1
|
Chen J, Chen R, Huang J. A pan-cancer single-cell transcriptional analysis of antigen-presenting cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2024; 15:1372432. [PMID: 38903527 PMCID: PMC11187094 DOI: 10.3389/fimmu.2024.1372432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.
Collapse
Affiliation(s)
- Juntao Chen
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Massa C, Wang Y, Marr N, Seliger B. Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. Int J Mol Sci 2023; 24:ijms24076736. [PMID: 37047709 PMCID: PMC10095295 DOI: 10.3390/ijms24076736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 04/08/2023] Open
Abstract
Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.
Collapse
Affiliation(s)
- Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| | - Yuan Wang
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Nico Marr
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis. Cell Rep 2022; 41:111469. [DOI: 10.1016/j.celrep.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/20/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
|
4
|
Landry DA, Yakubovich E, Cook DP, Fasih S, Upham J, Vanderhyden BC. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. SCIENCE ADVANCES 2022; 8:eabq1475. [PMID: 36054356 PMCID: PMC10848964 DOI: 10.1126/sciadv.abq1475] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
Ovarian fibrosis is a pathological condition associated with aging and is responsible for a variety of ovarian dysfunctions. Given the known contributions of tissue fibrosis to tumorigenesis, it is anticipated that ovarian fibrosis may contribute to ovarian cancer risk. We recently reported that diabetic postmenopausal women using metformin had ovarian collagen abundance and organization that were similar to premenopausal ovaries from nondiabetic women. In this study, we investigated the effects of aging and metformin on mouse ovarian fibrosis at a single-cell level. We discovered that metformin treatment prevented age-associated ovarian fibrosis by modulating the proportion of fibroblasts, myofibroblasts, and immune cells. Senescence-associated secretory phenotype (SASP)-producing fibroblasts increased in aged ovaries, and a unique metformin-responsive subpopulation of macrophages emerged in aged mice treated with metformin. The results demonstrate that metformin can modulate specific populations of immune cells and fibroblasts to prevent age-associated ovarian fibrosis and offers a new strategy to prevent ovarian fibrosis.
Collapse
Affiliation(s)
- David A. Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Edward Yakubovich
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sijyl Fasih
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Passos LS, Jha PK, Becker-Greene D, Blaser MC, Romero D, Lupieri A, Sukhova GK, Libby P, Singh SA, Dutra WO, Aikawa M, Levine RA, Nunes MC, Aikawa E. Prothymosin Alpha: A Novel Contributor to Estradiol Receptor Alpha-Mediated CD8 + T-Cell Pathogenic Responses and Recognition of Type 1 Collagen in Rheumatic Heart Valve Disease. Circulation 2022; 145:531-548. [PMID: 35157519 PMCID: PMC8869797 DOI: 10.1161/circulationaha.121.057301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rheumatic heart valve disease (RHVD) is a leading cause of cardiovascular death in low- and middle-income countries and affects predominantly women. The underlying mechanisms of chronic valvular damage remain unexplored and regulators of sex predisposition are unknown. METHODS Proteomics analysis of human heart valves (nondiseased aortic valves, nondiseased mitral valves [NDMVs], valves from patients with rheumatic aortic valve disease, and valves from patients with rheumatic mitral valve disease; n=30) followed by system biology analysis identified ProTα (prothymosin alpha) as a protein associated with RHVD. Histology, multiparameter flow cytometry, and enzyme-linked immunosorbent assay confirmed the expression of ProTα. In vitro experiments using peripheral mononuclear cells and valvular interstitial cells were performed using multiparameter flow cytometry and quantitative polymerase chain reaction. In silico analysis of the RHVD and Streptococcuspyogenes proteomes were used to identify mimic epitopes. RESULTS A comparison of NDMV and nondiseased aortic valve proteomes established the baseline differences between nondiseased aortic and mitral valves. Thirteen unique proteins were enriched in NDMVs. Comparison of NDMVs versus valves from patients with rheumatic mitral valve disease and nondiseased aortic valves versus valves from patients with rheumatic aortic valve disease identified 213 proteins enriched in rheumatic valves. The expression of the 13 NDMV-enriched proteins was evaluated across the 213 proteins enriched in diseased valves, resulting in the discovery of ProTα common to valves from patients with rheumatic mitral valve disease and valves from patients with rheumatic aortic valve disease. ProTα plasma levels were significantly higher in patients with RHVD than in healthy individuals. Immunoreactive ProTα colocalized with CD8+ T cells in RHVD. Expression of ProTα and estrogen receptor alpha correlated strongly in circulating CD8+ T cells from patients with RHVD. Recombinant ProTα induced expression of the lytic proteins perforin and granzyme B by CD8+ T cells as well as higher estrogen receptor alpha expression. In addition, recombinant ProTα increased human leukocyte antigen class I levels in valvular interstitial cells. Treatment of CD8+ T cells with specific estrogen receptor alpha antagonist reduced the cytotoxic potential promoted by ProTα. In silico analysis of RHVD and Spyogenes proteomes revealed molecular mimicry between human type 1 collagen epitope and bacterial collagen-like protein, which induced CD8+ T-cell activation in vitro. CONCLUSIONS ProTα-dependent CD8+ T-cell cytotoxicity was associated with estrogen receptor alpha activity, implicating ProTα as a potential regulator of sex predisposition in RHVD. ProTα facilitated recognition of type 1 collagen mimic epitopes by CD8+ T cells, suggesting mechanisms provoking autoimmunity.
Collapse
Affiliation(s)
- Livia S.A. Passos
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Prabhash K. Jha
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dakota Becker-Greene
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dayanna Romero
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina K. Sukhova
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Walderez O. Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria C.P. Nunes
- Hospital das Clinicas, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow 119992, Russia
| |
Collapse
|
6
|
Eren U, Kum S, Nazligul A, Gules O, Aka E, Yildiz M, Zorlu S. TLR2 and TLR4 molecules and antigen-presenting cell compositions in cecal tonsils of broiler chicks (Gallus gallus domesticus) in the first two weeks of the post-hatch period. Anat Histol Embryol 2021; 51:125-135. [PMID: 34866215 DOI: 10.1111/ahe.12773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022]
Abstract
Chickens do not have lymph nodes. Gut-associated lymphoid tissue is the major immunological organization for the digestive system. Cecal tonsils are an important part of this organization. This study is a descriptive and experimental study that was conducted to determine the histological development of the cecal tonsils and the distribution of Toll-like receptor (TLR) 2, TLR4 and antigen-presenting cells during the first 2 weeks of the chick's life. The tissue sections were stained using Crossmon's triple technique, Gordon and Sweet's silver impregnation, and streptavidin-biotin-peroxidase complex methods. The classical tonsil framework with fossa and tonsillar units were observed in 4 days cecal tissue. The web of reticular fibres forming the stroma of the tissue had the impression that the lymphoid cells filling in time. The development of cecal tonsil was completed histologically on the day 10 and following day 14 samples. Regardless of the antigenic stimulation, TLR2, TLR4 and CD83, major histocompatibility complex (MHC) class II molecules are present in proximal cecal tissue. However, CD83-positive dendritic cells in the germinal centre were first distinguished on day 7. Furthermore, the high antigen presentation capacity of the cecum with an intense MHC class II molecule expression was determined. Histological and immunohistochemical findings in this study revealed that both innate and adaptive cecal defence mechanisms were in the learning period during the first 2 weeks. The learning period of innate immunity may require more detailed research. However, the results obtained in this study will be taken into consideration in the vaccination programmes in chicks.
Collapse
Affiliation(s)
- Ulker Eren
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, Aydin, Turkey
| | - Sadiye Kum
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, Aydin, Turkey
| | - Ahmet Nazligul
- Department of Animal Sciences, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, Aydin, Turkey
| | - Ozay Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyon, Turkey
| | - Ebru Aka
- Department of Histology and Embryology, Institute of Health Sciences, University of Aydin Adnan Menderes, Aydin, Turkey
| | - Mustafa Yildiz
- Department of Occupational Health and Safety, Can School of Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Secil Zorlu
- Department of Histology and Embryology, Institute of Health Sciences, University of Aydin Adnan Menderes, Aydin, Turkey
| |
Collapse
|
7
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 720] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Qin Y, Bollin K, de Macedo MP, Carapeto F, Kim KB, Roszik J, Wani KM, Reuben A, Reddy ST, Williams MD, Tetzlaff MT, Wang WL, Gombos DS, Esmaeli B, Lazar AJ, Hwu P, Patel SP. Immune profiling of uveal melanoma identifies a potential signature associated with response to immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000960. [PMID: 33203661 PMCID: PMC7674090 DOI: 10.1136/jitc-2020-000960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background To date, no systemic therapy, including immunotherapy, exists to improve clinical outcomes in metastatic uveal melanoma (UM) patients. To understand the role of immune infiltrates in the genesis, metastasis, and response to treatment for UM, we systematically characterized immune profiles of UM primary and metastatic tumors, as well as samples from UM patients treated with immunotherapies. Methods Relevant immune markers (CD3, CD8, FoxP3, CD68, PD-1, and PD-L1) were analyzed by immunohistochemistry on 27 primary and 31 metastatic tumors from 47 patients with UM. Immune gene expression profiling was conducted by NanoString analysis on pre-treatment and post-treatment tumors from patients (n=6) receiving immune checkpoint blockade or 4-1BB and OX40 dual costimulation. The immune signature of UM tumors responding to immunotherapy was further characterized by Ingenuity Pathways Analysis and validated in The Cancer Genome Atlas data set. Results Both primary and metastatic UM tumors showed detectable infiltrating lymphocytes. Compared with primary tumors, treatment-naïve metastatic UM showed significantly higher levels of CD3+, CD8+, FoxP3+ T cells, and CD68+ macrophages. Notably, levels of PD-1+ infiltrates and PD-L1+ tumor cells were low to absent in primary and metastatic UM tumors. No metastatic organ-specific differences were seen in immune infiltrates. Our NanoString analysis revealed significant differences in a set of immune markers between responders and non-responders. A group of genes relevant to the interferon-γ signature was differentially up-expressed in the pre-treatment tumors of responders. Among these genes, suppressor of cytokine signaling 1 was identified as a marker potentially contributing to the response to immunotherapy. A panel of genes that encoded pro-inflammatory cytokines and molecules were expressed significantly higher in pre-treatment tumors of non-responders compared with responders. Conclusion Our study provides critical insight into immune profiles of UM primary and metastatic tumors, which suggests a baseline tumor immune signature predictive of response and resistance to immunotherapy in UM.
Collapse
Affiliation(s)
- Yong Qin
- Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Kathryn Bollin
- Medical Oncology, Scripps MD Anderson Cancer Center, San Diego, California, USA
| | | | - Fernando Carapeto
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Jason Roszik
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khalida M Wani
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sujan T Reddy
- Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michelle D Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei-Lien Wang
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dan S Gombos
- Department of Head and Neck Surgery, Section of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sapna P Patel
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
van Niekerk G, Dalgleish AG, Joubert F, Joubert A, Engelbrecht AM. The immuno-oncological implications of insulin. Life Sci 2020; 264:118716. [PMID: 33159956 DOI: 10.1016/j.lfs.2020.118716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
Emerging evidence has implicated insulin in regulating the phenotypes of various immune cells through canonical downstream signalling effectors of insulin, namely, the PI3K/Akt/mTOR pathway. Notably, these signalling components also exhibit crosstalk with other immune signalling pathways, such as the JAK/STAT pathway (activated by cytokines and growth factors), and, importantly, are also negatively regulated by the immune checkpoint blockers (ICBs), PD-1 and CTLA-4. Here, we point out recent findings, suggesting that insulin may promote a pro-inflammatory phenotype with potential implications on ICB therapy. As an example, the contemporary paradigm holds that, while T cell receptor recognition of distinct MHC-expressed epitopes ensures specificity, co-activation of CD28 along with signal inputs form various cytokines and insulin operates to 'fine-tune' the immune response via PI3K and other downstream signalling molecules. These considerations highlight the urgent need for focused investigations into the role of insulin in regulating immune cell function in the context of ICB therapies.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Angus G Dalgleish
- Department of Cellular and Molecular Medicine, St George's University of London, London, UK
| | - Fourie Joubert
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Annie Joubert
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M, Mayo A, Halperin C, Pevsner-Fischer M, Lavon H, Mayer S, Nevo R, Stein Y, Balint-Lahat N, Barshack I, Ali HR, Caldas C, Nili-Gal-Yam E, Alon U, Amit I, Scherz-Shouval R. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4 + and PDPN + CAFs to clinical outcome. NATURE CANCER 2020; 1:692-708. [PMID: 35122040 PMCID: PMC7617059 DOI: 10.1038/s43018-020-0082-y] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/19/2020] [Indexed: 02/01/2023]
Abstract
Tumors are supported by cancer-associated fibroblasts (CAFs). CAFs are heterogeneous and carry out distinct cancer-associated functions. Understanding the full repertoire of CAFs and their dynamic changes as tumors evolve could improve the precision of cancer treatment. Here we comprehensively analyze CAFs using index and transcriptional single-cell sorting at several time points along breast tumor progression in mice, uncovering distinct subpopulations. Notably, the transcriptional programs of these subpopulations change over time and in metastases, transitioning from an immunoregulatory program to wound-healing and antigen-presentation programs, indicating that CAFs and their functions are dynamic. Two main CAF subpopulations are also found in human breast tumors, where their ratio is associated with disease outcome across subtypes and is particularly correlated with BRCA mutations in triple-negative breast cancer. These findings indicate that the repertoire of CAF changes over time in breast cancer progression, with direct clinical implications.
Collapse
Affiliation(s)
- Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Chamutal Bornstein
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Maya Dadiani
- Chaim Sheba Medical Center, Cancer Research Center, Tel-Hashomer, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Iris Barshack
- Pathology Institute, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Breast Cancer Programme, Cancer Research UK Cancer Centre, Cambridge, UK
| | | | - Uri Alon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Lérias JR, de Sousa E, Paraschoudi G, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Maia A, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Trained Immunity for Personalized Cancer Immunotherapy: Current Knowledge and Future Opportunities. Front Microbiol 2020; 10:2924. [PMID: 31998254 PMCID: PMC6967396 DOI: 10.3389/fmicb.2019.02924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Memory formation, guided by microbial ligands, has been reported for innate immune cells. Epigenetic imprinting plays an important role herein, involving histone modification after pathogen-/danger-associated molecular patterns (PAMPs/DAMPs) recognition by pattern recognition receptors (PRRs). Such "trained immunity" affects not only the nominal target pathogen, yet also non-related targets that may be encountered later in life. The concept of trained innate immunity warrants further exploration in cancer and how these insights can be implemented in immunotherapeutic approaches. In this review, we discuss our current understanding of innate immune memory and we reference new findings in this field, highlighting the observations of trained immunity in monocytic and natural killer cells. We also provide a brief overview of trained immunity in non-immune cells, such as stromal cells and fibroblasts. Finally, we present possible strategies based on trained innate immunity that may help to devise host-directed immunotherapies focusing on cancer, with possible extension to infectious diseases.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Ernest Dodoo
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Antonio Beltrán
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, UCL Hospitals, NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
12
|
Saint-Germain E, Mignacca L, Huot G, Acevedo M, Moineau-Vallée K, Calabrese V, Bourdeau V, Rowell MC, Ilangumaran S, Lessard F, Ferbeyre G. Phosphorylation of SOCS1 Inhibits the SOCS1–p53 Tumor Suppressor Axis. Cancer Res 2019; 79:3306-3319. [DOI: 10.1158/0008-5472.can-18-1503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
|
13
|
The Sum of the Parts: Understanding How Skin Allografts Are Rejected. Transplantation 2016; 100:2020-1. [PMID: 27467540 DOI: 10.1097/tp.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y, Chiu SM, Liang X, Gao F, Chan CW, Tse HF, Shi J, Fu QL, Lian Q. Insensitivity of Human iPS Cells-Derived Mesenchymal Stem Cells to Interferon-γ-induced HLA Expression Potentiates Repair Efficiency of Hind Limb Ischemia in Immune Humanized NOD Scid Gamma Mice. Stem Cells 2015; 33:3452-67. [PMID: 26175298 DOI: 10.1002/stem.2094] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are immunoprivileged cells due to the low expression of major histocompatibility complex (MHC) II molecules. However, the expression of MHC molecules in human-induced pluripotent stem cells (iPSCs)-derived MSCs has not been investigated. Here, we examined the expression of human leukocyte antigen (HLA) in human MSCs derived from iPSCs, fetuses, and adult bone marrow (BM) after stimulation with interferon-γ (IFN-γ), compared their repair efficacy, cell retention, inflammation, and HLA II expression in immune humanized NOD Scid gamma (NSG) mice of hind limb ischemia. In the absence of IFN-γ stimulation, HLA-II was expressed only in BM-MSCs after 7 days. Two and seven days after stimulation, high levels of HLA-II were observed in BM-MSCs, intermediate levels were found in fetal-MSCs, and very low levels in iPSC-MSCs. The levels of p-STAT1, interferon regulatory factor 1, and class II transactivator exhibited similar phenomena. Moreover, p-STAT1 antagonist significantly reversed the high expression of HLA-II in BM-MSCs. Compared to adult BM-MSCs, transplanting iPSC-MSCs into hu-PBMNC NSG mice revealed markedly more survival iPSC-MSCs, less inflammatory cell accumulations, and better recovery of hind limb ischemia. The expression of HLA-II in MSCs in the ischemia limbs was detected in BM-MSCs group but not in iPSC-MSCs group at 7 and 21 days after transplantation. Our results demonstrate that, compared to adult MSCs, human iPSC-MSCs are insensitive to proinflammatory IFN-γ-induced HLA-II expression and iPSC-MSCs have a stronger immune privilege after transplantation. It may attribute to a better therapeutic efficacy in allogeneic transplantation.
Collapse
Affiliation(s)
- Yue-Qi Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuelin Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Meng-Xia Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wen-Xiang Gao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yin Yao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sin-Ming Chiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoting Liang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Fei Gao
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Camie W Chan
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China.,The Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.,Shenzhen Institutes of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, Wicks IP. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev 2015; 14:710-25. [PMID: 25891492 DOI: 10.1016/j.autrev.2015.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
There is a pressing need to reduce the high global disease burden of rheumatic heart disease (RHD) and its harbinger, acute rheumatic fever (ARF). ARF is a classical example of an autoimmune syndrome and is of particular immunological interest because it follows a known antecedent infection with group A streptococcus (GAS). However, the poorly understood immunopathology of these post-infectious diseases means that, compared to much progress in other immune-mediated diseases, we still lack useful biomarkers, new therapies or an effective vaccine in ARF and RHD. Here, we summarise recent literature on the complex interaction between GAS and the human host that culminates in ARF and the subsequent development of RHD. We contrast ARF with other post-infectious streptococcal immune syndromes - post-streptococcal glomerulonephritis (PSGN) and the still controversial paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS), in order to highlight the potential significance of variations in the host immune response to GAS. We discuss a model for the pathogenesis of ARF and RHD in terms of current immunological concepts and the potential for application of in depth "omics" technologies to these ancient scourges.
Collapse
Affiliation(s)
- William John Martin
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Andrew C Steer
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Pierre Robert Smeesters
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Joanne Keeble
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology and Immunology, University of Melbourne, VIC 3010, Australia
| | | | - Ian P Wicks
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3052, Australia.
| |
Collapse
|
16
|
Gui Y, Yeganeh M, Donates YC, Tobelaim WS, Chababi W, Mayhue M, Yoshimura A, Ramanathan S, Saucier C, Ilangumaran S. Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma. Oncogene 2015; 34:5718-28. [PMID: 25728680 DOI: 10.1038/onc.2015.20] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 01/20/2015] [Indexed: 01/11/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is considered as a tumor suppressor protein in hepatocellular carcinoma (HCC), but the underlying mechanisms remain unclear. Previously, we have shown that SOCS1-deficient hepatocytes displayed increased responsiveness to hepatocyte growth factor (HGF) due to enhanced signaling via the MET receptor tyrosine kinase. As aberrant MET activation occurs in many tumors including HCC, here we elucidated the mechanisms of SOCS1-mediated regulation. SOCS1 attenuated HGF-induced proliferation of human and mouse HCC cell lines and their growth as tumors in NOD.scid.gamma mice. Tumors formed by SOCS1 expressing HCC cells showed significantly reduced MET expression, indicating that SOCS1 not only attenuates MET signaling but also regulates MET expression. Mechanistically, SOCS1 interacted with MET via the Src homology 2 domain and this interaction was promoted by MET tyrosine kinase activity. The SOCS1-mediated reduction in MET expression does not require the juxtamembrane Y1003 residue implicated in Cbl-mediated downmodulation. Moreover, the proteasome inhibitor MG-132, but not the inhibitors of lysosomal degradation bafilomycin and chloroquine, reversed the SOCS1-mediated reduction in MET expression, indicating that this process is distinct from Cbl-mediated downmodulation. Accordingly, SOCS1 promoted polyubiquitination of MET via K48-dependent but not K63-mediated ubiquitin chain elongation. Furthermore, siRNA-mediated downmodulation of Cbl did not abolish SOCS1-mediated reduction in MET expression in HCC cells. SOCS1-dependent ubiquitination of endogenous MET receptor occurred rapidly following HGF stimulation in HCC cells, leading to proteasomal degradation of phosphorylated MET receptor. These findings indicate that SOCS1 mediates its tumor suppressor functions, at least partly, by binding to MET and interfering with downstream signaling pathways as well as by promoting the turnover of the activated MET receptor. We propose that loss of this control mechanism due to epigenetic repression of SOCS1 could contribute to oncogenic MET signaling in HCC and other cancers, and that MET inhibitors might be useful in treating these patients.
Collapse
Affiliation(s)
- Y Gui
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - M Yeganeh
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Y-C Donates
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - W-S Tobelaim
- Department of Anatomy and Cell biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - W Chababi
- Department of Anatomy and Cell biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - M Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - A Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - S Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - C Saucier
- Department of Anatomy and Cell biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - S Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
17
|
Hong XX, Carmichael GG. Innate immunity in pluripotent human cells: attenuated response to interferon-β. J Biol Chem 2013; 288:16196-205. [PMID: 23599426 PMCID: PMC3668775 DOI: 10.1074/jbc.m112.435461] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/18/2013] [Indexed: 12/13/2022] Open
Abstract
Type I interferon (IFN-α/β) binds to cell surface receptors IFNAR1 and IFNAR2 and triggers a signaling cascade that leads to the transcription of hundreds of IFN-stimulated genes. This response is a crucial component in innate immunity in that it establishes an "antiviral state" in cells and protects them against further damage. Previous work demonstrated that, compared with their differentiated counterparts, pluripotent human cells have a much weaker response to cytoplasmic double-stranded RNA (dsRNA) and are only able to produce a minimal amount of IFN-β. We show here that human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) also exhibit an attenuated response to IFN-β. Even though all known type I IFN signaling components are expressed in these cells, STAT1 phosphorylation is greatly diminished upon IFN-β treatment. This attenuated response correlates with a high expression of suppressor of cytokine signaling 1 (SOCS1). Upon differentiation of hESCs into trophoblasts, cells acquire the ability to respond to IFN-β, and this is accompanied by a significant induction of STAT1 phosphorylation as well as a decrease in SOCS1 expression. Furthermore, SOCS1 knockdown in hiPSCs enhances their ability to respond to IFN-β. Taken together, our results suggest that an attenuated cellular response to type I IFNs may be a general feature of pluripotent human cells and that this is associated with high expression of SOCS1.
Collapse
Affiliation(s)
- Xiao-Xiao Hong
- From the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032
| | - Gordon G. Carmichael
- From the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032
| |
Collapse
|
18
|
Harley R, Gruffydd-Jones T, Day M. Immunohistochemical Characterization of Oral Mucosal Lesions in Cats with Chronic Gingivostomatitis. J Comp Pathol 2011; 144:239-50. [DOI: 10.1016/j.jcpa.2010.09.173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 01/01/2023]
|
19
|
Hildebrand D, Walker P, Dalpke A, Heeg K, Kubatzky KF. Pasteurella multocida Toxin-induced Pim-1 expression disrupts suppressor of cytokine signalling (SOCS)-1 activity. Cell Microbiol 2011; 12:1732-45. [PMID: 20633028 DOI: 10.1111/j.1462-5822.2010.01504.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pasteurella multocida Toxin (PMT) is a mitogenic protein toxin that manipulates signal transduction cascades of mammalian host cells and upregulates Janus kinase (JAK) and signal transducers of transcription (STAT) activity. Here we show that in the presence of PMT, increased levels of suppressors of cytokine signalling-1 (SOCS-1) proteins significantly enhance STAT activity. This occurs via PMT-induced expression of the serine/threonine kinase Pim-1 and subsequent threonine phosphorylation of SOCS-1. The ability of SOCS-1 to act as an E3 ubiquitin ligase is regulated by its phosphorylation status. Thus, the tyrosine kinase JAK2 cannot be marked for proteasomal degradation by threonine phosphorylated SOCS-1. Consequently, the expression levels of JAK2 are increased, eventually leading to hyperactivity of JAK2 and its target, the transcription factor STAT3. Eventually this causes increased anchorage-independent cell growth that correlates with the expression levels of SOCS-1. Interestingly, endogenous SOCS-1 production after Toll-like receptor activation also causes STAT3 hyperactivation. Thus we hypothesize that P. multocida Toxin alters host cell signalling using mechanisms that have so far only been known to be employed by oncogenic viral kinases to avoid host immune defence mechanisms.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Chan WK, Lau ASY, Li JCB, Law HKW, Lau YL, Chan GCF. MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-gamma challenge. Exp Hematol 2008; 36:1545-55. [PMID: 18715686 DOI: 10.1016/j.exphem.2008.06.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/09/2008] [Accepted: 06/17/2008] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Under the influence of interferon-gamma (IFN-gamma), mesenchymal stromal cells (MSCs) are conditional antigen-presenting cells, which have immunosuppressive potential. Apart from IFN-gamma upregulation of major histocompatibility complexes class I and II (MHC-I and MHC-II) expression, the underlying kinetics and mechanisms have not been described previously. This information is helpful to delineate how human MSCs can be modulated by IFN-gamma in different clinical scenarios. MATERIALS AND METHODS Here, we demonstrated that IFN-gamma-treated MSCs underwent classical signal transduction pathway via phosphorylation of signal transducers and activators of transcription-1, activation of interferon regulatory factor-1, and class II transactivator comparable to that of primary human blood macrophages. RESULTS IFN-gamma markedly induced expression of MHC-I instantly, while its effects on MHC-II were less dramatic and delayed up to 4 days. This is due to a slower intracellular transport of the MHC-II antigen to the membrane surface. More important is that MSCs showed a reduction in their proliferation by 50% without evidence of cell death after prolonged IFN-gamma treatment for 8 days. High-dose IFN-gamma-treated MSCs (500 U/mL) could initiate T-cell activation as indicated by expression of CD25 and proliferation of allogeneic T cells. CONCLUSIONS The summative IFN-gamma effects will adversely affect the immunoprivilege status and lifespan of MSCs.
Collapse
Affiliation(s)
- Wing Keung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
21
|
Shim JH, Xiao C, Hayden MS, Lee KY, Trombetta ES, Pypaert M, Nara A, Yoshimori T, Wilm B, Erdjument-Bromage H, Tempst P, Hogan BLM, Mellman I, Ghosh S. CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. ACTA ACUST UNITED AC 2006; 172:1045-56. [PMID: 16567502 PMCID: PMC2063762 DOI: 10.1083/jcb.200509041] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Charged MVB protein 5 (CHMP5) is a coiled coil protein homologous to the yeast Vps60/Mos10 gene and other ESCRT-III complex members, although its precise function in either yeast or mammalian cells is unknown. We deleted the CHMP5 gene in mice, resulting in a phenotype of early embryonic lethality, reflecting defective late endosome function and dysregulation of signal transduction. Chmp5-/- cells exhibit enlarged late endosomal compartments that contain abundant internal vesicles expressing proteins that are characteristic of late endosomes and lysosomes. This is in contrast to ESCRT-III mutants in yeast, which are defective in multivesicular body (MVB) formation. The degradative capacity of Chmp5-/- cells was reduced, and undigested proteins from multiple pathways accumulated in enlarged MVBs that failed to traffic their cargo to lysosomes. Therefore, CHMP5 regulates late endosome function downstream of MVB formation, and the loss of CHMP5 enhances signal transduction by inhibiting lysosomal degradation of activated receptors.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Amino Acid Sequence
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Line
- Cells, Cultured
- Down-Regulation
- Embryo, Mammalian/metabolism
- Embryonic Development/genetics
- Embryonic Development/physiology
- Endocytosis/genetics
- Endocytosis/physiology
- Endosomal Sorting Complexes Required for Transport
- Endosomes/physiology
- Gene Expression Regulation, Developmental/genetics
- Histocompatibility Antigens Class II/metabolism
- Horseradish Peroxidase/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Lysosomes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- NIH 3T3 Cells
- Phenotype
- Phosphorylation
- Protein Serine-Threonine Kinases
- RNA, Small Interfering/genetics
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction/genetics
- Signal Transduction/physiology
- Stem Cells/metabolism
- Transfection
Collapse
Affiliation(s)
- Jae-Hyuck Shim
- Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Signal transduction via cytokine receptors is regulated by several mechanisms that control initiation, magnitude and duration of the signaling pathways. Cytokine-induced SOCS family adaptors function as feedback inhibitors of cytokine receptor signaling by inhibiting the JAK-STAT signal transduction pathway. Specific gene-targeted mice have unveiled critical, non-overlapping functions for SOCS1 and SOCS3 in lymphocyte development and homeostasis, and in the regulation of macrophage and dendritic cell functions. In this review, we will discuss the structure of SOCS proteins, mechanisms by which they control the JAK-STAT pathway and their role in immune regulation.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Faculty of Medicine, Immunology Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Que., Canada J1H 5N4.
| | | | | |
Collapse
|
23
|
Marth C, Fiegl H, Zeimet AG, Müller-Holzner E, Deibl M, Doppler W, Daxenbichler G. Interferon-gamma expression is an independent prognostic factor in ovarian cancer. Am J Obstet Gynecol 2004; 191:1598-605. [PMID: 15547530 DOI: 10.1016/j.ajog.2004.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Epithelial ovarian cancer prognosis is improved by the presence of intratumoral CD3 + T cells, which are known to produce interferon-gamma. We therefore speculated that interferon-gamma expression in ovarian cancer-infiltrating T-lymphocytes might cause better prognosis. PATIENTS AND METHODS Reverse transcriptase polymerase chain reaction was performed to measure the expression of interferon-gamma and other related genes in normal ovaries (n = 19) and in ovarian cancer specimens (n = 99). Median follow-up of patients was 5.8 years. RESULTS Interferon-gamma and CD-3 expression did not significantly differ in normal and malignant tissue. Patients with high levels of interferon-gamma expression had significantly longer progression-free and overall survival. Median time to progression was 10 and 29 months for patients with low and high interferon-gamma expression, respectively ( P = .039). Corresponding survival times were 29 and 44 months ( P < .032). Application of multivariate Cox regression analysis showed interferon-gamma expression to be an independent prognostic factor for progression-free and overall survival. CONCLUSION Elevated interferon-gamma expression correlates with improved clinical outcome in patients with ovarian cancer.
Collapse
Affiliation(s)
- Christian Marth
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ilangumaran S, Finan D, Raine J, Rottapel R. Suppressor of cytokine signaling 1 regulates an endogenous inhibitor of a mast cell protease. J Biol Chem 2003; 278:41871-80. [PMID: 12917417 DOI: 10.1074/jbc.m308382200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of c-Kit and interleukin-3 (IL-3) receptor signaling. We examined the role of SOCS1 in regulating IL-3-induced cell growth of primary bone marrow-derived mast cells (BMMCs) from SOCS1-/- mice. Instead of showing increased proliferation, SOCS1-deficient BMMCs responded poorly to IL-3 and stem cell factor. SOCS1-/- BMMCs showed increased apoptosis and defective cell cycle entry. We show that the growth retardation of SOCS1-/- BMMCs was due to a cell intrinsic defect. Protein tyrosine phosphorylation following IL-3 stimulation was markedly diminished in SOCS1-/- BMMCs. Intriguingly, JAK2 and STAT5 proteins were selectively diminished in SOCS1-/- BMMCs, which also showed lower molecular mass products of p85 and Vav suggesting proteolytic degradation. Incubation of the SOCS1-/- BMMC lysate with STAT5, p85, and Vav immunoprecipitated from SOCS1+/+ cells directly demonstrated the dysregulated proteolytic activity in SOCS1-/- BMMCs. The proteolytic activity in SOCS1-/- BMMCs was selectively inhibited by phenylmethylsulfonyl fluoride and soybean trypsin inhibitor, suggesting that the protease regulated by SOCS1 is a tryptase. The dysregulated tryptase in SOCS1-/- BMMCs is unlikely to be mMCP6 or mMCP7, because the enzyme activity was not inhibited by Polybrene but was inhibited by normal mouse plasma. SOCS1+/+ BMMC lysate inhibited the proteolytic activity present in SOCS1-/- BMMC lysate, indicating that SOCS1-/- BMMCs lack an endogenous protease inhibitor. These results show that SOCS1 is required for the expression and/or stability of an endogenous protease inhibitor, which protects mast cells from their own proteolytic enzymes.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto M5G 2M9, Canada
| | | | | | | |
Collapse
|
25
|
Abstract
The suppressor of cytokine signaling (SOCS) family of proteins is a novel class of negative feedback regulators of cytokine receptor signaling. SOCS1 is rapidly induced following stimulation by several type I and type II cytokines, and it attenuates their signaling by its ability to bind and inhibit all four of the Janus family of intracellular tyrosine kinases (JAKs). Studies from our own and other laboratories have documented another important function of SOCS1 in facilitating ubiquitination of protein substrates and their subsequent proteasomal degradation. SOCS1 also functions as a potential tumor suppressor by inhibiting several hematopoietic oncogenes. In addition to these negative regulatory functions, we have recently shown a positive regulatory role for SOCS1 in increasing the stability of major histocompatibility complex (MHC) class II proteins by preventing their degradation. These findings illustrate multiple roles for SOCS1 in cytokine receptor signaling, and provide groundwork for detailed analysis of the role of SOCS1 in pre-T cell receptor (TCR) and TCR signaling, and regulation of T helper (Th)1 and Th2 differentiation.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|