1
|
Meehan GR, Thomas R, Al Khabouri S, Wehr P, Hilkens CM, Wraith DC, Sieghart D, Bonelli M, Nagy G, Garside P, Tough DF, Lewis HD, Brewer JM. Preclinical models of arthritis for studying immunotherapy and immune tolerance. Ann Rheum Dis 2021; 80:1268-1277. [PMID: 34380700 PMCID: PMC8458054 DOI: 10.1136/annrheumdis-2021-220043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Increasingly earlier identification of individuals at high risk of rheumatoid arthritis (RA) (eg, with autoantibodies and mild symptoms) improves the feasibility of preventing or curing disease. The use of antigen-specific immunotherapies to reinstate immunological self-tolerance represent a highly attractive strategy due to their potential to induce disease resolution, in contrast to existing approaches that require long-term treatment of underlying symptoms.Preclinical animal models have been used to understand disease mechanisms and to evaluate novel immunotherapeutic approaches. However, models are required to understand critical processes supporting disease development such as the breach of self-tolerance that triggers autoimmunity and the progression from asymptomatic autoimmunity to joint pain and bone loss. These models would also be useful in evaluating the response to treatment in the pre-RA period.This review proposes that focusing on immune processes contributing to initial disease induction rather than end-stage pathological consequences is essential to allow development and evaluation of novel immunotherapies for early intervention. We will describe and critique existing models in arthritis and the broader field of autoimmunity that may fulfil these criteria. We will also identify key gaps in our ability to study these processes in animal models, to highlight where further research should be targeted.
Collapse
Affiliation(s)
- Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Shaima Al Khabouri
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Pascale Wehr
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Catharien Mu Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Sieghart
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - György Nagy
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - David F Tough
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - Huw D Lewis
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Ramos MI, Garcia S, Helder B, Aarrass S, Reedquist KA, Jacobsen SE, Tak PP, Lebre MC. cDC1 are required for the initiation of collagen-induced arthritis. J Transl Autoimmun 2020; 3:100066. [PMID: 33015599 PMCID: PMC7522802 DOI: 10.1016/j.jtauto.2020.100066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is chronic autoimmune disease which etiology remains unknown. Several cell types have been described to potentiate/aggravate the arthritic process however the initiating event in synovial inflammation is still elusive. Dendritic cells (DCs) are essential for the initiation of primary immune responses and thus we hypothesized that these cells might be crucial for RA induction. DCs are a heterogeneous population of cells comprising different subsets with distinct phenotype and function. Here we investigated which DC subset(s) is/are crucial for the initiation of the arthritic process. We have previously demonstrated that Flt3−/− mice, with reduced DCs, were protected from collagen induced arthritis (CIA). Here we have shown that GM-CSF derived DCs in Flt3L−/− mice are functional but not sufficient to induce arthritis. Batf3−/− mice lacking both CD103+ and CD8α+ cDC1 were resistant to collagen induced arthritis (CIA), demonstrating that this DC subset is crucial for arthritis development. CEP-701 (a Flt3L inhibitor) treatment prevented CIA induction, and reduced dramatically the numbers CD103+ cDC1s present in the lymph nodes and synovium. Hence this study identified cDC1 as the main subset orchestrating the initiation of cell-mediated immunity in arthritis. Flt3L independent DCs present in Flt3L−/− mice are functional but are not sufficient to induce arthritis. BATF3−/− mice lacking cDC1 are protected from arthritis development indicating that cDC1 are necessary for disease induction. Treatment with a Flt3L inhibitor, CEP701, reduced cDC1 populations and prevented arthritis induction.
Collapse
Affiliation(s)
- Maria Ines Ramos
- Department of Clinical Immunology and Rheumatology.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Samuel Garcia
- Department of Clinical Immunology and Rheumatology.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Boy Helder
- Department of Clinical Immunology and Rheumatology.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Saida Aarrass
- Department of Clinical Immunology and Rheumatology.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Kris A Reedquist
- Department of Clinical Immunology and Rheumatology.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Sten E Jacobsen
- Haematopoietic Stem Cell Laboratory and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Maria Cristina Lebre
- Department of Clinical Immunology and Rheumatology.,Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Rothe K, Quandt D, Köhler G, Jasinski-Bergner S, Seliger B, Pierer M, Wagner U. PIR-B expressing CD8+ T cells exhibit features of Tc1 and Tc17 in SKG mice. Rheumatology (Oxford) 2020; 58:2325-2329. [PMID: 31257448 DOI: 10.1093/rheumatology/kez256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE In autoimmune arthritis, TCR signalling is attenuated by peripheral tolerance mechanisms. We have described previously a population of inhibitory receptor LIR-1 expressing autoreactive CD8+ T cells in rheumatoid arthritis. Here, we investigated the role of CD8+ T cells in murine autoimmune arthritis by analysing their expression of the mouse orthologue of LIR-1, PIR-B. METHODS Frequencies of PIR-B+CD8+ T cells were determined in the SKG arthritis model. The phenotype of those cells was determined ex vivo by FACS and functionality was investigated by means of cytokine production and cytolytic potential upon activation in vitro. RESULTS SKG mice, under non-SPF (specific pathogen-free) conditions with clinical symptoms of arthritis, were found to harbour significantly increased frequencies of PIR-B+CD8+ T cells. Those cells showed a pro-inflammatory phenotype with preferential production of IL-17 and IFN-γ. The frequency of those cells correlated inversely with the arthritis score, indicating that they might represent autoreactive, but functionally inhibited, CD8+ T cells. CONCLUSION PIR-B+CD8+ T cells from SKG mice show a cytotoxic and pro-inflammatory phenotype. Inhibition of CD8+ T cell autoreactivity by PIR-B/LIR-1 receptor signalling might be a counter-regulatory mechanism to curb autoreactivity and arthritis.
Collapse
Affiliation(s)
- Kathrin Rothe
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Liebigstr, Leipzig, Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin Luther University Halle- Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle- Wittenberg, Halle, Germany
| | - Matthias Pierer
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Liebigstr, Leipzig, Germany
| | - Ulf Wagner
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Liebigstr, Leipzig, Germany
| |
Collapse
|
5
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Caplazi P, Baca M, Barck K, Carano RAD, DeVoss J, Lee WP, Bolon B, Diehl L. Mouse Models of Rheumatoid Arthritis. Vet Pathol 2015; 52:819-26. [DOI: 10.1177/0300985815588612] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody–induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ ARE mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.
Collapse
Affiliation(s)
- P. Caplazi
- Departments of Research Pathology, Genentech Inc, South San Francisco, CA, USA
| | - M. Baca
- Departments of Research Pathology, Genentech Inc, South San Francisco, CA, USA
| | - K. Barck
- Biomedical Imaging, Genentech Inc, South San Francisco, CA, USA
| | - R. A. D. Carano
- Biomedical Imaging, Genentech Inc, South San Francisco, CA, USA
| | - J. DeVoss
- Translational Immunology, Genentech Inc, South San Francisco, CA, USA
| | - W. P. Lee
- Translational Immunology, Genentech Inc, South San Francisco, CA, USA
| | - B. Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, OH, USA
| | - L. Diehl
- Departments of Research Pathology, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
7
|
Ling S, Liu Y, Fu J, Colletta A, Gilon C, Holoshitz J. Shared epitope-antagonistic ligands: a new therapeutic strategy in mice with erosive arthritis. Arthritis Rheumatol 2015; 67:2061-2070. [PMID: 25892196 PMCID: PMC4784479 DOI: 10.1002/art.39158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/09/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The mechanisms underlying bone damage in rheumatoid arthritis (RA) are incompletely understood. We recently identified the shared epitope (SE), an HLA-DRB1-coded 5-amino acid sequence motif carried by the majority of RA patients as a signal transduction ligand that interacts with cell surface calreticulin and accelerates osteoclast (OC)-mediated bone damage in collagen-induced arthritis (CIA). Given the role of the SE/calreticulin pathway in arthritis-associated bone damage, we sought to determine the therapeutic targetability of calreticulin. METHODS A library of backbone-cyclized peptidomimetic compounds, all carrying an identical core DKCLA sequence, was synthesized. The ability of these compounds to inhibit SE-activated signaling and OC differentiation was tested in vitro. The effect on disease severity and OC-mediated bone damage was studied by weekly intraperitoneal administration of the compounds to DBA/1 mice with CIA. RESULTS Two members of the peptidomimetics library were found to have SE-antagonistic effects and antiosteoclast differentiation effects at picomolar concentrations in vitro. The lead mimetic compound, designated HS(4-4)c Trp, potently ameliorated arthritis and bone damage in vivo when administered in picogram doses to mice with CIA. Another mimetic analog, designated HS(3-4)c Trp, was found to lack activity, both in vitro and in vivo. The differential activity of the 2 analogs depended on minor differences in their respective ring sizes and correlated with distinctive geometry when computationally docked to the SE binding site on calreticulin. CONCLUSION These findings identify calreticulin as a novel therapeutic target in erosive arthritis and provide sound rationale and early structure/activity relationships for future drug design.
Collapse
Affiliation(s)
- Song Ling
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, USA
| | - Ying Liu
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, USA
| | - Jiaqi Fu
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, USA
| | - Alessandro Colletta
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, USA
| | - Chaim Gilon
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
8
|
Shibuya M, Fujio K, Shoda H, Okamura T, Okamoto A, Sumitomo S, Yamamoto K. A new T-cell activation mode for suboptimal doses of antigen under the full activation of T cells with different specificity. Eur J Immunol 2015; 45:1643-53. [DOI: 10.1002/eji.201444965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/29/2015] [Accepted: 03/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Mihoko Shibuya
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Akiko Okamoto
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| |
Collapse
|
9
|
Ramos MIP, Karpus ON, Broekstra P, Aarrass S, Jacobsen SE, Tak PP, Lebre MC. Absence of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling protects against collagen-induced arthritis. Ann Rheum Dis 2015; 74:211-9. [PMID: 24064002 DOI: 10.1136/annrheumdis-2013-203371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Comprehending the mechanisms that regulate activation of autoreactive T cells and B cell antibody production is fundamental for understanding the breakdown in self-tolerance and development of autoimmunity. Here we studied the role of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling in the pathogenesis of collagen-induced arthritis (CIA). METHODS CIA was induced in mice lacking Flt3L (Flt3L(-/-)) and wild-type (WT) littermates (C57/BL6, 8-10 weeks old). Mice were killed in the initial phase (acute phase: experiment 1) and late phase (chronic phase: experiment 2) of the disease. Arthritis severity was assessed using a semiquantitative scoring system (0-4), and histological analysis of cellular infiltration, cartilage destruction and peptidoglycan loss was performed. Phenotypic and functional analysis of T and B cells, FoxP3 expression, activation and lymphocyte costimulatory markers, and cytokine production were performed ex vivo by flow cytometry in lymph nodes. Serum collagen type II (CII)-specific antibodies were measured by ELISA. RESULTS Flt3L(-/-) mice showed a marked decrease in clinical arthritis scores and incidence of arthritis in both acute and chronic phases of CIA compared with WT mice. Moreover, decreased synovial inflammation and joint destruction was observed. Both the magnitude and quality of T cell responses were altered in Flt3L(-/-). In the acute phase, the amount of CII-specific IgG2a antibodies was lower in Flt3L(-/-) than WT mice. CONCLUSIONS These results strongly suggest a role for Flt3L signalling in the development of arthritis.
Collapse
Affiliation(s)
- M I P Ramos
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - O N Karpus
- Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - P Broekstra
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S Aarrass
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S E Jacobsen
- Haematopoietic Stem Cell Laboratory and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - P P Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands University of Cambridge, UK and GlaxoSmithKline, Stevenage, UK
| | - M C Lebre
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Law SC, Benham H, Reid HH, Rossjohn J, Thomas R. Identification of Self-antigen–specific T Cells Reflecting Loss of Tolerance in Autoimmune Disease Underpins Preventative Immunotherapeutic Strategies in Rheumatoid Arthritis. Rheum Dis Clin North Am 2014; 40:735-52. [DOI: 10.1016/j.rdc.2014.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Kobezda T, Ghassemi-Nejad S, Mikecz K, Glant TT, Szekanecz Z. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol 2014; 10:160-70. [PMID: 24394350 DOI: 10.1038/nrrheum.2013.205] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The involvement of autoreactive T cells in the pathogenesis of rheumatoid arthritis (RA) as well as in autoimmune animal models of arthritis has been well established; however, unanswered questions, such as the role of joint-homing T cells, remain. Animal models of arthritis are superb experimental tools in demonstrating how T cells trigger joint inflammation, and thus can help to further our knowledge of disease mechanisms and potential therapies. In this Review, we discuss the similarities and differences in T-cell subsets and functions between RA and mouse arthritis models. For example, various T-cell subsets are involved in both human and mouse arthritis, but differences might exist in the cytokine regulation and plasticity of these cells. With regard to joint-homing T cells, an abundance of synovial T cells is present in humans compared with mice. On the other hand, local expansion of type 17 T-helper (TH17) cells is observed in some animal models, but not in RA. Finally, whereas T-cell depletion therapy essentially failed in RA, antibody targeting of T cells can work, at least preventatively, in most arthritis models. Clearly, additional human and animal studies are needed to fill the gap in our understanding of the specific contribution of T-cell subsets to arthritis in mice and men.
Collapse
Affiliation(s)
- Tamás Kobezda
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, 98 Nagyerdei Street, Debrecen H-4032, Hungary
| | - Sheida Ghassemi-Nejad
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, 98 Nagyerdei Street, Debrecen H-4032, Hungary
| | - Katalin Mikecz
- Section of Molecular Medicine, Departments of Orthopedic Surgery, Biochemistry and Rheumatology, Rush University Medical Centre, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Tibor T Glant
- Section of Molecular Medicine, Departments of Orthopedic Surgery, Biochemistry and Rheumatology, Rush University Medical Centre, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, 98 Nagyerdei Street, Debrecen H-4032, Hungary
| |
Collapse
|
12
|
Dahan R, Gebe JA, Preisinger A, James EA, Tendler M, Nepom GT, Reiter Y. Antigen-specific immunomodulation for type 1 diabetes by novel recombinant antibodies directed against diabetes-associates auto-reactive T cell epitope. J Autoimmun 2013; 47:83-93. [PMID: 24090977 DOI: 10.1016/j.jaut.2013.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
The trimolecular complex composed of autoreactive T-cell receptor, MHC class II, and an autoantigenic peptide plays a central role in the activation of pathogenic Islet-specific CD4+ T cells in type 1 diabetes (T1D). We isolated and characterized novel antibodies against autoreactive T-cell epitopes associated with T1D. Our antibodies mimic the specificity of the T-cell receptor (TCR), while binding MHC class II/peptide complexes in an autoantigen peptide specific, MHC-restricted manner. The isolated TCR-like antibodies were directed against the minimal T-cell epitope GAD-555-567 in the context of the HLA-DR4-diabetic-associated molecule. A representative high-affinity TCR-like antibody clone (G3H8) enabled the detection of intra- and extra-cellular DR4/GAD-555-567 complexes in antigen presenting cells. I561M single mutation at the central position (P5) of the GAD-555-567 peptide abolished the binding of G3H8 to the DR4/GAD complex, demonstrating its high fine TCR-like specificity. The G3H8 TCR-like antibody significantly inhibited GAD-555-567 specific, DR4 restricted T-cell response in vitro and in vivo in HLA-DR4 transgenic mice. Our findings constitute a proof-of-concept for the utility of TCR-like antibodies as antigen-specific immunomodulation agents for regulating pathogenic T-cells and suggest that TCR-like antibodies targeting autoreactive MHC class II epitopes are valuable research tools that enable studies related to antigen presentation as well as novel therapeutic agents that may be used to modulate autoimmune disorders such as T1D.
Collapse
Affiliation(s)
- Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cao H, Xu S, Ge H, Xu F. Molecular characterisation of type II collagen from chick sternal cartilage and its anti-rheumatoid arthritis activity. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2012.753512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
14
|
Dahan R, Tabul M, Chou YK, Meza-Romero R, Andrew S, Ferro AJ, Burrows GG, Offner H, Vandenbark AA, Reiter Y. TCR-like antibodies distinguish conformational and functional differences in two- versus four-domain auto reactive MHC class II-peptide complexes. Eur J Immunol 2011; 41:1465-79. [PMID: 21469129 DOI: 10.1002/eji.201041241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/02/2011] [Accepted: 02/11/2011] [Indexed: 12/19/2022]
Abstract
Antigen-presenting cell-associated four-domain MHC class II (MHC-II) molecules play a central role in activating autoreactive CD4(+) T cells involved in multiple sclerosis (MS) and type 1 diabetes (T1D). In contrast, two-domain MHC-II structures with the same covalently attached self-peptide (recombinant T-cell receptor ligands (RTLs)) can regulate pathogenic CD4(+) T cells and reverse clinical signs of experimental autoimmune diseases. RTL1000, which is composed of the β1α1 domains of human leukocyte antigen (HLA)-DR2 linked to the encephalitogenic human myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide, was recently shown to be safe and well tolerated in a phase I clinical trial in MS. To evaluate the opposing biological effects of four- versus two-domain MHC-II structures, we screened phage Fab antibodies (Abs) for the neutralizing activity of RTL1000. Five different TCR-like Abs were identified that could distinguish between the two- versus four-domain MHC-peptide complexes while the cognate TCR was unable to make such a distinction. Moreover, Fab detection of native two-domain HLA-DR structures in human plasma implies that there are naturally occurring regulatory MHC-peptide complexes. These results demonstrate for the first time distinct conformational determinants characteristic of activating versus tolerogenic MHC-peptide complexes involved in human autoimmunity.
Collapse
Affiliation(s)
- Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Frey O, Mitera T, Kelchtermans H, Schurgers E, Kamradt T, Matthys P. Ameliorated course of glucose-6-phosphate isomerase (G6PI)-induced arthritis in IFN-γ receptor knockout mice exposes an arthritis-promoting role of IFN-γ. J Autoimmun 2011; 36:161-9. [PMID: 21262564 DOI: 10.1016/j.jaut.2010.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 11/16/2022]
Abstract
The absence of IFN-γ signaling leads to an increased inflammatory response in many murine models of autoimmune diseases induced by a CFA-assisted immunization schedule. We investigated the role of endogenous IFN-γ in arthritis induced by immunization with glucose-6-phosphate isomerase (G6PI) in CFA in DBA/1 mice. Surprisingly, and in contrast to our previous findings in collagen-induced arthritis (CIA), G6PI-induced arthritis was found to be reduced in IFN-γ receptor-deficient (IFN-γR KO) mice, demonstrating a proinflammatory role for IFN-γ in this model. Milder disease in IFN-γR KO mice was associated with less vigorous innate and adaptive immune responses early (day 9) after immunization: less proliferation of myeloid cells in the spleen, less osteoclast formation, less G6PI-reactive Th cells (as measured by ex vivo stimulation and flow cytometry and by in vivo skin reactivity to G6PI) and lower G6PI-specific immunoglobulin serum levels. Surprisingly, on day 21, despite continued milder disease in IFN-γR KO mice, their Th cell responses were no longer diminished but augmented as compared to wild-type mice, and their numbers of immature myeloid splenocytes were also more increased. These data reveal that IFN-γ signaling is critical for the induction of the early immune responses which trigger G6PI-induced arthritis. The strikingly different clinical consequences of absent IFN-γ signaling in G6PI-induced arthritis compared with the very similarly induced CIA emphasize that the role of a single cytokine in experimentally induced arthritis depends critically on the very nature of the inciting (auto)antigen and in particular on the kinetics of the disease manifestation elicited by the antigen.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Female
- Flow Cytometry
- Genetic Predisposition to Disease
- Glucose-6-Phosphate Isomerase/administration & dosage
- Glucose-6-Phosphate Isomerase/immunology
- Immunity, Cellular/immunology
- Immunity, Innate/immunology
- Immunization
- Interferon-gamma/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred DBA
- Mice, Knockout
- Osteoclasts/immunology
- Osteoclasts/metabolism
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Oliver Frey
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Merky P, Batsalova T, Bockermann R, Dzhambazov B, Sehnert B, Burkhardt H, Bäcklund J. Visualization and phenotyping of proinflammatory antigen-specific T cells during collagen-induced arthritis in a mouse with a fixed collagen type II-specific transgenic T-cell receptor β-chain. Arthritis Res Ther 2010; 12:R155. [PMID: 20682070 PMCID: PMC2945055 DOI: 10.1186/ar3108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/16/2010] [Accepted: 08/03/2010] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The Vβ12-transgenic mouse was previously generated to investigate the role of antigen-specific T cells in collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. This mouse expresses a transgenic collagen type II (CII)-specific T-cell receptor (TCR) β-chain and consequently displays an increased immunity to CII and increased susceptibility to CIA. However, while the transgenic Vβ12 chain recombines with endogenous α-chains, the frequency and distribution of CII-specific T cells in the Vβ12-transgenic mouse has not been determined. The aim of the present report was to establish a system enabling identification of CII-specific T cells in the Vβ12-transgenic mouse in order to determine to what extent the transgenic expression of the CII-specific β-chain would skew the response towards the immunodominant galactosylated T-cell epitope and to use this system to monitor these cells throughout development of CIA. METHODS We have generated and thoroughly characterized a clonotypic antibody, which recognizes a TCR specific for the galactosylated CII(260-270) peptide in the Vβ12-transgenic mouse. Hereby, CII-specific T cells could be quantified and followed throughout development of CIA, and their phenotype was determined by combinatorial analysis with the early activation marker CD154 (CD40L) and production of cytokines. RESULTS The Vβ12-transgenic mouse expresses several related but distinct T-cell clones specific for the galactosylated CII peptide. The clonotypic antibody could specifically recognize the majority (80%) of these. Clonotypic T cells occurred at low levels in the naïve mouse, but rapidly expanded to around 4% of the CD4+ T cells, whereupon the frequency declined with developing disease. Analysis of the cytokine profile revealed an early Th1-biased response in the draining lymph nodes that would shift to also include Th17 around the onset of arthritis. Data showed that Th1 and Th17 constitute a minority among the CII-specific population, however, indicating that additional subpopulations of antigen-specific T cells regulate the development of CIA. CONCLUSIONS The established system enables the detection and detailed phenotyping of T cells specific for the galactosylated CII peptide and constitutes a powerful tool for analysis of the importance of these cells and their effector functions throughout the different phases of arthritis.
Collapse
Affiliation(s)
- Patrick Merky
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
T-helper (Th) lymphocytes contribute to arthritis pathogenesis by helping B cells to produce antibodies, by producing cytokines that activate effector cells involved in the destruction of cartilage and bone, and by contributing to osteoclast differentiation. There are murine models of arthritis, most notably collagen- and proteoglycan-induced arthritis, in which arthritis depends on T-cell recognition of antigens that are expressed in the joints. In spite of this, we still do not know the antigens recognised by arthritogenic Th cells in humans. Moreover, current evidence for Th cells exerting arthritogenic effector functions within the joints is only indirect.
Collapse
|
18
|
Zimmerman DH, Taylor P, Bendele A, Carambula R, Duzant Y, Lowe V, O'Neill SP, Talor E, Rosenthal KS. CEL-2000: A therapeutic vaccine for rheumatoid arthritis arrests disease development and alters serum cytokine/chemokine patterns in the bovine collagen type II induced arthritis in the DBA mouse model. Int Immunopharmacol 2010; 10:412-21. [DOI: 10.1016/j.intimp.2009.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 11/16/2022]
|
19
|
Angyal A, Egelston C, Kobezda T, Olasz K, László A, Glant TT, Mikecz K. Development of proteoglycan-induced arthritis depends on T cell-supported autoantibody production, but does not involve significant influx of T cells into the joints. Arthritis Res Ther 2010; 12:R44. [PMID: 20298547 PMCID: PMC2888192 DOI: 10.1186/ar2954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/27/2010] [Accepted: 03/18/2010] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Studies on RA and animal models of the disease suggest that T cells recruited in the joints can locally initiate or propagate arthritis. Herein, we investigated the role of joint-homing versus lymphoid organ-homing T cells in the development of proteoglycan-induced arthritis (PGIA), an autoimmune model of RA. METHODS To identify T cells migrating to the joints before and during development of autoimmune arthritis, we transferred fluorescence-labeled T cells, along with antigen-presenting cells, from BALB/c mice with PGIA to naïve syngeneic severe combined immunodeficient (SCID) mice. We then monitored the recruitment of donor T cells in the ankle joints and joint-draining lymph nodes of the recipients using in vivo two-photon microscopy and ex vivo detection methods. To limit T-cell access to the joints, we selectively depleted T cells in the blood circulation by treatment with FTY720, an inhibitor of lymphocyte egress from lymphoid organs. Reduction of T cell presence in both lymphoid organs and blood was achieved by injection of donor cells from which T cells were removed prior to transfer. T and B cells were quantitated by flow cytometry, and antigen (PG)-specific responses were assessed by cell proliferation and serum antibody assays. RESULTS Despite development of adoptively transferred arthritis in the recipient SCID mice, we found very few donor T cells in their joints after cell transfer. Treatment of recipient mice with FTY720 left the T-cell pool in the lymphoid organs intact, but reduced T cells in both peripheral blood and joints. However, FTY720 treatment failed to inhibit PGIA development. In contrast, arthritis was not seen in recipient mice after transfer of T cell-depleted cells from arthritic donors, and serum autoantibodies to PG were not detected in this group of mice. CONCLUSIONS Our results suggest that antigen-specific T cells, which home to lymphoid organs and provide help to B cells for systemic autoantibody production, play a greater role in the development and progression of autoimmune arthritis than the small population of T cells that migrate to the joints.
Collapse
Affiliation(s)
- Adrienn Angyal
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 2009; 130:564-87. [PMID: 19632262 DOI: 10.1016/j.mad.2009.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 02/07/2023]
Abstract
Deregulation of reactive oxygen intermediates (ROI) resulting in either too high or too low concentrations are commonly recognized to be at least in part responsible for many changes associated with aging. This article reviews ROI-dependent mechanisms critically contributing to the decline of immune function during physiologic - or premature - aging. While ROI serve important effector functions in cellular metabolism, signalling and host defence, their fine-tuned generation declines over time, and ROI-mediated damage to several cellular components and/or signalling deviations become increasingly prevalent. Although distinct ROI-associated pathomechanisms contribute to immunosenescence of the innate and adaptive immune system, mutual amplification of dysfunctions may often result in hyporesponsiveness and immunodeficiency, or in chronic inflammation with hyperresponsiveness/deregulation, or both. In this context, we point out how imbalanced ROI contribute ambiguously to driving immunosenescence, chronic inflammation and autoimmunity. Although ROI may offer a distinct potential for therapeutic targeting along with the charming opportunity to rescue from deleterious processes of aging and chronic inflammatory diseases, such modifications, owing to the complexity of metabolic interactions, may carry a marked risk of unforeseen side effects.
Collapse
|
21
|
Xiao C, Zhou J, He Y, Jia H, Zhao L, Zhao N, Lu A. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-kappaB: a study on induced arthritis in rats. Chin Med 2009; 4:13. [PMID: 19570240 PMCID: PMC2709898 DOI: 10.1186/1749-8546-4-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022] Open
Abstract
Background Triptolide, an active compound of Radix Tripterygium wilfordii, is immunosuppressive, cartilage protective and anti-inflammatory both in human and animal studies of various inflammatory and autoimmune diseases, including rheumatoid arthritis, but its therapeutic mechanism remains unclear. The aim of this study is to investigate the effects of triptolide on cartilage cytokines in the CIA model. Methods Sprague Dawley rats were immunized with type II collagen and orally administered with triptolide. The arthritic scores and incidence changes of the rats were observed. The expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage was studied with immunohistochemical staining. Results Triptolide, at both high and low doses, significantly lowered the arthritic scores, delayed the onset of arthritis and lowered the arthritis incidence. Triptolide treatment at both high and low doses lowered the expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage in arthritic rats. Conclusion Triptolide lowers the arthritic scores, delays the onset of collagen induced arthritis and reduces the expressions of TNF-α, IL-6, NF-κB and COX-2 in paw cartilage in arthritic rats.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Clinical Medicine Research, China-Japan Friendship Hospital, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hagenow K, Gelderman KA, Hultqvist M, Merky P, Bäcklund J, Frey O, Kamradt T, Holmdahl R. Ncf1-associated reduced oxidative burst promotes IL-33R+ T cell-mediated adjuvant-free arthritis in mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:874-81. [PMID: 19553535 DOI: 10.4049/jimmunol.0900966] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are important in the immune defense against invading pathogens, but they are also key molecules in the regulation of inflammatory reactions. Low levels of ROS production due to a polymorphism in the neutrophil cytosolic factor 1 (Ncf1) gene are associated with autoimmunity and arthritis severity in mouse models induced with adjuvant. We established an adjuvant-free arthritis model in which disease is induced by injection of the autoantigen collagen type II (CII) and depends on IL-5-producing T cells and eosinophils. In addition, the transgenic expression of mutated mouse CII allowed us to investigate an autoreactive immune response to an autologous Ag and by that natural tolerance mechanism. We show that a deficient ROS production, due to a spontaneous mutation in Ncf1, leads to increased autoantibody production and expansion of IL-33R-expressing T cells, impaired T cell tolerance toward tissue-specific CII, and severe arthritis in this unique model without disturbing adjuvant effects. These results demonstrate that the insufficient production of ROS promotes the breakdown of immune tolerance and development of autoimmune and adjuvant-free arthritis through an IL-5- and IL33R-dependent T cell activation pathway.
Collapse
Affiliation(s)
- Kristin Hagenow
- Medical Inflammation Research, Lund University and Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 2009; 30:348-57. [PMID: 19303388 DOI: 10.1016/j.immuni.2009.01.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/31/2008] [Accepted: 01/08/2009] [Indexed: 11/20/2022]
Abstract
Environmental factors account for 75% of the risk of developing multiple sclerosis (MS). Numerous infections have been suspected as environmental disease triggers, but none of them has consistently been incriminated, and it is unclear how so many different infections may play a role. We show that a microbial peptide, common to several major classes of bacteria, can induce MS-like disease in humanized mice by crossreacting with a T cell receptor (TCR) that also recognizes a peptide from myelin basic protein, a candidate MS autoantigen. Structural analysis demonstrates this crossreactivity is due to structural mimicry of a binding hotspot shared by self and microbial antigens, rather than to degenerate TCR recognition. Biophysical studies reveal that the autoreactive TCR binding affinity is markedly lower for the microbial (mimicry) peptide than for the autoantigenic peptide. Thus, these data suggest a possible explanation for the difficulty in incriminating individual infections in the development of MS.
Collapse
|
24
|
Dang DTN, Eriste E, Liepinsh E, Trinh TT, Erlandsson-Harris H, Sillard R, Larsson P. A Novel Anti-inflammatory Compound, Artonkin-4′-O-glucoside, from the Leaves ofArtocarpus tonkinensisSuppresses Experimentally Induced Arthritis*. Scand J Immunol 2009; 69:110-8. [DOI: 10.1111/j.1365-3083.2008.02205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Srinivasan M, Eri R, Zunt SL, Summerlin DJ, Brand DD, Blum JS. Suppression of immune responses in collagen-induced arthritis by a rationally designed CD80-binding peptide agent. ACTA ACUST UNITED AC 2007; 56:498-508. [PMID: 17265485 DOI: 10.1002/art.22324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The CD80/CD86-CD28/CD152 costimulatory pathways transmit signals for CD4+ T cell activation and suppression and are critically involved in the pathogenesis of rheumatoid arthritis (RA). A significant number of CD4+ T cells and macrophages in the rheumatoid synovium express elevated levels of CD80, increasing the potential for costimulation in trans of naive T cells. To determine the effect of blockade of this costimulatory axis in RA, we designed novel CD80-binding peptides and evaluated their therapeutic potential in collagen-induced arthritis (CIA), an animal model of RA. METHODS The conserved MYPPPY motif of CD152 adopts a polyproline type II (PPII) helical conformation in the CD80-CD152 complex. The pairing preferences of the critical residues at the CD80-CD152 interface and their propensity to form PPII helices were integrated to design peptides with optimum PPII helical content that selectively block CD80-receptor interactions. The clinical efficacy was tested in DBA/1LacJ mice that were administered the CD80 blocking agents, called CD80-binding competitive antagonist peptides (CD80-CAPs), at the time of immunization with bovine type II collagen or 3 weeks after immunization. RESULTS A single administration of select CD80-CAPs significantly reduced the clinical, radiologic, and histologic disease severity in CIA. Importantly, administration of CD80-CAPs during activated immune response significantly suppressed disease development by reducing mononuclear cell infiltration in the joints and mediating peripheral deletion of activated CD4+ T cells. CONCLUSION A rationally designed CD80-binding peptide both prevents and suppresses CIA, suggesting a potential application in RA. Apoptosis of activated CD4+ T cells following in vivo blockade suggests that the effects of CD80-CAPs may be long-lasting.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Apoptosis/drug effects
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- B7-1 Antigen/immunology
- B7-1 Antigen/metabolism
- Binding, Competitive
- CD4-Positive T-Lymphocytes/drug effects
- CTLA-4 Antigen
- Cell Line, Tumor
- Cells, Cultured
- Collagen
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Humans
- Immune System/drug effects
- Immune System/immunology
- Immune System/metabolism
- Interleukin-6/blood
- Mice
- Mice, Inbred DBA
- Neutrophil Infiltration/drug effects
- Peptides/chemistry
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
Collapse
Affiliation(s)
- Mythily Srinivasan
- Indiana University, Indianapolis, and Indiana University-Purdue University, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Friese MA, Jensen LT, Willcox N, Fugger L. Humanized mouse models for organ-specific autoimmune diseases. Curr Opin Immunol 2006; 18:704-9. [PMID: 17008081 DOI: 10.1016/j.coi.2006.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
Murine models for human autoimmune diseases are an essential tool for studying pathogenesis and for identifying new therapeutic targets. Mice are not the natural disease host, and conventional models have proved to be poor predictors of efficacy and safety in recent trials aiming to translate drug and biologic treatments to humans. Evidently, further steps towards recapitulating human diseases are urgently needed, for example using transgenic predisposing human HLA allele(s) plus T-cell receptor(s) implicated in a representative patient's autoimmune disease. The latest development - humanizing most of the immune system by transplanting human hematopoietic stem cells into severely immunodeficient mice - should lead to even better modeling.
Collapse
Affiliation(s)
- Manuel A Friese
- MRC Human Immunology Unit and Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
27
|
Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease: a structural perspective. Nat Rev Immunol 2006; 6:271-82. [PMID: 16557259 DOI: 10.1038/nri1805] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MHC class II molecules on the surface of antigen-presenting cells display a range of peptides for recognition by the T-cell receptors of CD4+ T helper cells. Therefore, MHC class II molecules are central to effective adaptive immune responses, but conversely, genetic and epidemiological data have implicated these molecules in the pathogenesis of autoimmune diseases. Indeed, the strength of the associations between particular MHC class II alleles and disease render them the main genetic risk factors for autoimmune disorders such as type 1 diabetes. Here, we discuss the insights that the crystal structures of MHC class II molecules provide into the molecular mechanisms by which sequence polymorphisms might contribute to disease susceptibility.
Collapse
Affiliation(s)
- E Yvonne Jones
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, The University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | | | | | |
Collapse
|
28
|
Zhou J, Xiao C, Zhao L, Jia H, Zhao N, Lu C, Yang D, Tang JCO, Chan ASC, Lu AP. The effect of triptolide on CD4+ and CD8+ cells in Peyer's patch of SD rats with collagen induced arthritis. Int Immunopharmacol 2005; 6:198-203. [PMID: 16399624 DOI: 10.1016/j.intimp.2005.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 07/26/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Triptolide is a purified component from a traditional Chinese herb Tripterygium wilfordii Hook F. It has been shown to have anti-inflammatory and immunosuppressive activities by its inhibitory effect on T cells. But the effect of triptolide on Peyer's patch cells is unknown. Enteric mucosal immune system, including Peyer's patch, is regarded as one of the sites for inducing immunity tolerance, and this intolerance effect has been used to induce oral tolerance which can considerably reduce arthritis severity in several models of experimental polyarthritis and RA patients. In this study, we investigated the effect of triptolide on the Peyer's patch cells and peripheral lymphocytes in collagen induced arthritis (CIA) in rats. CIA in rat is a widely studied animal model of inflammatory polyarthritis with similarities to rheumatoid arthritis (RA). Our data show that triptolide could lower the arthritic scores and delay the onset of CIA. There are more Peyer's patches in triptolide treated rats than in control rats, while there is no difference in Peyer's patch numbers between CIA rats and triptolide treated rats. In the Peyer's patch, more CD4+ cells are observed in CIA rats, and the numbers of CD4+ cells in triptolide treated rats and control rats are similar. While more CD8+ cells are observed in triptolide treated rats, and the numbers of CD8+ cells in CIA rats and control rats are similar. In periphery, more CD4+ cells and less CD4+ cells in CIA rats and triptolide treated rats are respectively observed. Therefore, the regulation on Peyer's patch might explain some of the immunosuppressive activities of triptolide, and enteric immune response might be actively involved in CIA pathogenesis. It is suggested that the Peyer's patch is one of the primary targets of the immunosuppressive activity of triptolide.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Basic Theory, China Academy of Traditional Chinese Medicine, Beijing 100700, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Self-reactivity is an intrinsic property of the human immune system. Autoreactive T cells derive directly from the developmental requirement for TCR engagement by self-antigens during lymphocyte maturation. The fundamental questions implicating these autoreactive cells in human autoimmunity then, are not "Where do they come from?", but rather "Why do they persist?", "How do they become activated?", and "How are they regulated or deleted?". New technologies, in which peptide-MHC (pMHC) ligands used for T-cell recognition are utilized as soluble fluorescent multimers, now permit the direct visualization of antigen-specific autoreactive T-lymphocytes. By using multimer technology to study self-reactive cells present in autoimmune patients and control individuals, a very broad range of autoreactive potential has been identified.
Collapse
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| |
Collapse
|
30
|
Albani S, Prakken B. T cell epitope–specific immune therapy for rheumatic diseases. ACTA ACUST UNITED AC 2005; 54:19-25. [PMID: 16385493 DOI: 10.1002/art.21520] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Salvatore Albani
- Departments of Medicine and Pediatrics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
31
|
Kamradt T, Schubert D. The role and clinical implications of G6PI in experimental models of rheumatoid arthritis. Arthritis Res Ther 2004; 7:20-8. [PMID: 15642150 PMCID: PMC1064898 DOI: 10.1186/ar1476] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The antigens that trigger the pathogenic immune response in rheumatoid arthritis (RA) remain unknown. Until recently it was assumed that either viral or microbial antigens, or joint-specific antigens were the target of arthritogenic T and B lymphocytes in RA. Consequently, murine models of arthritis are induced by immunization with either joint-specific antigens such as type II collagen or microbial products such as streptococcal cell wall. In the K/B×N T-cell receptor transgenic mouse model arthritis is caused by a systemic autoimmune response to the ubiquitously expressed glycolytic enzyme glucose-6-phosphate isomerase (G6PI). The autoreactive transgenic T cells recognize G6PI and provide help for the production of arthritogenic IgG antibodies against G6PI. More recently it was shown that G6PI immunization induces severe symmetrical peripheral polyarthritis in genetically unaltered DBA/I mice. In that model CD4+ T cells are necessary not only for the induction but also for the effector phase of arthritis. Here we review the pathomechanisms that lead from systemic autoreactivity to arthritis in these models, consider the relevance of anti-G6PI immune reactivity for RA, and discuss the insights into the pathogenesis of RA and possibly other autoimmune conditions that can be gained from these models.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/etiology
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/immunology
- Autoantibodies/immunology
- Autoantigens/immunology
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Wall/chemistry
- Cell Wall/immunology
- Collagen Type II/immunology
- Collagen Type II/toxicity
- Complement System Proteins/immunology
- Crosses, Genetic
- Glucose-6-Phosphate Isomerase/immunology
- Histocompatibility Antigens Class II/immunology
- Humans
- Immunization
- Immunization, Passive
- Immunoglobulin G/immunology
- Interleukin-1/physiology
- Mast Cells/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred NOD
- Mice, Transgenic
- Nervous System Autoimmune Disease, Experimental/etiology
- Nervous System Autoimmune Disease, Experimental/immunology
- Neutrophils/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Thomas Kamradt
- Institut für Immunologie, Klinikum der Friedrich-Schiller Universität Jena, Jena, Germany.
| | | |
Collapse
|