1
|
Alnahdi AS, Idrees M. Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21163-21185. [PMID: 38124592 DOI: 10.3934/mbe.2023936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oncology research has focused extensively on estrogen hormones and their function in breast cancer proliferation. Mathematical modeling is essential for the analysis and simulation of breast cancers. This research presents a novel approach to examine the therapeutic and inhibitory effects of hormone and estrogen therapies on the onset of breast cancer. Our proposed mathematical model comprises a nonlinear coupled system of partial differential equations, capturing intricate interactions among estrogen, cytotoxic T lymphocytes, dormant cancer cells, and active cancer cells. The model's parameters are meticulously estimated through experimental studies, and we conduct a comprehensive global sensitivity analysis to assess the uncertainty of these parameter values. Remarkably, our findings underscore the pivotal role of hormone therapy in curtailing breast tumor growth by blocking estrogen's influence on cancer cells. Beyond this crucial insight, our proposed model offers an integrated framework to delve into the complexity of tumor progression and immune response under hormone therapy. We employ diverse experimental datasets encompassing gene expression profiles, spatial tumor morphology, and cellular interactions. Integrating multidimensional experimental data with mathematical models enhances our understanding of breast cancer dynamics and paves the way for personalized treatment strategies. Our study advances our comprehension of estrogen receptor-positive breast cancer and exemplifies a transformative approach that merges experimental data with cutting-edge mathematical modeling. This framework promises to illuminate the complexities of cancer progression and therapy, with broad implications for oncology.
Collapse
Affiliation(s)
- Abeer S Alnahdi
- Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Muhammad Idrees
- Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Thike AA, Chen X, Koh VCY, Binte Md Nasir ND, Yeong JPS, Bay BH, Tan PH. Higher densities of tumour-infiltrating lymphocytes and CD4 + T cells predict recurrence and progression of ductal carcinoma in situ of the breast. Histopathology 2021; 76:852-864. [PMID: 31883279 DOI: 10.1111/his.14055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
AIMS Host immunity influences cancer progression and therapeutic response. We investigated the potential of tumour-infiltrating lymphocytes (TILs) around ductal carcinoma in situ (DCIS) in predicting recurrence and progression. METHODS AND RESULTS CD4, CD8, programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression in DCIS from 198 patients was determined by immunohistochemistry. We correlated disease-free survival (DFS), clinicopathological parameters and biomarker expression with TIL density and CD4/CD8 ratio. High TIL density was associated with high nuclear grade (P < 0.001), DCIS PD-L1 expression (P = 0.008), TIL PD-L1 expression (P < 0.001), oestrogen (ER) negativity (P < 0.001), progesterone (PR) negativity (P < 0.001), human epidermal growth factor receptor 2 (HER2) positivity (P = 0.002) and triple negativity (P = 0.001). TIL PD-L1 expression was associated with triple-negative DCIS (P = 0.028). TIL density was associated with molecular subtypes (P < 0.001). High CD4+ T cell density was associated with high nuclear grade (P = 0.001), microinvasion (P = 0.037), ER negativity (P < 0.001), PR negativity (P = 0.001), HER2 positivity (P = 0.004), triple negativity (P = 0.023) and PD-L1 expression in TILs (P < 0.011). High CD4/CD8 ratio was associated with PD-L1 expression in DCIS (P = 0.035) and TILs (P < 0.001). DCIS with higher TIL density disclosed worse DFS (P = 0.012) and was affirmed with multivariate analysis [95% confidence interval (CI) = 1.109-2.554, hazard ratio (HR) = 1.683, P = 0.014]. Poorer DFS for ipsilateral invasive recurrence was found for DCIS with higher CD4+ T cell density (P = 0.006) or CD4/CD8 ratio (P = 0.02), confirmed by multivariate analysis for the former (95% CI = 1.369-10.196, HR = 3.736, P = 0.01) and latter (95% CI = 1.311-7.935, HR = 3.225, P = 0.011). CONCLUSION DCIS with higher TIL density was associated with poorer prognostic parameters and predicted recurrence, while both CD4+ T cell density and CD4/CD8 ratio were associated with both recurrence and ipsilateral invasive recurrence.
Collapse
Affiliation(s)
- Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Xiaoyang Chen
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Joe P S Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
3
|
Idrees M, Sohail A. Bio-algorithms for the modeling and simulation of cancer cells and the immune response. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2020-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
There have been significant developments in clinical, experimental, and theoretical approaches to understand the biomechanics of tumor cells and immune cells. Cytotoxic T lymphocytes (CTLs) are regarded as a major antitumor mechanism of immune cells. Mathematical modeling of tumor growth is an important and useful tool to observe and understand clinical phenomena analytically. This work develops a novel two-variable mathematical model to describe the interaction of tumor cells and CTLs. The designed model is providing an integrated framework to investigate the complexity of tumor progression and answer clinical questions that cannot always be reached with experimental tools. The parameters of the model are estimated from experimental study and stability analysis of the model is performed through nullclines. A global sensitivity analysis is also performed to check the uncertainty of the parameters. The results of numerical simulations of the model support the importance of the CTLs and demonstrate that CTLs can eliminate small tumors. The proposed model provides efficacious information to study and demonstrate the complex dynamics of breast cancer.
Collapse
Affiliation(s)
- Muhammad Idrees
- Department of Mathematics , COMSATS University Islamabad , Lahore , Pakistan
| | - Ayesha Sohail
- Department of Mathematics , COMSATS University Islamabad , Lahore , Pakistan
| |
Collapse
|
4
|
Uslu U, Erdmann M, Wiesinger M, Schuler G, Schuler-Thurner B. Automated Good Manufacturing Practice–compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines. Cytotherapy 2019; 21:1166-1178. [DOI: 10.1016/j.jcyt.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
|
5
|
Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat 2019; 177:17-27. [PMID: 31134489 DOI: 10.1007/s10549-019-05272-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) of the breast is often regarded as a non-obligate precursor to invasive breast carcinoma but current diagnostic tools are unable to accurately predict the invasive potential of DCIS. Infiltration of immune cells into the tumour and its microenvironment is often an early event at the site of tumourigenesis. These immune infiltrates may be potential predictive and/or prognostic biomarkers for DCIS. This review aims to discuss recent findings pertaining to the potential prognostic significance of immune infiltrates as well as their evaluation in DCIS. METHODS A literature search on PubMed was conducted up to 28th January 2019. Search terms used were "DCIS", "ductal carcinoma in situ", "immune", "immunology", "TIL", "TIL assessment", and "tumour-infiltrating lymphocyte". Search filters for "Most Recent" and "English" were applied. Information from published papers related to the research topic were synthesised and summarised for this review. RESULTS Studies have revealed that immune infiltrates play a role in the biology and microenvironment of DCIS, as well as treatment response. There is currently no consensus on the evaluation of TILs in DCIS for clinical application. CONCLUSIONS This review highlights the recent findings on the potential influence and prognostic value of immunological processes on DCIS progression, as well as the evaluation of TILs in DCIS. Further characterisation of the immune milieu of DCIS is recommended to better understand the immune response in DCIS progression and recurrence.
Collapse
|
6
|
Hayes SA, Clarke S, Pavlakis N, Howell VM. The role of proteomics in the age of immunotherapies. Mamm Genome 2018; 29:757-769. [PMID: 30046851 DOI: 10.1007/s00335-018-9763-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
The antigenic landscape of the adaptive immune response is determined by the peptides presented by immune cells. In recent years, a number of immune-based cancer therapies have been shown to induce remarkable clinical responses through the activation of the patient's immune system. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. Recent advances in proteomics have led to considerable developments in the more comprehensive profiling of the immune response. "Immunoproteomics" utilises a rapidly increasing collection of technologies in order to identify and quantify antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry (MS), DNA-based, or computer-based (in silico) approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers to a depth not before understood. This review gives an overview of the emerging role of proteomics in improving personalisation of immunotherapy treatment.
Collapse
Affiliation(s)
- Sarah A Hayes
- Bill Walsh Translational Cancer Research Laboratory, Hormones and Cancer, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, Australia.
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Stephen Clarke
- Bill Walsh Translational Cancer Research Laboratory, Hormones and Cancer, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Sydney, Australia
| | - Nick Pavlakis
- Bill Walsh Translational Cancer Research Laboratory, Hormones and Cancer, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Sydney, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Hormones and Cancer, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Rozanov DV, Rozanov ND, Chiotti KE, Reddy A, Wilmarth PA, David LL, Cha SW, Woo S, Pevzner P, Bafna V, Burrows GG, Rantala JK, Levin T, Anur P, Johnson-Camacho K, Tabatabaei S, Munson DJ, Bruno TC, Slansky JE, Kappler JW, Hirano N, Boegel S, Fox BA, Egelston C, Simons DL, Jimenez G, Lee PP, Gray JW, Spellman PT. MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection. J Proteomics 2018; 176:13-23. [PMID: 29331515 DOI: 10.1016/j.jprot.2018.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cells. We determined the sequence of 3196 MHC class I ligands representing 1921 proteins from a panel of 20 breast cancer cell lines. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2740. Of the unique peptides eluted, more than 1750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, half of these immunogenic peptides were shared between different breast cancer cell lines. MHC class I binding probability was used to plot the distribution of the eluted peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. SIGNIFICANCE By employing proteomic analyses of eluted peptides from breast cancer cells, the current study has built an initial HLA-I-typed antigen collection for breast cancer research. It was also determined that immunogenic epitopes can be identified using established cell lines and that shared immunogenic peptides can be found in different cancer types such as breast cancer and leukemia. Importantly, out of 3196 eluted peptides that included duplicate peptides in different cells 89 peptides either contained mutation in their sequence or were derived from aberrant translation suggesting that mutation-containing epitopes are on the order of 2-3% in breast cancer cells. Finally, our results suggest that interfering with MHC class I function is one of the mechanisms of how tumor cells escape immune system attack.
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States.
| | | | - Kami E Chiotti
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Ashok Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, United States
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, United States
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, United States
| | - Seung W Cha
- Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Sunghee Woo
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Pavel Pevzner
- The NIH Center for Computational Mass Spectrometry, University of California, San Diego, San Diego, CA, United States
| | - Vineet Bafna
- Computer Science & Engineering, University of California, San Diego, CA, United States
| | - Gregory G Burrows
- Neurology and Biochemistry & Molecular Biology, Oregon Health and Science University, Portland, OR, United States
| | | | - Trevor Levin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Pavana Anur
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Katie Johnson-Camacho
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Shaadi Tabatabaei
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Daniel J Munson
- Department of Immunology & Microbiology, University of Colorado, Denver, CO, United States
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jill E Slansky
- Department of Immunology & Microbiology, University of Colorado, Denver, CO, United States
| | - John W Kappler
- National Jewish Medical and Research Center, Denver, CO, United States
| | - Naoto Hirano
- Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Sebastian Boegel
- University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Bernard A Fox
- Laboratory of Molecular and Tumor Immunology, Chiles Research Institute Providence PDX Medical Center, Portland, OR, United States
| | - Colt Egelston
- City of Hope National Medical Center, Duarte, CA, United States
| | - Diana L Simons
- City of Hope National Medical Center, Duarte, CA, United States
| | - Grecia Jimenez
- City of Hope National Medical Center, Duarte, CA, United States
| | - Peter P Lee
- City of Hope National Medical Center, Duarte, CA, United States
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States; Center for Health & Healing, Oregon Health and Science University, Portland, OR, United States
| | - Paul T Spellman
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
8
|
Applying Subtractive Hybridization Technique to Enrich and Amplify Tumor-Specific Transcripts of Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2016; 23:271-279. [DOI: 10.1007/s12253-016-0090-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
|
9
|
Rivalland G, Loveland B, Mitchell P. Update on Mucin-1 immunotherapy in cancer: a clinical perspective. Expert Opin Biol Ther 2015; 15:1773-87. [PMID: 26453294 DOI: 10.1517/14712598.2015.1088519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Mucin 1 (MUC1) is particularly well suited as a cancer immunotherapy target due to the elevated protein expression and aberrant forms associated with malignancy. A variety of therapeutic strategies have been explored, including antibodies intended to induce cancer cell destruction, and vaccinations with peptides, tumor extracts, and gene expression systems. AREAS COVERED MUC1 immunotherapeutic strategies have included vaccination with peptide sequences, glycan molecules, viruses, and dendritic cells, monoclonal antibodies and monoclonal antibody conjugates. Here we review the relevant clinical trials in each field of immunotherapy with particular focus on large and recently published trials. EXPERT OPINION Long clinical experience in the trial setting has reduced concerns of immunotherapy associated toxicities and inappropriate immune responses, with the main limitation (common to many experimental approaches) being a lack of clinical efficacy. However, there have been sufficient treatment-associated responses to justify continued pursuit of MUC1 targeted immunotherapies. The focus now should be on application to the relevant cancers under appropriate circumstances and combination with the emerging non-specific immunotherapy approaches such as the PD-1 pathway inhibitors.
Collapse
Affiliation(s)
- Gareth Rivalland
- a 1 Austin Health, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia
| | - Bruce Loveland
- b 2 Burnet Institute, Centre for Biomedical Research , Melbourne VIC 3004, Australia
| | - Paul Mitchell
- c 3 Austin Health, Level 4, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia +613 94 96 57 63 ; +613 94 57 66 98 ;
| |
Collapse
|
10
|
Wasserman JK, Parra-Herran C. Regressive change in high-grade ductal carcinoma in situ of the breast: histopathologic spectrum and biologic importance. Am J Clin Pathol 2015; 144:503-10. [PMID: 26276781 DOI: 10.1309/ajcpw4eadz9bnxxm] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES High-grade ductal carcinoma in situ (HG-DCIS) of the breast often shows tumor attenuation and reactive fibrosis. These changes, previously described as "regressive," have been paradoxically associated with an increased risk of invasive carcinoma. We aimed to further characterize the spectrum of the so-called regressive changes (RCs) in HG-DCIS. METHODS We reviewed 52 consecutive cases of HG-DCIS on biopsy specimens followed by excision. RCs were divided into early (stage 1) and advanced (stages 2 and 3) stages according to the degree of ductal fibrosis and tumor effacement. The presence of inflammation, hormone receptor status, and diagnosis on excision were recorded. RESULTS RCs were seen in 51 (98%) cases: 96%, 76.4%, and 39.2% cases showed stages 1, 2, and 3, respectively. Periductal T cells with a normal CD4/CD8 ratio were constantly seen. Advanced RCs and inflammation were more frequent in estrogen and progesterone receptor-negative tumors. RCs were not associated with invasion but correlated with a larger residual HG-DCIS volume on excision. CONCLUSIONS Regression in HG-DCIS is frequent. It may reflect a targeted immune response to certain phenotypes, mainly hormone receptor-negative lesions. Nonetheless, RCs do not lead to complete tumor obliteration but correlate with aggressive tumor characteristics instead.
Collapse
Affiliation(s)
- Jason K. Wasserman
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital and Eastern Ontario Regional Laboratory Association, Ottawa, Canada
| | - Carlos Parra-Herran
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital and Eastern Ontario Regional Laboratory Association, Ottawa, Canada
| |
Collapse
|
11
|
Morishita Y, Uenaka A, Kaya S, Sato S, Aji T, Nakayama E. HLA-DRB1*0410-Restricted Recognition of XAGE-1b37-48 Peptide by CD4 T Cells. Microbiol Immunol 2013; 51:755-62. [PMID: 17704638 DOI: 10.1111/j.1348-0421.2007.tb03965.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
XAGE-1b belongs to cancer/testis (CT) antigens, and has been shown to be expressed frequently in lung cancers and to elicit an antibody response in patients with XAGE-1b-expressing tumors. In this study, we investigated an XAGE-1b peptide recognized by CD4 T cells. CD4 T cells were purified from PBMC of a healthy donor and stimulated with pooled 25-mer peptides overlapped with 15 amino acids spanning the entire XAGE-1b protein. The generation of XAGE-1b-specific CD4 T cells was shown by IFNgamma secretion assay. A CD4 T cell clone OHD1 was obtained by limiting dilution. OHD1 recognized two overlapping peptides, XAGE1-b(33-49) and XAGE-1b(37-52), by ELISPOT assay. A peptide XAGE-1b(38-46) which was included in both XAGE-1b(33-49) and XAGE-1b(37-52) was predicted to be a DRB1*0410-restricted 9-mer peptide by a computer-based program. We identified the 12-mer peptide XAGE-1b(37-48) as a new XAGE-1b epitope restricted to HLA-DRB1*0410.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Yu Z, Qian J, Wu J, Gao J, Zhang M. Allogeneic mRNA-based electrotransfection of autologous dendritic cells and specific antitumor effects against osteosarcoma in rats. Med Oncol 2012; 29:3440-8. [PMID: 22843292 DOI: 10.1007/s12032-012-0312-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Vaccination with dendritic cells (DCs) transfected with tumor-derived mRNA antigen has emerged as a promising strategy for generating protective immunity in mammals. However, the integration of allogeneic osteosarcoma mRNA and autologous DCs has not been fully examined. This study was designed to investigate the antitumor effects of tumor vaccine produced by autologous DCs transfected of allogeneic osteosarcoma mRNA through electroporation in tumor-bearing rats model. In the present study, extraction of Wistar rat tumor mRNA was performed as a two-step procedure. First, total RNA was extracted by use of Trizol; then, mRNA purification was performed by use of polyT-coated magnetic beads. Then, we transfected the allogeneic-derived tumor mRNA to Sprague-Dawley (SD) rat bone marrow-derived DCs through electroporation. The tumor vaccine was applied to tumor-bearing rats model, and the specific antitumor effects of the tumor vaccine were observed. The immunization using autologous DCs electrotransfected with allogeneic osteosarcoma total RNA induced specific CTL responses, which were statistically significant (P < 0.05), and the cytotoxic activity was confirmed in cold target inhibition assays and using mAbs blocking MHC class I molecules. In in vivo experiments, 70 % of the rats immunized with allogeneic osteosarcoma RNA transfected to DCs were typically able to reject tumor challenge and remained tumor-free. Vaccinated survivors developed long immunological memory and were able to reject a subsequent rechallenge with the same tumor cells but not a syngeneic unrelated tumor line. In the present study, we demonstrated that allogeneic tumor mRNA isolated from rat osteosarcoma cell line could be applied to produce tumor vaccine inducing specific antitumor effects, especially in DC-based immunotherapy strategy. This study also provides the foundations for an effective and broadly applicable treatment to a wide range of cancer indications for which tumor-associated antigens have not been identified.
Collapse
Affiliation(s)
- Zhe Yu
- Center of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
13
|
Novel mathematical models for cell-mediated cytotoxicity assays without applying enzyme kinetics but with combinations and probability: bystanders in bulk effector cells influence results of cell-mediated cytotoxicity assays. Biosystems 2011; 105:83-8. [PMID: 21440033 DOI: 10.1016/j.biosystems.2011.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 02/27/2011] [Accepted: 03/15/2011] [Indexed: 11/20/2022]
Abstract
Cell-mediated cytotoxicity assays are widely implemented to evaluate cell-mediated cytotoxic activity, and some assays are analyzed using the analogy of enzyme kinetics. In the analogy, the effector cell is regarded as the enzyme, the target cell as the substrate, the effector cell-target cell conjugate as the enzyme-substrate complex and the dead target cell as the product. However, the assumptions analogous to those of enzyme kinetics are not always true in cell-mediated cytotoxicity assays, and the parameter analogous to the Michaelis-Menten constant is not constant but is dependent on the number of effector cells. Therefore I present novel mathematical models for cell-mediated cytotoxicity assays without applying enzyme kinetics. I instead use combinations and probability, because analysis of cell-mediated cytotoxicity assays by applying enzyme kinetics seems controversial. With my original models, I demonstrate simulations of the data in previously published papers. The results are exhibited in the same forms as the corresponding data. Comparing the simulation results with the published data, the results seem to agree well with the data. From simulations of cytotoxic assays with bulk effector cells, it appears that bystanders in bulk effector cells increase both the cytotoxic activity and the motility of effector cells.
Collapse
|
14
|
Frankenberger B, Schendel DJ. Third generation dendritic cell vaccines for tumor immunotherapy. Eur J Cell Biol 2011; 91:53-8. [PMID: 21439674 DOI: 10.1016/j.ejcb.2011.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 12/19/2022] Open
Abstract
This review summarizes our studies of the past several years on the development of third generation dendritic cell (DC) vaccines. These developments have implemented two major innovations in DC preparation: first, young DCs are prepared within 3 days and, second, the DCs are matured with the help of Toll-like receptor agonists, imbuing them with the capacity to produce bioactive IL-12 (p70). Based on phenotype, chemokine-directed migration, facility to process and present antigens, and stimulatory capacity to polarize Th1 responses in CD4+ T cells, induce antigen-specific CD8+ CTL and activate natural killer cells, these young mDCs display all the important properties needed for initiating good antitumor responses in a vaccine setting.
Collapse
Affiliation(s)
- Bernhard Frankenberger
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, Munich, Germany.
| | | |
Collapse
|
15
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
16
|
Chi N, Maranchie JK, Appleman LJ, Storkus WJ. Update on vaccine development for renal cell cancer. Res Rep Urol 2010; 2:125-41. [PMID: 24198621 PMCID: PMC3703676 DOI: 10.2147/rru.s7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) remains a significant health concern that frequently presents as metastatic disease at the time of initial diagnosis. Current first-line therapeutics for the advanced-stage RCC include antiangiogenic drugs that have yielded high rates of objective clinical response; however, these tend to be transient in nature, with many patients becoming refractory to chronic treatment with these agents. Adjuvant immunotherapies remain viable candidates to sustain disease-free and overall patient survival. In particular, vaccines designed to optimize the activation, maintenance, and recruitment of specific immunity within or into the tumor site continue to evolve. Based on the integration of increasingly refined immunomonitoring systems in both translational models and clinical trials, allowing for the improved understanding of treatment mechanism(s) of action, further refined (combinational) vaccine protocols are currently being developed and evaluated. This review provides a brief history of RCC vaccine development, discusses the successes and limitations in such approaches, and provides a rationale for developing combinational vaccine approaches that may provide improved clinical benefits to patients with RCC.
Collapse
Affiliation(s)
- Nina Chi
- Department of immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
17
|
Park JS, Kim HS, Park MY, Kim CH, Chung YJ, Hong YK, Kim TG. Topoisomerase II alpha as a universal tumor antigen: antitumor immunity in murine tumor models and H-2K(b)-restricted T cell epitope. Cancer Immunol Immunother 2010; 59:747-57. [PMID: 19936747 PMCID: PMC11030946 DOI: 10.1007/s00262-009-0795-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/31/2009] [Indexed: 10/20/2022]
Abstract
Topoisomerase II alpha (Top2alpha) is an attractive candidate to be used as a tumor antigen for cancer immunotherapy, because it is abundantly expressed in various tumors and serves as a target for a number of chemotherapeutic agents. In this study, we demonstrated the immunogenicity of Top2alpha, using dendritic cells (DC) electroporated with RNA encoding the Top2alpha C-terminus (Top2alphaCRNA/DC). Top2alphaCRNA/DC were able to demonstrate in vitro stimulation of T cells from mice that were previously vaccinated with Top2alpha-expressing tumor lysate-pulsed DC. Vaccination with Top2alphaCRNA/DC induced Top2alpha-specific T cell responses in vivo as well as antitumor effects in various murine tumor models including MC-38, B16F10, and GL26. DC pulsed with p1327 (DSDEDFSGL), defined as an epitope presented by H-2K(b), also induced Top2alpha-specific immune responses and antitumor effects. Based on these data, Top2alpha is suggested to be a universal target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Sun Park
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Hye-Sung Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Mi-Young Park
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Chang-Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Yeun-Jun Chung
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| | - Tai-Gyu Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701 Korea
| |
Collapse
|
18
|
Abstract
Although cancer vaccines with defined antigens are commonly used, the use of whole tumor cell preparations in tumor immunotherapy is a very promising approach and can obviate some important limitations in vaccine development. Whole tumor cells are a good source of TAAs and can induce simultaneous CTLs and CD4(+) T helper cell activation. We review current approaches to prepare whole tumor cell vaccines, including traditional methods of freeze-thaw lysates, tumor cells treated with ultraviolet irradiation, and RNA electroporation, along with more recent methods to increase tumor cell immunogenicity with HOCl oxidation or infection with replication-incompetent herpes simplex virus.
Collapse
|
19
|
High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res Treat 2010; 125:395-406. [DOI: 10.1007/s10549-010-0844-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/10/2010] [Indexed: 01/14/2023]
|
20
|
Zhang XY, Li WG, Wu YJ, Gao MT. Amelioration of doxorubicin-induced myocardial oxidative stress and immunosuppression by grape seed proanthocyanidins in tumour-bearing mice. J Pharm Pharmacol 2010; 57:1043-52. [PMID: 16102261 DOI: 10.1211/0022357056523] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
We have investigated the protective effects of grape seed proanthocyanidins on doxorubicin-induced toxicity in tumour-bearing mice. The intraperitoneal administration of doxorubicin (2 mg kg−1 every other day, cumulative dosage for 18 mg kg−1) significantly inhibited the growth of sarcoma 180, and induced myocardial oxidative stress with decreased superoxide dismutase and glutathione peroxidase activity while increasing malondialdehyde formation in the heart or serum. Doxorubicin-induced myocardial oxidative stress also reduced lactate dehydrogenase and creatine kinase activity in the heart and elevated their levels in the serum. Doxorubicin also affected immune functions of tumour-bearing mice with significantly decreased interleukin-2 (IL-2) and interferon-γ (INF-γ) production, and slightly decreased natural killer (NK) cell cytotoxicity, lymphocyte proliferation and CD4+/CD8+ ratio. It markedly increased the percentages of cytotoxic T cells (CD3+CD8+), helper T cells (CD3+CD4+), IL-2R+CD4+, and IL-2R+ cells as compared with untreated tumour-bearing mice. The intragastric administration of proanthocyanidin (200 mg kg−1 daily) significantly inhibited tumour growth, and increased NK cell cytotoxicity, lymphocyte proliferation, CD4+/CD8+ ratio, IL-2 and INF-γ production. Moreover, proanthocyanidin strongly enhanced the anti-tumour effect of doxorubicin and the above immune responses, and completely eliminated myocardial oxidative stress induced by doxorubicin. In conclusion, intragastric administration of proanthocyanidin could enhance the anti-tumour activity of doxorubicin and ameliorate doxorubicin-induced myocardial oxidative stress and immunosuppression in tumour-bearing mice.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730 000, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Abstract
Advances in the understanding of the immunoregulatory functions of dendritic cells (DCs) in animal models and humans have led to their exploitation as anticancer vaccines. Although DC-based immunotherapy has proven clinically safe and efficient to induce tumor-specific immune responses, only a limited number of objective clinical responses have been reported in cancer patients. These relatively disappointing results have prompted the evaluation of multiple approaches to improve the efficacy of DC vaccines. The topic of this review focuses on personalized DC-based anticancer vaccines, which in theory have the potential to present to the host immune system the entire repertoire of antigens harbored by autologous tumor cells. We also discuss the implementation of these vaccines in cancer therapeutic strategies, their limitations and the future challenges for effective immunotherapy against cancer.
Collapse
Affiliation(s)
- Nona Janikashvili
- Department of Pediatrics, Steele Children’s Research Center, Arizona 85724, USA
| | - Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, Arizona 85724, USA
- Department of Immunobiology, BIO5 Institute & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, Arizona 85724, USA
- Department of Immunobiology, BIO5 Institute & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- University of Arizona, Department of Pediatrics, 1501 N Campbell Ave, PO Box 245073, Tucson, AZ 85724-85073, USA
| |
Collapse
|
22
|
Van Nuffel AMT, Corthals J, Neyns B, Heirman C, Thielemans K, Bonehill A. Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol Biol 2010; 629:405-52. [PMID: 20387165 DOI: 10.1007/978-1-60761-657-3_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. Considerable progress has been made in enhancing the efficacy of therapeutic anticancer vaccines. First, dendritic cells (DCs) have been identified as the key players in orchestrating primary immune responses. A better understanding of their biology and the development of procedures to generate vast amounts of DCs in vitro have accelerated the development of potent immunotherapeutic strategies for cancer. Second, tumor-associated antigens have been identified which are either selectively or preferentially expressed by tumor cells and can be recognized by the immune system. Finally, several studies have been performed on the genetic modification of DCs with tumor antigens. In this regard, loading the DCs with mRNA, which enables them to produce/process and present the tumor antigens themselves, has emerged as a promising strategy. Here, we will first overview the different aspects that must be taken into account when generating an mRNA-based DC vaccine and the published clinical studies exploiting mRNA-loaded DCs. Second, we will give a detailed description of a novel procedure to generate a vaccine consisting of tumor antigen-expressing dendritic cells with an in vitro superior capacity to induce anti-tumor immune responses. Here, immature DCs are electroporated with mRNAs encoding a tumor antigen, CD40 ligand (CD40L), CD70, and constitutively active (caTLR4) to generate mature antigen-presenting DCs.
Collapse
Affiliation(s)
- An M T Van Nuffel
- Laboratory of Molecular and Cellular Therapy, Department of Physiology - Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Standard therapies for many common cancers remain toxic and are often ineffective. Cellular immunotherapy has the potential to be a highly targeted alternative, with low toxicity to normal tissues but a high capacity to eradicate tumor. In this chapter we describe approaches that generate cellular therapies using active immunization with cells, proteins, peptides, or nucleic acids, as well as efforts that use adoptive transfer of effector cells that directly target antigens on malignant cells. Many of these approaches are proving successful in hematologic malignancy and in melanoma. In this chapter we discuss the advantages and limitations of each and how over the next decade investigators will attempt to broaden their reach, increase their efficacy, and simplify their application.
Collapse
Affiliation(s)
- Fatma V Okur
- Baylor College of Medicine, Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | |
Collapse
|
24
|
Guenova E, Volz T, Sauer K, Kaesler S, Müller MR, Wölbing F, Chen K, Schwärzler C, Brossart P, Röcken M, Biedermann T. IL-4-mediated fine tuning of IL-12p70 production by human DC. Eur J Immunol 2009; 38:3138-49. [PMID: 18924208 DOI: 10.1002/eji.200838463] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IL-4 is expressed at high levels in allergic diseases and dominates the early phases of multiple acquired immune responses. However, the precise role of IL-4 during early inflammation and its impact on the differentiation of newly recruited DC precursors remains elusive. In order to characterize the impact of IL-4 on the differentiation of human DC, we investigated the role of IL-4 on the differentiation of monocytes into DC. Human DC were differentiated from peripheral blood precursors under either low or high concentrations of IL-4. We analyzed their cytokine profile and capacity to polarize T-cell differentiation. Concentrations of 5 (low) and 50 (high) ng/mL IL-4 induced two distinct types of DC. DC differentiated under low-dose IL-4 (5 ng/mL) produced almost no IL-12p70, and primed naïve CD4+ T cells allowing IL-4 secretion and Th2 induction. In contrast, DC generated under high concentrations of IL-4 (50 ng/mL) produced large amounts of IL-12p70, low IL-10 and primed naïve CD4+ T cells to become Th1 cells. Thus, we demonstrate that the Th2 cell cytokine IL-4 decisively determines the phenotype of ongoing immune responses by orchestrating the functional phenotype of newly immigrating DC precursors.
Collapse
|
25
|
Grünebach F, Erndt S, Häntschel M, Heine A, Brossart P. Generation of antigen-specific CTL responses using RGS1 mRNA transfected dendritic cells. Cancer Immunol Immunother 2008; 57:1483-91. [PMID: 18301890 PMCID: PMC11031069 DOI: 10.1007/s00262-008-0486-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
Advances in tumor immunology and Identification of tumor-associated antigens (TAAs) provide a basis for the development of novel immunotherapies to treat malignant diseases. In order to identify novel TAAs, we performed comparative microarray analysis of (heterogeneous) tissues and found regulator of G protein-signaling 1 (RGS1) extensively up-regulated in renal cell carcinoma (RCC) tissues. To examine the possible function of this molecule as a novel, broadly applicable TAA, synthetic full-length RGS1-mRNA was synthesized for the transfection of monocyte-derived dendritic cells (DCs). These modified antigen-presenting cells (APCs) were then used to induce RGS1-specific cytotoxic T cells (CTLs) in vitro. The CTLs generated from several healthy donors and a patient with chronic lymphocytic leukemia (CLL) elicited an antigen-specific and HLA-A2- and -A3-restricted cytolytic activity against tumor cells endogenously expressing the RGS1 protein including renal cell carcinomas (RCCs), melanoma, ovarian carcinoma and the primary autologous CLL-blasts. In conclusion, our study demonstrates that the in vitro induction of RGS1-specific CTLs by RNA-transfected DCs is feasible and highly effective. Since this molecule is (over-) expressed in a broad variety of malignancies it might represent an interesting novel TAA in the context of cancer vaccines designed to target RGS1 expressing tumor cells.
Collapse
Affiliation(s)
- Frank Grünebach
- Departments of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Stefanie Erndt
- Departments of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Maik Häntschel
- Departments of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Annkristin Heine
- Departments of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Peter Brossart
- Departments of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Present Address: Department of Hematology and Oncology, University of Bonn, Wilhelmstr. 35-37, 53111 Bonn, Germany
| |
Collapse
|
26
|
Conrad H, Gebhard K, Krönig H, Neudorfer J, Busch DH, Peschel C, Bernhard H. CTLs Directed against HER2 Specifically Cross-React with HER3 and HER4. THE JOURNAL OF IMMUNOLOGY 2008; 180:8135-45. [DOI: 10.4049/jimmunol.180.12.8135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Cancer vaccines: accomplishments and challenges. Crit Rev Oncol Hematol 2008; 67:93-102. [PMID: 18400507 DOI: 10.1016/j.critrevonc.2008.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 02/09/2008] [Accepted: 02/26/2008] [Indexed: 01/03/2023] Open
Abstract
Advancements in knowledge in diverse fields of science, including genetics, cell biology, molecular biology and biochemistry, have shed light on the origins of cancer and cell intrinsic properties that allow it to grow, invade and metastasize. Many therapies currently in use or under development are based on this knowledge. Advances in immunology, on the other hand, have shed light on how the host responds to these malignant properties of cancer. Based on that knowledge, immunotherapy, in particular vaccines directed at improving the host response against cancer, is being developed as an alternative therapeutic approach. In this review, we address main issues that have driven development of cancer vaccines and the challenges that have been met and/or are anticipated.
Collapse
|
28
|
Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nährig J, Fend F, Weber W, Busch DH, Peschel C. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 2008; 57:271-80. [PMID: 17646988 PMCID: PMC11030865 DOI: 10.1007/s00262-007-0355-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated antigen by immunotherapeutical approaches based on HER2-directed monoclonal antibodies and cancer vaccines. We describe the adoptive transfer of autologous HER2-specific T-lymphocyte clones to a patient with metastatic HER2-overexpressing breast cancer. The HLA/multimer-based monitoring of the transferred T lymphocytes revealed that the T cells rapidly disappeared from the peripheral blood. The imaging studies indicated that the T cells accumulated in the bone marrow (BM) and migrated to the liver, but were unable to penetrate into the solid metastases. The disseminated tumor cells in the BM disappeared after the completion of adoptive T-cell therapy. This study suggests the therapeutic potential for HER2-specific T cells for eliminating disseminated HER2-positive tumor cells and proposes the combination of T cell-based therapies with strategies targeting the tumor stroma to improve T-cell infiltration into solid tumors.
Collapse
Affiliation(s)
- Helga Bernhard
- Department of Hematology/Oncology, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibitory Effect of RNA Pool Complexity on Stimulatory Capacity of RNA-pulsed Dendritic Cells. J Immunother 2008; 31:52-62. [DOI: 10.1097/cji.0b013e31815a1202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
|
31
|
Nencioni A, Grünebach F, Schmidt SM, Müller MR, Boy D, Patrone F, Ballestrero A, Brossart P. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 2007; 65:191-9. [PMID: 18055210 DOI: 10.1016/j.critrevonc.2007.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 10/04/2007] [Accepted: 10/12/2007] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy aims at eliciting an immune response directed against tumor antigens to help fight off residual tumor cells and thereby improve survival and quality of life of cancer patients. Different immunotherapeutic approaches share the use of dendritic cells (DCs) to present tumor-associated antigens to T-lymphocytes. Ex vivo generated DCs can be loaded with antigens and re-infused to the patients, or they can be used for ex vivo expansion of antitumor lymphocytes. Alternatively, methods exist to target antigens to DCs in vivo without need for ex vivo cell manipulations. The clinical studies have shown that DC administration to patients is safe and induces antigen-specific immunity. However, it seldom elicits objective clinical responses in patients with advanced-stage malignancies. Novel insights into DC and lymphocyte regulation are expected to lead to more effective vaccines in the near future. Meanwhile, efforts are directed at identifying the most appropriate clinical targets for active specific immunotherapies. Data suggests that vaccinations may indeed be beneficial when given in the adjuvant setting rather than to treat metastatic cancers. These issues are discussed here together with an overview of the DC-based antitumor immunotherapy studies.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Milano F, Rygiel AM, Buttar N, Bergman JJGHM, Sondermeijer C, van Baal JWPM, ten Brinke A, Kapsenberg M, van Ham SM, Peppelenbosch MP, Krishnadath KK. An ex vivo readout for evaluation of dendritic cell-induced autologous cytotoxic T lymphocyte responses against esophageal cancer. Cancer Immunol Immunother 2007; 56:1967-77. [PMID: 17564704 PMCID: PMC11030633 DOI: 10.1007/s00262-007-0341-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/08/2007] [Indexed: 01/04/2023]
Abstract
Esophageal cancer is a highly malignant disease that despite surgery and adjuvant therapies has an extremely poor outcome. Dendritic cell (DC) immunotherapy as a novel promising strategy could be an alternative for treating this malignancy. Effective DC-mediated immune responses can be achieved by raising cytotoxic T lymphocyte (CTL) response against multiple antigens through loading DCs with total tumor RNA. However, the efficacy of this strategy first needs to be evaluated in a pre-clinical setting. The aim of the study was to set up an ex vivo autologous human readout assay for assessing the effects of DC-mediated cytotoxic responses, using total tumor RNA as an antigen load. Biopsy specimens of seven esophageal cancer patients were used to establish primary cultures of normal and cancer cells and to obtain autologous RNA for loading DCs. Mature DCs loaded with either normal or tumor RNA were obtained and subsequently used to raise various lymphocytes populations. Apoptosis levels of the autologous cultures were measured before and after incubating the cultures with the different lymphocytes populations. The mean apoptosis levels in the tumor cell cultures, induced by lymphocytes instructed by DCs loaded with tumor RNA, significantly increased with 15.6% +/-2.9 SEM (range 3.4-24.5%, t-test, P < 0.05). Incubation of the normal cultures with the lymphocytes populations showed a mean non-significant increase in apoptosis of 0.4% +/-3.4 SEM (range -13.9 to 9.8%, t-test, P = 0.7). Here, we introduce a practical, patient-specific autologous readout assay for pre-clinical testing of DC-mediated cytotoxic responses. Additionally, we demonstrated that the use of autologous tumor RNA as a strategy for raising cytotoxic responses against multiple tumor antigens could be effective for treating esophageal cancer.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Experimental Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Agnieszka M. Rygiel
- Department of Experimental Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Navtej Buttar
- Department of Gastroenterology, Mayo Clinic, Rochester, USA
| | - Jacques J. G. H. M. Bergman
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Carine Sondermeijer
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jantine W. P. M. van Baal
- Department of Experimental Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Martien Kapsenberg
- Department of Cell Biology, Academic Medical Center, Amsterdam, The Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | - Kausilia K. Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
33
|
Boss CN, Grünebach F, Brauer K, Häntschel M, Mirakaj V, Weinschenk T, Stevanovic S, Rammensee HG, Brossart P. Identification and characterization of T-cell epitopes deduced from RGS5, a novel broadly expressed tumor antigen. Clin Cancer Res 2007; 13:3347-55. [PMID: 17545542 DOI: 10.1158/1078-0432.ccr-06-2156] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of tumor-associated antigens and advances in tumor immunology resulted in the development of vaccination strategies to treat patients with malignant diseases. In a novel experimental approach that combined comparative mRNA expression analysis of defined cell types with the characterization of MHC ligands by mass spectrometry, we found that regulator of G protein signaling 5 (RGS5) is extensively up-regulated in a broad variety of malignant cells, and we identified two HLA-A2- and HLA-A3-binding peptides derived from the RGS5 protein. Interestingly, RGS5 was recently shown to be involved in tumor angiogenesis. EXPERIMENTAL DESIGN We used monocyte-derived dendritic cells pulsed with these novel antigenic peptides or transfected with RGS5-mRNA for the in vitro induction of CTLs, generated from healthy donors, to analyze the presentation of RGS5-deduced epitopes by malignant cells. RESULTS The generated CTL lines elicited an antigen-specific and HLA-restricted cytolytic activity against tumor cells endogenously expressing the RGS5 protein. Furthermore, we were able to induce RGS5-specific CTLs using peripheral blood mononuclear cells from a patient with acute myeloid leukemia capable of recognizing the autologous leukemic blasts while sparing nonmalignant cells. CONCLUSIONS These results indicate that the RGS5 peptides represent interesting candidates for the development of cancer vaccines designed to target malignant cells and tumor vessels.
Collapse
MESH Headings
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/chemistry
- Cancer Vaccines
- Cell Line, Tumor
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Neoplastic
- HLA-A2 Antigen/chemistry
- HLA-A3 Antigen/chemistry
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukocytes, Mononuclear/metabolism
- Monocytes/metabolism
- Peptides/chemistry
- RGS Proteins/biosynthesis
- RGS Proteins/immunology
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Cristina N Boss
- Department of Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brauer KM, Werth D, von Schwarzenberg K, Bringmann A, Kanz L, Grünebach F, Brossart P. BCR-ABL Activity Is Critical for the Immunogenicity of Chronic Myelogenous Leukemia Cells. Cancer Res 2007; 67:5489-97. [PMID: 17545631 DOI: 10.1158/0008-5472.can-07-0302] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder caused by excessive granulopoiesis due to the formation of the constitutively active tyrosine kinase BCR-ABL. An effective drug against CML is imatinib mesylate, a tyrosine kinase inhibitor acting on Abl kinases, c-KIT, and platelet-derived growth factor receptor. Recently, a study revealed that patients treated with imatinib showed impaired CTL responses compared with patients treated with IFN-alpha, which might be due to a treatment-induced reduction in immunogenicity of CML cells or immunosuppressive effects. In our study, we found that inhibition of BCR-ABL leads to a down-regulation of immunogenic antigens on the CML cells in response to imatinib treatment, which results in the inhibition of CML-directed immune responses. By treating CML cells with imatinib, we could show that the resulting inhibition of BCR-ABL leads to a decreased expression of tumor antigens, including survivin, adipophilin, hTERT, WT-1, Bcl-x(L), and Bcl-2 in correlation to a decreased development of CML-specific CTLs. In contrast, this reduction in immunogenicity was not observed when a CML cell line resistant to the inhibitory effects of imatinib was used, but could be confirmed by transfection with specific small interfering RNA against BCR-ABL or imatinib treatment of primary CML cells.
Collapse
MESH Headings
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Antineoplastic Agents/pharmacology
- Benzamides
- Dendritic Cells/immunology
- Down-Regulation
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/immunology
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Lymphocyte Activation/drug effects
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Katharina M Brauer
- Department of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Kyte JA, Kvalheim G, Lislerud K, thor Straten P, Dueland S, Aamdal S, Gaudernack G. T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol Immunother 2007; 56:659-75. [PMID: 16947019 PMCID: PMC11030282 DOI: 10.1007/s00262-006-0222-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/03/2006] [Indexed: 12/18/2022]
Abstract
We have developed an individualized melanoma vaccine based on autologous dendritic cells (DCs) transfected with autologous tumor-mRNA. The vaccine targets the unique spectrum of tumor antigens in each patient and may recruit multiple T cell clones. In a recent phase I/II trial, we demonstrated T cell responses against vaccine antigens in 9/19 patients evaluable by T cell assays. Here, we report a follow-up study that was conducted to characterize interesting T cell responses and to investigate the effects of long-term booster vaccination. Two patients were selected for continued vaccine therapy. The clinical follow-up suggested a favorable clinical development in both patients. The immunological data (T cell proliferation/IFNgamma ELISPOT/Bioplex cytokine assays) indicated sustained T cell responses and suggested an enhancing effect of booster vaccinations. Both CD4(+) and CD8(+) T cell responses were demonstrated. From post-vaccination samples, we generated 39 T cell clones that responded specifically to stimulation by mRNA-transfected DCs and 12 clones that responded to mock-transfected DCs. These data clearly indicate a two-component vaccine response, against transfected and non-transfected antigens. T cell receptor (TCR) clonotype mapping, performed on 11 tDC-specific clones, demonstrated that 10/11 clones had different TCRs. The results thus indicate a broad spectrum T cell response against antigens encoded by the transfected tumor-mRNA. We generally observed mixed Th1/Th2 cytokine profiles, even in T cell clones that were confirmed to be derived from a single cell. This finding suggests that cytokine patterns after cancer vaccination may be more complex than indicated by the classic Th1/Th2 dichotomy.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Section for Immunotherapy, Department of Immunology, Cancer Research Institute, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang HM, Zhang LW, Liu WC, Cheng J, Si XM, Ren J. Comparative analysis of DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma. Cytotherapy 2007; 8:580-8. [PMID: 17148035 DOI: 10.1080/14653240600991353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND DC vaccination with the use of tumor cells provides the potential to generate a polyclonal immune response to multiple known and unknown tumor Ag. Our study comparatively analyzed DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma (HCC). METHODS Immature DC generated from PBMC of patients with HCC were fused with HepG2-GFP (HepG2 cell line transfected stably with plasmid pEGFP-C3) cells or transfected with their total RNA. Matured DC were used to stimulate autologous T cells, and the resultant Ag-specific effector T cells were analyzed by IFN-gamma ELISPOT assay. RESULTS DC were capable of further differentiation into mature DC after fusion with HepG2-GFP cells or transfection with HepG2-GFP cell total RNA, and were able to elicit specific T-cell responses in vitro. Both methods of Ag loading could result in stimulating CD4+ and CD8+ T cells, but with the indication that fusion loading was more efficient than RNA loading in priming the Th1 response, while RNA loading was more effective in CTL priming. DISCUSSION Our results indicate that DC fused with tumor cells or transfected with tumor total RNA represent promising strategies for the development of cancer vaccines for treatment of HCC. They may have potential as an adjuvant immunotherapy for patients with HCC.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Center of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 15 Chang-Le West Road, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Yu H, Babiuk LA, van Drunen Littel-van den Hurk S. Immunity and protection by adoptive transfer of dendritic cells transfected with hepatitis C NS3/4A mRNA. Vaccine 2007; 25:1701-11. [PMID: 17240490 DOI: 10.1016/j.vaccine.2006.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/13/2006] [Indexed: 11/17/2022]
Abstract
In this study, we tested the hypothesis that adoptive transfer of dendritic cells (DCs) transfected ex vivo with mRNA encoding hepatitis C virus (HCV) NS3/4A would initiate potent HCV-specific protective immune responses in vivo. Murine DCs were transfected with NS3/4A mRNA or eGFP mRNA using either electroporation or Transmessenger Transfection Reagent and then used for adoptive transfer. Electroporation resulted in higher transfection efficiency but lower levels of eGFP and NS3/4A expression when compared to transfection with Transmessenger. The murine NS3/4A mRNA-transfected DCs were functional in T cell activation in vitro. Adoptive transfer of NS3/4A mRNA-transfected DCs resulted in migration to regional lymph nodes, strong cellular immune responses and protection from challenge with vaccinia virus expressing NS3/NS4/NS5 in mice. Furthermore, although Transmessenger mediated transfection was less efficient than electroporation in terms of number of transfected cells, the DCs transfected with NS3/4A mRNA and Transmessenger expressed higher levels of protein and induced stronger immune responses and protection than DCs transfected with NS3/4A mRNA by electroporation. Since no study has explored the in vivo efficacy of mRNA-transfected DC-mediated vaccination against viral diseases, including hepatitis C, our study provided a novel vaccination strategy against hepatitis C as well as other pathogens.
Collapse
Affiliation(s)
- Hong Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Sask. S7N 5E3, Canada
| | | | | |
Collapse
|
38
|
Abstract
Dendritic cells (DCs) play a crucial role in the induction of antigen-specific T-cell responses, and therefore their use for the active immunotherapy of malignancies has been studied with considerable interest. More than a decade has passed since the publication of the first clinical data of DC-based vaccines, and through this and subsequent studies, a number of important developmental insights have been gleaned. These include the ideal source and type of DCs, the discovery of novel antigens and methods of loading DCs, the role of DC maturation, and the most efficient route of immunization. The generation of immune responses against tumor antigens after DC immunization has been demonstrated, and favorable clinical responses have been reported in some patients; however, it is difficult to pool the results as a whole, and thus the body of data remains inconclusive, in part because of varying DC preparation and vaccination protocols, the use of different forms of antigens, and, most importantly, a lack of rigorous criteria for defining clinical responses. As such, the standardization of clinical and immunologic criteria utilized, as well as DC preparations employed, will allow for the comparison of results across multiple clinical studies and is required in order for future trials to measure the true value and role of this treatment modality. In addition, issues regarding the optimal dose and clinical setting for the application of DC vaccines remain to be resolved, and recent clinical studies have been designed to begin to address these questions.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Program in Molecular Therapeutics, Comprehensive Cancer Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
39
|
Kim TS, Jung MY, Cho D, Cohen EP. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells. Vaccine 2006; 24:6564-73. [PMID: 16837111 DOI: 10.1016/j.vaccine.2006.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 11/27/2022]
Abstract
Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.
Collapse
Affiliation(s)
- Tae S Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | |
Collapse
|
40
|
Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Türeci O, Sahin U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108:4009-17. [PMID: 16940422 DOI: 10.1182/blood-2006-04-015024] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adoptive transfer of dendritic cells (DCs) transfected with in vitro-transcribed, RNA-encoding, tumor-associated antigens has recently entered clinical testing as a promising approach for cancer immunotherapy. However, pharmacokinetic exploration of RNA as a potential drug compound and a key aspect of clinical development is still pending. While investigating the impact of different structural modifications of RNA molecules on the kinetics of the encoded protein in DCs, we identified components located 3' of the coding region that contributed to a higher transcript stability and translational efficiency. With the use of quantitative reverse transcription-polymerase chain reaction (RT-PCR) and eGFP variants to measure transcript amounts and protein yield, we showed that a poly(A) tail measuring 120 nucleotides compared with a shorter one, an unmasked poly(A) tail with a free 3' end rather than one extended with unrelated nucleotides, and 2 sequential beta-globin 3' untranslated regions cloned head to tail between the coding region and the poly(A) tail each independently enhanced RNA stability and translational efficiency. Consecutively, the density of antigen-specific peptide/MHC complexes on the transfected cells and their potency to stimulate and expand antigen-specific CD4+ and CD8+ T cells were also increased. In summary, our data provide a strategy for optimizing RNA-transfected DC vaccines and a basis for defining release criteria for such vaccine preparations.
Collapse
Affiliation(s)
- Silke Holtkamp
- Division of Experimental and Translational Oncology, Department of Internal Medicine III, Johannes Gutenberg University, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim TS, Chopra A, O-Sullivan IS, Cohen EP. Enhanced immunity to breast cancer in mice immunized with fibroblasts transfected with a complementary DNA expression library from breast cancer cells: Enrichment of the vaccine for immunotherapeutic cells. J Immunother 2006; 29:261-73. [PMID: 16699369 DOI: 10.1097/01.cji.0000197097.46100.bb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer cells express an array of weakly immunogenic tumor-associated antigens (TAAs). Under appropriate circumstances, immunity to breast cancer can be induced, with potential benefits for patients with the disease. Here, we report a new cell-based vaccination strategy resulting in enhanced immunity to breast cancer in tumor-bearing mice. The strategy was designed to enrich the vaccine for highly immunogenic cells. The vaccine was prepared by transfer of unfractionated complementary DNA (cDNA) derived from a highly malignant breast neoplasm that arose spontaneously in a C3H/He mouse (SB5b) into an immunogenic fibroblast cell line. As the transferred cDNA spontaneously integrates into the genome of the recipient cells and is replicated as the cells divide, sufficient DNA to prepare the vaccine could be obtained from as few as 10(7) cells (4-mm tumor). Because only a small proportion of the transfected cell population was expected to have incorporated genes responsible for inducing immunity to the breast cancer, we devised a novel approach designed to enrich the transfected cell population for cells that induced immunity to the neoplasm. Aliquots of the transfected population were divided into small pools (initial inoculum = 4 x 10). Afterward, the cell number from each pool was allowed to expand in vitro. Pools containing greater numbers of immunogenic cells (identified by 2 independent assays) were subdivided for additional rounds of immune selection. Enhanced immunity to the neoplasm was detected in tumor-bearing mice treated solely by immunization with the enriched cell population. The immunity, mediated by CD8+ T cells, was sufficient to prolong the survival of mice with established breast cancer.
Collapse
Affiliation(s)
- Tae Sung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | | | | | | |
Collapse
|
42
|
Little SR, Langer R. Nonviral delivery of cancer genetic vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 99:93-118. [PMID: 16568889 DOI: 10.1007/10_004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The potential use of genetic vaccines to address numerous diseases including cancer is promising, but currently unrealized. Here, we review advances in the nonviral delivery of antigen-encoded plasmid DNA for the purpose of treating cancer through the human immune system, as this disease has drawn the most attention in this field to date. Brief overviews of dendritic cell immunobiology and the mechanism of immune activation through genetic vaccines set the stage for the desirability of delivery technology. Several promising nonviral delivery techniques are discussed along with a mention of targeting strategies aimed at improving the potency of vaccine formulations. Implications for the future of genetic vaccines are also presented.
Collapse
Affiliation(s)
- Steven R Little
- Department of Chemical Engineering and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | |
Collapse
|
43
|
Grünebach F, Mirakaj V, Mirakaj V, Müller MR, Brümmendorf T, Brossart P. BCR-ABL Is Not an Immunodominant Antigen in Chronic Myelogenous Leukemia. Cancer Res 2006; 66:5892-900. [PMID: 16740729 DOI: 10.1158/0008-5472.can-05-2868] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we analyzed the involvement of the BCR-ABL protein in the induction of antigen-specific CTL in order to develop an immunotherapeutic approach in patients with chronic myelogenous leukemia (CML). To accomplish this, we generated dendritic cells (DC) in vitro and electroporated them with various sources of RNA harboring the chimeric bcr-abl transcript. These genetically engineered DCs were used as antigen-presenting cells for the induction of CTLs. By applying this approach, we found that the CTLs induced by DCs transfected with RNA extracted from bcr-abl-positive K-562 cells or CML blasts lysed DCs transfected with the corresponding RNA, but failed to recognize epitopes derived from the chimeric BCR-ABL fusion protein in (51)Cr-release assays. In contrast, they were able to lyse autologous DCs electroporated with RNA isolated from patients with acute myeloid leukemia, indicating that antigens shared among these malignant cells are involved and recognized by these CTLs. In patients with CML in complete cytogenetic remission during IFN-alpha treatment, we detected some reactivity of CD8(+) T cells against BCR-ABL in IFN-gamma ELISPOT assays, which was weaker as compared with proteinase 3 (PR3)- or prame-directed responses, suggesting that the BCR-ABL protein is less immunogenic as compared with other CML-derived antigens.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/physiology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Humans
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Interferon-gamma/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
Collapse
Affiliation(s)
- Frank Grünebach
- Department of Hematology, Oncology, Immunology, and Rheumatology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
RNA is a key macromolecule for the mobilisation and interpretation of genetic information. Research has sought to exploit the inherent properties of RNA, such as the direct production of proteins in the cytoplasm without the need for nuclear translocation. This property makes the delivery of genes into postmitotic cells especially attractive. Recently, RNA transfer into postmitotic dendritic cells (DCs) has emerged as a potential new therapeutic agent in the area of immunotherapy. DCs are the most important regulators of the immune system. Thus, transfecting DCs with RNA allows the specific manipulation of immune responses and, thereby, the treatment of a variety of diseases, such as cancer. Preclinical studies have demonstrated that RNA-transduced DCs efficiently stimulate antigen-specific T cell responses in vitro and in animal tumour models. In addition, the clinical data from Phase I and II trials of tumour patients indicate that RNA-transduced DCs represent a promising approach for the development of future vaccination strategies. The use of RNA molecules as therapeutic agents is a relatively new approach in the treatment of diseases, such as cancer, but has received increasing attention during the past decade. Especially in the field of immunotherapy, the inherent properties of RNA molecules in combination with immunostimulating dendritic cells (DCs) are being investigated at present for their beneficial therapeutic effect. Immunotherapy is based on the stimulation of the patient's immune system to recognise and eliminate infected cells or tumour cells in an antigen-specific manner. Current approaches focus on the stimulation of CD8(+) cytotoxic T lymphocyte responses, as well as on the induction of CD4(+) T helper cell responses, in order to obtain optimal and sustained immune responses capable of eliminating altered cells. This review mainly focuses on the potential use of RNA-transduced DCs as a therapeutic strategy in the treatment of cancer, as current studies on the treatment of infectious diseases are just beginning.
Collapse
Affiliation(s)
- Tatjana C Gust
- Charité, Laboratory of Inflammation and Gene Therapy, Department of Trauma and Reconstructive Surgery, Krahmerstrasse 6-10, 12207 Berlin, Germany
| | | |
Collapse
|
45
|
Batchu RB, Moreno AM, Szmania SM, Bennett G, Spagnoli GC, Ponnazhagan S, Barlogie B, Tricot G, van Rhee F. Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res 2005; 65:10041-9. [PMID: 16267030 DOI: 10.1158/0008-5472.can-05-1383] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myeloma vaccines, based on dendritic cells pulsed with idiotype or tumor lysate, have been met with limited success, probably in part due to insufficient cross-priming of myeloma antigens. A powerful method to introduce myeloma-associated antigens into the cytosol of dendritic cells is protein transduction, a process by which proteins fused with a protein transduction domain (PTD) freely traverse membrane barriers. NY-ESO-1, an immunogenic antigen by itself highly expressed in 60% of high-risk myeloma patients, was purified to near homogeneity both alone and as a recombinant fusion protein with a PTD, derived from HIV-Tat. Efficient entry of PTD-NY-ESO-1 into dendritic cells, confirmed by microscopy, Western blotting, and intracellular flow cytometry, was achieved without affecting dendritic cell phenotype. Experiments with amiloride, which inhibits endocytosis, and N-acetyl-l-leucinyl-l-norleucinal, a proteasome inhibitor, confirmed that PTD-NY-ESO-1 entered dendritic cells by protein transduction and was degraded by the proteasome. Tetramer analysis indicated superior generation of HLA-A2.1, CD8+ T lymphocytes specific for NY-ESO-1(157-165) with PTD-NY-ESO-1 compared with NY-ESO-1 control protein (44% versus 2%, respectively). NY-ESO-1-specific T lymphocytes generated with PTD-NY-ESO-1 secreted IFN-gamma indicative of a Tc1-type cytokine response. Thus, PTD-NY-ESO-1 accesses the cytoplasm by protein transduction, is processed by the proteasome, and NY-ESO-1 peptides presented by HLA class I elicit NY-ESO-1-specific T lymphocytes.
Collapse
Affiliation(s)
- Ramesh B Batchu
- Myeloma Institute for Research and Therapy, Section for Gene and Immunotherapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Lymphoproliferative disorders, including follicular lymphoma (FL), multiple myeloma (MM) and chronic lymphatic leukaemia (CLL), are slowly progressive malignancies which remain incurable despite advances in therapy. Harnessing the immune system to recognise and destroy tumours is a promising new approach to treating these diseases. Dendritic cells (DC) are unique antigen-presenting cells that play a central role in the initiation and direction of immune responses. DC loaded ex vivo with tumour-associated antigens and administered as a vaccine have already shown promise in early clinical trials for a number of lymphoproliferative disorders, but the need for improvement is widely agreed. Recent advances in the understanding of basic DC biology and lessons from early clinical trials have provided exciting new insights into the generation of anti-tumour immune responses and the design of vaccine strategies. In this review we provide an overview of our current understanding of DC biology and their function in patients with lymphoproliferative disorders. We discuss the current status of clinical trials and new approaches to exploit the antigen presenting capacity of DC to design vaccines of the future.
Collapse
MESH Headings
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Clinical Trials as Topic
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Lymphoma, Follicular/therapy
- Lymphoproliferative Disorders/immunology
- Lymphoproliferative Disorders/pathology
- Lymphoproliferative Disorders/therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Multiple Myeloma/therapy
- Vaccination
Collapse
Affiliation(s)
- Kristen J Radford
- Mater Medical Research Institute, Dendritic Cell Laboratory, South Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
47
|
Grünebach F, Brossart P. The therapeutic use of dendritic cells transfected with tumour RNA. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.12.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Grünebach F, Kayser K, Weck MM, Müller MR, Appel S, Brossart P. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 2005; 12:749-56. [PMID: 15877082 DOI: 10.1038/sj.cgt.7700842] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribonucleic acid (RNA) transfection of dendritic cells (DCs) was shown to be highly efficient in eliciting CD8+ and CD4+ T-cell responses. We analyzed whether electroporation of DCs with RNA coding for a tumor-associated antigen (TAA) would elicit antigen-specific effector cytotoxic T lymphocyte (CTL) responses and whether these responses could be modulated by cotransfection with a second specific synthetic RNA. Therefore in vitro generated human monocyte-derived DCs were electroporated with in vitro transcribed RNA (in vitro transcript, IVT) encoding the TAA HER-2/neu. Additionally, these cells were cotransfected with IVT coding for human 4-1BBL. Transfection of DCs with 4-1BBL-IVT did not alter their typical phenotype. However, it increased the expression of the costimulatory molecules CD80 and CD40. Coadministration of HER-2/neu- and 4-1BBL-IVT resulted in an increased specific lysis of target cells by the in vitro induced CTL lines, indicating that 4-1BBL enhances their ability to elicit primary CTL responses. Interestingly, transfection of DCs with 4-1BBL-IVT did not augment their capacity to stimulate allogeneic lymphocyte responses. The here established approach of cotransfection of DCs with tumor-RNA and a second specific IVT could improve and optimize the in vitro manipulation of DCs for the induction of antigen-specific CTL responses.
Collapse
Affiliation(s)
- Frank Grünebach
- Department of Internal Medicine II, Hematology, Oncology and Immunology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Heine A, Grünebach F, Holderried T, Appel S, Weck MM, Dörfel D, Sinzger C, Brossart P. Transfection of dendritic cells with in vitro-transcribed CMV RNA induces polyclonal CD8+- and CD4+-mediated CMV-specific T cell responses. Mol Ther 2005; 13:280-8. [PMID: 16219490 DOI: 10.1016/j.ymthe.2005.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 08/03/2005] [Accepted: 08/06/2005] [Indexed: 11/27/2022] Open
Abstract
Transfection of dendritic cells (DCs) with RNA was shown to be effective in the generation of antigen-specific T cells, probably due to the induction of a polyclonal T cell response directed against multiple antigens. To verify this assumption we used DCs, generated from cytomegalovirus (CMV)-negative or -positive donors, that were electroporated with in vitro-transcribed RNA (in vitro transcript, IVT) coding for the CMV pp65 antigen. We found that transfection of DCs with pp65 IVT induces an expansion of polyclonal CD8(+) T lymphocytes that recognize peptide antigens presented on different HLA molecules. These T lymphocytes are able to lyse DCs pulsed with pp65-derived peptides or transfected with the cognate IVT. Furthermore, this approach allowed the identification of immunodominant epitopes presented upon IVT transfection. Interestingly, transfection of DCs with pp65 IVT resulted in the induction of CD4(+)-specific T cells. Cotransfection of DCs with IVTs coding for the CMV antigens pp65 and IE1 elicited polyclonal T lymphocytes specific for peptides derived from both antigens. More importantly, cytotoxic T cells could be generated in two of three CMV-negative donors. Finally, functional CMV-specific autologous cytotoxic T lymphocytes were successfully generated from immunosuppressed patients after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Annkristin Heine
- Department of Hematology, Oncology, and Immunology, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Suresh K, Rodriguez-Lecompte JC, Gauldie J, Foley R. Recent advances in immunotherapy of B-CLL using ex vivo modified dendritic cells. ACTA ACUST UNITED AC 2005; 10:189-203. [PMID: 16019468 DOI: 10.1080/10245330500094870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chronic lymphocytic leukemia (CLL) results from the relentless accumulation of small mature, slowly dividing, monoclonal B-lymphocytes. The clinical course is heterogeneous, some patients with aggressive form of the disease progressing rapidly with early death while others exhibit a more stable, possibly, non-progressing indolent type of the disease lasting many years. Despite progress in modern treatment modalities, relapse invariably occurs and disease still remains incurable. The clinical management of CLL is therefore challenging and considerable effort has been directed towards novel therapeutic strategies aimed at reducing minimal residual disease which can increase remission duration. Recent insight into the role of dendritic cells (DCs) as pivotal antigen presenting cells that initiate immune responses may provide the basis for generating more specific and effective immune responses. Ex-vivo modified and monocyte-derived DCs represents a promising approach within the context of CLL. However, understanding the relationship between DCs and the cellular immune response is crucial in devising strategies for manipulating immune responses. After a brief survey of general properties of DCs, this review focuses on the different approaches exploiting monocyte-derived DCs in CLL, which may help to design novel strategies for phase-I clinical trials.
Collapse
MESH Headings
- Cells, Cultured
- Clinical Trials, Phase I as Topic
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Humans
- Immunity, Cellular/immunology
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Monocytes/cytology
- Monocytes/immunology
- Monocytes/transplantation
Collapse
Affiliation(s)
- Kalathil Suresh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ont., Canada, L8N 3Z5 2
| | | | | | | |
Collapse
|