1
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Bouti P, Klein BJAM, Verkuijlen PJH, Schornagel K, van Alphen FPJ, Taris KKH, van den Biggelaar M, Hoogendijk AJ, van Bruggen R, Kuijpers TW, Matlung HL. SKAP2 acts downstream of CD11b/CD18 and regulates neutrophil effector function. Front Immunol 2024; 15:1344761. [PMID: 38487529 PMCID: PMC10937362 DOI: 10.3389/fimmu.2024.1344761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
Background The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.
Collapse
Affiliation(s)
- Panagiota Bouti
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Bart J. A. M. Klein
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Paul J. H. Verkuijlen
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Karin Schornagel
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Floris P. J. van Alphen
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kees-Karel H. Taris
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Futosi K, Németh T, Horváth ÁI, Abram CL, Tusnády S, Lowell CA, Helyes Z, Mócsai A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023; 220:e20221010. [PMID: 37074415 PMCID: PMC10120404 DOI: 10.1084/jem.20221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ádám I. Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Tusnády
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Wang J, Zhang J, Wang Q, Zhang Q, Thiam M, Zhu B, Ying F, Elsharkawy MS, Zheng M, Wen J, Li Q, Zhao G. A heterophil/lymphocyte-selected population reveals the phosphatase PTPRJ is associated with immune defense in chickens. Commun Biol 2023; 6:196. [PMID: 36807561 PMCID: PMC9938895 DOI: 10.1038/s42003-023-04559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Quantification of leukocyte profiles is among the simplest measures of animal immune function. However, the relationship between H/L ratio and innate immunity and the measure's utility as an index for heterophil function remains to be analyzed. Variants associated with H/L ratio were fine-mapped based on the resequencing of 249 chickens of different generations and an F2 segregating population generated by crossing selection and control lines. H/L ratio in the selection line was associated with a selective sweep of mutations in protein tyrosine phosphatase, receptor type J (PTPRJ), which affects proliferation and differentiation of heterophils through its downstream regulatory genes. The SNP downstream of PTPRJ (rs736799474) have a universal effect on H/L, with CC homozygotes exhibiting improved heterophil function because of downregulated PTPRJ expression. In short, we systematically elucidated the genetic basis of the change in heterophil function resulting from H/L selection by identifying the regulatory gene (PTPRJ) and causative SNP.
Collapse
Affiliation(s)
- Jie Wang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China ,grid.452757.60000 0004 0644 6150Poultry Institute, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 P. R. China
| | - Jin Zhang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qiao Wang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qi Zhang
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Mamadou Thiam
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Bo Zhu
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Fan Ying
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Mohamed Shafey Elsharkawy
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Maiqing Zheng
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Jie Wen
- grid.464332.4Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
5
|
Wu G, Xu Y, Schultz RD, Chen H, Xie J, Deng M, Liu X, Gui X, John S, Lu Z, Arase H, Zhang N, An Z, Zhang CC. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis. NATURE CANCER 2021; 2:1170-1184. [PMID: 35122056 PMCID: PMC8809885 DOI: 10.1038/s43018-021-00262-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Samuel John
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Yeung L, Gottschalk TA, Hall P, Tsantikos E, Gallagher RH, Kitching AR, Hibbs ML, Wright MD, Hickey MJ. Tetraspanin CD53 modulates lymphocyte trafficking but not systemic autoimmunity in Lyn-deficient mice. Immunol Cell Biol 2021; 99:1053-1066. [PMID: 34514627 DOI: 10.1111/imcb.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022]
Abstract
The leukocyte-restricted tetraspanin CD53 has been shown to promote lymphocyte homing to lymph nodes (LNs) and myeloid cell recruitment to acutely inflamed peripheral organs, and accelerate the onset of immune-mediated disease. However, its contribution in the setting of chronic systemic autoimmunity has not been investigated. We made use of the Lyn-/- autoimmune model, generating Cd53-/- Lyn-/- mice, and compared trafficking of immune cells into secondary lymphoid organs and systemic autoimmune disease development with mice lacking either gene alone. Consistent with previous observations, absence of CD53 led to reduced LN cellularity via reductions in both B and T cells, a phenotype also observed in Cd53-/- Lyn-/- mice. In some settings, Cd53-/- Lyn-/- lymphocytes showed greater loss of surface L-selectin and CD69 upregulation above that imparted by Lyn deficiency alone, indicating that absence of these two proteins can mediate additive effects in the immune system. Conversely, prototypical effects of Lyn deficiency including splenomegaly, plasma cell expansion, elevated serum immunoglobulin M and anti-nuclear antibodies were unaffected by CD53 deficiency. Furthermore, while Lyn-/- mice developed glomerular injury and showed elevated glomerular neutrophil retention above than that in wild-type mice, absence of CD53 in Lyn-/- mice did not alter these responses. Together, these findings demonstrate that while tetraspanin CD53 promotes lymphocyte trafficking into LNs independent of Lyn, it does not make an important contribution to development of autoimmunity, plasma cell dysfunction or glomerular injury in the Lyn-/- model of systemic autoimmunity.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Gallagher
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Gottschalk TA, Vincent FB, Hoi AY, Hibbs ML. Granulocyte colony-stimulating factor is not pathogenic in lupus nephritis. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:758-770. [PMID: 33960699 PMCID: PMC8342225 DOI: 10.1002/iid3.430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (lupus) is an autoimmune disease characterized by autoantibodies that form immune complexes with self‐antigens, which deposit in various tissues, leading to inflammation and disease. The etiology of disease is complex and still not completely elucidated. Dysregulated inflammation is an important disease feature, and the mainstay of lupus treatment still utilizes nonspecific anti‐inflammatory drugs. Granulocyte colony‐stimulating factor (G‐CSF) is a growth, survival, and activation factor for neutrophils and a mobilizer of hematopoietic stem cells, both of which underlie inflammatory responses in lupus. To determine whether G‐CSF has a causal role in lupus, we genetically deleted G‐CSF from Lyn‐deficient mice, an experimental model of lupus nephritis. Lyn−/−G‐CSF−/− mice displayed many of the inflammatory features of Lyn‐deficient mice; however, they had reduced bone marrow and tissue neutrophils, consistent with G‐CSF's role in neutrophil development. Unexpectedly, in comparison to aged Lyn‐deficient mice, matched Lyn−/−G‐CSF−/− mice maintained neutrophil hyperactivation and exhibited exacerbated numbers of effector memory T cells, augmented autoantibody titers, and worsened lupus nephritis. In humans, serum G‐CSF levels were not elevated in patients with lupus or with active renal disease. Thus, these studies suggest that G‐CSF is not pathogenic in lupus, and therefore G‐CSF blockade is an unsuitable therapeutic avenue.
Collapse
Affiliation(s)
- Timothy A Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Fabien B Vincent
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Alberta Y Hoi
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Okubo K, Brenner MD, Cullere X, Saggu G, Patchen ML, Bose N, Mihori S, Yuan Z, Lowell CA, Zhu C, Mayadas TN. Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep 2021; 35:109142. [PMID: 34010642 PMCID: PMC8218468 DOI: 10.1016/j.celrep.2021.109142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. β-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, β-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by β-glucan, a previously described activator of innate immunity. Okubo et al. demonstrate that β-glucan binding to the glycosphingolipid lactosylceramide engages a Lyn kinase to SHP-1 phosphatase pathway that reduces FcγRIIA binding propensity for IgG, which suggests FcγRIIA affinity regulation by “inside-out” signaling. The β-glucan-lactosylceramide-Lyn axis prevents FcγRIIA-dependent neutrophil recruitment in vitro and to intravascular IgG deposits following glomerulonephritis.
Collapse
Affiliation(s)
- Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Brenner
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Gurpanna Saggu
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | | | - Nandita Bose
- Biothera Pharmaceuticals, Inc., Eagan, Minnesota, MN 55121, USA
| | - Saki Mihori
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Zhou Yuan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Cheng Zhu
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Karunakaran KB, Yanamala N, Boyce G, Becich MJ, Ganapathiraju MK. Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions. Cancers (Basel) 2021; 13:1660. [PMID: 33916178 PMCID: PMC8037232 DOI: 10.3390/cancers13071660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an 'MPM interactome' with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.
Collapse
Affiliation(s)
- Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India;
| | - Naveena Yanamala
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Gregory Boyce
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Michael J. Becich
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
| | - Madhavi K. Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol 2021; 131:121-126. [PMID: 33419562 DOI: 10.1016/j.molimm.2020.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
With worsening air pollution brought by global social development, the prevalence of allergic diseases has increased dramatically in the past few decades. The novel Lck/yes-related protein tyrosine kinase (Lyn) belongs to the Src kinase family (SFK) and plays a pivotal role in the pathogenesis of inflammation, tumor, and allergy. This signaling molecule is vital in the IgE/FcεRI signaling pathway that regulates allergy. The Lyn-FcεRIβ interaction is essential for mast cell activation. The signaling pathway of Lyn has become the focus of immune, inflammatory, tumor, and allergy research. This molecule has positive and negative regulatory effects, which have attracted researchers' attention. This paper reviews the basic characteristics of Lyn and its regulatory mechanism and role in tumor and other diseases, specifically in allergies.
Collapse
Affiliation(s)
- Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Steinauer N, Guo C, Zhang J. The transcriptional corepressor CBFA2T3 inhibits all- trans-retinoic acid-induced myeloid gene expression and differentiation in acute myeloid leukemia. J Biol Chem 2020; 295:8887-8900. [PMID: 32434928 PMCID: PMC7335779 DOI: 10.1074/jbc.ra120.013042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/17/2020] [Indexed: 01/10/2023] Open
Abstract
CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3, also known as MTG16 or ETO2) is a myeloid translocation gene family protein that functions as a master transcriptional corepressor in hematopoiesis. Recently, it has been shown that CBFA2T3 maintains leukemia stem cell gene expression and promotes relapse in acute myeloid leukemia (AML). However, a role for CBFA2T3 in myeloid differentiation of AML has not been reported. Here, we show that CBFA2T3 represses retinoic acid receptor (RAR) target gene expression and inhibits all-trans-retinoic acid (ATRA)-induced myeloid differentiation of AML cells. ChIP-Seq revealed that CBFA2T3 targets the RARα/RXRα cistrome in U937 AML cells, predominantly at myeloid-specific enhancers associated with terminal differentiation. CRISPR/Cas9-mediated abrogation of CBFA2T3 resulted in spontaneous and ATRA-induced activation of myeloid-specific genes in a manner correlated with myeloid differentiation. Importantly, these effects were reversed by CBFA2T3 re-expression. Mechanistic studies showed that CBFA2T3 inhibits RAR target gene transcription by acting at an early step to regulate histone acetyltransferase recruitment, histone acetylation, and chromatin accessibility at RARα target sites, independently of the downstream, RAR-mediated steps of transcription. Finally, we validated the inhibitory effect of CBFA2T3 on RAR in multiple AML subtypes and patient samples. To our knowledge, this is the first study to show that CBFA2T3 down-regulation is both necessary and sufficient for enhancing ATRA-induced myeloid gene expression and differentiation of AML cells. Our findings suggest that CBFA2T3 can serve as a potential target for enhancing AML responsiveness to ATRA differentiation therapies.
Collapse
Affiliation(s)
- Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
12
|
Secchi C, Orecchioni M, Carta M, Galimi F, Turrini F, Pantaleo A. Signaling Response to Transient Redox Stress in Human Isolated T Cells: Molecular Sensor Role of Syk Kinase and Functional Involvement of IL2 Receptor and L-Selectine. SENSORS 2020; 20:s20020466. [PMID: 31947584 PMCID: PMC7013990 DOI: 10.3390/s20020466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) are central effectors of inflammation and play a key role in cell signaling. Previous reports have described an association between oxidative events and the modulation of innate immunity. However, the role of redox signaling in adaptive immunity is still not well understood. This work is based on a novel investigation of diamide, a specific oxidant of sulfhydryl groups, and it is the first performed in purified T cell tyrosine phosphorylation signaling. Our data show that ex vivo T cells respond to –SH group oxidation with a distinctive tyrosine phosphorylation response and that these events elicit specific cellular responses. The expression of two essential T-cell receptors, CD25 and CD62L, and T-cell cytokine release is also affected in a specific way. Experiments with Syk inhibitors indicate a major contribution of this kinase in these phenomena. This pilot work confirms the presence of crosstalk between oxidation of cysteine residues and tyrosine phosphorylation changes, resulting in a series of functional events in freshly isolated T cells. Our experiments show a novel role of Syk inhibitors in applying their anti-inflammatory action through the inhibition of a ROS-generated reaction.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
- Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100 Sassari, Italy
- Correspondence: (C.S.); (A.P.); Tel./Fax: +39-079-228-651 (A.P.)
| | - Marco Orecchioni
- La Jolla Institute of Immunology, La Jolla, CA 92093, USA;
- Department of Chemistry and Pharmacy, University of Sassari, I-07100 Sassari, Italy
| | - Marissa Carta
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
- Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100 Sassari, Italy
| | | | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
- Correspondence: (C.S.); (A.P.); Tel./Fax: +39-079-228-651 (A.P.)
| |
Collapse
|
13
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Bury L, Malara A, Momi S, Petito E, Balduini A, Gresele P. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Haematologica 2019; 104:1473-1481. [PMID: 30655369 PMCID: PMC6601082 DOI: 10.3324/haematol.2018.200378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/11/2019] [Indexed: 11/09/2022] Open
Abstract
Platelet-type von Willebrand disease is an inherited platelet disorder characterized by thrombocytopenia with large platelets caused by gain-of-function variants in GP1BA leading to enhanced GPIbα-von Willebrand factor (vWF) interaction. GPIbα and vWF play a role in megakaryocytopoiesis, thus we aimed to investigate megakaryocyte differentiation and proplatelet-formation in platelet-type von Willebrand disease using megakaryocytes from a patient carrying the Met239Val variant and from mice carrying the Gly233Val variant. Platelet-type von Willebrand disease megakaryocytes bound vWF at an early differentiation stage and generated proplatelets with a decreased number of enlarged tips compared to control megakaryocytes. Moreover, they formed proplatelets upon contact with collagen, differently from normal megakaryocytes. Similarly, collagen triggered megakaryocytes showed defective activation of the RhoA-MLC2 axis, which prevents proplatelet formation, and increased phosphorylation of Lyn, which acts as a negative regulator of GPVI signaling, thus preventing ectopic proplatelet-formation on collagen. Consistently, human and murine bone marrow contained an increased number of extravascular platelets compared to controls. In addition, platelet survival of mutant mice was shortened compared to control mice, and the administration of desmopressin, raising circulating vWF, caused a marked drop in platelet count. Taken together, these results show for the first time that thrombocytopenia in platelet-type von Willebrand disease is due to the combination of different pathogenic mechanisms, i.e. the formation of a reduced number of platelets by megakaryocytes, the ectopic release of platelets in the bone marrow, and the increased clearance of platelet/vWF complexes.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Stefania Momi
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Eleonora Petito
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| |
Collapse
|
15
|
Tahir M, Arshid S, Fontes B, Castro MS, Luz IS, Botelho KLR, Sidoli S, Schwämmle V, Roepstorff P, Fontes W. Analysis of the Effect of Intestinal Ischemia and Reperfusion on the Rat Neutrophils Proteome. Front Mol Biosci 2018; 5:89. [PMID: 30555831 PMCID: PMC6281993 DOI: 10.3389/fmolb.2018.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/04/2018] [Indexed: 01/26/2023] Open
Abstract
Intestinal ischemia and reperfusion injury is a model system of possible consequences of severe trauma and surgery, which might result into tissue dysfunction and organ failure. Neutrophils contribute to the injuries preceded by ischemia and reperfusion. However, the mechanisms by which intestinal ischemia and reperfusion stimulate and activate circulating neutrophils is still not clear. In this work, we used proteomics approach to explore the underlying regulated mechanisms in Wistar rat neutrophils after ischemia and reperfusion. We isolated neutrophils from three different biological groups; control, sham laparotomy, and intestinal ischemia/reperfusion. In the workflow, we included iTRAQ-labeling quantification and peptide fractionation using HILIC prior to LC-MS/MS analysis. From proteomic analysis, we identified 2,045 proteins in total that were grouped into five different clusters based on their regulation trend between the experimental groups. A total of 417 proteins were found as significantly regulated in at least one of the analyzed conditions. Interestingly, the enzyme prediction analysis revealed that ischemia/reperfusion significantly reduced the relative abundance of most of the antioxidant and pro-survival molecules to cause more tissue damage and ROS production whereas some of the significantly up regulated enzymes were involved in cytoskeletal rearrangement, adhesion and migration. Clusters based KEGG pathways analysis revealed high motility, phagocytosis, directional migration, and activation of the cytoskeletal machinery in neutrophils after ischemia and reperfusion. Increased ROS production and decreased phagocytosis were experimentally validated by microscopy assays. Taken together, our findings provide a characterization of the rat neutrophil response to intestinal ischemia and reperfusion and the possible mechanisms involved in the tissue injury by neutrophils after intestinal ischemia and reperfusion.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Samina Arshid
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Isabelle S Luz
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Katyelle L R Botelho
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
16
|
Azcutia V, Parkos CA, Brazil JC. Role of negative regulation of immune signaling pathways in neutrophil function. J Leukoc Biol 2017; 103:10.1002/JLB.3MIR0917-374R. [PMID: 29345376 PMCID: PMC6203665 DOI: 10.1002/jlb.3mir0917-374r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/26/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in host defense against infection and in the resolution of inflammation. However, immune responses mediated by PMN must be tightly regulated to facilitate elimination of invading pathogens without inducing detrimental inflammation and host tissue damage. Specific engagement of cell surface immunoreceptors by a diverse range of extracellular signals regulates PMN effector functions through differential activation of intracellular signaling cascades. Although mechanisms of PMN activation mediated via cell signaling pathways have been well described, less is known about negative regulation of PMN function by immune signaling cascades. Here, we provide an overview of immunoreceptor-mediated negative regulation of key PMN effector functions including maturation, migration, phagocytosis, reactive oxygen species release, degranulation, apoptosis, and NET formation. Increased understanding of mechanisms of suppression of PMN effector functions may point to possible future therapeutic targets for the amelioration of PMN-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
17
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
18
|
|
19
|
Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. J Cell Physiol 2017; 232:1689-1695. [PMID: 27591397 DOI: 10.1002/jcp.25583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Neutrophils from NOD (Non-Obese Diabetic) mice exhibited reduced migration speed, decreased frequency of directional changes, and loss of directionality during chemotaxis (compared to wild-type [WT] C57BL/6 mice). Additionally, F-actin of chemotaxing NOD neutrophils failed to orient toward the chemoattractant gradient and NOD neutrophil adhesion was impaired. A point mutation near the autophosphorylation site of Lyn in NOD mice was identified. Point mutations of G to A (G1412 in LynA and G1199 in LynB) cause a change of amino acid E393 (glutamic acid) to K (lysine) in LynA (E393 →K) (E372 of LynB), affecting fMLP-induced tyrosine phosphorylation. These data indicate that the Lyn mutation in NOD neutrophils is likely responsible for dysregulation of neutrophil adhesion and directed migration, implying the role of Lyn in modulating diabetic patient's susceptibility to bacterial and fungal infections. J. Cell. Physiol. 232: 1689-1695, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Hannigan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lijun Zhan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Chi-Kuang Huang
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
20
|
Giambelluca MS, Pouliot M. Early tyrosine phosphorylation events following adenosine A 2A receptor in human neutrophils: identification of regulated pathways. J Leukoc Biol 2017; 102:829-836. [PMID: 28179537 DOI: 10.1189/jlb.2vma1216-517r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Activation of the adenosine 2A receptor (A2AR) elevates intracellular levels of cAMP and acts as a physiologic inhibitor of inflammatory neutrophil functions. In this study, we looked into the impact of A2AR engagement on early phosphorylation events. Neutrophils were stimulated with well-characterized proinflammatory agonists in the absence or presence of an A2AR agonist {3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl] phenyl] propanoic acid (CGS 21680)}, PGE2, or a mixture of the compounds RO 20-1724 and forskolin. As assessed by immunoblotting, several proteins were tyrosine phosphorylated; CGS 21680 markedly decreased tyrosine phosphorylation levels of 4 regions (37-45, 50-55, 60, and 70 kDa). Key signaling protein kinases-p38 MAPK, Erk-1/2, PI3K/Akt, Hck, and Syk-showed decreased phosphorylation, whereas Lyn, SHIP-1, or phosphatase and tensin homolog (PTEN) was spared. PGE2 or the intracellular cAMP-elevating combination of RO 20-1724 and forskolin mostly mimicked the effect of CGS 21680. Together, results unveil intracellular signaling pathways targeted by the A2AR, some of which might be key in modulating neutrophil functions.
Collapse
Affiliation(s)
- Miriam S Giambelluca
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Canada
| | - Marc Pouliot
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Canada
| |
Collapse
|
21
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
22
|
Vermeren S, Miles K, Chu JY, Salter D, Zamoyska R, Gray M. PTPN22 Is a Critical Regulator of Fcγ Receptor-Mediated Neutrophil Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4771-4779. [PMID: 27807193 PMCID: PMC5136470 DOI: 10.4049/jimmunol.1600604] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023]
Abstract
Neutrophils act as a first line of defense against bacterial and fungal infections, but they are also important effectors of acute and chronic inflammation. Genome-wide association studies have established that the gene encoding the protein tyrosine phosphatase nonreceptor 22 (PTPN22) makes an important contribution to susceptibility to autoimmune disease, notably rheumatoid arthritis. Although PTPN22 is most highly expressed in neutrophils, its function in these cells remains poorly characterized. We show in this article that neutrophil effector functions, including adhesion, production of reactive oxygen species, and degranulation induced by immobilized immune complexes, were reduced in Ptpn22-/- neutrophils. Tyrosine phosphorylation of Lyn and Syk was altered in Ptpn22-/- neutrophils. On stimulation with immobilized immune complexes, Ptpn22-/- neutrophils manifested reduced activation of key signaling intermediates. Ptpn22-/- mice were protected from immune complex-mediated arthritis, induced by the transfer of arthritogenic serum. In contrast, in vivo neutrophil recruitment following thioglycollate-induced peritonitis and in vitro chemotaxis were not affected by lack of PTPN22. Our data suggest an important role for PTPN22-dependent dephosphorylation events, which are required to enable full FcγR-induced activation, pointing to an important role for this molecule in neutrophil function.
Collapse
Affiliation(s)
- Sonja Vermeren
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom;
| | - Katherine Miles
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Julia Y Chu
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Donald Salter
- Institute for Genetics and Molecular Medicine, Edinburgh EH4 2XU, United Kingdom; and
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Mohini Gray
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
23
|
Noraz N, Jaaoini I, Charoy C, Watrin C, Chounlamountri N, Benon A, Malleval C, Boudin H, Honnorat J, Castellani V, Pellier-Monnin V. Syk kinases are required for spinal commissural axon repulsion at the midline via the ephrin/Eph pathway. Development 2016; 143:2183-93. [PMID: 27122172 DOI: 10.1242/dev.128629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 04/15/2016] [Indexed: 12/26/2022]
Abstract
In the hematopoietic system, Syk family tyrosine kinases are essential components of immunoreceptor ITAM-based signaling. While there is increasing data indicating the involvement of immunoreceptors in neural functions, the contribution of Syk kinases remains obscure. Previously, we identified phosphorylated forms of Syk kinases in specialized populations of migrating neurons or projecting axons. Moreover, we identified ephrin/Eph as guidance molecules utilizing the ITAM-bearing CD3zeta (Cd247) and associated Syk kinases for the growth cone collapse response induced in vitro Here, we show that in the developing spinal cord, Syk is phosphorylated in navigating commissural axons. By analyzing axon trajectories in open-book preparations of Syk(-/-); Zap70(-/-) mouse embryos, we show that Syk kinases are dispensable for attraction towards the midline but confer growth cone responsiveness to repulsive signals that expel commissural axons from the midline. Known to serve a repulsive function at the midline, ephrin B3/EphB2 are obvious candidates for driving the Syk-dependent repulsive response. Indeed, Syk kinases were found to be required for ephrin B3-induced growth cone collapse in cultured commissural neurons. In fragments of commissural neuron-enriched tissues, Syk is in a constitutively phosphorylated state and ephrin B3 decreased its level of phosphorylation. Direct pharmacological inhibition of Syk kinase activity was sufficient to induce growth cone collapse. In conclusion, Syk kinases act as a molecular switch of growth cone adhesive and repulsive responses.
Collapse
Affiliation(s)
- Nelly Noraz
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Iness Jaaoini
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Camille Charoy
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Chantal Watrin
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Naura Chounlamountri
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Aurélien Benon
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Céline Malleval
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Hélène Boudin
- INSERM U1064, Institut de Transplantation Urologie-Néphrologie, Nantes F-44035, France
| | - Jérôme Honnorat
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France Hospices Civils de Lyon, Lyon F-69000, France
| | - Valérie Castellani
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| | - Véronique Pellier-Monnin
- INSERM U1217, Institut NeuroMyoGène, Lyon F-69000, France CNRS UMR5310, Institut NeuroMyoGène, Lyon F-69000, France University Claude Bernard Lyon 1, Lyon F-69000, France
| |
Collapse
|
24
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Roberts ME, Bishop JL, Fan X, Beer JL, Kum WWS, Krebs DL, Huang M, Gill N, Priatel JJ, Finlay BB, Harder KW. Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susceptibility to enteric pathogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5249-63. [PMID: 25339668 DOI: 10.4049/jimmunol.1302832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Lyn tyrosine kinase governs the development and function of various immune cells, and its dysregulation has been linked to malignancy and autoimmunity. Using models of chemically induced colitis and enteric infection, we show that Lyn plays a critical role in regulating the intestinal microbiota and inflammatory responses as well as protection from enteric pathogens. Lyn(-/-) mice were highly susceptible to dextran sulfate sodium (DSS) colitis, characterized by significant wasting, rectal bleeding, colonic pathology, and enhanced barrier permeability. Increased DSS susceptibility in Lyn(-/-) mice required the presence of T but not B cells and correlated with dysbiosis and increased IFN-γ(+) and/or IL-17(+) colonic T cells. This dysbiosis was characterized by an expansion of segmented filamentous bacteria, associated with altered intestinal production of IL-22 and IgA, and was transmissible to wild-type mice, resulting in increased susceptibility to DSS. Lyn deficiency also resulted in an inability to control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. Lyn(-/-) mice exhibited profound cecal inflammation, bacterial dissemination, and morbidity following S. Typhimurium challenge and greater colonic inflammation throughout the course of C. rodentium infection. These results identify Lyn as a key regulator of the mucosal immune system, governing pathophysiology in multiple models of intestinal disease.
Collapse
Affiliation(s)
- Morgan E Roberts
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer L Bishop
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xueling Fan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer L Beer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Winnie W S Kum
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morris Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Navkiran Gill
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - John J Priatel
- Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
26
|
Obr A, Röselová P, Grebeňová D, Kuželová K. Real-time analysis of imatinib- and dasatinib-induced effects on chronic myelogenous leukemia cell interaction with fibronectin. PLoS One 2014; 9:e107367. [PMID: 25198091 PMCID: PMC4157868 DOI: 10.1371/journal.pone.0107367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/13/2014] [Indexed: 11/19/2022] Open
Abstract
Attachment of stem leukemic cells to the bone marrow extracellular matrix increases their resistance to chemotherapy and contributes to the disease persistence. In chronic myelogenous leukemia (CML), the activity of the fusion BCR-ABL kinase affects adhesion signaling. Using real-time monitoring of microimpedance, we studied in detail the kinetics of interaction of human CML cells (JURL-MK1, MOLM-7) and of control BCR-ABL-negative leukemia cells (HEL, JURKAT) with fibronectin-coated surface. The effect of two clinically used kinase inhibitors, imatinib (a relatively specific c-ABL inhibitor) and dasatinib (dual ABL/SRC family kinase inhibitor), on cell binding to fibronectin is described. Both imatinib and low-dose (several nM) dasatinib reinforced CML cell interaction with fibronectin while no significant change was induced in BCR-ABL-negative cells. On the other hand, clinically relevant doses of dasatinib (100 nM) had almost no effect in CML cells. The efficiency of the inhibitors in blocking the activity of BCR-ABL and SRC-family kinases was assessed from the extent of phosphorylation at autophosphorylation sites. In both CML cell lines, SRC kinases were found to be transactivated by BCR-ABL. In the intracellular context, EC50 for BCR-ABL inhibition was in subnanomolar range for dasatinib and in submicromolar one for imatinib. EC50 for direct inhibition of LYN kinase was found to be about 20 nM for dasatinib and more than 10 µM for imatinib. Cells pretreated with 100 nM dasatinib were still able to bind to fibronectin and SRC kinases are thus not necessary for the formation of cell-matrix contacts. However, a minimal activity of SRC kinases might be required to mediate the increase in cell adhesivity induced by BCR-ABL inhibition. Indeed, active (autophosphorylated) LYN was found to localize in cell adhesive structures which were visualized using interference reflection microscopy.
Collapse
Affiliation(s)
- Adam Obr
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pavla Röselová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Grebeňová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
27
|
Shp1 signalling is required to establish the long-lived bone marrow plasma cell pool. Nat Commun 2014; 5:4273. [PMID: 24978161 PMCID: PMC4083441 DOI: 10.1038/ncomms5273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
Germline or B-cell-specific loss of Ptpn6 gene encoding the Shp1 protein tyrosine phosphatase leads to skewed B lymphopoiesis and systemic autoimmunity. Here, to study its role in B-cell terminal differentiation, we generated Ptpn6f/fAicdaCre/+ mice with Shp1 ablated only in activated B cells. We show that Ptpn6f/fAicdaCre/+ mice have normal B-cell development but exhibit defective class-switched primary and recalled antibody response to a T-cell-dependent antigen. Germinal centres are present but do not persist and memory B cells are not formed. Interestingly, Shp1-deficient plasma cells are generated in the spleen but do not contribute to the bone marrow long-lived pool. Plasma cells lacking Shp1 exhibit aberrant α4β1 integrin activation due to dysregulated Src- and PI3-kinase signalling and manifest attenuated migration in vitro and defective bone marrow homing when reconstituted in vivo. Interrupting α4β1–VCAM-1 interaction rectifies this defect. These data suggest that Shp1 signalling is required for the establishment of a life-long protective humoral immunity. SHP-1 signalling is required for the normal development of B lymphocytes but its role in the terminal differentiation of these cells has not been fully established. Here, the authors show that SHP-1 ablation impairs the establishment of long-lived bone marrow-resident plasma cells due to aberrant integrin activation.
Collapse
|
28
|
Shik D, Moshkovits I, Karo-Atar D, Reichman H, Munitz A. Interleukin-33 requires CMRF35-like molecule-1 expression for induction of myeloid cell activation. Allergy 2014; 69:719-29. [PMID: 24735452 DOI: 10.1111/all.12388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND IL-33 is a potent activator of various cells involved in allergic inflammation, including eosinophils and mast cells. Despite its critical role in Th2 disease settings, endogenous molecular mechanisms that may regulate IL-33-induced responses remain to be defined. We have recently shown that eosinophils express CMRF35-like molecule (CLM)-1. Yet, the role of CLM-1 in regulating eosinophil functions is still elusive. METHODS CLM-1 and CLM-8 expression and cellular localization were assessed in murine bone marrow-derived and/or peritoneal cells at baseline and following IL-33 stimulation (flow cytometry, western blot). IL-33-induced mediator release and signaling were assessed in wild-type (wt) and Clm1(-/-) cells and mice. RESULTS BM-derived eosinophils express high levels of glycosylated CLM-1. IL-33 induced a rapid, specific, concentration- and time-dependent upregulation of CLM-1 in eosinophils (in vitro and in vivo). Clm1(-/-) eosinophils secreted less IL-33-induced mediators than wt eosinophils. CLM-1 co-localized to ST2 following IL-33 stimulation and was required for IL-33-induced NFκB and p38 phosphorylation. Th2 cytokine (e.g., IL-5, IL-13) and chemokine (e.g., eotaxins, CCL2) secretion was markedly attenuated in IL-33-treated Clm1(-/-) mice. Subsequently, IL-33-challenged mice displayed reduced infiltration of mast cells, macrophages, neutrophils, and B cells. Despite the markedly impaired IL-33-induced eotaxin expression in Clm1(-/-) mice, eosinophil accumulation was similar in wt and Clm1(-/-) mice, due to hyperchemotactic responses of Clm1(-/-) eosinophils. CONCLUSIONS CLM-1 is a novel regulator of IL-33-induced eosinophil activation. These data contribute to the understanding of endogenous molecular mechanisms regulating IL-33-induced responses and may ultimately lead to receptor-based tools for future therapeutic intervention in IL-33-associated diseases.
Collapse
Affiliation(s)
- D. Shik
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - I. Moshkovits
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - D. Karo-Atar
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - H. Reichman
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - A. Munitz
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| |
Collapse
|
29
|
Shelef MA, Tauzin S, Huttenlocher A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 2013; 256:269-81. [PMID: 24117827 PMCID: PMC4117680 DOI: 10.1111/imr.12124] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a resurgence of interest in the neutrophil's role in autoimmune disease. Classically considered an early responder that dies at the site of inflammation, new findings using live imaging of embryonic zebrafish and other modalities suggest that neutrophils can reverse migrate away from sites of inflammation. These 'inflammation-sensitized' neutrophils, as well as the neutrophil extracellular traps and other products made by neutrophils in general, may have many implications for autoimmunity. Here, we review what is known about the role of neutrophils in three different autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, and small vessel vasculitis. We then highlight recent findings related to several cytoskeletal regulators that guide neutrophil recruitment including Lyn, Rac2, and SHIP. Finally, we discuss how our improved understanding of the molecules that control neutrophil chemotaxis may impact our knowledge of autoimmunity.
Collapse
Affiliation(s)
- Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin – Madison, Madison, WI
| | - Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| |
Collapse
|
30
|
Abstract
The Src family kinases (SFKs) c-Src and Yes mediate vascular leakage in response to various stimuli including lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF). Here, we define an opposing function of another SFK, Lyn, which in contrast to other SFKs, strengthens endothelial junctions and thereby restrains the increase in vascular permeability. Mice lacking Lyn displayed increased mortality in LPS-induced endotoxemia and increased vascular permeability in response to LPS or VEGF challenge compared with wild-type littermates. Lyn knockout mice repopulated with wild-type bone marrow-derived cells have higher vascular permeability than wild-type mice, suggesting a role of endothelial Lyn in the maintenance of the vascular barrier. Small interfering RNA-mediated down-regulation of Lyn disrupted endothelial barrier integrity, whereas expression of a constitutively active mutant of Lyn enhanced the barrier. However, down-regulation of Lyn did not affect LPS-induced endothelial permeability. We demonstrate that Lyn association with focal adhesion kinase (FAK) and phosphorylation of FAK at tyrosine residues 576/577 and 925 were required for Lyn-dependent stabilization of endothelial adherens junctions. Thus, in contrast to c-Src and Yes, which increase vascular permeability in response to stimuli, Lyn stabilizes endothelial junctions through phosphorylation of FAK. Therefore, therapeutics activating Lyn kinase may strengthen the endothelial barrier junction and hence have anti-inflammatory potential.
Collapse
|
31
|
Abram CL, Roberge GL, Pao LI, Neel BG, Lowell CA. Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice. Immunity 2013; 38:489-501. [PMID: 23521885 DOI: 10.1016/j.immuni.2013.02.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/26/2012] [Indexed: 01/18/2023]
Abstract
The motheaten mouse has long served as a paradigm for complex autoimmune and inflammatory disease. Null mutations in Ptpn6, which encodes the nonreceptor protein-tyrosine phosphatase Shp1, cause the motheaten phenotype. However, Shp1 regulates multiple signaling pathways in different hematopoietic cell types, so the cellular and molecular mechanism of autoimmunity and inflammation in the motheaten mouse has remained unclear. By using floxed Ptpn6 mice, we dissected the contribution of innate immune cells to the motheaten phenotype. Ptpn6 deletion in neutrophils resulted in cutaneous inflammation, but not autoimmunity, providing an animal model of human neutrophilic dermatoses. By contrast, dendritic cell deletion caused severe autoimmunity, without inflammation. Genetic and biochemical analysis showed that inflammation was caused by enhanced neutrophil integrin signaling through Src-family and Syk kinases, whereas autoimmunity resulted from exaggerated MyD88-dependent signaling in dendritic cells. Our data demonstrate that disruption of distinct Shp1-regulated pathways in different cell types combine to cause motheaten disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
32
|
Per-Arne O. Role of CD47 and Signal Regulatory Protein Alpha (SIRPα) in Regulating the Clearance of Viable or Aged Blood Cells. ACTA ACUST UNITED AC 2012; 39:315-20. [PMID: 23801922 DOI: 10.1159/000342537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/14/2012] [Indexed: 01/11/2023]
Abstract
SUMMARY The ubiquitously expressed cell surface glycoprotein CD47 is expressed by virtually all cells in the host, where it can function to regulate integrin-mediated responses, or constitute an important part of the erythrocyte band 3/Rh multi-protein complex. In addition, CD47 can protect viable cells from being phagocytosed by macrophages or dendritic cells. The latter mechanism is dependent on the interaction between target cell CD47 and SIRPα on the phagocyte. In this context, SIRPα functions to inhibit prophagocytic signaling from Fcγ receptors, complement receptors, and LDL receptor-related protein-1 (LRP-1), but not scavenger receptors. The expression level and/or distribution of CD47 may be altered on the surface of apoptotic/senescent cells, rendering the phagocytosis inhibitory function of the CD47/SIRPα interaction reduced or eliminated. Instead, the interaction between these 2 proteins may serve to enhance the binding of apoptotic/senescent target cells to the phagocyte to promote phagocytosis.
Collapse
Affiliation(s)
- Oldenborg Per-Arne
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Cavnar PJ, Mogen K, Berthier E, Beebe DJ, Huttenlocher A. The actin regulatory protein HS1 interacts with Arp2/3 and mediates efficient neutrophil chemotaxis. J Biol Chem 2012; 287:25466-77. [PMID: 22679023 DOI: 10.1074/jbc.m112.364562] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HS1 is an actin regulatory protein and cortactin homolog that is expressed in hematopoietic cells. Antigen receptor stimulation induces HS1 phosphorylation, and HS1 is essential for T cell activation. HS1 is also expressed in neutrophils; however, the function of HS1 in neutrophils is not known. Here we show that HS1 localizes to the neutrophil leading edge, and is phosphorylated in response to the chemoattractant formyl-Met-Leu-Phe (fMLP) in adherent cells. Using live imaging in microchannels, we show that depletion of endogenous HS1 in the neutrophil-like PLB-985 cell line impairs chemotaxis. We also find that HS1 is necessary for chemoattractant-induced activation of Rac GTPase signaling and Vav1 phosphorylation, suggesting that HS1-mediated Rac activation is necessary for efficient neutrophil chemotaxis. We identify specific phosphorylation sites that mediate HS1-dependent neutrophil motility. Expression of HS1 Y378F, Y397F is sufficient to rescue migration of HS1-deficient neutrophils, however, a triple phospho-mutant Y222F, Y378F, Y397F did not rescue migration of HS1-deficient neutrophils. Moreover, HS1 phosphorylation on Y222, Y378, and Y397 regulates its interaction with Arp2/3. Collectively, our findings identify a novel role for HS1 and its phosphorylation during neutrophil directed migration.
Collapse
Affiliation(s)
- Peter J Cavnar
- Departments of Pediatrics and Medical Microbiology and Immunology, 4205 Microbial Sciences Building, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 2012; 13:369-78. [PMID: 22366891 DOI: 10.1038/ni.2234] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
The function of the kinase Btk in neutrophil activation is largely unexplored. Here we found that Btk-deficient neutrophils had more production of reactive oxygen species (ROS) after engagement of Toll-like receptors (TLRs) or receptors for tumor-necrosis factor (TNF), which was associated with more apoptosis and was reversed by transduction of recombinant Btk. Btk-deficient neutrophils in the resting state showed hyperphosphorylation and activation of phosphatidylinositol-3-OH kinase (PI(3)K) and protein tyrosine kinases (PTKs) and were in a 'primed' state with plasma membrane-associated GTPase Rac2. In the absence of Btk, the adaptor Mal was associated with PI(3)K and PTKs at the plasma membrane, whereas in control resting neutrophils, Btk interacted with and confined Mal in the cytoplasm. Our data identify Btk as a critical gatekeeper of neutrophil responses.
Collapse
|
36
|
Yoo SK, Starnes TW, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 2011; 480:109-12. [PMID: 22101434 PMCID: PMC3228893 DOI: 10.1038/nature10632] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
Tissue wounding induces the rapid recruitment of leukocytes. Wounds and tumours--a type of 'unhealed wound'--generate hydrogen peroxide (H(2)O(2)) through an NADPH oxidase (NOX). This extracellular H(2)O(2) mediates recruitment of leukocytes, particularly the first responders of innate immunity, neutrophils, to injured tissue. However, the sensor that neutrophils use to detect the redox state at wounds is unknown. Here we identify the Src family kinase (SFK) Lyn as a redox sensor that mediates initial neutrophil recruitment to wounds in zebrafish larvae. Lyn activation in neutrophils is dependent on wound-derived H(2)O(2) after tissue injury, and inhibition of Lyn attenuates neutrophil wound recruitment. Inhibition of SFKs also disrupted H(2)O(2)-mediated chemotaxis of primary human neutrophils. In vitro analysis identified a single cysteine residue, C466, as being responsible for direct oxidation-mediated activation of Lyn. Furthermore, transgenic-tissue-specific reconstitution with wild-type Lyn and a cysteine mutant revealed that Lyn C466 is important for the neutrophil wound response and downstream signalling in vivo. This is the first identification, to our knowledge, of a physiological redox sensor that mediates leukocyte wound attraction in multicellular organisms.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
37
|
Xu X, Zhang H, Song Y, Lynch SV, Lowell CA, Wiener-Kronish JP, Caughey GH. Strain-dependent induction of neutrophil histamine production and cell death by Pseudomonas aeruginosa. J Leukoc Biol 2011; 91:275-84. [PMID: 22075928 DOI: 10.1189/jlb.0711356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Airway diseases often feature persistent neutrophilic inflammation and infection. In cystic fibrosis bronchitis, for example, Pseudomonas aeruginosa is isolated frequently. Previously, this laboratory revealed that neutrophils become major sources of histamine in mice with tracheobronchitis caused by the wall-less bacterium Mycoplasma pulmonis. To test the hypothesis that more-broadly pathogenic P. aeruginosa (which expresses cell wall-associated LPS and novel toxins) has similar effects, we incubated naïve mouse neutrophils with two strains of P. aeruginosa. Strain PAO1 greatly increased neutrophil histamine content and secretion, whereas strain PA103 depressed histamine production by killing neutrophils. The histamine-stimulating capacity of PAO1, but not PA103-mediated toxicity, persisted in heat-killed organisms. In PAO1-infected mice, lung and neutrophil histamine content increased. However, PAO1 did not alter production by mast cells (classical histamine reservoirs), which also resisted PA103 toxicity. To explore mechanisms of neutrophil-selective induction, we measured changes in mRNA encoding histidine decarboxylase (rate-limiting for histamine synthesis), probed involvement of endotoxin-TLR pathways in Myd88-deficient neutrophils, and examined contributions of pyocyanin and exotoxins. Results revealed that PAO1 increased histamine production by up-regulating histidine decarboxylase mRNA via pathways largely independent of TLR, pyocyanin, and type III secretion system exotoxins. PAO1 also increased histidine decarboxylase mRNA in neutrophils purified from infected lung. Stimulation required direct contact with neutrophils and was blocked by phagocytosis inhibitor cytochalasin D. In summary, Pseudomonas-augmented histamine production by neutrophils is strain-dependent in vitro and likely mediated by up-regulation of histidine decarboxylase. These findings raise the possibility that Pseudomonas-stimulated neutrophils can enhance airway inflammation by producing histamine.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Medicine, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proc Natl Acad Sci U S A 2011; 108:E823-32. [PMID: 21911371 DOI: 10.1073/pnas.1107913108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lyn kinase deficient mice represent a well established genetic model of autoimmune/autoinflammatory disease that resembles systemic lupus erythematosus. We report that IL-10 plays a crucial immunosuppressive role in this model, modulating the inflammatory component of the disease caused by myeloid and T-cell activation. Double-mutant lyn(-/-)IL-10(-/-) mice manifested severe splenomegaly and lymphadenopathy, dramatically increased proinflammatory cytokine production, and severe tissue inflammation. Single-mutant lyn(-/-)mice showed expansion of IL-10-producing B cells. Interestingly, WT B cells adoptively transferred into lyn(-/-) mice showed increased differentiation into IL-10-producing B cells that assumed a similar phenotype to endogenous lyn(-/-) IL-10-producing B cells, suggesting that the inflammatory environment present in lyn(-/-) mice induces IL-10-producing B-cell differentiation. B cells, but not T or myeloid cells, were the critical source of IL-10 able to reduce inflammation and autoimmunity in double mutant lyn(-/-)IL-10(-/-) mice. IL-10 secretion by B cells was also crucial to sustain transcription factor Forkhead Box P3 (Foxp3) expression in regulatory T cells during disease development. These data reveal a dominant immunosuppressive function of B-cell-derived IL-10 in the Lyn-deficient model of autoimmunity, extending our current understanding of the role of IL-10 and IL-10-producing B cells in systemic lupus erythematosus.
Collapse
|
39
|
Increased survival and reduced neutrophil infiltration of the liver in Rab27a- but not Munc13-4-deficient mice in lipopolysaccharide-induced systemic inflammation. Infect Immun 2011; 79:3607-18. [PMID: 21746860 DOI: 10.1128/iai.05043-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic defects in the Rab27a or Munc13-4 gene lead to immunodeficiencies in humans, characterized by frequent viral and bacterial infections. However, the role of Rab27a and Munc13-4 in the regulation of systemic inflammation initiated by Gram-negative bacterium-derived pathogenic molecules is currently unknown. Using a model of lipopolysaccharide-induced systemic inflammation, we show that Rab27a-deficient (Rab27a(ash/ash)) mice are resistant to lipopolysaccharide (LPS)-induced death, while Munc13-4-deficient (Munc13-4(jinx/jinx)) mice show only moderate protection. Rab27a(ash/ash) but not Munc13-4(jinx/jinx) mice showed significantly decreased tumor necrosis factor alpha (TNF-α) plasma levels after LPS administration. Neutrophil sequestration in lungs from Rab27a(ash/ash) and Munc13-4(jinx/jinx) LPS-treated mice was similar to that observed for wild-type mice. In contrast, Rab27a- but not Munc13-4-deficient mice showed decreased neutrophil infiltration in liver and failed to undergo LPS-induced neutropenia. Decreased liver infiltration in Rab27a(ash/ash) mice was accompanied by lower CD44 but normal CD11a and CD11b expression in neutrophils. Both Rab27a- and Munc13-4-deficient mice showed decreased azurophilic granule secretion in vivo, suggesting that impaired liver infiltration and improved survival in Rab27a(ash/ash) mice is not fully explained by deficient exocytosis of this granule subset. Altogether, our data indicate that Rab27a but not Munc13-4 plays an important role in neutrophil recruitment to liver and LPS-induced death during endotoxemia, thus highlighting a previously unrecognized role for Rab27a in LPS-mediated systemic inflammation.
Collapse
|
40
|
He Y, Kapoor A, Cook S, Liu S, Xiang Y, Rao CV, Kenis PJA, Wang F. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge. J Cell Sci 2011; 124:2153-64. [PMID: 21628423 DOI: 10.1242/jcs.078535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell-extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon G(i)-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL-C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells.
Collapse
Affiliation(s)
- Yuan He
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
We report here that the Src family tyrosine kinase Lyn negatively regulates the release of dopamine (DA) in the mesolimbic system, as well as the rewarding properties of alcohol. Specifically, we show that RNA interference-mediated knockdown of Lyn expression results in an increase in KCl-induced DA release in DAergic-like SH-SY5Y cells, whereas overexpression of a constitutively active form of Lyn (CA-Lyn) leads to a decrease of DA release. Activation of ventral tegmental area (VTA) DAergic neurons results in DA overflow in the nucleus accumbens (NAc), and we found that the evoked release of DA was higher in the NAc of Lyn knock-out (Lyn KO) mice compared with wild-type littermate (Lyn WT) controls. Acute exposure of rodents to alcohol causes a rapid increase in DA release in the NAc, and we show that overexpression of CA-Lyn in the VTA of mice blocked alcohol-induced (2 g/kg) DA release in the NAc. Increase in DA levels in the NAc is closely associated with reward-related behaviors, and overexpression of CA-Lyn in the VTA of mice led to an attenuation of alcohol reward, measured in a conditioned place preference paradigm. Conversely, alcohol place preference was increased in Lyn KO mice compared with Lyn WT controls. Together, our results suggest a novel role for Lyn kinase in the regulation of DA release in the mesolimbic system, which leads to the control of alcohol reward.
Collapse
|
42
|
Tefft BJ, Kopacz AM, Liu WK, Liu SQ. Enhancing Endothelial Cell Retention on ePTFE Constructs by siRNA-Mediated SHP-1 Gene Silencing. J Nanotechnol Eng Med 2011. [DOI: 10.1115/1.4003273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymeric vascular grafts hold great promise for vascular reconstruction, but the lack of endothelial cells renders these grafts susceptible to intimal hyperplasia and restenosis, precluding widespread clinical applications. The purpose of this study is to establish a stable endothelium on expanded polytetrafluoroethylene (ePTFE) membrane by small interfering RNA (siRNA)-induced suppression of the cell adhesion inhibitor SH2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were treated with scrambled siRNA as a control or SHP-1 specific siRNA. Treated cells were seeded onto fibronectin-coated ePTFE scaffolds and exposed to a physiological range of pulsatile fluid shear stresses for 1 h in a variable-width parallel plate flow chamber. Retention of cells was measured and compared between various shear stress levels and between groups treated with scrambled siRNA and SHP-1 specific siRNA. HUVECs seeded on ePTFE membrane exhibited shear stress-dependent retention. Exposure to physiological shear stress (10 dyn/cm2) induced a reduction in the retention of scrambled siRNA treated cells from 100% to 85% at 1 h. Increased shear stress (20 dyn/cm2) further reduced retention of scrambled siRNA treated cells to 55% at 1 h. SHP-1 knockdown mediated by siRNA enhanced endothelial cell retention from approximately 60% to 85% after 1 h of exposure to average shear stresses in the range of 15–30 dyn/cm2. This study demonstrates that siRNA-mediated gene silencing may be an effective strategy for improving the retention of endothelial cells within vascular grafts.
Collapse
Affiliation(s)
- Brandon J. Tefft
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208
| | - Adrian M. Kopacz
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech B224, Evanston, IL 60208
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech B224, Evanston, IL 60208
| | - Shu Q. Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208
| |
Collapse
|
43
|
Luerman GC, Powell DW, Uriarte SM, Cummins TD, Merchant ML, Ward RA, McLeish KR. Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation. Mol Cell Proteomics 2010; 10:M110.001552. [PMID: 21097543 DOI: 10.1074/mcp.m110.001552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulated exocytosis of neutrophil intracellular storage granules is necessary for neutrophil participation in the inflammatory response. The signal transduction pathways that participate in neutrophil exocytosis are complex and poorly defined. Several protein kinases, including p38 MAPK and the nonreceptor tyrosine kinases, Hck and Fgr, participate in this response. However, the downstream targets of these kinases that regulate exocytosis are unknown. The present study combined a novel inhibitor of neutrophil exocytosis with proteomic techniques to identify phosphopeptides and phosphoproteins from a population of gelatinase and specific granules isolated from unstimulated and fMLF-stimulated neutrophils. To prevent loss of granule-associated phosphoproteins upon exocytosis, neutrophils were pretreated with a TAT-fusion protein containing a SNARE domain from SNAP-23 (TAT-SNAP-23), which inhibited fMLF-stimulated CD66b-containing granule exocytosis by 100±10%. Following TAT-SNAP-23 pretreatment, neutrophils were stimulated with the chemotactic peptide fMLF for 0 min, 1 min, and 2 min. Granules were isolated by gradient centrifugation and subjected to proteolytic digestion with trypsin or chymotrypsin to obtain peptides from the outer surface of the granule. Phosphopeptides were enriched by gallium or TiO2 affinity chromatography, and phosphopeptides and phosphorylation sites were identified by reversed phase high performance liquid chromatography-electrospray ionization-tandem MS. This resulted in the identification of 243 unique phosphopeptides corresponding to 235 proteins, including known regulators of vesicle trafficking. The analysis identified 79 phosphoproteins from resting neutrophils, 81 following 1 min of fMLF stimulation, and 118 following 2 min of stimulation. Bioinformatic analysis identified a potential Src tyrosine kinase motif from a phosphopeptide corresponding to G protein coupled receptor kinase 5 (GRK5). Phosphorylation of GRK5 by Src was confirmed by an in vitro kinase reaction and by precursor ion scanning for phospho-tyrosine specific immonium ions containing Tyr251 and Tyr253. Immunoprecipitation of phosphorylated GRK5 from intact cells was reduced by a Src inhibitor. In conclusion, targets of signal transduction pathways were identified that are candidates to regulate neutrophil granule exocytosis.
Collapse
Affiliation(s)
- Gregory C Luerman
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhou Y, Qian R, Rao J, Weng M, Yi X. Expression of PirB in normal and injured spinal cord of rats. ACTA ACUST UNITED AC 2010; 30:482-5. [PMID: 20714874 DOI: 10.1007/s11596-010-0453-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Indexed: 10/19/2022]
Abstract
The expression of paired immunoglobulin-like receptor B (PirB) in normal and injured spinal cord of rats was investigated. The SD rat hemi-sectioned spinal cord injury (SCI) model was established. Before and 1, 3, 7, 10 days after SCI, the spinal cord tissues were harvested, and Western blot and immunohistochemistry were used to examine the expression and location of PirB. The results showed that the expression level of PirB in the normal spinal cord of SD rats was low. At the first day after SCI, the expression of PirB was obviously increased, and that in the injured spinal cord from the first day to the 10th day was significantly higher than in the normal spinal cord. The positive expression of PirB in neurons from different regions of gray matter of the injured spinal cord was seen. It was concluded that the expression of PirB in the normal spinal cord of rats was low. The expression of PirB in SCI was significantly increased till at least the 10th day.
Collapse
Affiliation(s)
- Yingchun Zhou
- Dpeartment of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | |
Collapse
|
45
|
Scapini P, Hu Y, Chu CL, Migone TS, Defranco AL, Cassatella MA, Lowell CA. Myeloid cells, BAFF, and IFN-gamma establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice. ACTA ACUST UNITED AC 2010; 207:1757-73. [PMID: 20624892 PMCID: PMC2916124 DOI: 10.1084/jem.20100086] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoimmunity is traditionally attributed to altered lymphoid cell selection and/or tolerance, whereas the contribution of innate immune cells is less well understood. Autoimmunity is also associated with increased levels of B cell–activating factor of the TNF family (BAFF; also known as B lymphocyte stimulator), a cytokine that promotes survival of self-reactive B cell clones. We describe an important role for myeloid cells in autoimmune disease progression. Using Lyn-deficient mice, we show that overproduction of BAFF by hyperactive myeloid cells contributes to inflammation and autoimmunity in part by acting directly on T cells to induce the release of IFN-γ. Genetic deletion of IFN-γ or reduction of BAFF activity, achieved by either reducing myeloid cell hyperproduction or by treating with an anti-BAFF monoclonal antibody, reduced disease development in lyn−/− mice. The increased production of IFN-γ in lyn−/− mice feeds back on the myeloid cells to further stimulate BAFF release. Expression of BAFF receptor on T cells was required for their full activation and IFN-γ release. Overall, our data suggest that the reciprocal production of BAFF and IFN-γ establishes an inflammatory loop between myeloid cells and T cells that exacerbates autoimmunity in this model. Our findings uncover an important pathological role of BAFF in autoimmune disorders.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Gutierrez T, Halcomb KE, Coughran AJ, Li QZ, Satterthwaite AB. Separate checkpoints regulate splenic plasma cell accumulation and IgG autoantibody production in Lyn-deficient mice. Eur J Immunol 2010; 40:1897-905. [PMID: 20394076 PMCID: PMC3057185 DOI: 10.1002/eji.200940043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulation of plasma cells and autoantibodies against nuclear antigens characterize both human and murine lupus. Understanding how these processes are controlled may reveal novel therapeutic targets for this disease. Mice deficient in Lyn, a negative regulator of B and myeloid cell activity, develop lupus-like autoimmune disease. Here, we show that lyn(-) (/) (-) mice exhibit increased splenic plasmablasts and plasma cells and produce IgM against a wide range of self-antigens. Both events require Btk, a target of Lyn-dependent inhibitory pathways. A Btk-dependent increase in the expression of the plasma cell survival factor IL-6 by lyn(-) (/) (-) splenic myeloid cells was also observed. Surprisingly, IL-6 was not required for plasma cell accumulation or polyclonal IgM autoreactivity in lyn(-/-) mice. IL-6 was, however, necessary for the production of IgG autoantibodies, which we show are focused towards a limited set of nucleic acid-containing and glomerular autoantigens in lyn(-) (/) (-) mice. A similar uncoupling of plasma cell accumulation from IgG autoantibodies was seen in lyn(+/-) mice. Plasma cell accumulation and polyclonal IgM autoreactivity are therefore controlled separately from, and are insufficient for, the production of IgG against lupus-associated autoantigens. Regulators of either of these two checkpoints may be attractive therapeutic targets for lupus.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/genetics
- Autoantigens/immunology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Protein-Tyrosine Kinases/metabolism
- Spleen/pathology
- src-Family Kinases/genetics
- src-Family Kinases/immunology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Toni Gutierrez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristina E. Halcomb
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alanna J. Coughran
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
47
|
Keck S, Freudenberg M, Huber M. Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. THE JOURNAL OF IMMUNOLOGY 2010; 184:5809-18. [PMID: 20385881 DOI: 10.4049/jimmunol.0901423] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Src family kinases are involved in a plethora of aspects of cellular signaling. We demonstrate in this study that the Src family kinase Lyn negatively regulates TLR signaling in murine bone marrow-derived macrophages (BMM Phis) and in vivo. LPS-stimulated Lyn(-/-) BMM Phis produced significantly more IL-6, TNF-alpha, and IFN-alpha/beta compared with wild type (WT) BMM Phis, suggesting that Lyn is able to control both MyD88- and TRIF-dependent signaling pathways downstream of TLR4. CD14 was not involved in this type of regulation. Moreover, Lyn attenuated proinflammatory cytokine production in BMM Phis in response to the TLR2 ligand FSL-1, but not to ligands for TLR3 (dsRNA) or TLR9 (CpG 1668). In agreement with these in vitro experiments, Lyn-deficient mice produced higher amounts of proinflammatory cytokines than did WT mice after i. v. injection of LPS or FSL-1. Although Lyn clearly acted as a negative regulator downstream of TLR4 and TLR2, it did not, different from what was proposed previously, prevent the induction of LPS tolerance. Stimulation with a low dose of LPS resulted in reduced production of proinflammatory cytokines after subsequent stimulation with a high dose of LPS in both WT and Lyn(-/-) BMM Phis, as well as in vivo. Mechanistically, Lyn interacted with PI3K; in correlation, PI3K inhibition resulted in increased LPS-triggered cytokine production. In this line, SHIP1(-/-) BMM Phis, exerting enhanced PI3K-pathway activation, produced fewer cytokines than did WT BMM Phis. The data suggest that the Lyn-mediated negative regulation of TLR signaling proceeds, at least in part, via PI3K.
Collapse
Affiliation(s)
- Simone Keck
- Department of Molecular Immunology, Biology III, University of Freiburg, Germany
| | | | | |
Collapse
|
48
|
Johnson JL, Brzezinska AA, Tolmachova T, Munafo DB, Ellis BA, Seabra MC, Hong H, Catz SD. Rab27a and Rab27b regulate neutrophil azurophilic granule exocytosis and NADPH oxidase activity by independent mechanisms. Traffic 2009; 11:533-47. [PMID: 20028487 DOI: 10.1111/j.1600-0854.2009.01029.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils rely on exocytosis to mobilize receptors and adhesion molecules and to release microbicidal factors. This process should be strictly regulated because uncontrolled release of toxic proteins would be injurious to the host. In vivo studies showed that the small GTPase Rab27a regulates azurophilic granule exocytosis. Using mouse neutrophils deficient in Rab27a (Rab27a(ash/ash)), Rab27b [Rab27b knockout (KO)] or both [Rab27a/b double KO (DoKo)], we investigated the role of the Rab27 isoforms in neutrophils. We found that both Rab27a and Rab27b deficiencies impaired azurophilic granule exocytosis. Rab27a(ash/ash) neutrophils showed upregulation of Rab27b expression which did not compensate for the secretory defects observed in Rab27a-deficient cells, suggesting that Rab27 isoforms play independent roles in neutrophil exocytosis. Total internal reflection fluorescence microscopy analysis showed that Rab27a(ash/ash) and Rab27b KO neutrophils have a decreased number of azurophilic granules near the plasma membrane. The effect was exacerbated in Rab27a/b DoKo neutrophils. Rab27-deficient neutrophils showed impaired activation of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase at the plasma membrane although intraphagosomal reactive oxygen species (ROS) production was not affected. Exocytosis of secretory vesicles in Rab27-deficient neutrophils was functional, suggesting that Rab27 GTPases selectively control the exocytosis of neutrophil granules.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Neutrophil-specific deletion of Syk kinase results in reduced host defense to bacterial infection. Blood 2009; 114:4871-82. [PMID: 19797524 DOI: 10.1182/blood-2009-05-220806] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukocyte-specific CD18 integrins are critical in mediating cell recruitment and activation during host defense responses to bacterial infection. The signaling pathways downstream of CD18 integrins are dependent on the spleen tyrosine kinase, Syk. To investigate the role integrin signaling plays in host defense, we examined the responses of Syk-deficient neutrophils to bacterial challenge with serum-opsonized Staphylococcus aureus and Escherichia coli. Syk-conditional knockout mice lacking this kinase specifically in myeloid cells or just neutrophils were also used to investigate host responses in vivo. Syk-deficient neutrophils manifested impaired exocytosis of secondary and tertiary granules, reduced cytokine release, and very poor activation of the NADPH oxidase in response to serum-opsonized S aureus and E coli. These functional defects correlated with impaired activation of c-Cbl, Pyk2, Erk1/2, and p38 kinases. Bacterial phagocytosis, neutrophil extracellular trap formation, and killing were also reduced in Syk-deficient cells, with a more profound effect after S aureus challenge. In vivo, loss of Syk in myeloid cells or specifically in neutrophils resulted in reduced clearance of S aureus after subcutaneous or intraperitoneal infection, despite normal recruitment of inflammatory cells. These results indicate that loss of Syk kinase-mediated integrin signaling impairs leukocyte activation, leading to reduced host defense responses.
Collapse
|
50
|
The absence of Hck, Fgr, and Lyn tyrosine kinases augments lung innate immune responses to Pneumocystis murina. Infect Immun 2009; 77:1790-7. [PMID: 19255189 DOI: 10.1128/iai.01441-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Src family tyrosine kinases (SFKs) phosphorylate immunotyrosine activation motifs in the cytoplasmic tail of multiple immunoreceptors, leading to the initiation of cellular effector functions, such as phagocytosis, reactive oxygen species production, and cytokine production. SFKs also play important roles in regulating these responses through the activation of immunotyrosine inhibitory motif-containing inhibitory receptors. As myeloid cells preferentially express the SFKs Hck, Fgr, and Lyn, we questioned the role of these kinases in innate immune responses to Pneumocystis murina. Increased phosphorylation of Hck was readily detectable in alveolar macrophages after stimulation with P. murina. We further observed decreased phosphorylation of Lyn on its C-terminal inhibitory tyrosine in P. murina-stimulated alveolar macrophages, indicating that SFKs were activated in alveolar macrophages in response to P. murina. Mice deficient in Hck, Fgr, and Lyn exhibited augmented clearance 3 and 7 days after intratracheal administration of P. murina, which correlated with elevated levels of interleukin 1beta (IL-1beta), IL-6, CXCL1/KC, CCL2/monocyte chemoattractant protein 1, and granulocyte colony-stimulating factor in lung homogenates and a dramatic increase in macrophage and neutrophil recruitment. Augmented P. murina clearance was also observed in Lyn(-/-) mice 3 days postchallenge, although the level was less than that observed in Hck(-/-) Fgr(-/-) Lyn(-/-) mice. A correlate to augmented clearance of P. murina in Hck(-/-) Fgr(-/-) Lyn(-/-) mice was a greater ability of alveolar macrophages from these mice to kill P. murina in vitro, suggesting that SFKs regulate the alveolar macrophage effector function against P. murina. Mice deficient in paired immunoglobulin receptor B (PIR-B), an inhibitory receptor activated by SFKs, did not exhibit enhanced inflammatory responsiveness to or clearance of P. murina. Our results suggest that SFKs regulate innate lung responses to P. murina in a PIR-B-independent manner.
Collapse
|