1
|
Song J, Lu Y, Liu L, Han X, Meng Y, Heng BC, Zhang X, Cui Q, Liu Z, Guo Y, Zheng X, You F, Lu D, Zhang X, Deng X. Charged substrate treatment enhances T cell mediated cancer immunotherapy. Nat Commun 2025; 16:1585. [PMID: 39939595 PMCID: PMC11821856 DOI: 10.1038/s41467-025-56858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8+ T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.
Collapse
Affiliation(s)
- Jia Song
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Lulu Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaoyu Han
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanhong Meng
- Department of Clinical Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xin Zhang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, PR China
| | - Qun Cui
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Ziqi Liu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yusi Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaona Zheng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Fuping You
- Institute of Systems Biomedicine, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, PR China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, PR China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.
- Oral Translational Medicine Research Center, Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair, Reconstruction and Regeneration, The First People's Hospital of Jinzhong, Jinzhong, Shanxi Province, PR China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.
| |
Collapse
|
2
|
Abstract
During thymocyte development at the double positive stage, thymocytes are subjected to a TCR quality check process termed "thymocyte selection." TCRs with proper binding capabilities to MHC molecules (with self-peptide) are able to transduce cell survival signals and allow the continuing of development to single positive T cells. It has been known that TCRs in DP cells can transduce signals with higher efficiency than peripheral mature T cells, even though they share most of the signaling components. Recent studies have revealed some thymocyte-specific signaling modulators including Themis and Tespa1. The activation of TCR signaling during positive selection results in the activation of several key transcription factors and extensive gene expression change, which has been revealed by newly developed systemic transcriptome analysis tools, and could be used for the evaluation of positive selection process. The fate determination postpositive selection is also governed on the epigenetic level including both DNA methylation and histone modifications.
Collapse
Affiliation(s)
- Jun Lyu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China; Department of Dermatology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Orent W, Mchenry AR, Rao DA, White C, Klein HU, Bassil R, Srivastava G, Replogle JM, Raj T, Frangieh M, Cimpean M, Cuerdon N, Chibnik L, Khoury SJ, Karlson EW, Brenner MB, De Jager P, Bradshaw EM, Elyaman W. Rheumatoid arthritis-associated RBPJ polymorphism alters memory CD4+ T cells. Hum Mol Genet 2015; 25:404-17. [PMID: 26604133 DOI: 10.1093/hmg/ddv474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Notch signaling has recently emerged as an important regulator of immune responses in autoimmune diseases. The recombination signal-binding protein for immunoglobulin kappa J region (RBPJ) is a transcriptional repressor, but converts into a transcriptional activator upon activation of the canonical Notch pathway. Genome-wide association studies of rheumatoid arthritis (RA) identified a susceptibility locus, rs874040(CC), which implicated the RBPJ gene. Here, chromatin state mapping generated using the chromHMM algorithm reveals strong enhancer regions containing DNase I hypersensitive sites overlapping the rs874040 linkage disequilibrium block in human memory, but not in naïve CD4(+) T cells. The rs874040 overlapping this chromatin state was associated with increased RBPJ expression in stimulated memory CD4(+) T cells from healthy subjects homozygous for the risk allele (CC) compared with memory CD4(+) T cells bearing the protective allele (GG). Transcriptomic analysis of rs874040(CC) memory T cells showed a repression of canonical Notch target genes IL (interleukin)-9, IL-17 and interferon (IFN)γ in the basal state. Interestingly, activation of the Notch pathway using soluble Notch ligand, Jagged2-Fc, induced IL-9 and IL-17A while delta-like 4Fc, another Notch ligand, induced higher IFNγ expression in the rs874040(CC) memory CD4(+) T cells compared with their rs874040(GG) counterparts. In RA, RBPJ expression is elevated in memory T cells from RA patients compared with control subjects, and this was associated with induced inflammatory cytokines IL-9, IL-17A and IFNγ in response to Notch ligation in vitro. These findings demonstrate that the rs874040(CC) allele skews memory T cells toward a pro-inflammatory phenotype involving Notch signaling, thus increasing the susceptibility to develop RA.
Collapse
Affiliation(s)
| | | | - Deepak A Rao
- Division of Rheumatology, Immunology and Allergy and
| | - Charles White
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Hans-Ulrich Klein
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | | | - Gyan Srivastava
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Joseph M Replogle
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Towfique Raj
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | | | - Maria Cimpean
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Nicole Cuerdon
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Lori Chibnik
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Samia J Khoury
- Ann Romney Center for Neurologic Diseases, Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | - Philip De Jager
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Elizabeth M Bradshaw
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases, Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Broad Institute at Harvard University and MIT, NRB-641, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and
| |
Collapse
|
4
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
5
|
Landry JW, Banerjee S, Taylor B, Aplan PD, Singer A, Wu C. Chromatin remodeling complex NURF regulates thymocyte maturation. Genes Dev 2011; 25:275-86. [PMID: 21289071 DOI: 10.1101/gad.2007311] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The maturation of T cells requires signaling from both cytokine and T-cell receptors to gene targets in chromatin, but how chromatin architecture influences this process is largely unknown. Here we show that thymocyte maturation post-positive selection is dependent on the nucleosome remodeling factor (NURF). Depletion of Bptf (bromodomain PHD finger transcription factor), the largest NURF subunit, in conditional mouse mutants results in developmental arrest beyond the CD4(+) CD8(int) stage without affecting cellular proliferation, cellular apoptosis, or coreceptor gene expression. In the Bptf mutant, specific subsets of genes important for thymocyte development show aberrant expression. We also observed defects in DNase I-hypersensitive chromatin structures at Egr1, a prototypical Bptf-dependent gene that is required for efficient thymocyte development. Moreover, chromatin binding of the sequence-specific factor Srf (serum response factor) to Egr1 regulatory sites is dependent on Bptf function. Physical interactions between NURF and Srf suggest a model in which Srf recruits NURF to facilitate transcription factor binding at Bptf-dependent genes. These findings provide evidence for causal connections between NURF, transcription factor occupancy, and gene regulation during thymocyte development.
Collapse
Affiliation(s)
- Joseph W Landry
- Laboratory of Biochemistry and Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Laird RM, Hayes SM. Profiling of the early transcriptional response of murine gammadelta T cells following TCR stimulation. Mol Immunol 2009; 46:2429-38. [PMID: 19439358 DOI: 10.1016/j.molimm.2009.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/28/2009] [Indexed: 10/20/2022]
Abstract
Gammadelta T cells represent one of the three lineages of lymphocytes, along with alphabeta T cells and B cells, which express antigen receptors. Since their discovery over two decades ago, considerable effort has been made to understand their antigen specificity and their contribution to the immune response. From these studies, we have learned that gammadelta T cells recognize a different set of antigens than alphabeta T cells, acquire effector functions faster than alphabeta T cells, regulate the response of other immune cells during infection, and play distinct roles in immunity. The molecular basis for how gammadelta T cells manifest their unique functions, however, remains unknown. To address this, we profiled the genes upregulated soon after TCR stimulation in order to identify which gene networks associated with T cell effector function are induced in gammadelta T cells. Interestingly, most of the genes in this transcriptional profile were not unique to activated gammadelta T cells, as they were also expressed in activated alphabeta T cells. However, many of the genes within this profile were upregulated with faster kinetics and/or greater magnitude in activated gammadelta T cells than in activated alphabeta T cells. In addition, we found that the genes in the transcriptional profile of activated wild-type gammadelta T cells can be used as a standard to screen activated gammadelta T cells from mice with potential signaling defects for alterations in gammadelta TCR signal transduction. Thus, by defining the early transcriptional response of activated wild-type gammadelta T cells and by comparing their transcriptional profile to that of activated wild-type alphabeta T cells as well as to that of activated gammadelta T cells from signaling defective mice, we are able to gain important insights into the molecular basis for gammadelta T cell function.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams Street, 2220 Weiskotten Hall, Syracuse, NY 13210, USA
| | | |
Collapse
|
7
|
Bettini ML, Kersh GJ. MAP kinase phosphatase activity sets the threshold for thymocyte positive selection. Proc Natl Acad Sci U S A 2007; 104:16257-62. [PMID: 17901205 PMCID: PMC2042194 DOI: 10.1073/pnas.0705321104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of MAP kinases is important for proper translation of T cell antigen receptor (TCR) signals into thymocyte cell fates, but the role of MAP kinase phosphatase (MKP) activity in thymocyte development has not been characterized. To explore the role of MKP in thymocytes, we constructed a double mutant MKP-3 (DM-MKP3) that acts as a dominant-negative inhibitor of ERK- and JNK-specific MKP. Thymocytes developing in the presence of DM-MKP3 have enhanced frequencies of both CD4 and CD8 mature, single-positive cells and no increase in apoptosis. Expression of DM-MKP3 also results in an increased proportion of thymocytes with high levels of both CD69 and TCRbeta, suggesting that the increased proportion of mature thymocytes is the result of an increased probability that CD4(+)CD8(+) cells will be positively selected. Thus, MKP activity controls thymocyte cell fate by regulating the threshold of TCR signaling that is able to induce positive selection.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Department of Pathology and Laboratory Medicine, 101 Woodruff Circle, Emory University School of Medicine, Atlanta, GA 30322
| | - Gilbert J. Kersh
- Department of Pathology and Laboratory Medicine, 101 Woodruff Circle, Emory University School of Medicine, Atlanta, GA 30322
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Despouy G, Joiner M, Le Toriellec E, Weil R, Stern MH. The TCL1 oncoprotein inhibits activation-induced cell death by impairing PKCtheta and ERK pathways. Blood 2007; 110:4406-16. [PMID: 17846228 DOI: 10.1182/blood-2006-11-059501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The TCL1/MTCP1 oncogenes were identified on the basis of their involvement in T-cell prolymphocytic leukemia (T-PLL). TCL1 and MTCP1 proteins directly interact with AKT and modulate the AKT signal-transduction pathway, but the relevance of this mechanism in leukemogenesis remains unclear. We investigate the biologic functions of TCL1 in the T-cell lineage using various cell lines, and primary malignant and normal lymphocytes. In the Jurkat cell line, expression of TCL1 had no effect in unstimulated cells, whereas it abrogated activation-induced cell death (AICD). These cellular effects were concomitant with a major inhibition by TCL1 of PKCtheta and ERK pathways. Secondly, the TCL1-driven T-cell leukemia cell line SUP-T11 was shown to have impaired PKCtheta and ERK phosphorylation upon stimulation, which were restored by TCL1 inhibition using RNA interference. Finally, defects in these pathways were also observed in primary malignant (T-PLL) and transduced normal T lymphocytes expressing TCL1. Altogether, our data demonstrated that TCL1 inhibits AICD in T cells by blocking PKCtheta and ERK activation, upon cellular activation.
Collapse
|
9
|
de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD. Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 2007; 82:1289-1300. [PMID: 17656651 DOI: 10.1189/jlb.0507315] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/22/2007] [Accepted: 07/02/2007] [Indexed: 11/24/2022] Open
Abstract
The heparan sulfate-cleaving enzyme heparanase (HPSE) plays an important role in remodeling of the basement membrane and extracellular matrix during inflammation. Inducible HPSE enzymatic activity has been reported in leukocytes; however, little is known of the molecular mechanisms that regulate HPSE gene expression during inflammatory disease. In this study, HPSE expression and regulation in the T cell-mediated disease model, experimental autoimmune encephalomyelitis (EAE), were investigated. Expression analysis showed that HPSE mRNA is induced in rat CD4+ antigen-specific T lymphocytes upon activation and correlates with the encephalitogenicity of the cells. Examination of the kinetics and cell type-specific expression of HPSE throughout the progression of active EAE in rats, indicated that HPSE was highly expressed in CD4+ T cells infiltrating the central nervous system (CNS) during clinical disease. Little or no HPSE expression was observed in CD8+ T cells, macrophages, or astrocytes during disease progression. To investigate the mechanism of inducible HPSE gene regulation in T cells, studies were extended into human primary T cells. HPSE mRNA, protein, and enzymatic activity were induced upon activation. Functional analysis of the human HPSE promoter identified an EGR1 binding motif that contained high inducible activity and was transactivated by EGR1. Furthermore, the treatment of primary T lymphocytes with an EGR1 siRNA inhibited inducible HPSE mRNA expression. These data provide evidence to suggest that inducible HPSE expression in primary T lymphocytes is regulated at the transcriptional level by EGR1 and is important in facilitating CD4+ T cell infiltration into the CNS to promote EAE.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Blotting, Western
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Central Nervous System/metabolism
- Disease Progression
- Early Growth Response Protein 1/antagonists & inhibitors
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation
- Glucuronidase/antagonists & inhibitors
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Heparitin Sulfate/metabolism
- Humans
- Immunization
- Leukocytes, Mononuclear/metabolism
- Luciferases/metabolism
- Lymphocyte Activation
- Macrophages/metabolism
- Plasmids
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Amanda M de Mestre
- Cancer and Molecular Immunology Group, Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | | | | | | | | |
Collapse
|
10
|
Ke J, Gururajan M, Kumar A, Simmons A, Turcios L, Chelvarajan RL, Cohen DM, Wiest DL, Monroe JG, Bondada S. The role of MAPKs in B cell receptor-induced down-regulation of Egr-1 in immature B lymphoma cells. J Biol Chem 2006; 281:39806-18. [PMID: 17065146 DOI: 10.1074/jbc.m604671200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking of the B cell receptor (BCR) on the immature B lymphoma cell line BKS-2 induces growth inhibition and apoptosis accompanied by rapid down-regulation of the immediate-early gene egr-1. In these lymphoma cells, egr-1 is expressed constitutively and has a prosurvival role, as Egr-1-specific antisense oligonucleotides or expression of a dominant-negative inhibitor of Egr-1 also prevented the growth of BKS-2 cells. Moreover, enhancement of Egr-1 protein with phorbol 12-myristate 13-acetate or an egr-1 expression vector rescued BKS-2 cells from BCR signal-induced growth inhibition. Nuclear run-on and mRNA stability assays indicated that BCR-derived signals act at the transcriptional level to reduce egr-1 expression. Inhibitors of ERK and JNK (but not of p38 MAPK) reduced egr-1 expression at the protein level. Transcriptional regulation appears to have a role because egr-1 promoter-driven luciferase expression was reduced by ERK and JNK inhibitors. Promoter truncation experiments suggested that several serum response elements are required for MAPK-mediated egr-1 expression. Our study suggests that BCR signals reduce egr-1 expression by inhibiting activation of ERK and JNK. Unlike ERK and JNK, p38 MAPK reduces constitutive expression of egr-1. Unlike the immature B lymphoma cells, normal immature B cells did not exhibit constitutive MAPK activation. BCR-induced MAPK activation was modest and transient with a small increase in egr-1 expression in normal immature B cells consistent with their inability to proliferate in response to BCR cross-linking.
Collapse
Affiliation(s)
- Jiyuan Ke
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Auphan-Anezin N, Mazza C, Guimezanes A, Barrett-Wilt GA, Montero-Julian F, Roussel A, Hunt DF, Malissen B, Schmitt-Verhulst AM. Distinct orientation of the alloreactive monoclonal CD8 T cell activation program by three different peptide/MHC complexes. Eur J Immunol 2006; 36:1856-66. [PMID: 16761314 DOI: 10.1002/eji.200635895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have characterized three different programs of activation for alloreactive CD8 T cells expressing the BM3.3 TCR, their elicitation depending on the characteristics of the stimulating peptide/MHC complex. The high-affinity interaction between the TCR and the K(b)-associated endogenous peptide pBM1 (INFDFNTI) induced a complete differentiation program into effector cells correlated with sustained ERK activation. The K(bm8) variant elicited a partial activation program with delayed T cell proliferation, poor CTL activity and undetectable ERK phosphorylation; this resulted from a low-avidity interaction of TCR BM3.3 with a newly identified endogenous peptide, pBM8 (SQYYYNSL). Interestingly, mismatched pBM1/K(bm8) complexes induced a split response in BM3.3 T cells, with total reconstitution of T cell proliferation but defective generation of CTL activity that was correlated with strong but shortened ERK phosphorylation. Crystal structures highlight the molecular basis for the higher stability of pBM8/K(bm8) compared to pBM1/K(bm8) complexes that exist in two conformers. This study illustrates the importance of the stability of both peptide/MHC and peptide/MHC-TCR interactions for induction of sustained signaling required to induce optimal CTL effector functions. Subtle allelic structural variations, amplified by peptide selection, may thus orient distinct outcomes of alloreactive TCR-based therapies.
Collapse
Affiliation(s)
- Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Universite de la Méditerranée, Campus de Luminy, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xi H, Schwartz R, Engel I, Murre C, Kersh GJ. Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 2006; 24:813-826. [PMID: 16782036 DOI: 10.1016/j.immuni.2006.03.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/20/2005] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
The response of thymocytes to pre-T cell receptor (pre-TCR) signaling includes proliferation and gene rearrangement, two cellular processes that are incompatible. The control of proliferation by pre-TCR signals depends on the activities of the transcription factors RORgammat, Egr3, E12, and E47. Here, we describe a regulatory network in which interplay between these factors ensures transient proliferation that is temporally distinct from gene rearrangement. RORgammat expression was elevated after pre-TCR signaling, and RORgammat promoted gene rearrangement in CD4+, CD8+ cells by inhibiting cell division, promoting survival via Bcl-X(L), and inducing Rag2. Egr3 was transiently induced by pre-TCR signals and promoted a distinct proliferative phase by reducing E protein-dependent RORgammat expression and interacting with RORgammat to prevent induction of target genes. After Egr3 subsided, the expression and function of RORgammat increased. Thus, transient induction of Egr3 delays the effects of RORgammat and enables pre-TCR signaling to induce both proliferation and gene rearrangement.
Collapse
MESH Headings
- Animals
- E-Box Elements
- Early Growth Response Protein 3/genetics
- Early Growth Response Protein 3/metabolism
- Gene Rearrangement, T-Lymphocyte
- Inhibitor of Differentiation Proteins/metabolism
- Lymphocyte Activation/genetics
- Mice
- Mice, Mutant Strains
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Promoter Regions, Genetic
- RNA-Binding Proteins/genetics
- Rats
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- TCF Transcription Factors/metabolism
- Transcription Factor 7-Like 1 Protein
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322
| | - Ruth Schwartz
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Isaac Engel
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Gilbert J Kersh
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322.
| |
Collapse
|
13
|
Cron RQ, Bandyopadhyay R, Genin A, Brunner M, Kersh GJ, Yin J, Finkel TH, Crow MK. Early growth response-1 is required for CD154 transcription. THE JOURNAL OF IMMUNOLOGY 2006; 176:811-8. [PMID: 16393964 PMCID: PMC1424665 DOI: 10.4049/jimmunol.176.2.811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD154 (CD40 ligand) expression on CD4 T cells is normally tightly controlled, but abnormal or dysregulated expression of CD154 has been well documented in autoimmune diseases, such as systemic lupus erythematosus. Beyond regulation by NFAT proteins, little is known about the transcriptional activation of the CD154 promoter. We identified a species-conserved purine-rich sequence located adjacent to the CD154 transcriptional promoter proximal NFAT site, which binds early growth response (Egr) transcription factors. Gel shift assays and chromatin immunoprecipitation assays reveal that Egr-1, Egr-3, and NFAT1 present in primary human CD4 T cells are capable of binding this combinatorial site in vitro and in vivo, respectively. Multimerization of this NFAT/Egr sequence in the context of a reporter gene demonstrates this sequence is transcriptionally active upon T cell activation in primary human CD4 T cells. Overexpression of Egr-1, but not Egr-3, is capable of augmenting transcription of this reporter gene as well as that of an intact CD154 promoter. Conversely, overexpression of small interfering RNA specific for Egr-1 in primary human CD4 T cells inhibits CD154 expression. Similarly, upon activation, CD154 message is notably decreased in splenic CD4 T cells from Egr-1-deficient mice compared with wild-type controls. Our data demonstrate that Egr-1 is required for CD154 transcription in primary CD4 T cells. This has implications for selective targeting of Egr family members to control abnormal expression of CD154 in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Randy Q Cron
- Division of Rheumatology, Children's Hospital of Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tarrade A, Bastien J, Bruck N, Bauer A, Gianni M, Rochette-Egly C. Retinoic acid and arsenic trioxide cooperate for apoptosis through phosphorylated RXR alpha. Oncogene 2005; 24:2277-88. [PMID: 15688020 DOI: 10.1038/sj.onc.1208402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arsenite trioxide (As2O3) induces apoptosis in several cell lines by disturbing key signal transduction pathways through its oxidative properties. Here, we report that As2O3 also induces the phosphorylation of the retinoid receptor RXRalpha, subsequent to oxidative damages and the activation of the stress-activated protein kinases cascade (JNKs). We also report that RA amplifies both As2O3-induced phosphorylation of RXRalpha and apoptosis. Taking advantage of 'rescue' F9 cell lines expressing RXRalpha mutated at its phosphorylation sites, in an RXRalpha null background, we provide evidence that RXRalpha is a key element involved in that potentiating effect. Finally, we demonstrate that As2O3 also abrogates the transactivation of RA-target genes.
Collapse
Affiliation(s)
- Anne Tarrade
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Singh A, Svaren J, Grayson J, Suresh M. CD8 T cell responses to lymphocytic choriomeningitis virus in early growth response gene 1-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3855-62. [PMID: 15356133 DOI: 10.4049/jimmunol.173.6.3855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous in vitro work has implicated a role for transcriptional factor early growth response gene 1 (EGR1) in regulating immune responses. However, the in vivo role of EGR1 in orchestrating T cell responses has not been studied. To investigate the importance of EGR1 in T cell immunity, we compared Ag-specific CD8 T cell responses between wild type (+/+) and EGR1-deficient (EGR1-/-) mice following an acute infection with lymphocytic choriomeningitis virus (LCMV). These studies revealed that the expansion of LCMV-specific CD8 T cells was substantially reduced in EGR1-/- mice, as compared with +/+ mice. The reduced numbers of LCMV-specific CD8 T cells in EGR1-/- mice were not due to an intrinsic T cell defect per se because purified EGR1-deficient T cells exhibited normal proliferative response to anti-CD3 stimulation in vitro, and underwent normal activation and expansion in response to LCMV upon adoptive transfer into T cell-deficient mice. Furthermore, adoptive transfer of CD8 T cells bearing a transgenic TCR into EGR1-/- mice showed that EGR1 deficiency in non-CD8 T cells impaired CD8 T cell expansion in vivo following an LCMV infection. Further investigations on accessory cells showed that bone marrow-derived dendritic cells from EGR1-/- mice did not exhibit detectable impairment to prime Ag-specific CD8 T cell responses in vivo. However, in LCMV-infected mice, EGR1 deficiency selectively impaired the maturation of CD8alpha(+ve) plasmacytoid dendritic cells. Taken together, our findings suggest that EGR1 might promote expansion of CD8 T cells during an acute viral infection by modulating the cues in the lymphoid microenvironment.
Collapse
Affiliation(s)
- Anju Singh
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
16
|
Tullai JW, Schaffer ME, Mullenbrock S, Kasif S, Cooper GM. Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways. J Biol Chem 2004; 279:20167-77. [PMID: 14769801 DOI: 10.1074/jbc.m309260200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have taken an integrated approach in which expression profiling has been combined with the use of small molecule inhibitors and computational analysis of transcription factor binding sites to characterize regulatory sequences of genes that are targets of specific signaling pathways in growth factor-stimulated human cells. T98G cells were stimulated with platelet-derived growth factor (PDGF) and analyzed by DNA microarrays, which identified 74 immediate-early gene transcripts. Cells were then treated with inhibitors to identify subsets of genes that are targets of the phosphatidylinositol 3-kinase (PI3K) and MEK/ERK signaling pathways. Four groups of PDGF-induced genes were defined: independent of PI3K and MEK/ERK signaling, dependent on PI3K signaling, dependent on MEK/ERK signaling, and dependent on both pathways. The upstream regions of all genes in the four groups were scanned using TRANSFAC for putative cis-elements as compared with a background set of non-induced genes. Binding sites for 18 computationally predicted transcription factors were over-represented in the four groups of co-expressed genes compared with the background sequences (p < 0.01). Many of the cis-elements identified were conserved in orthologous mouse genes, and many of the predicted elements and their cognate transcription factors were consistent with previous experimental data. In addition, chromatin immunoprecipitation assays experimentally verified nine predicted SRF binding sites in T98G cells, including a previously unknown SRF site upstream of DUSP5. These results indicate that groups of human genes regulated by discrete intracellular signaling pathways share common cis-regulatory elements.
Collapse
Affiliation(s)
- John W Tullai
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
17
|
Xi H, Kersh GJ. Early Growth Response Gene 3 Regulates Thymocyte Proliferation during the Transition from CD4−CD8− to CD4+CD8+1. THE JOURNAL OF IMMUNOLOGY 2004; 172:964-71. [PMID: 14707069 DOI: 10.4049/jimmunol.172.2.964] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In thymocytes developing in the alphabeta lineage, the transition from CD4, CD8 double negative (DN) to CD4, CD8 double positive (DP) is associated with several rounds of cell division and changes in the expression of multiple genes. This transition is induced by the formation of a pre-TCR that includes a rearranged TCR beta-chain and the pre-TCR alpha-chain. The mechanism by which the pre-TCR influences both gene expression and proliferation has not been defined. We have evaluated the role played by early growth response gene 3 (Egr3) in translating pre-TCR signals into differentiation and proliferation. Egr3 is a transcriptional regulator that contains a zinc-finger DNA binding domain. We find that Egr3-deficient mice have a reduced number of thymocytes compared with wild-type mice, and that this is due to poor proliferation during the DN to DP transition. Treatment of both Egr3(+/+) and Egr3(-/-) mice on the Rag1(-/-) background with anti-CD3epsilon Ab in vivo results in similar differentiation events, but reduced cell recovery in the Egr3(-/-) mice. We have also generated transgenic mice that express high levels of Egr3 constitutively, and when these mice are bred onto a Rag1(-/-) background they exhibit increased proliferation in the absence of stimulation and have pre-TCR alpha-chain and CD25 down-regulation, as well as increased Calpha expression. The results show that Egr3 is an important regulator of proliferation in response to pre-TCR signals, and that it also may regulate some specific aspects of differentiation.
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
18
|
de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD. Regulation of Inducible Heparanase Gene Transcription in Activated T Cells by Early Growth Response 1. J Biol Chem 2003; 278:50377-85. [PMID: 14522979 DOI: 10.1074/jbc.m310154200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage of heparan sulfate by the beta-D-endoglucuronidase heparanase (HPSE) is a fundamental event in a number of important physiological processes including inflammation, wound healing, and angiogenesis. HPSE activity has also been directly correlated with pathological conditions such as tumor growth and metastasis and autoimmune disease. The tight regulation of HPSE expression and function is critical to ensure homeostasis of the normal physiological processes to which it contributes and to prevent imbalance toward pathological situations. Little is known about the transcriptional mechanisms that regulate HPSE expression. In this study we have shown human HPSE gene transcription in Jurkat T cells is induced upon activation. Functional analysis of the HPSE promoter has identified a 280-bp region that is highly inducible. Mutation studies together with supershift experiments have identified a 4-bp motif that binds the transcription factor early growth response-1 (Egr1) and is critical in regulating inducible HPSE gene transcription. Furthermore, the overexpression of Egr1 resulted in the enhanced activation of the HPSE promoter. By using MAPK pathway inhibitors, we have also shown that inducible expression of HPSE mRNA and the activity of the 280-bp HPSE promoter element are dependent on the ERK1/2 (MEK1/2) pathway. This pathway is critical for induction of Egr1 expression at both the mRNA and protein level in T cells, an observation that provides further support to Egr1 playing an important role as a key activator of HPSE expression. In addition, HPSE and Egr1 were shown to co-localize by immunohistochemistry to invading mononuclear leukocytes in actively induced experimental autoimmune encephalomyelitis in rats. These findings provide the first insight into the mechanisms controlling inducible transcription of the HPSE gene, and could represent an important lead into understanding how HPSE expression is deregulated in metastatic tumor cells.
Collapse
Affiliation(s)
- Amanda M de Mestre
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Acton ACT 2601
| | | | | | | | | |
Collapse
|