β, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Ángel R. Alfaro-Doblado
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Gloria Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Research Coordination, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Yatsiri G. Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Violeta Alvarez-Jimenez
- Unidad de Citometría de Flujo, Lab de Biología Molecular y Bioseguridad Nivel 3, Centro Médico Naval, Secretaría de Marina (SEMAR), Mexico City, Mexico
| | - Juan C. Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosario Munguía-Fuentes
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City, Mexico
| | - Adriana Domínguez-Flores
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Alma D. Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| |
Collapse
|
13
|
Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020; 9:E2411. [PMID: 33158024 PMCID: PMC7693401 DOI: 10.3390/cells9112411] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Gonzalez-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Mexico City 14330, Mexico; (Z.P.E.-R.); (D.S.-V.); (I.G.R.-M.); (M.J.P.R.); (M.L.)
| |
Collapse
|
14
|
Santana FPR, da Silva RC, Ponci V, Pinheiro AJMCR, Olivo CR, Caperuto LC, Arantes-Costa FM, Claudio SR, Ribeiro DA, Tibério IFLC, Lima-Neto LG, Lago JHG, Prado CM. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochem Pharmacol 2020; 180:114175. [PMID: 32717226 DOI: 10.1016/j.bcp.2020.114175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Eugenol, a common phenylpropanoid derivative found in different plant species, has well-described anti-inflammatory effects associated with the development of occupational hypersensitive asthma. Dehydrodieugenol, a dimeric eugenol derivative, exhibits anti-inflammatory and antioxidant activities and can be found in the Brazilian plant species Nectandra leucantha (Lauraceae). The biological effects of dehydrodieugenol on lung inflammation remain unclear. PURPOSE This study aimed to investigate the effects of eugenol and dehydrodieugenol isolated from N. leucantha in an experimental model of asthma. METHODS In the present work, the toxic effects of eugenol and dehydrodieugenol on RAW 264.7 cells and their oxidant and inflammatory effects before lipopolysaccharide (LPS) exposure were tested. Then, male BALB/c mice were sensitized with ovalbumin through a 29-day protocol and treated with vehicle, eugenol, dehydrodieugenol or dexamethasone for eight days beginning on the 22nd day until the end of the protocol. Lung function; the inflammatory profile; and the protein expression of ERK1/2, JNK, p38, VAChT, STAT3, and SOCS3 in the lung were evaluated by immunoblotting. RESULTS Eugenol and dehydrodieugenol were nontoxic to cells. Both compounds inhibited NO release and the gene expression of IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. In OVA-sensitized animals, dehydrodieugenol reduced lung inflammatory cell numbers and the lung concentrations of IL-4, IL-13, IL-17, and IL-10. These anti-inflammatory effects were associated with inhibition of the JNK, p38 and ERK1/2, VAChT and STAT3/SOCS3 pathways. Moreover, treatment with dehydrodieugenol effectively attenuated airway hyperresponsiveness. CONCLUSION The obtained data demonstrate, for the first time, that dehydrodieugenol was more effective than eugenol in counteracting allergic airway inflammation in mice, especially its inhibition of the JNK, p38 and ERK1/2, components of MAPK pathway. Therefore, dehydrodieugenol can be considered a prototype for the development of new and effective agents for the treatment of asthmatic patients.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil; Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | | | - Samuel R Claudio
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | - Daniel A Ribeiro
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | | | - Lídio G Lima-Neto
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil
| | - Carla M Prado
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil.
| |
Collapse
|
15
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
16
|
Sur B, Kang S, Kim M, Oh S. Alleviation of Atopic Dermatitis Lesions by a Benzylideneacetophenone Derivative via the MAPK Signaling Pathway. Inflammation 2019; 42:1093-1102. [PMID: 30729380 DOI: 10.1007/s10753-019-00971-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This experiment was conducted to investigate the effects of a benzylideneacetophenone derivative ((2E)-3-(4-hydroxy-3-methoxyphenyl)phenylpro-2-en-l-one (JC3)) on trimellitic anhydride (TMA)-induced atopic dermatitis (AD)-like symptoms in mice. To induce AD, the dorsal skins of mice were treated with 5% TMA on day 0 and both ears were treated with 5% TMA on day 5 and with 2% TMA from day 6 to day 14. JC3 (1, 5, 10 mg/kg, i.p.) was treated once daily from day 9 to day 14 before TMA treatment. Histological analysis was performed and auricular lymph node weights, ear thicknesses, skin water contents, scratching behaviors, and serum immunoglobulin (IgE) and IFN-γ, and interleukin-4 (IL-4) levels in serum and ear tissues were determined. In addition, the anti-AD activity of JC3 was investigated on phorbol 12-myristate 13-acetate (PMA)-stimulated human mast cells (HMC-1 cells) derived from patients. Levels of TNF-α, IL-4, and mitogen-activated protein kinase (MAPK) were investigated after treating cultured cells with JC3. Treating mice with JC3 (10 mg/kg) significantly decreased ear thicknesses, lymph node weights, skin scores, skin water contents, scratching behavior, and IFN-γ, IL-4 cytokine levels, and serum IgE levels. Moreover, treatment with JC3 (10 mg/kg) significantly decreased serum and ear tissues levels of IFN-γ and IL-4 in AD mice. Furthermore, treatment with JC3 at 10 μg/ml reduced TNF-α and IL-4 levels and decreased MAPK phosphorylation in the HMC-1 cells. The results of this study provide a molecular basis for developing new therapeutics for the treatment of various inflammatory diseases, such as, eczema, asthma, and AD.
Collapse
Affiliation(s)
- Bongjun Sur
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, 07084, South Korea
| | - Seungmin Kang
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, 07084, South Korea
| | - Mijin Kim
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, 07084, South Korea
| | - Seikwan Oh
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, 07084, South Korea.
| |
Collapse
|
17
|
Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019; 50:796-811. [PMID: 30995500 DOI: 10.1016/j.immuni.2019.03.022] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
The β common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the β common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, MA, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Park SH, An JE, Jang S, Kim JY, Lee JW, Kim HK. Gardenia jasminoides extract without crocin improved atopic dermatitis-like skin lesions via suppression of Th2-related cytokines in Dfe-induced NC/Nga mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112015. [PMID: 31173875 DOI: 10.1016/j.jep.2019.112015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a pruritic, chronic, relapsing inflammatory skin disease. Gardenia jasminoides extract (GJE) has been used as a traditional remedy for the treatment of various inflammatory diseases, including AD. The specific effects of the extract components, which include crocin, geniposidic acid, and gardenoside, on inflammatory responses in AD are not entirely clear. AIM OF THE STUDY We determined the effects of G. jasminoides extract with crocin removed (GJE-C) on AD-like skin lesions in Dermatophagoies farina crude extract (Dfe)-treated NC/Nga mice, a well-known AD mouse model. MATERIALS AND METHODS To prepare the mice, 150 μl of 4% sodium dodecyl sulfate (SDS) was applied to the shaved dorsal skin or ear of NC/Nga mice 1 h before application of 100 mg Dfe. After 7 d, GJE-C was applied every day for 14 d. We performed behavior, histological, ELISA, assays to evaluate chemokines, cytokines, and skin barrier proteins in skin or serum samples from treated and untreated NC/Nga mice. RESULTS Topical application of GJE-C improved the severity scores of the AD-like skin lesions, frequency of scratching, and ear swelling in Dfe-treated NC/Nga mice similar to the complete GJE. In addition, GJE-C also reduced serum IgE and chemokine levels as well as the inflammatory response. Topical application of GJE-C also resulted in decreased infiltration of inflammatory cells, such as mast cells, via reduction of Th2 inflammatory mediators, including interleukin (IL)-4, IL-5, and IL-13, pro-inflammatory cytokines, and chemokines, and increased skin barrier protein expression in Dfe-treated NC/Nga mice. The GJE components geniposidic acid and gardenoside inhibited the production of atopic-related chemokines in HaCaT cells, but inclusion of crocin dampened this inhibition of chemokine production. CONCLUSIONS Together, these findings indicate that GJE-C may improve AD-like lesions by inhibiting the Th2 inflammatory response and expression of chemokines while increasing the expression of skin barrier proteins. These data provide experimental evidence that GJE-C may harbor therapeutic potential for AD.
Collapse
Affiliation(s)
- Sun Haeng Park
- Herbal Medicine Research, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 305-811, Republic of Korea
| | - Jeong Eun An
- Herbal Medicine Research, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 305-811, Republic of Korea
| | - Seol Jang
- Herbal Medicine Research, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 305-811, Republic of Korea
| | - Jung Young Kim
- Hanpoong Pharm & Foods Co., Ltd., 11 DeokJin-gu, Jeonju, 561-841, Republic of Korea
| | - Jin Wook Lee
- Hanpoong Pharm & Foods Co., Ltd., 11 DeokJin-gu, Jeonju, 561-841, Republic of Korea
| | - Ho Kyoung Kim
- Herbal Medicine Research, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 305-811, Republic of Korea.
| |
Collapse
|
19
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
20
|
Hagemann PM, Nsiah-Dosu S, Hundt JE, Hartmann K, Orinska Z. Modulation of Mast Cell Reactivity by Lipids: The Neglected Side of Allergic Diseases. Front Immunol 2019; 10:1174. [PMID: 31191542 PMCID: PMC6549522 DOI: 10.3389/fimmu.2019.01174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) have long been mainly regarded as effector cells in IgE-associated allergic disorders with potential immunoregulatory roles. Located close to the allergen entry sites in the skin and mucosa, MCs can capture foreign substances such as allergens, toxins, or noxious substances and are exposed to the danger signals produced by epithelial cells. MC reactivity shaped by tissue-specific factors is crucial for allergic responses ranging from local skin reactions to anaphylactic shock. Development of Th2 response leading to allergen-specific IgE production is a prerequisite for MC sensitization and induction of FcεRI-mediated MC degranulation. Up to now, IgE production has been mainly associated with proteins, whereas lipids present in plant pollen grains, mite fecal particles, insect venoms, or food have been largely overlooked regarding their immunostimulatory and immunomodulatory properties. Recent studies, however, have now demonstrated that lipids affect the sensitization process by modulating innate immune responses of epithelial cells, dendritic cells, and NK-T cells and thus crucially contribute to the outcome of sensitization. Whether and how lipids affect also MC effector functions in allergic reactions has not yet been fully clarified. Here, we discuss how lipids can affect MC responses in the context of allergic inflammation. Direct effects of immunomodulatory lipids on MC degranulation, changes in local lipid composition induced by allergens themselves and changes in lipid transport affecting MC reactivity are possible mechanisms by which the function of MC might be modulated.
Collapse
Affiliation(s)
- Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | | | | | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland
| | - Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
21
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 499] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Lianto P, Ogutu FO, Zhang Y, He F, Che H. Inhibitory effects of quail egg on mast cells degranulation by suppressing PAR2-mediated MAPK and NF-kB activation. Food Nutr Res 2018; 62:1084. [PMID: 30083085 PMCID: PMC6060182 DOI: 10.29219/fnr.v62.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background Quail egg (QE) has been reported to possess an anti-allergic and anti-inflammatory activity. We have demonstrated that whole QE was able to attenuate the allergic symptoms in food allergy-induced EoE murine model, but whether QE albumen or QE yolk plays a more important role still remains unclear. Objective In this current study, we investigated the suppressive role of QE in mast cell degranulation and cytokine production of the effect phase response. Method A passive cutaneous anaphylaxis (PCA) mouse model was used to confirm the anti-allergic effect of QE. Besides, HMC-1 cell model was used to study its suppressive role in more detail. In this in vitro study, we divided QE into three groups: whole QE, QE albumen, and QE yolk. The effect of QE treatment on mast cell degranulation and intracellular calcium influx was investigated. Moreover, the effect of QE allergy- related mediators, genes, and proteins were also assessed by ELISA, RT-PCR, and western blotting. Results and discussion Our data showed that the extent of mast cell degranulation-mediated ear vascular permeability in IgE-mediated PCA mice treated with whole QE (17 mg/kg) was decreased significantly up to 43.31 ± 0.42% reduction. HMC-1 cell-based immunological assay in vitro indicated that QE, particularly its albumen, acted as a 'mast cell stabilizer'. Under the concentration of 70 μg/mL, QE albumen effectively suppressed the releases of β-hexosaminidase, histamine, and tryptase, as well as Th2 and pro-inflammatory cytokine production; reached 30 up to 50% reduction. Besides, QE albumen was also able to significantly modulate the upregulation of IL-10 up to 58.30 ± 5.9%. Interestingly, our data indicated that QE yolk still had a significant inhibitory effect on modulating Th2 cytokines in its highest concentration (100 μg/mL), while QE albumen showed no inhibitory effect. Western blot analysis showed QE albumen effectively down-regulated the expressions of calcium-related protein (TRPC1, Orai1, STIM1, PLC-γ and IP3R), facilitated the reduction of PAR-2 and induced the reduction of phosphorylation of JNK, IKKα, p50 and p65 protein expressions. Conclusion As confirmed by PCA and HMC-1 cell-based immunology assay, QE albumen and QE yolk may work together through exerting anti-allergy activity and can be used as a potential anti-allergic nutrient in the future.
Collapse
Affiliation(s)
- Priscilia Lianto
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China; and
| | - Fredrick O Ogutu
- Food Technology Division of Kenya Industrial Research and Development Institute, South C - Popo Rd., Off Mombasa Rd., PO Box 30650-00100, Nairobi, Kenya
| | - Yani Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China; and
| | - Feng He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China; and
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China; and
| |
Collapse
|
23
|
Ball DH, Al-Riyami L, Harnett W, Harnett MM. IL-33/ST2 signalling and crosstalk with FcεRI and TLR4 is targeted by the parasitic worm product, ES-62. Sci Rep 2018. [PMID: 29540770 PMCID: PMC5852134 DOI: 10.1038/s41598-018-22716-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ES-62 is a secreted parasitic worm-derived immunomodulator that exhibits therapeutic potential in allergy by downregulating aberrant MyD88 signalling to normalise the inflammatory phenotype and mast cell responses. IL-33 plays an important role in driving mast cell responses and promoting type-2 allergic inflammation, particularly with respect to asthma, via MyD88-integrated crosstalk amongst the IL-33 receptor (ST2), TLR4 and FcεRI. We have now investigated whether ES-62 targets this pathogenic network by subverting ST2-signalling, specifically by characterising how the functional outcomes of crosstalk amongst ST2, TLR4 and FcεRI are modulated by the worm product in wild type and ST2-deficient mast cells. This analysis showed that whilst ES-62 inhibits IL-33/ST2 signalling, the precise functional modulation observed varies with receptor usage and/or mast cell phenotype. Thus, whilst ES-62’s harnessing of the capacity of ST2 to sequester MyD88 appears sufficient to mediate its inhibitory effects in peritoneal-derived serosal mast cells, downregulation of MyD88 expression appears to be required to dampen the higher levels of cytokine production typically released by bone marrow-derived mucosal mast cells.
Collapse
Affiliation(s)
- Dimity H Ball
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland.
| |
Collapse
|
24
|
Cho KA, Park M, Kim YH, Choo HYP, Lee KH. Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation. Mol Med Rep 2018. [PMID: 29532895 DOI: 10.3892/mmr.2018.8719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)‑induced expression of proinflammatory cytokines, production of histamine and surface expression of co‑stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)‑1β, IL‑6, IL‑13, tumor necrosis factor‑α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti‑allergic agents to suppress mast cell activation.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Minhwa Park
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Hea-Young Park Choo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung Ho Lee
- Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon‑si 14647, Republic of Korea
| |
Collapse
|
25
|
Chand HS, Harris JF, Tesfaigzi Y. IL-13 in LPS-Induced Inflammation Causes Bcl-2 Expression to Sustain Hyperplastic Mucous cells. Sci Rep 2018; 8:436. [PMID: 29323189 PMCID: PMC5765145 DOI: 10.1038/s41598-017-18884-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022] Open
Abstract
Exposure to lipopolysaccharides (LPS) causes extensive neutrophilic inflammation in the airways followed by mucous cell hyperplasia (MCH) that is sustained by the anti-apoptotic protein, Bcl-2. To identify inflammatory factor(s) that are responsible for Bcl-2 expression, we established an organ culture system consisting of airway epithelial tissue from the rat nasal midseptum. The highest Muc5AC and Bcl-2 expression was observed when organ cultures were treated with brochoalveolar lavage (BAL) fluid harvested from rats 10 h post LPS instillation. Further, because BAL harvested from rats depleted of polymorphonuclear cells compared to controls showed increased Bcl-2 expression, analyses of cytokine levels in lavages identified IL-13 as an inducer of Bcl-2 expression. Ectopic IL-13 treatment of differentiated airway epithelial cells increased Bcl-2 and MUC5AC expression in the basal and apical regions of the cells, respectively. When Bcl-2 was blocked using shRNA or a small molecule inhibitor, ABT-263, mucous cell numbers were reduced due to increased apoptosis that disrupted the interaction of Bcl-2 with the pro-apoptotic protein, Bik. Furthermore, intranasal instillation of ABT-263 reduced the LPS-induced MCH in bik +/+ but not bik -/- mice, suggesting that Bik mediated apoptosis in hyperplastic mucous cells. Therefore, blocking Bcl-2 function could be useful in reducing IL-13 induced mucous hypersecretion.
Collapse
Affiliation(s)
- Hitendra S Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jennifer F Harris
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA.
| |
Collapse
|
26
|
Benedé S, Cody E, Agashe C, Berin MC. Immune Characterization of Bone Marrow-Derived Models of Mucosal and Connective Tissue Mast Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:268-277. [PMID: 29676074 PMCID: PMC5911446 DOI: 10.4168/aair.2018.10.3.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Purpose It is well appreciated that mast cells (MCs) demonstrate tissue-specific imprinting, with different biochemical and functional properties between connective tissue MCs (CTMCs) and mucosal MCs (MMCs). Although in vitro systems have been developed to model these different subsets, there has been limited investigation into the functional characteristics of the 2 major MC subsets. Here, we report the immunologic characterization of 2 MCs subsets developed in vitro from bone marrow progenitors modeling MMCs and CTMCs. Methods We grew bone marrow for 4 weeks in the presence of transforming growth factor (TGF)-β, interleukin (IL)-9, IL-3, and stem cell factor (SCF) to generate MMCs, and IL-4, IL-3, and SCF to generate CTMCs. Results CTMCs and MMCs differed in growth rate and protease content, but their immune characteristics were remarkably similar. Both subsets responded to immunoglobulin E (IgE)-mediated activation with signaling, degranulation, and inflammatory cytokine release, although differences between subsets were noted in IL-10. CTMCs and MMCs showed a similar toll-like receptor (TLR) expression profile, dominated by expression of TLR4, TLR6, or both subsets were responsive to lipopolysaccharide (LPS), but not poly(I:C). CTMCs and MMCs express receptors for IL-33 and thymic stromal lymphopoietin (TSLP), and respond to these cytokines alone or with modified activation in response to IgE cross-linking. Conclusions The results of this paper show the immunologic characterization of bone marrow-derived MMCs and CTMCs, providing useful protocols for in vitro modeling of MC subsets.
Collapse
Affiliation(s)
- Sara Benedé
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Evan Cody
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charuta Agashe
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Wang CC, Wu H, Lin FH, Gong R, Xie F, Peng Y, Feng J, Hu CH. Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs. Innate Immun 2017; 24:40-46. [PMID: 29183244 PMCID: PMC6830759 DOI: 10.1177/1753425917741970] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the effects of sodium butyrate on the intestinal barrier and mast cell activation, as well as inflammatory mediator production, and determine whether mitogen-activated protein kinase signaling pathways are involved in these processes. A total of 72 piglets, weaned at 28 ± 1 d age, were allotted to two dietary treatments (control vs. 450 mg/kg sodium butyrate) for 2 wk. The results showed that supplemental sodium butyrate increased daily gain, improved intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function reflected by increased transepithelial electrical resistance and decreased paracellular flux of dextran (4 kDa). Moreover, sodium butyrate reduced the percentage of degranulated mast cells and its inflammatory mediator content (histamine, tryptase, TNF-α and IL-6) in the jejunum mucosa. Sodium butyrate also decreased the expression of mast cell-specific tryptase, TNF-α and IL-6 mRNA. Sodium butyrate significantly decreased the phosphorylated ratio of JNK whereas not affecting the phosphorylated ratios of ERK and p38. The results indicated that the protective effects of sodium butyrate on intestinal integrity were closely related to inhibition of mast cell activation and inflammatory mediator production, and that the JNK signaling pathway was likely involved in this process.
Collapse
Affiliation(s)
- Chun Chun Wang
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Huan Wu
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Fang Hui Lin
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Rong Gong
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Fei Xie
- 2 Shanghai Menon Animal Nutrition Technology Co. Ltd., Shanghai, China
| | - Yan Peng
- 2 Shanghai Menon Animal Nutrition Technology Co. Ltd., Shanghai, China
| | - Jie Feng
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Cai Hong Hu
- 1 Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Yoshino N, Takeshita R, Kawamura H, Sasaki Y, Kagabu M, Sugiyama T, Muraki Y, Sato S. Mast cells partially contribute to mucosal adjuvanticity of surfactin in mice. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:117-127. [PMID: 29105371 PMCID: PMC5818442 DOI: 10.1002/iid3.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
Introduction Surfactin (SF) is a cyclic lipopeptide that has potent mucosal adjuvant properties. However, immunological mechanisms of SF adjuvant action have not yet been elucidated. As some cyclic lipopeptides, such as polymyxin, can stimulate histamine release from mast cells, we hypothesized that mast cell activation is critical for SF adjuvanticity. Methods/Results We observed that following intranasal immunization with ovalbumin (OVA) plus SF, the titers of the OVA‐specific antibody (Ab) in the mucosal secretions and plasma of mast cell‐deficient mice were significantly lower than those in congenic normal mice, although OVA‐specific Ab did not entirely disappear from mast cell‐deficient mice. SF induced degranulation of mast cells and release of histamine in vitro. To investigate whether SF stimulated mast cells in vivo, we measured body temperature of mice immunized intranasally with OVA plus SF because histamine level affects body temperature. Following immunizations, body temperature of immunized congenic normal mice transiently decreased, whereas body temperature of mast cell‐deficient mice did not change. Plasma levels of OVA‐specific IgE Ab were not significantly different in mast cell‐deficient and congenic normal mice. These findings suggest that SF directly affected mast cells in an IgE Ab‐independent fashion. Furthermore, we analyzed the effects of SF on MC/9 mast cells cultured in vitro. MC/9 cells stimulated by SF released not only histamine but also leukotriene B4 and prostaglandin D2. Moreover, SF up‐regulated mRNA expression levels of Tnf, Ccr5, and Il4 genes in mast cells. These cytokines may play a facilitating role in OVA‐specific immune responses in mice. Conclusion Overall, our results showed that mast cell activation partially mediated SF adjuvanticity.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Shigehiro Sato
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
29
|
Li Y, Li Y, Huang S, He K, Zhao M, Lin H, Li D, Qian J, Zhou C, Chen Y, Huang C. Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. Oncotarget 2017; 8:13690-13702. [PMID: 28099146 PMCID: PMC5355130 DOI: 10.18632/oncotarget.14625] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are highly involved in diverse biological processes of human malignancies. The expression profile and underlying mechanism of lncRNA growth arrest specific transcript 5 (GAS5) in colorectal cancer (CRC) is poorly understood. In this study, we found that GAS5 was commonly downregulated in CRC tissues, serum of CRC patients and CRC cell lines. Knockdown of GAS5 promoted CRC cell proliferation and colony formation, whereas overexpression of GAS5 produced the opposite result. We further demonstrated that knockdown of GAS5 increased the expression and secretion of interleukin-10 (IL-10) and vascular endothelial growth factor (VEGF-A) via NF-κB and Erk1/2 pathways. Neutralization of IL-10 and VEGF-A reduced tumour proliferation caused by GAS5 knockdown. Moreover, GAS5 expression showed a statistically significant correlation with the mRNA levels of IL-10 and VEGF-A in CRC tissues. We further illustrated that GAS5 was markedly downregulated and negatively correlated with the cytokine expression in a mouse model of colitis-associated cancer (CAC). These results delineate a novel mechanism of lncRNA GAS5 in suppressing colorectal carcinogenesis. The cytokines IL-10 and VEGF-A inhibited by GAS5 may provide targets for lncRNA-based therapies for CRC.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Developmental Biology, China Medical University, Shenyang, 110122, China
| | - Yan Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shengkai Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Caihong Zhou
- Department of Education, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhua Chen
- Department of Developmental Biology, China Medical University, Shenyang, 110122, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
30
|
Lee AJ, Ro M, Cho KJ, Kim JH. Lipopolysaccharide/TLR4 Stimulates IL-13 Production through a MyD88-BLT2-Linked Cascade in Mast Cells, Potentially Contributing to the Allergic Response. THE JOURNAL OF IMMUNOLOGY 2017; 199:409-417. [PMID: 28600286 DOI: 10.4049/jimmunol.1602062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/08/2017] [Indexed: 01/26/2023]
Abstract
In an experimental asthma model, the activation of TLR4 by bacterial LPS occasionally exacerbates allergic inflammation through the production of Th2 cytokines, and mast cells have been suggested to play a central role in this response. However, the detailed mechanism underlying how LPS/TLR4 stimulates the production of Th2 cytokines, especially IL-13, remains unclear in mast cells. In the current study, we observed that the expression levels of leukotriene B4 receptor-2 (BLT2) and the synthesis of its ligands were highly upregulated in LPS-stimulated bone marrow-derived mast cells and that BLT2 blockade with small interfering RNA or a pharmacological inhibitor completely abolished IL-13 production, suggesting a mediatory role of the BLT2 ligand-BLT2 axis in LPS/TLR4 signaling to IL-13 synthesis in mast cells. Moreover, we demonstrated that MyD88 lies upstream of the BLT2 ligand-BLT2 axis and that this MyD88-BLT2 cascade leads to the generation of reactive oxygen species through NADPH oxidase 1 and the subsequent activation of NF-κB, thereby mediating IL-13 synthesis. Interestingly, we observed that costimulation of LPS/TLR4 and IgE/FcεRI caused greatly enhanced IL-13 synthesis in mast cells, and blockading BLT2 abolished these effects. Similarly, in vivo, the IL-13 level was markedly enhanced by LPS administration in an OVA-induced asthma model, and injecting a BLT2 antagonist beforehand clearly attenuated this increase. Together, our findings suggest that a BLT2-linked cascade plays a pivotal role in LPS/TLR4 signaling for IL-13 synthesis in mast cells, thereby potentially exacerbating allergic response. Our findings may provide insight into the mechanisms underlying how bacterial infection worsens allergic inflammation under certain conditions.
Collapse
Affiliation(s)
- A-Jin Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; and
| | - MyungJa Ro
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; and
| | - Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jae-Hong Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; and
| |
Collapse
|
31
|
Khorasanizadeh M, Eskian M, Gelfand EW, Rezaei N. Mitogen-activated protein kinases as therapeutic targets for asthma. Pharmacol Ther 2017; 174:112-126. [DOI: 10.1016/j.pharmthera.2017.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of Reactive Oxygen Species in Mast Cell Degranulation. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1564-1577. [PMID: 28259134 DOI: 10.1134/s000629791612018x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway.
Collapse
Affiliation(s)
- M A Chelombitko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
33
|
Singh J, Shah R, Singh D. Targeting mast cells: Uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol 2016; 40:362-384. [PMID: 27694038 DOI: 10.1016/j.intimp.2016.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
The mast cells are integral part of immune system and they have pleiotropic physiological functions in our body. Any type of abnormal stimuli causes the mast cells receptors to spur the otherwise innocuous mast cells to degranulate and release inflammatory mediators like histamine, cytokines, chemokines and prostaglandins. These mediators are involved in various diseases like allergy, asthma, mastocytosis, cardiovascular disorders, etc. Herein, we describe the receptors involved in degranulation of mast cells and are broadly divided into four categories: G-protein coupled receptors, ligand gated ion channels, immunoreceptors and pattern recognition receptors. Although, activation of pattern recognition receptors do not cause mast cell degranulation, but result in cytokines production. Degranulation itself is a complex process involving cascade of events like membrane fusion events and various proteins like VAMP, Syntaxins, DOCK5, SNAP-23, MARCKS. Furthermore, we described these mast cell receptors antagonists or agonists useful in treatment of myriad diseases. Like, omalizumab anti-IgE antibody is highly effective in asthma, allergic disorders treatment and recently mechanistic insight of IgE uncovered; matrix mettaloprotease inhibitor marimistat is under phase III trial for inflammation, muscular dystrophy diseases; ZPL-389 (H4 receptor antagonist) is in Phase 2a Clinical Trial for atopic dermatitis and psoriasis; JNJ3851868 an oral H4 receptor antagonist is in phase II clinical development for asthma, rheumatoid arthritis. Therefore, research is still in inchoate stage to uncover mast cell biology, mast cell receptors, their therapeutic role in myriad diseases.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
34
|
Modena BD, Dazy K, White AA. Emerging concepts: mast cell involvement in allergic diseases. Transl Res 2016; 174:98-121. [PMID: 26976119 DOI: 10.1016/j.trsl.2016.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023]
Abstract
In a process known as overt degranulation, mast cells can release all at once a diverse array of products that are preformed and present within cytoplasmic granules. This occurs typically within seconds of stimulation by environmental factors and allergens. These potent, preformed mediators (ie, histamine, heparin, serotonin, and serine proteases) are responsible for the acute symptoms experienced in allergic conditions such as allergic conjunctivitis, allergic rhinitis, allergy-induced asthma, urticaria, and anaphylaxis. Yet, there is reason to believe that the actions of mast cells are important when they are not degranulating. Mast cells release preformed mediators and inflammatory cytokines for periods after degranulation and even without degranulating at all. Mast cells are consistently seen at sites of chronic inflammation, including nonallergic inflammation, where they have the ability to temper inflammatory processes and shape tissue morphology. Mast cells can trigger actions and chemotaxis in other important immune cells (eg, eosinophils and the newly discovered type 2 innate lymphocytes) that then make their own contributions to inflammation and disease. In this review, we will discuss the many known and theorized contributions of mast cells to allergic diseases, focusing on several prototypical allergic respiratory and skin conditions: asthma, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, allergic conjunctivitis, atopic dermatitis, and some of the more common medication hypersensitivity reactions. We discuss traditionally accepted roles that mast cells play in the pathogenesis of each of these conditions, but we also delve into new areas of discovery and research that challenge traditionally accepted paradigms.
Collapse
Affiliation(s)
- Brian D Modena
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif; Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, Calif
| | - Kristen Dazy
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Andrew A White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif.
| |
Collapse
|
35
|
Neuroimmunology of the Interleukins 13 and 4. Brain Sci 2016; 6:brainsci6020018. [PMID: 27304970 PMCID: PMC4931495 DOI: 10.3390/brainsci6020018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cytokines interleukin 13 and 4 share a common heterodimeric receptor and are important modulators of peripheral allergic reactions. Produced primarily by T-helper type 2 lymphocytes, they are typically considered as anti-inflammatory cytokines because they can downregulate the synthesis of T-helper type 1 pro-inflammatory cytokines. Their presence and role in the brain is only beginning to be investigated and the data collected so far shows that these molecules can be produced by microglial cells and possibly by neurons. Attention has so far been given to the possible role of these molecules in neurodegeneration. Both neuroprotective or neurotoxic effects have been proposed based on evidence that interleukin 13 and 4 can reduce inflammation by promoting the M2 microglia phenotype and contributing to the death of microglia M1 phenotype, or by potentiating the effects of oxidative stress on neurons during neuro-inflammation. Remarkably, the heterodimeric subunit IL-13Rα1 of their common receptor was recently demonstrated in dopaminergic neurons of the ventral tegmental area and the substantia nigra pars compacta, suggesting the possibility that both cytokines may affect the activity of these neurons regulating reward, mood, and motor coordination. In mice and man, the gene encoding for IL-13Rα1 is expressed on the X chromosome within the PARK12 region of susceptibility to Parkinson’s disease (PD). This, together with finding that IL-13Rα1 contributes to loss of dopaminergic neurons during inflammation, indicates the possibility that these cytokines may contribute to the etiology or the progression of PD.
Collapse
|
36
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36:187-198. [PMID: 27156126 DOI: 10.1016/j.intimp.2016.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Accumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS). Moreover, CD117 and FcεRI are known as MC markers due to their specific expression in MCs. To investigate the effects of D3R on METH-mediated alteration of LPS-induced MCs activation and the underlying mechanism, in this study, we examined the expression of CD117 and FcεRI in the intestines of wild-type (D3R(+/+)) and D3R-deficient (D3R(-/-)) mice. We also measured the production of MC-derived cytokines, including TNF-α, IL-6, IL-4, IL-13 and CCL-5, in the bone marrow-derived mast cells (BMMCs) of WT and D3R(-/-) mice. Furthermore, we explored the effects of D3R on METH-mediated TLR4 and downstream MAPK and NF-κB signaling induced by LPS in mouse BMMCs. We found that METH suppressed MC activation induced by LPS in the intestines of D3R(+/)mice. In contrast, LPS-induced MC activation was less affected by METH in D3R(-/-) mice. Furthermore, METH altered LPS-induced cytokine production in BMMCs of D3R(+/+) mice but not D3R(-/-) mice. D3R was also involved in METH-mediated modulation of LPS-induced expression of TLR4 and downstream MAPK and NF-κB signaling molecules in mouse BMMCs. Taken together, our findings demonstrate that the effect of D3R on TLR4 signaling may be implicated in the regulation of METH-mediated MCs activation induced by LPS.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China; Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao-Feng Jin
- Pathology Department, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi'an 710061, China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
37
|
Sakanaka M, Kurimune Y, Yamada K, Hyodo N, Natsuhara M, Ichikawa A, Furuta K, Tanaka S. Down-modulation of antigen-induced activation of murine cultured mast cells sensitized with a highly cytokinergic IgE clone. Immunol Lett 2016; 174:1-8. [PMID: 27060497 DOI: 10.1016/j.imlet.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that several IgE clones can activate mast cells during the sensitization phase even in the absence of antigen. They were found to induce pro-inflammatory cytokine release, histamine synthesis, chemotaxis, adhesion, and accelerated maturation of mast cells, although it remains unknown whether antigen-induced responses can be affected by differences of IgE clones. We compared two IgE clones, which were different in the capacity to activate mast cells during sensitization, in terms of potentials to affect antigen-induced degranulation and cytokine releases using IL-3-dependent murine bone marrow-derived cultured mast cells (BMMCs). Antigen-induced degranulation and pro-inflammatory cytokine release were augmented, when BMMCs were sensitized with elevated concentrations of a clone IgE-3, which did not induce phosphorylation of JNK and cytokine release in the absence of antigen, whereas those were significantly rather decreased, when BMMCs were sensitized with elevated concentrations of a clone SPE-7, one of the most potent cytokinergic IgE clones, which intensively induced phosphorylation of JNK. This attenuated response with SPE-7 was accompanied by decreased tyrosine phosphorylation of the cellular proteins including Syk upon antigen stimulation. SP600125, which is known to inhibit JNK, restored the levels of antigen-induced degranulation and phosphorylation of Syk in BMMCs sensitized with higher concentrations of a clone SPE-7 when it was added before sensitization. Treatment with anisomycin, a potent activator of JNK, before IgE sensitization significantly suppressed antigen-induced degranulation. These findings suggest that differences of sensitizing IgE clones can affect antigen-induced responses and activation of JNK during sensitization might suppress antigen-induced activation of mast cells.
Collapse
Affiliation(s)
- Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kurimune
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Keiko Yamada
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Nao Hyodo
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mayuko Natsuhara
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Atsushi Ichikawa
- Institute for Biosciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
38
|
Herbal Medicines Prevent the Development of Atopic Dermatitis by Multiple Mechanisms. Chin J Integr Med 2016; 25:151-160. [PMID: 26740223 DOI: 10.1007/s11655-015-2438-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is among the most common skin disorders in humans. Although a variety of regimens are available for the treatment of AD, preventive approaches are limited. Recent studies have demonstrated that certain naturally-occurring herbal medicines are effective in preventing the development of AD via divergent mechanisms, such as inhibiting cytokine and chemokine expression, IgE production, inflammatory cell infiltration, histamine release, and/or enhancement of epidermal permeability barrier function. Yet, they exhibit few adverse effects. Since herbal medicines are widely available, inexpensive and generally safe, they could represent an ideal approach for preventing the development of AD, in both highly developed and developing countries.
Collapse
|
39
|
Khalmuratova R, Lee M, Kim D, Park JW, Shin HW. Induction of nasal polyps using house dust mite and Staphylococcal enterotoxin B in C57BL/6 mice. Allergol Immunopathol (Madr) 2016; 44:66-75. [PMID: 26242569 DOI: 10.1016/j.aller.2015.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The murine polyp model was developed previously using ovalbumin and Staphylococcus aureus enterotoxin B (SEB). Here, we established a model mimicking key aspects of chronic eosinophilic rhinosinusitis with nasal polyps using the house dust mite (HDM), a clinically relevant aeroallergen, co-administered with SEB. We assessed the inflammatory response and formation of nasal polypoid lesions in an experimental murine model using intranasal delivery of HDM and ovalbumin. METHODS After induction of HDM-induced allergic rhinosinusitis in C57BL/6 mice, SEB (10ng) was instilled into the nasal cavity of mice for eight weeks. Phosphate-buffered saline-challenged mice served as control. Histopathological changes were evaluated using haematoxylin and eosin for overall inflammation, Sirius red for eosinophils, and periodic acid-Schiff stain for goblet cells. The distribution of mast cells in mouse nasal tissue was determined by immunohistochemistry. Serum total IgE was measured using enzyme-linked immunosorbent assay. RESULTS Compared to mice treated with HDM only, the HDM+SEB-treated mice demonstrated nasal polypoid lesion formation and a significant increase in the number of secretory cells and eosinophilic infiltration. Moreover, mice challenged intranasally with HDM showed highly abundant mast cells in the nasal mucosa. In contrast, OVA+SEB-challenged mice showed a significantly lower degree of mast cell infiltration. CONCLUSION We established an in vivo model of chronic allergic rhinosinusitis with nasal polypoid lesions using HDM aeroallergen. This study demonstrated that the HDM+SEB-induced murine polyp model could be utilised as a suitable model for nasal polyps, especially with both eosinophil and mast cell infiltration.
Collapse
|
40
|
Huang W, Morales JL, Gazivoda VP, August A. Nonreceptor tyrosine kinases ITK and BTK negatively regulate mast cell proinflammatory responses to lipopolysaccharide. J Allergy Clin Immunol 2015; 137:1197-1205. [PMID: 26581914 DOI: 10.1016/j.jaci.2015.08.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/06/2015] [Accepted: 08/28/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mast cells are indispensable for LPS-induced septic hypothermia, in which TNF-α plays an essential role to initiate septic responses. ITK and BTK regulate mast cell responses to allergens, but their roles in mast cell responses in LPS-induced sepsis are unclear. OBJECTIVE We sought to investigate the roles of ITK and BTK in mast cell responses during LPS-induced septic inflammation. METHODS Mice (genetically modified or bone marrow-derived mast cell-reconstituted Sash) were given LPS to induce septic hypothermia in the presence or absence of indicated inhibitors. Flow cytometry was used to determine LPS-induced cell influx and TNF-α production in peritoneal cells. Microarray was used for genomewide gene expression analysis on bone marrow-derived mast cells. Quantitative PCR and multiplex were used to determine transcribed and secreted proinflammatory cytokines. Microscopy and Western blotting were used to determine activation of signal transduction pathways. RESULTS The absence of ITK and BTK leads to exacerbation of LPS-induced septic hypothermia and neutrophil influx. Itk(-/-)Btk(-/-) mast cells exhibit hyperactive preformed and LPS-induced TNF-α production, and lead to more severe LPS-induced septic hypothermia when reconstituted into mast cell-deficient Sash mice. LPS-induced nuclear factor kappa B, Akt, and p38 activation is enhanced in Itk(-/-)Btk(-/-) mast cells, and blockage of phosphatidylinositol-4,5-bisphosphate 3-kinase, Akt, or p38 downstream mitogen-activated protein kinase interacting serine/threonine kinase 1 activation significantly suppresses TNF-α hyperproduction and attenuates septic hypothermia. CONCLUSIONS ITK and BTK regulate thermal homeostasis during septic response through mast cell function in mice. They share regulatory function downstream of Toll-like receptor 4/LPS in mast cells, through regulating the activation of canonical nuclear factor kappa B, phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt, and p38 signaling pathways.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - J Luis Morales
- Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa
| | - Victor P Gazivoda
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY.
| |
Collapse
|
41
|
Shim SY, Park JR, Byun DS. Kaempferol isolated from Nelumbo nucifera stamens inhibits phosphorylation of ERK 1/2, Syk, and Lyn in FcεRI-mediated allergic reaction. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0190-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
42
|
Abdala-Valencia H, Bryce PJ, Schleimer RP, Wechsler JB, Loffredo LF, Cook-Mills JM, Hsu CL, Berdnikovs S. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1377-87. [PMID: 26136426 DOI: 10.4049/jimmunol.1302874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/02/2015] [Indexed: 11/19/2022]
Abstract
Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow-derived mast cells from CD151(-/-) mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Paul J Bryce
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Joshua B Wechsler
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucas F Loffredo
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Joan M Cook-Mills
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Chia-Lin Hsu
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
43
|
Xue L, Li X, Ren HX, Wu F, Li M, Wang B, Chen FY, Cheng WY, Li JP, Chen YJ, Chen T. The dopamine D3 receptor regulates the effects of methamphetamine on LPS-induced cytokine production in murine mast cells. Immunobiology 2015; 220:744-52. [DOI: 10.1016/j.imbio.2014.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
|
44
|
Song Z, Deng X, Chen W, Xu J, Chen S, Zhong H, Hao F. Toll-like receptor 2 agonist Pam3CSK4 up-regulates FcεRI receptor expression on monocytes from patients with severe extrinsic atopic dermatitis. J Eur Acad Dermatol Venereol 2015; 29:2169-76. [PMID: 25912722 DOI: 10.1111/jdv.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/29/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Both microbial antigens and allergens are important factors that can trigger atopic dermatitis (AD). Monocytes from patients with AD have been found to express increased and sustained levels of high-affinity IgE receptor (FcεRI) and Toll-like receptor 2 (TLR2). We hypothesized that putative interactions exist between TLR2 and FcεRI on monocytes in the pathogenesis of AD. OBJECTIVE This study aimed to understand whether activation of TLR2 by Pam3CSK4 would influence the expression of FcεRI, and whether mitogen-activated protein kinase (MAPK) signalling pathways were involved in such regulation. METHODS Peripheral blood monocytes from patients with severe extrinsic AD or healthy control patients were treated with the TLR2 agonist Pam3CSK4. The expression of FcεRI, intracellular TNF-α and MAPK family members were analysed by real-time quantitative PCR, flow cytometry and western blotting. RESULTS Monocytes from patients with severe extrinsic AD expressed higher levels of surface FcεRIα than were found in monocytes from healthy controls. Stimulation of human monocytes from patients with Pam3CSK4, but not lipopolysaccharide (LPS), resulted in the up-regulation of surface FcεRI expression by inducing p38 phosphorylation. Pretreatment with a specific inhibitor of p38 kinase inhibited the Pam3CSK4-induced up-regulation of FcεRIα, suggesting the involvement of the p38 pathway in the regulation of this process. CONCLUSION Our findings indicated interactions between TLR2 and FcεRI occurred via the activation of p38 in patients with severe extrinsic AD, which might indicate insights into understanding the mechanisms of how bacterial infection can exacerbate the clinical features of AD.
Collapse
Affiliation(s)
- Z Song
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - X Deng
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - W Chen
- Department of Dermatology and Allergy, Technische Universita et Muenchen, Munich, Germany
| | - J Xu
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - S Chen
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - H Zhong
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - F Hao
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Lowe APP, Thomas RS, Nials AT, Kidd EJ, Broadley KJ, Ford WR. LPS exacerbates functional and inflammatory responses to ovalbumin and decreases sensitivity to inhaled fluticasone propionate in a guinea pig model of asthma. Br J Pharmacol 2015; 172:2588-603. [PMID: 25586266 PMCID: PMC4409909 DOI: 10.1111/bph.13080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma exacerbations contribute to corticosteroid insensitivity. LPS is ubiquitous in the environment. It causes bronchoconstriction and airway inflammation and may therefore exacerbate allergen responses. This study examined whether LPS and ovalbumin co-administration could exacerbate the airway inflammatory and functional responses to ovalbumin in conscious guinea pigs and whether these exacerbated responses were insensitive to inhaled corticosteroid treatment with fluticasone propionate (FP). EXPERIMENTAL APPROACH Guinea pigs were sensitized and challenged with ovalbumin and airway function recorded as specific airway conductance by whole body plethysmography. Airway inflammation was measured from lung histology and bronchoalveolar lavage. Airway hyper-reactivity (AHR) to inhaled histamine was examined 24 h after ovalbumin. LPS was inhaled alone or 24 or 48 h before ovalbumin and combined with ovalbumin. FP (0.05-1 mg·mL(-1) ) or vehicle was nebulized for 15 min twice daily for 6 days before ovalbumin or LPS exposure. KEY RESULTS Ovalbumin inhalation caused early (EAR) and late asthmatic response (LAR), airway hyper-reactivity to histamine and influx of inflammatory cells into the lungs. LPS 48 h before and co-administered with ovalbumin exacerbated the response with increased length of the EAR, prolonged response to histamine and elevated inflammatory cells. FP 0.5 and 1 mg·mL(-1) reduced the LAR, AHR and cell influx with ovalbumin alone, but was ineffective when guinea pigs were exposed to LPS before and with ovalbumin. CONCLUSIONS AND IMPLICATIONS LPS exposure exacerbates airway inflammatory and functional responses to allergen inhalation and decreases corticosteroid sensitivity. Its widespread presence in the environment could contribute to asthma exacerbations and corticosteroid insensitivity in humans.
Collapse
Affiliation(s)
- A P P Lowe
- Cardiff School of Pharmacy, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
46
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
47
|
Hiroshima Y, Hsu K, Tedla N, Chung YM, Chow S, Herbert C, Geczy CL. S100A8 Induces IL-10 and Protects against Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:2800-11. [DOI: 10.4049/jimmunol.1302556] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A, Das M, Dwivedi PD. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol 2013; 26:159-72. [PMID: 24225181 DOI: 10.1093/intimm/dxt053] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc oxide nanoparticles (ZNPs) have been used in dietary supplements and may cause an immunomodulatory effect. The present study investigated the effect of ZNPs on antigen-specific immune responses in mice sensitized with the T-cell-dependent antigen ovalbumin (OVA). BALB/c mice were intraperitoneally administered ZNPs (0.25, 0.5, 1 and 3mg) once, in combination with OVA, and the serum antibodies, splenocyte reactivity and activation of antigen-presenting cells were examined. The serum levels of OVA-specific IgG1 and IgE were found significantly enhanced by treatment with ZNPs over control. An increased level of IL-2, IL-4, IL-6, IL-17 and decreased level of IL-10 and TNF-α in splenocytes administered with ZNPs were observed in comparison with control. The ZNPs and OVA-stimulated T lymphocytes showed enhanced proliferation compared with control. Macrophages and B cells showed high expression of MHC class II, whereas higher expression of CD11b in macrophages of the ZNPs and ZNPs/OVA treated groups was observed. The lungs and spleen had increased eosinophils and mast cell numbers. Also, myeloperoxidase activity in lungs was found to be increased by 2.5-fold in the case of ZNPs and 3.75-fold increase in ZNPs/OVA, whereas in intestine, there was significant increase in both the groups. Increased expression of the genes for GATA-3, SOCS-3, TLR-4, IL-13 and IL-5 in the intestine was observed. Collectively, these data indicate that systemic exposure to a single administration of ZNPs could enhance subsequent antigen-specific immune reactions, including the serum production of antigen-specific antibodies, and the functionality of T cells.
Collapse
Affiliation(s)
- Ruchi Roy
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, M.G. Marg, PO Box 80, Lucknow 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mast cells suppress murine GVHD in a mechanism independent of CD4+CD25+ regulatory T cells. Blood 2013; 122:3659-65. [PMID: 24030387 DOI: 10.1182/blood-2013-08-519157] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To investigate the role of mast cells in hematopoietic cell transplantation, we assessed graft-versus-host disease (GVHD) in C57BL/6-Kit(W-sh/W-sh) recipients, which virtually lack mast cells, compared with C57BL/6 WT recipients. GVHD was severely exacerbated in C57BL/6-Kit(W-sh/W-sh) mice (median survival time = 13 vs 60 days in wild-type [WT] mice; P < .0001). The increased mortality risk in C57BL/6-Kit(W-sh/W-sh) hosts correlated with increased T-cell numbers in lymph nodes, liver, and gastrointestinal tract sites, as indicated by bioluminescence imaging (P < .001). We did not detect any deficit in the number or function of CD4(+)CD25(+) regulatory T cells (Tregs) in C57BL/6-Kit(W-sh/W-sh) mice. Furthermore, Tregs were equally effective at reducing GVHD in C57BL/6-Kit(W-sh/W-sh) recipients compared with WT recipients containing mast cells. Furthermore, we found that survival of C57BL/6-Kit(W-sh/W-sh) mice during GVHD was significantly improved if the mice were engrafted with bone marrow-derived cultured mast cells from WT C57BL/6 mice but not from interleukin (IL)-10-deficient C57BL/6 mice. These data indicate that the presence of mast cells can significantly reduce GVHD independently of Tregs, by decreasing conventional T-cell proliferation in a mechanism involving IL-10. These experiments support the conclusion that mast cells can mediate a novel immunoregulatory role during hematopoietic cell transplantation.
Collapse
|
50
|
Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 2013; 73:5905-13. [PMID: 23955389 DOI: 10.1158/0008-5472.can-13-1511] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-10 is elevated in cancer and is thought to contribute to immune tolerance and tumor growth. Defying these expectations, the adoptive transfer of IL-10-expressing T cells to mice with polyposis attenuates microbial-induced inflammation and suppresses polyposis. To gain better insights into how IL-10 impacts polyposis, we genetically ablated IL-10 in T cells in APC(Δ468) mice and compared the effects of treatment with broad-spectrum antibiotics. We found that T cells and regulatory T cells (Treg) were a major cellular source of IL-10 in both the healthy and polyp-bearing colon. Notably, T cell-specific ablation of IL-10 produced pathologies that were identical to mice with a systemic deficiency in IL-10, in both cases increasing the numbers and growth of colon polyps. Eosinophils were found to densely infiltrate colon polyps, which were enriched similarly for microbiota associated previously with colon cancer. In mice receiving broad-spectrum antibiotics, we observed reductions in microbiota, inflammation, and polyposis. Together, our findings establish that colon polyposis is driven by high densities of microbes that accumulate within polyps and trigger local inflammatory responses. Inflammation, local microbe densities, and polyp growth are suppressed by IL-10 derived specifically from T cells and Tregs.
Collapse
Affiliation(s)
- Kristen L Dennis
- Authors' Affiliations: Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine; Department of Medicine, Knapp Center for Biomedical Discovery; Department of Ecology and Evolution, University of Chicago, Chicago; Argonne National Laboratory, Argonne, Illinois; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arkansas; and Institute for Immunology, Technical University Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|