1
|
Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024; 13:1590. [PMID: 39329771 PMCID: PMC11430141 DOI: 10.3390/cells13181590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Lipopolysaccharide (LPS) in blood circulation causes endotoxemia and is linked to various disease conditions. Current treatments focus on preventing LPS from interacting with its receptor Toll-like receptor 4 (TLR4) and reducing inflammation. However, our body has a natural defense mechanism: reticuloendothelial cells in the liver rapidly degrade and inactivate much of the circulating LPS within minutes. But this LPS clearance mechanism is not perfect. Excessive LPS that escape this clearance mechanism cause systemic inflammatory damage through TLR4. Despite its importance, the role of reticuloendothelial cells in LPS elimination is not well-studied, especially regarding the specific cells, receptors, and mechanisms involved. This gap hampers the development of effective therapies for endotoxemia and related diseases. This review consolidates the current understanding of LPS clearance, narrates known and explores potential mechanisms, and discusses the relationship between LPS clearance and LPS signaling. It also aims to highlight key insights that can guide the development of strategies to reduce circulating LPS by way of bolstering host defense mechanisms. Ultimately, we seek to provide a foundation for future research that could lead to innovative approaches for enhancing the body's natural ability to clear LPS and thereby lower the risk of endotoxin-related inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Evan A. Schroder
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
2
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
3
|
Kaszubowska L, Kaczor JJ, Karnia MJ, Foerster J, Kmieć Z. Expression of a stress-inducible heme oxygenase-1 in NK cells is maintained in the process of human aging. Front Immunol 2024; 15:1398468. [PMID: 39100660 PMCID: PMC11294084 DOI: 10.3389/fimmu.2024.1398468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Heme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation, and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors, and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation, that is, NOD-like receptor protein 3 (NLRP3), glutathione (GSH), GSH disulfide (GSSG), and interleukin 6 (IL-6). Methods The study population comprised three age groups: young adults (age range, 19-23 years), older adults aged under 85 years (age range, 73-84 years), and older adults aged over 85 years (age range, 85-92 years). NLRP3, GSH, and GSSG concentrations were measured in serum, whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2, lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate (PMA) with ionomycin. Results The analysis of serum NLRP3, GSH, and GSSG concentrations revealed no statistically significant differences among the studied age groups. However, some typical trends of aging were observed, such as a decrease in GSH concentration and an increase in both GSSG level, and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover, statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells. Conclusions These results showed that NK cells can express HO-1 at a basal level, which was significantly increased in activated cells, even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.
Collapse
Affiliation(s)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| | | | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Ni A, Li Y, Isa AM, Wang P, Shi L, Fan J, Ge P, Jiang L, Sun Y, Ma H, Chen J. Prevalence Study of Trichomonas gallinae in Domestic Pigeons in Northeastern Beijing and Experimental Model of Trichomoniasis in White King Squabs Measuring In Situ Apoptosis and Immune Factors in Crop and Esophagus. Animals (Basel) 2024; 14:1869. [PMID: 38997981 PMCID: PMC11240329 DOI: 10.3390/ani14131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Trichomonas gallinae (T. gallinae) is a flagellated protozoan and the causative agent of trichomoniasis, or canker, in birds. In the current study, the prevalence of T. gallinae was firstly investigated in five breeds. According to the results of the prevalence study, White King pigeons were selected as the experimental animals. A total of 135 White King squabs at one day of age were randomly divided into two groups and raised in separate isolators. The challenged group (N = 100) was challenged intranasally with 5 × 106 parasites/mL of the T. gallinae strain, and the control group (N = 35) was intranasally administered medium of equivalent volume. At 1, 2, 3 and 5 days post infection (DPIs), the crops and esophagi were collected for RNA extraction and formaldehyde fixation. The results showed that prevalence of T. gallinae in the five breeds ranged from 27.13% (White Carneau) to 43.14% (White King). After the challenge, mild microscopic lesions were observed in both tissues. Apoptosis rates were higher in the challenged group than in the control group at 2 and 5 DPIs in the crop and at 1, 2 and 7 DPIs in the esophagus. For both tissues, relative expression of IL-1β increased dramatically at the beginning and decreased at 5 DPIs, and TGF-β increased stably in the challenged group.
Collapse
Affiliation(s)
- Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adamu Mani Isa
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Panlin Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Shi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Jiang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Hyun JE, Hwang CY. Antimicrobial Peptide Reduces Cytotoxicity and Inflammation in Canine Epidermal Keratinocyte Progenitor Cells Induced by Pseudomonas aeruginosa Infection. Vet Sci 2024; 11:235. [PMID: 38921982 PMCID: PMC11209461 DOI: 10.3390/vetsci11060235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The direct effects and antimicrobial activity of synthetic antimicrobial peptides (AMPs) obtained from dogs, including cBD, cBD103, and cCath, against P. aeruginosa wild-type strain PAO1 and canine keratinocytes were analyzed. Antibacterial effects on planktonic bacteria were assessed by determining the minimum bactericidal concentrations (MBCs) of AMPs and by a time-kill assay. Antibiofilm effects were assessed using the microtiter plate assay. We also evaluated the effects of AMPs on cell cytotoxicity and host immune response induced by stimulating canine epidermal keratinocyte progenitor (CPEK) cells with PAO1 and its LPS. cBD, cBD103, and cCath all exhibited dose-dependent antimicrobial and antibiofilm effects. In particular, 25 μg/mL cBD103 showed rapid bactericidal activity within 60 min and inhibited biofilm formation. In addition, pretreatment with cBD103 (25 µg/mL) and cCath (50 µg/mL) 1 h before stimulation significantly reduced the cytotoxicity of the CPEK cells by PAO1 and LPS-induced IL-6 and TNF-a expressions. cBD had little effect on the response to PAO1 and LPS in the cells. These results indicate the therapeutic potential of AMPs in P. aeruginosa skin infections. However, further studies on the mechanism of action of AMPs in keratinocytes and clinical trials are needed.
Collapse
Affiliation(s)
- Jae-Eun Hyun
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Hong Y, Hu D, Verderosa AD, Qin J, Totsika M, Reeves PR. Repeat-Unit Elongations To Produce Bacterial Complex Long Polysaccharide Chains, an O-Antigen Perspective. EcoSal Plus 2023; 11:eesp00202022. [PMID: 36622162 PMCID: PMC10729934 DOI: 10.1128/ecosalplus.esp-0020-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dalong Hu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter R. Reeves
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Cleuren A, Molema G. Organotypic heterogeneity in microvascular endothelial cell responses in sepsis-a molecular treasure trove and pharmacological Gordian knot. Front Med (Lausanne) 2023; 10:1252021. [PMID: 38020105 PMCID: PMC10665520 DOI: 10.3389/fmed.2023.1252021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the last decades, it has become evident that endothelial cells (ECs) in the microvasculature play an important role in the pathophysiology of sepsis-associated multiple organ dysfunction syndrome (MODS). Studies on how ECs orchestrate leukocyte recruitment, control microvascular integrity and permeability, and regulate the haemostatic balance have provided a wealth of knowledge and potential molecular targets that could be considered for pharmacological intervention in sepsis. Yet, this information has not been translated into effective treatments. As MODS affects specific vascular beds, (organotypic) endothelial heterogeneity may be an important contributing factor to this lack of success. On the other hand, given the involvement of ECs in sepsis, this heterogeneity could also be leveraged for therapeutic gain to target specific sites of the vasculature given its full accessibility to drugs. In this review, we describe current knowledge that defines heterogeneity of organ-specific microvascular ECs at the molecular level and elaborate on studies that have reported EC responses across organ systems in sepsis patients and animal models of sepsis. We discuss hypothesis-driven, single-molecule studies that have formed the basis of our understanding of endothelial cell engagement in sepsis pathophysiology, and include recent studies employing high-throughput technologies. The latter deliver comprehensive data sets to describe molecular signatures for organotypic ECs that could lead to new hypotheses and form the foundation for rational pharmacological intervention and biomarker panel development. Particularly results from single cell RNA sequencing and spatial transcriptomics studies are eagerly awaited as they are expected to unveil the full spatiotemporal signature of EC responses to sepsis. With increasing awareness of the existence of distinct sepsis subphenotypes, and the need to develop new drug regimen and companion diagnostics, a better understanding of the molecular pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt the detrimental processes that lead to MODS.
Collapse
Affiliation(s)
- Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Grietje Molema
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Sachetto ATA, Mackman N. Monocyte Tissue Factor Expression: Lipopolysaccharide Induction and Roles in Pathological Activation of Coagulation. Thromb Haemost 2023; 123:1017-1033. [PMID: 37168007 PMCID: PMC10615589 DOI: 10.1055/a-2091-7006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The coagulation system is a part of the mammalian host defense system. Pathogens and pathogen components, such as bacterial lipopolysaccharide (LPS), induce tissue factor (TF) expression in circulating monocytes that then activates the coagulation protease cascade. Formation of a clot limits dissemination of pathogens, enhances the recruitment of immune cells, and facilitates killing of pathogens. However, excessive activation of coagulation can lead to thrombosis. Here, we review studies on the mechanism of LPS induction of TF expression in monocytes and its contribution to thrombosis and disseminated intravascular coagulation. Binding of LPS to Toll-like receptor 4 on monocytes induces a transient expression of TF that involves activation of intracellular signaling pathways and binding of various transcription factors, such as c-rel/p65 and c-Fos/c-Jun, to the TF promoter. Inhibition of TF in endotoxemia and sepsis models reduces activation of coagulation and improves survival. Studies with endotoxemic mice showed that hematopoietic cells and myeloid cells play major roles in the activation of coagulation. Monocyte TF expression is also increased after surgery. Activated monocytes release TF-positive extracellular vesicles (EVs) and levels of circulating TF-positive EVs are increased in endotoxemic mice and in patients with sepsis. More recently, it was shown that inflammasomes contribute to the induction of TF expression and activation of coagulation in endotoxemic mice. Taken together, these studies indicate that monocyte TF plays a major role in activation of coagulation. Selective inhibition of monocyte TF expression may reduce pathologic activation of coagulation in sepsis and other diseases without affecting hemostasis.
Collapse
Affiliation(s)
- Ana T. A. Sachetto
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
9
|
Qiao X, Lin H, Zhang Y, Lu D. A novel scavenger receptor (EcSRECII) as a lipopolysaccharide recognition molecule involved in regulating NF-κB activation through extracellular EGF-like cysteine-rich repeat domains with lysosomes in Epinephelus coioides. Int J Biol Macromol 2023:125111. [PMID: 37257531 DOI: 10.1016/j.ijbiomac.2023.125111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Scavenger receptors (SRs), as multifunctional pattern recognition receptors, play an important role in innate immunity in mammals, however, their function in fish is limited. Herein, scavenger receptor F2 in Epinephelus coioides (EcSRECII) induced an innate immune response to LPS in GS cells. EcSRECII markedly enhanced LPS-induced NF-κB and IFN-β signaling pathways, whereas knockdown of EcSRECII significantly inhibited LPS-induced NF-κB and IFN-β promoter activation. Interestingly, only retain of epidermal growth factor (EGF)/EGF-like domain in EcSRECII resulted in a punctate cytoplasmic distribution, while the C-terminal domain exhibited a distinct cytoskeletal cytoplasmic distribution. Moreover, this EGF/EGF-like domain fragment more sharply impaired its ability to activate EcSRECII-induced NF-κB activation than the C-terminal domain region, but both domains significantly induced IFN-β promoter activation. Full-length EcSRECII and the delete mutant of C-terminal domain could partly colocalize with lysosomes by LPS derived from V. parahaemolyticus (V.p. LPS) in GS cells, but there was no similar distribution in the delete mutant of EGF/EGF-like domain. This finding firstly suggested that the N-terminal EGF/EGF-like domain was necessary for the NF-κB signaling pathway to trigger resistance to vibrio infection and its functional exertion may be associated with lysosomes, thus providing insights into the regulation of vibrio infection resistance in teleosts.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, PR China; Guangzhou Laboratory, Guangzhou 510005, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
10
|
de Queiroz NMGP, de Oliveira LS, Gomes MTR, Carneiro MBH, Vieira LQ, Oliveira SC, Horta MF. Requirement of scavenger receptors for activation of the IRF-3/IFN-β/STAT-1 pathway in TLR4-mediated production of NO by LPS-activated macrophages. Nitric Oxide 2023; 134-135:61-71. [PMID: 37059259 DOI: 10.1016/j.niox.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Production of nitric oxide (NO) by LPS-activated macrophages is due to a complex cellular signaling initiated by TLR4 that leads to the transcription of IFN-β, which activates IRF-1 and STAT-1, as well as to the activation of NF-κB, required for iNOS transcription. High concentrations of LPS can also be uptaken by scavenger receptors (SRs), which, in concert with TLR4, leads to inflammatory responses. The mechanisms by which TLR4 and SRs interact, and the pathways activated by this interaction in macrophages are not elucidated. Therefore, our main goal was to evaluate the role of SRs, particularly SR-A, in LPS-stimulated macrophages for NO production. We first showed that, surprisingly, LPS can induce the expression of iNOS and the production of NO in TLR4-/- mice, provided exogenous IFN-β is supplied. These results indicate that LPS stimulate receptors other than TLR4. The inhibition of SR-A using DSS or neutralizing antibody to SR-AI showed that SR-A is essential for the expression of iNOS and NO production in stimulation of TLR4 by LPS. The restoration of the ability to express iNOS and produce NO by addition of rIFN-β to inhibited SR-A cells indicated that the role of SR-AI in LPS-induced NO production is to provide IFN-β, probably by mediating the internalization of LPS/TLR4, and the differential inhibition by DSS and neutralizing antibody to SR-AI suggested that other SRs are also involved. Our results reinforce that TLR4 and SR-A act in concert in LPS activation and demonstrated that, for the production of NO, it does mainly by synthesizing IRF-3 and also by activating the TRIF/IRF-3 pathway for IFN-β production, essential for LPS-mediated transcription of iNOS. Consequently STAT-1 is activated, and IRF-1 is expressed, which together with NF-κB from TLR4/MyD88/TIRAP, induce iNOS synthesis and NO production. SUMMARY SENTENCE: TLR4 and SRs act in concert activating IRF-3 to transcribe IFN-β and activate STAT-1 to produce NO by LPS-activated macrophages.
Collapse
Affiliation(s)
- Nina Marí Gual Pimenta de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Luciana Souza de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Marco Tulio Ribeiro Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Matheus Batista Heitor Carneiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, BA, Brazil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Effects of Continuous LPS Induction on Oxidative Stress and Liver Injury in Weaned Piglets. Vet Sci 2022; 10:vetsci10010022. [PMID: 36669023 PMCID: PMC9865882 DOI: 10.3390/vetsci10010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Due to imperfections in their immune and digestive systems, weaned piglets are susceptible to invasions of the external environment and diseases, especially bacterial infections, which lead to slow growth, tissue damage, and even the death of piglets. Here, a model of weaned piglets induced by Escherichia coli lipopolysaccharide (LPS) was established to explore the effects of continuous low-dose LPS induction on the mechanism of liver injury. A total of forty-eight healthy 28-day-old weaned piglets (weight = 6.65 ± 1.19 kg) were randomly divided into two groups: the CON group and LPS group. During the experimental period of thirteen days, the LPS group was injected intraperitoneally with LPS (100 μg/kg) once per day, and the CON group was treated with the same volume of 0.9% NaCl solution. On the 1st, 5th, 9th, and 13th days, the serum and liver of the piglets were collected for the determination of serum biochemical indexes, an antioxidant capacity evaluation, and histopathological examinations. In addition, the mRNA expression levels of the TLR4 pathway and inflammatory cytokines were detected. The results showed that the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in the serum increased after LPS induction. The activities of total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) in the serum and liver homogenate of the LPS group were lower than those of the CON group, while the malondialdehyde (MDA) content in the serum and the activities of catalase (CAT) and superoxide dismutase (SOD) in the liver of the LPS group were higher than those in the CON group. At the same time, morphological impairment of the livers occurred, including hepatocyte caryolysis, hepatocyte vacuolization, karyopycnosis, and inflammatory cell infiltration, and the mRNA expression levels of TLR4, MyD88, NF-κB, TNF-α, IL-6, and IL-10 were upregulated in the livers after LPS induction. The above results were more obvious on the 1st and 5th days of LPS induction, while the trend during the later period was not significant. It was concluded that the oxidative stress and liver injury occurred at the early stage of LPS induction, while the liver damage weakened at the later stage. The weaned piglets probably gradually developed tolerance to the endotoxin after the continuous low-dose induction of LPS.
Collapse
|
12
|
Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Chen H, Madhireddy D, Hu K, Lundsten K, McIlwain DR, Nolan GP. A Comprehensive Atlas of Immunological Differences Between Humans, Mice, and Non-Human Primates. Front Immunol 2022; 13:867015. [PMID: 35359965 PMCID: PMC8962947 DOI: 10.3389/fimmu.2022.867015] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Animal models are an integral part of the drug development and evaluation process. However, they are unsurprisingly imperfect reflections of humans, and the extent and nature of many immunological differences are unknown. With the rise of targeted and biological therapeutics, it is increasingly important that we understand the molecular differences in the immunological behavior of humans and model organisms. However, very few antibodies are raised against non-human primate antigens, and databases of cross-reactivity between species are incomplete. Thus, we screened 332 antibodies in five immune cell populations in blood from humans and four non-human primate species generating a comprehensive cross-reactivity catalog that includes cell type-specificity. We used this catalog to create large mass cytometry universal cross-species phenotyping and signaling panels for humans, along with three of the model organisms most similar to humans: rhesus and cynomolgus macaques and African green monkeys; and one of the mammalian models most widely used in drug development: C57BL/6 mice. As a proof-of-principle, we measured immune cell signaling responses across all five species to an array of 15 stimuli using mass cytometry. We found numerous instances of different cellular phenotypes and immune signaling events occurring within and between species, and detailed three examples (double-positive T cell frequency and signaling; granulocyte response to Bacillus anthracis antigen; and B cell subsets). We also explore the correlation of herpes simian B virus serostatus on the immune profile. Antibody panels and the full dataset generated are available online as a resource to enable future studies comparing immune responses across species during the evaluation of therapeutics.
Collapse
Affiliation(s)
| | - Gabriela K. Fragiadakis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Department of Medicine, Division of Rheumatology, University of California San Francisco, San Francisco, CA, United States
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- University of California, San Francisco (UCSF) Data Science CoLab and University of California, San Francisco (UCSF) Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew H. Spitzer
- Immunology Program, Stanford University, Stanford, CA, United States
- Departments of Otolaryngology – Head and Neck Surgery and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Deepthi Madhireddy
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kevin Hu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kelly Lundsten
- BioLegend Inc, Advanced Cytometry, San Diego, CA, United States
| | - David R. McIlwain
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Garry P. Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Kubra KT, Barabutis N. Brefeldin A and kifunensine modulate LPS-induced lung endothelial hyperpermeability in human and bovine cells. Am J Physiol Cell Physiol 2021; 321:C214-C220. [PMID: 34161151 DOI: 10.1152/ajpcell.00142.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial hyperpermeability is the hallmark of acute respiratory distress syndrome (ARDS). Laborious efforts in the investigation of the molecular pathways involved in the regulation of the vascular barrier shall reveal novel therapeutic targets toward that respiratory disorder. Herein, we investigate in vitro the effects of the α-1,2-mannosidase 1 inhibitor kifunensine (KIF) and brefeldin A (BFA) in the lipopolysaccharides (LPS)-induced endothelial breakdown. Our results suggest that BFA opposes the deteriorating effects of KIF [unfolded protein response (UPR) suppressor] toward the lung microvasculature. Since KIF is a UPR suppressor, and brefeldin A is a UPR inducer, we suggest that a carefully devised UPR manipulation may deliver novel therapeutic avenues in diseases related to endothelial barrier dysfunction (e.g., ARDS and sepsis).
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
14
|
Eguchi A, Iwasa M, Tamai Y, Tempaku M, Takamatsu S, Miyoshi E, Hasegawa H, Kobayashi Y, Takei Y. Branched-chain amino acids protect the liver from cirrhotic injury via suppression of activation of lipopolysaccharide-binding protein, toll-like receptor 4, and signal transducer and activator of transcription 3, as well as Enterococcus faecalis translocation. Nutrition 2021; 86:111194. [PMID: 33743328 DOI: 10.1016/j.nut.2021.111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/18/2020] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Branched-chain amino acids (BCAAs) are used as nutritional support and for improving prognosis in liver cirrhosis. Here we investigate the molecular mechanisms of BCAA treatment and liver damage focused on pathways related to lipopolysaccharide-binding protein (LBP). METHODS Serum LBP levels were measured in cirrhotic patients and in cirrhotic rats treated with BCAA to examine the correlation between liver function and survival. In cirrhotic rats, liver damage, Enterococcus faecalis translocation, serum capsular polysaccharide, and intestinal tight junction levels were assessed. Damaged HepG2 cells were cultured with BCAA-supplemented, BCAA-deficient, or control amino acid medium, followed by examination of LBP expression. RESULTS Serum LBP levels were significantly increased in deceased patients individuals with liver cirrhosis. The survival rate in patients with lower serum LBP (<3.48 μg/mL) was significantly improved. In BCAA-treated rat liver samples, protein expression of LBP, toll-like receptor 4 (TLR4), and phosphorylated signal transduction and activator of transcription 3 (STAT3) were significantly reduced. Also in BCAA-treated rats, intestinal zonula occludens gene expression was increased, whereas hepatic translocation of E. faecalis and serum capsular polysaccharide levels were reduced. In damaged HepG2 cells, lipopolysaccharide-induced elevation of LBP expression was rapidly and strongly repressed in BCAA-enriched medium. CONCLUSIONS Serum LBP level is a prognostic biomarker in liver cirrhosis. BCAA treatment reduced translocation of E. faecalis through intestinal tight junction recovery and reduced LBP expression in the liver, which repressed activation of LBP, toll-like receptor 4, and signal transduction and activator of transcription 3. Our findings suggest that BCAA supplementation protects the liver from damage via multiple pathways.
Collapse
Affiliation(s)
- Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan.
| | - Yasuyuki Tamai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Mina Tempaku
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Hasegawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yoshinao Kobayashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan; Center for Physical and Mental Health, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
15
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
16
|
Kitaura A, Nishinaka T, Hamasaki S, Hatipoglu OF, Wake H, Nishibori M, Mori S, Nakao S, Takahashi H. Advanced glycation end-products reduce lipopolysaccharide uptake by macrophages. PLoS One 2021; 16:e0245957. [PMID: 33493233 PMCID: PMC7833212 DOI: 10.1371/journal.pone.0245957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Hyperglycaemia provides a suitable environment for infections and the mechanisms of glucose toxicity include the formation of advanced glycation end-products (AGEs), which comprise non-enzymatically glycosylated proteins, lipids, and nucleic acid amino groups. Among AGE-associated phenotypes, glycolaldehyde-derived toxic AGE (AGE-3) is involved in the pathogenesis of diabetic complications. Internalisation of endotoxin by various cell types contributes to innate immune responses against bacterial infection. An endotoxin derived from Gram-negative bacteria, lipopolysaccharide (LPS), was reported to enhance its own uptake by RAW264.7 mouse macrophage-like cells, and an LPS binding protein, CD14, was involved in the LPS uptake. The LPS uptake induced the activation of RAW264.7 leading to the production of chemokine CXC motif ligand (CXCL) 10, which promotes T helper cell type 1 responses. Previously, we reported that AGE-3 was internalised into RAW264.7 cells through scavenger receptor-1 Class A. We hypothesized that AGEs uptake interrupt LPS uptake and impair innate immune response to LPS in RAW264.7 cells. In the present study, we found that AGE-3 attenuated CD14 expression, LPS uptake, and CXCL10 production, which was concentration-dependent, whereas LPS did not affect AGE uptake. AGEs were reported to stimulate the receptor for AGEs and Toll-like receptor 4, which cause inflammatory reactions. We found that inhibitors for RAGE, but not Toll-like receptor 4, restored the AGE-induced suppression of CD14 expression, LPS uptake, and CXCL10 production. These results indicate that the receptor for the AGE-initiated pathway partially impairs the immune response in diabetes patients.
Collapse
Affiliation(s)
- Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Hidenori Wake
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacy, Shujitsu University, Okayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
17
|
Feng S, Ding H, Liu L, Peng C, Huang Y, Zhong F, Li W, Meng T, Li J, Wang X, Li Y, Wu J. Astragalus polysaccharide enhances the immune function of RAW264.7 macrophages via the NF-κB p65/MAPK signaling pathway. Exp Ther Med 2021; 21:20. [PMID: 33235629 PMCID: PMC7678613 DOI: 10.3892/etm.2020.9452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the immunoregulatory effects of Astragalus polysaccharide (APS) on RAW264.7 cells. The production of cytokines by RAW264.7 cells was analyzed using ELISA, while cell viability and optimal concentration of APS were assessed using the Cell Counting Kit-8 assay. In addition, the mRNA levels of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α were determined by reverse transcription-quantitative PCR analysis. The levels of co-stimulatory molecules and cell cycle distribution were assessed by flow cytometry. Electrophoretic mobility shift assay was used to determine the effects of APS on p65 expression. Compared with controls, APS enhanced the production of NO, the gene expression of TNF-α, IL-6 and iNOS and the protein levels of phosphorylated p65, p38, Jun N-terminal kinase and extracellular signal regulated kinase in RAW264.7 cells, whereas these effects of APS were alleviated by pyrrolidine dithiocarbamate. The results of the present study indicated that the immunoregulatory effects of APS are mediated, at least in part, via the activation of the NF-κB p65/MAPK signaling pathway.
Collapse
Affiliation(s)
- Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Chenglu Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Fuchao Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Wei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Tingting Meng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
18
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 789] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
19
|
Lim J, Koh VHQ, Cho SSL, Periaswamy B, Choi DPS, Vacca M, De Sessions PF, Kudela P, Lubitz W, Pastorin G, Alonso S. Harnessing the Immunomodulatory Properties of Bacterial Ghosts to Boost the Anti-mycobacterial Protective Immunity. Front Immunol 2019; 10:2737. [PMID: 31824511 PMCID: PMC6883722 DOI: 10.3389/fimmu.2019.02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) pathogenesis is characterized by inadequate immune cell activation and delayed T cell response in the host. Recent immunotherapeutic efforts have been directed at stimulating innate immunity and enhancing interactions between antigen presenting cells and T cells subsets to improve the protective immunity against TB. In this study, we investigated the immunostimulatory properties of bacterial ghosts (BG) as a novel approach to potentiate the host immunity against mycobacterial infection. BG are intact cytoplasm-free Escherichia coli envelopes and have been developed as bacterial vaccines and adjuvant/delivery system in cancer immunotherapy. However, BG have yet to be exploited as immunopotentiators in the context of infectious diseases. Here, we showed that BG are potent inducers of dendritic cells (DC), which led to enhanced T cell proliferation and differentiation into effector cells. BG also induced macrophage activation, which was associated with enhanced nitric oxide production, a key anti-mycobacterial weapon. We further demonstrated that the immunostimulatory capability of BG far exceeds that of LPS and involves both TLR4-dependent and independent pathways. Consistently, BG treatment, but not LPS treatment, reduced the bacterial burden in infected mice, which correlated with increased influx of innate and adaptive effector immune cells and increased production of key cytokines in the lungs. Finally and importantly, enhanced bacilli killing was seen in mice co-administered with BG and second-line TB drugs bedaquiline and delamanid. Overall, this work paves the way for BG as potent immunostimulators that may be harnessed to improve mycobacteria killing at the site of infection.
Collapse
Affiliation(s)
- Jieling Lim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui Qi Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Balamurugan Periaswamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dawn Poh Sum Choi
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paola Florez De Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pavol Kudela
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Werner Lubitz
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Husin S, Melizah A, Alkaff S, Hidayat R. The Probiotic Bacterium Isolated from Bekasam (Traditional Fermented Food), Lactobacillus Sp. Induces Activation of Gut Mucosal Immune System in Rat. Open Access Maced J Med Sci 2019; 7:3530-3533. [PMID: 32010371 PMCID: PMC6986511 DOI: 10.3889/oamjms.2019.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND: Bekasam is one of the traditional foods in South Sumatra, Indonesia, a mixture of fermented fish containing Lactic Acid Bacteria (LAB), Lactobacillus sp. Non-commensal bacteria and probiotics can induce intestinal mucosal immune responses. AIM: This pilot study aimed to see the efficacy of Lactobacillus sp. to the immune response of the intestinal mucosa by assessing the levels of IgA in the intestinal fluid and markers of T cell populations, such as CD4 and CD8 in the intestinal mucosa. METHODS: This study was an in vivo experimental study. As many as 30 rats were grouped into 3 treatment groups (doses 107, 108, and 109 CFU/rat/day, for 7 days) and 2 groups of controls (negative control, 10% non-fat milk, and positive control, Lactobacillus casei 108 CFU/rat/day for 7 days). At the end of the treatment, the intestinal mucosa was taken to examine the levels of IgA, CD4 and CD8 using the Enzyme-Linked Immunosorbent Assay (ELISA) method, according to the manuals of each ELISA kit. All displays of research data were presented with means ± SD. T-test was used to assess the significance of differences. RESULTS: Secretion of Ig A increased with the addition of Lactobacillus sp. from bekasam. Administration of Lactobacillus sp. yielded no effect on helper T cell level (CD4 markers), as well as on cytotoxic T cell levels (CD8 markers). CONCLUSION: Lactobacillus sp. probiotic from bekasam improved the intestinal mucosal immune system by increasing the production of Ig A, but exhibited no effect on T lymphocyte cells.
Collapse
Affiliation(s)
- Syarif Husin
- Department of Nutritional Health, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Ardesy Melizah
- Department of Nutritional Health, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Syifa Alkaff
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Rachmat Hidayat
- Department of Biology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| |
Collapse
|
21
|
Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases 2019; 7:diseases7040058. [PMID: 31726747 PMCID: PMC6956030 DOI: 10.3390/diseases7040058] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports that gut dysbiosis may relate to various liver diseases. Alcoholics with high intestinal permeability had a decrease in the abundance of Ruminnococcus. Intestinal dysmotility, increased gastric pH, and altered immune responses in addition to environmental and genetic factors are likely to cause alcohol-associated gut microbial changes. Alcohol-induced dysbiosis may be associated with gut barrier dysfunction, as microbiota and their products modulate barrier function by affecting epithelial pro-inflammatory responses and mucosal repair functions. High levels of plasma endotoxin are detected in alcoholics, in moderate fatty liver to advanced cirrhosis. Decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal, stimulating IL-10 secretion and inhibiting IL-12 and interferon-γ expression. Proteobacteria, Enterobacteriaceae, and Escherichia were reported to be increased in NAFLD (nonalcoholic fatty liver disease) patients. Increased abundance of fecal Escherichia to elevated blood alcohol levels in these patients and gut microbiota enriched in alcohol-producing bacteria produce more alcohol (alcohol hypothesis). Some undetermined pathological sequences related to gut dysbiosis may facilitate energy-producing and proinflammatory conditions for the progression of NAFLD. A shortage of autochthonous non-pathogenic bacteria and an overgrowth of potentially pathogenic bacteria are common findings in cirrhotic patients. The ratio of the amounts of beneficial autochthonous taxa (Lachnospiraceae + Ruminococaceae + Veillonellaceae + Clostridiales Incertae Sedis XIV) to those of potentially pathogenic taxa (Enterobacteriaceae + Bacteroidaceae) was low in those with early death and organ failure. Cirrhotic patients with decreased microbial diversity before liver transplantation were more likely to develop post-transplant infections and cognitive impairment related to residual dysbiosis. Patients with PSC had marked reduction of bacterial diversity. Enterococcus and Lactobacillus were increased in PSC patients (without liver cirrhosis.) Treatment-naive PBC patients were associated with altered composition and function of gut microbiota, as well as a lower level of diversity. As serum anti-gp210 antibody has been considered as an index of disease progression, relatively lower species richness and lower abundance of Faecalibacterium spp. in gp210-positive patients are interesting. The dysbiosis-induced altered bacterial metabolites such as a hepatocarcinogenesis promotor DCA, together with a leaky gut and bacterial translocation. Gut protective Akkermansia and butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early hepatocellular carcinoma (HCC) patients.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
22
|
Reduced Proprotein convertase subtilisin/kexin 9 (PCSK9) function increases lipoteichoic acid clearance and improves outcomes in Gram positive septic shock patients. Sci Rep 2019; 9:10588. [PMID: 31332258 PMCID: PMC6646337 DOI: 10.1038/s41598-019-46745-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown lipopolysaccharide from Gram-negative bacteria is cleared from the circulation via LDL receptors on hepatocytes, which are downregulated by PCSK9. Whether clearance of Gram positive bacterial lipoteichoic acid (LTA) shows similar dependence on PCSK9, and whether this is clinically relevant in Gram positive human sepsis, is unknown. We examined survival data from three cohorts of patients who had Gram positive septic shock (n = 170, n = 130, and n = 59) and found that patients who carried a PCSK9 loss-of-function (LOF) allele had significantly higher 28-day survival (73.8%) than those with no LOF alleles (52.8%) (p = 0.000038). Plasma clearance of LTA was also found to be increased in PCSK9 knockout mice compared to wildtype control mice (p = 0.002). In addition, hepatocytes pre-treated with recombinant wildtype PCSK9 showed a dose-dependent decrease in uptake of fluorescently-labeled LTA (p < 0.01). In comparison to wildtype PCSK9, hepatocytes pre-treated with 3 different LOF variants of recombinant PCSK9 showed an increase in LTA uptake. This study shows the clearance of LTA follows a similar route as lipopolysaccharide, which is dependent on hepatic LDL receptors. This has important implications in health as strategies aimed at inhibiting PCSK9 function may be an effective treatment option for both Gram-positive and negative sepsis.
Collapse
|
23
|
Taechowisan T, Puckdee W, Waratchareeyakul W, Phutdhawong WS. Anti-Inflammatory Activity of Geldanamycin and Its Derivatives in LPS-Induced RAW 264.7 Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aim.2019.94024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Ghareghani M, Reiter RJ, Zibara K, Farhadi N. Latitude, Vitamin D, Melatonin, and Gut Microbiota Act in Concert to Initiate Multiple Sclerosis: A New Mechanistic Pathway. Front Immunol 2018; 9:2484. [PMID: 30459766 PMCID: PMC6232868 DOI: 10.3389/fimmu.2018.02484] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While the etiology of MS is still largely unknown, scientists believe that the interaction of several endogenous and exogenous factors may be involved in this disease. Epidemiologists have seen an increased prevalence of MS in countries at high latitudes, where the sunlight is limited and where the populations have vitamin D deficiency and high melatonin levels. Although the functions and synthesis of vitamin D and melatonin are contrary to each other, both are involved in the immune system. While melatonin synthesis is affected by light, vitamin D deficiency may be involved in melatonin secretion. On the other hand, vitamin D deficiency reduces intestinal calcium absorption leading to gut stasis and subsequently increasing gut permeability. The latter allows gut microbiota to transfer more endotoxins such as lipopolysaccharides (LPS) into the blood. LPS stimulates the production of inflammatory cytokines within the CNS, especially the pineal gland. This review summarizes the current findings on the correlation between latitude, sunlight and vitamin D, and details their effects on intestinal calcium absorption, gut microbiota and neuroinflammatory mediators in MS. We also propose a new mechanistic pathway for the initiation of MS.
Collapse
Affiliation(s)
- Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC, Canada.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Naser Farhadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
25
|
Wolf-Grosse S, Mollnes TE, Ali S, Stenvik J, Nilsen AM. Iron oxide nanoparticles enhance Toll-like receptor-induced cytokines in a particle size- and actin-dependent manner in human blood. Nanomedicine (Lond) 2018; 13:1773-1785. [PMID: 30084726 DOI: 10.2217/nnm-2017-0362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: To assess the effects of different-sized iron oxide nanoparticles (IONPs) on inflammatory responses in human whole blood. Materials & methods: Human whole blood with and without 10 and 30 nm IONPs was incubated with Toll-like receptor (TLR) ligands. Cytokine levels, complement activation, reactive oxygen species and viability were determined. Results: The 10 nm IONPs enhanced the TLR2/6, TLR4 and partly TLR8-mediated cytokine production, whereas the 30 nm IONPs partly enhanced TLR2/6 and decreased TLR8-mediated cytokine production. Particle-mediated enhancement of TLR4-induced cytokines could not be explained by complement activation, but was dependent on TLR4/MD2 and CD14, as well as actin polymerization. Conclusion: The IONPs differentially affected the TLR ligand-induced cytokines, which has important implications for biomedical applications of IONPs.
Collapse
Affiliation(s)
- Susann Wolf-Grosse
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science & Technology, 7491 Trondheim, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodø, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research & Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Syed Ali
- Division of Neurotoxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 501, USA
| | - Jørgen Stenvik
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science & Technology, 7491 Trondheim, Norway
| | - Asbjørn M Nilsen
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway
| |
Collapse
|
26
|
Feng G, Zheng K, Cao T, Zhang J, Lian M, Huang D, Wei C, Gu Z, Feng X. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling. Cytotechnology 2018; 70:1023-1035. [PMID: 29480340 DOI: 10.1007/s10616-017-0180-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/02/2017] [Indexed: 01/13/2023] Open
Abstract
Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No.2 People's Hospital, Wuxi, 214000, China
| | - Tong Cao
- Department of Provost's Office, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Changbo Wei
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
27
|
An D, Hao F, Hu C, Kong W, Xu X, Cui MZ. JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation. Front Physiol 2018; 8:1075. [PMID: 29354064 PMCID: PMC5760559 DOI: 10.3389/fphys.2017.01075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022] Open
Abstract
Foam cell formation is the key process in the development of atherosclerosis. The uptake of oxidized low-density lipoprotein (oxLDL) converts macrophages into foam cells. We recently reported that lipopolysaccharide (LPS)-induced foam cell formation is regulated by CD14 and scavenger receptor AI (SR-AI). In this study, we employed pharmaceutical and gene knockdown approaches to determine the upstream molecular mediators, which control LPS-induced foam cell formation. Our results demonstrated that the specific c-Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, but neither the specific inhibitor of extracellular signaling-regulated kinase (ERK) kinase MEK1/2, U0126, nor the specific inhibitor of p38 MAPK, SB203580, significantly blocks LPS-induced oxLDL uptake, suggesting that the JNK pathway is the upstream mediator of LPS-induced oxLDL uptake/foam cell formation. To address whether JNK pathway mediates LPS-induced oxLDL uptake is due to JNK pathway-regulated CD14 and SR-AI expression, we assessed whether the pharmaceutical inhibitor of JNK influences LPS-induced expression of CD14 and SR-AI. Our results indicate that JNK pathway mediates LPS-induced CD14 and SR-AI expression. To conclusively address the isoform role of JNK family, we depleted JNK isoforms using the JNK isoform-specific siRNA. Our data showed that the depletion of JNK1, but not JNK2 blocked LPS-induced CD14/SR-AI expression and foam cell formation. Taken together, our results reveal for the first time that JNK1 is the key mediator of LPS-induced CD14 and SR-AI expression in macrophages, leading to LPS-induced oxLDL uptake/foam cell formation. We conclude that the novel JNK1/CD14/SR-AI pathway controls macrophage oxLDL uptake/foam cell formation.
Collapse
Affiliation(s)
- Dong An
- School of Life Sciences, Jilin University, Changchun, China.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Feng Hao
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Chen Hu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun, China
| | - Xuemin Xu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Mei-Zhen Cui
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
28
|
Wuerth KC, Falsafi R, Hancock REW. Synthetic host defense peptide IDR-1002 reduces inflammation in Pseudomonas aeruginosa lung infection. PLoS One 2017; 12:e0187565. [PMID: 29107983 PMCID: PMC5673212 DOI: 10.1371/journal.pone.0187565] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a frequent cause of lung infections, particularly in chronic infections in cystic fibrosis patients. However, treatment is challenging due to P. aeruginosa evasion of the host immune system and the rise of antibiotic resistant strains. Host defense peptides (HDPs) and synthetic derivatives called innate defense regulators (IDRs) have shown promise in several infection models as an alternative to antibiotic treatment. Here we tested peptide IDR-1002 against P. aeruginosa in vitro and in vivo. Treatment of bronchial epithelial cells and macrophages with IDR-1002 or in combination with live P. aeruginosa or its LPS led to the reduction of agonist-induced cytokines and chemokines and limited cell killing by live P. aeruginosa. In an in vivo model using P. aeruginosa combined with alginate to mimic a chronic model, IDR-1002 did not reduce the bacterial burden in the lungs, but IDR-1002 mice showed a significant decrease in IL-6 in the lungs and in gross pathology of infection, while histology revealed that IDR-1002 treated mice had reduced alveolar macrophage infiltration around the site of infection and reduced inflammation. Overall, these results indicate that IDR-1002 has promise for combating P. aeruginosa lung infections and their resulting inflammation.
Collapse
Affiliation(s)
- Kelli C. Wuerth
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
29
|
Nyúl-Tóth Á, Kozma M, Nagyőszi P, Nagy K, Fazakas C, Haskó J, Molnár K, Farkas AE, Végh AG, Váró G, Galajda P, Wilhelm I, Krizbai IA. Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav Immun 2017; 64:220-231. [PMID: 28432035 DOI: 10.1016/j.bbi.2017.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
Cerebral pericytes are mural cells embedded in the basement membrane of capillaries. Increasing evidence suggests that they play important role in controlling neurovascular functions, i.e. cerebral blood flow, angiogenesis and permeability of the blood-brain barrier. These cells can also influence neuroinflammation which is highly regulated by the innate immune system. Therefore, we systematically tested the pattern recognition receptor expression of brain pericytes. We detected expression of NOD1, NOD2, NLRC5, NLRP1-3, NLRP5, NLRP9, NLRP10 and NLRX mRNA in non-treated cells. Among the ten known human TLRs, TLR2, TLR4, TLR5, TLR6 and TLR10 were found to be expressed. Inflammatory mediators induced the expression of NLRA, NLRC4 and TLR9 and increased the levels of NOD2, TLR2, inflammasome-forming caspases and inflammasome-cleaved interleukins. Oxidative stress, on the other hand, upregulated expression of TLR10 and NLRP9. Activation of selected pattern recognition receptors can lead to inflammasome assembly and caspase-dependent secretion of IL-1β. TNF-α and IFN-γ increased the levels of pro-IL-1β and pro-caspase-1 proteins; however, no canonical activation of NLRP1, NLRP2, NLRP3 or NLRC4 inflammasomes could be observed in human brain vascular pericytes. On the other hand, we could demonstrate secretion of active IL-1β in response to non-canonical inflammasome activation, i.e. intracellular LPS or infection with E. coli bacteria. Our in vitro results indicate that pericytes might have an important regulatory role in neuroinflammation.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Péter Nagyőszi
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Krisztina Nagy
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Attila E Farkas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - György Váró
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Péter Galajda
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary.
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary; Institute of Life Sciences, Vasile Goldiş Western University of Arad, Str. Liviu Rebreanu 86, 310414 Arad, Romania.
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary; Institute of Life Sciences, Vasile Goldiş Western University of Arad, Str. Liviu Rebreanu 86, 310414 Arad, Romania.
| |
Collapse
|
30
|
An D, Hao F, Zhang F, Kong W, Chun J, Xu X, Cui MZ. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation. J Biol Chem 2017; 292:14391-14400. [PMID: 28705936 DOI: 10.1074/jbc.m117.781807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/08/2017] [Indexed: 01/19/2023] Open
Abstract
Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis.
Collapse
Affiliation(s)
- Dong An
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996.,College of Life Sciences and
| | - Feng Hao
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996
| | - Fuqiang Zhang
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996.,Science and Research Center, China-Japan Union Hospital, Jilin University, Changchun 130021, China, and
| | | | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Xuemin Xu
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996
| | - Mei-Zhen Cui
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996,
| |
Collapse
|
31
|
Kieser KJ, Kagan JC. Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol 2017; 17:376-390. [PMID: 28461704 DOI: 10.1038/nri.2017.25] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The receptors of the innate immune system detect specific microbial ligands to promote effective inflammatory and adaptive immune responses. Although this idea is well appreciated, studies in recent years have highlighted the complexity of innate immune detection, with multiple host receptors recognizing the same microbial ligand. Understanding the collective actions of diverse receptors that recognize common microbial signatures represents a new frontier in the study of innate immunity, and is the focus of this Review. Here, we discuss examples of individual bacterial cell wall components that are recognized by at least two and as many as four different receptors of the innate immune system. These receptors survey the extracellular or cytosolic spaces for their cognate ligands and operate in a complementary manner to induce distinct cellular responses. We further highlight that, despite this genetic diversity in receptors and pathways, common features exist to explain the operation of these receptors. These common features may help to provide unifying organizing principles associated with host defence.
Collapse
Affiliation(s)
- Karen J Kieser
- Department of Pediatrics, Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Jonathan C Kagan
- Department of Pediatrics, Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Grosse S, Stenvik J, Nilsen AM. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes. Int J Nanomedicine 2016; 11:4625-4642. [PMID: 27695322 PMCID: PMC5028097 DOI: 10.2147/ijn.s113425] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Co-stimulation of the immune system to more than one agent concomitantly is very common in real life, and considering the increasing use of engineered nanoparticles and nanomaterials, it is highly relevant to assess the ability of these materials to modulate key innate immune responses, which has not yet been studied in detail. We investigated the immunomodulatory effects of 10 nm and 30 nm iron oxide nanoparticles (IONPs) on primary human monocytes in the presence and absence of Toll-like receptor 4 agonist lipopolysaccharide (LPS). Prior to the cell studies, we characterized the physicochemical properties of the nanoparticles in cell culture medium and ensured that the nanoparticles were free from biological contamination. Cellular uptake of the IONPs in monocytes was assessed using transmission electron microscopy. Using enzyme-linked immunosorbent assay, we found that the IONPs per se did not induce the production of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, the IONPs had the ability to suppress LPS-induced nuclear factor kappa B activation and production of proinflammatory cytokines in primary human monocytes in an LPS and a particle dose-dependent manner. Using confocal microscopy and fluorescently labeled LPS, we showed that the effects correlated with impaired LPS internalization by monocytes in the presence of IONPs, which could be partly explained by LPS adsorption onto the nanoparticle surface. Additionally, the results from particle pretreatment experiments indicate that other cellular mechanisms might also play a role in the observed effects, which warrants further studies to elucidate the additional mechanisms underlying the capacity of IONPs to alter the reactivity of monocytes to LPS and to mount an appropriate cellular response.
Collapse
Affiliation(s)
- Susann Grosse
- Department of Cancer Research and Molecular Medicine
| | - Jørgen Stenvik
- Department of Cancer Research and Molecular Medicine; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
33
|
Abstract
LPS binding protein (LBP) and CD14 play key roles in promoting innate immunity to Gram-negative bacteria by transferring LPS to the signaling receptor complex, MD-2/Toll-like receptor 4 (TLR4). LBP and soluble CD14 (sCD14) can also inhibit responses to LPS by mechanisms that depend on their concentration and environment; during acute inflammation and infection, their concentrations increase in plasma and extravascular fluids. Whereas low concentrations of LBP enhance responses to LPS, high LBP concentrations can inhibit LPS bioactivity in vitro and in vivo. sCD14 also inhibits cell responses by diverting LPS from membrane-bound CD14 (mCD14) and by promoting LPS efflux from cell-surface mCD14 and transferring it to plasma lipoproteins. In vivo studies support the hypothesis that sCD14 has systemic anti-inflammatory effects, whereas in the tissues it may have pro-inflammatory effects that increase resistance to bacteria. Likewise, LBP increases resistance to Gram-negative bacteria by rapidly triggering pro-inflammatory responses to LPS. Thus, the dual stimulatory and inhibitory mechanisms of sCD14 and LBP may benefit the infected host by promoting inflammation in local sites, where it is needed, while at the same time preventing potentially detrimental systemic responses to LPS.
Collapse
Affiliation(s)
- Richard L. Kitchens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA,
| | - Patricia A. Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Yao Z, Mates JM, Cheplowitz AM, Hammer LP, Maiseyeu A, Phillips GS, Wewers MD, Rajaram MVS, Robinson JM, Anderson CL, Ganesan LP. Blood-Borne Lipopolysaccharide Is Rapidly Eliminated by Liver Sinusoidal Endothelial Cells via High-Density Lipoprotein. THE JOURNAL OF IMMUNOLOGY 2016; 197:2390-9. [PMID: 27534554 DOI: 10.4049/jimmunol.1600702] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
During Gram-negative bacterial infections, excessive LPS induces inflammation and sepsis via action on immune cells. However, the bulk of LPS can be cleared from circulation by the liver. Liver clearance is thought to be a slow process mediated exclusively by phagocytic resident macrophages, Kupffer cells (KC). However, we discovered that LPS disappears rapidly from the circulation, with a half-life of 2-4 min in mice, and liver eliminates about three quarters of LPS from blood circulation. Using microscopic techniques, we found that ∼75% of fluor-tagged LPS in liver became associated with liver sinusoidal endothelial cells (LSEC) and only ∼25% with KC. Notably, the ratio of LSEC-KC-associated LPS remained unchanged 45 min after infusion, indicating that LSEC independently processes the LPS. Most interestingly, results of kinetic analysis of LPS bioactivity, using modified limulus amebocyte lysate assay, suggest that recombinant factor C, an LPS binding protein, competitively inhibits high-density lipoprotein (HDL)-mediated LPS association with LSEC early in the process. Supporting the previous notion, 3 min postinfusion, 75% of infused fluorescently tagged LPS-HDL complex associates with LSEC, suggesting that HDL facilitates LPS clearance. These results lead us to propose a new paradigm of LSEC and HDL in clearing LPS with a potential to avoid inflammation during sepsis.
Collapse
Affiliation(s)
- Zhili Yao
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Jessica M Mates
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Alana M Cheplowitz
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Lindsay P Hammer
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD 21201
| | - Gary S Phillips
- Department of Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Mark D Wewers
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - John M Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Clark L Anderson
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Latha P Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
35
|
Liu K, Xu Y, Wang Y, Wei S, Feng D, Huang Q, Zhang S, Liu Z. Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:91-95. [PMID: 26915754 DOI: 10.1016/j.dci.2016.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
CD36 is a transmembrane glycoprotein belonging to the scavenger receptor class B family which plays crucial roles in innate immunity. Although CD36 is widely documented in mammals, the study of its functions in fish is still limited. Here we report the identification of a zebrafish cd36 homologue. Zebrafish cd36 has a higher gene expression in the tissues of intestine and liver but very low in kidney and swim bladder. We find cd36 mRNA is maternally expressed and is mainly restricted to the intestine, branchial arches and regions around the lips after the segmentation stage during embryogenesis. Functionally, the recombinant Cd36 corresponding to the large extracellular loop is capable of binding both the Gram-negative and Gram-positive bacteria. These results indicate that zebrafish Cd36 is a microbial-binding molecule. The study expands our knowledge of the function of scavenger receptor molecules in fish innate immune process.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Yanping Xu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Ying Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Shulei Wei
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Dong Feng
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Qiaoyan Huang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China.
| |
Collapse
|
36
|
Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1-G15. [PMID: 27151941 DOI: 10.1152/ajpgi.00098.2016] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 01/31/2023]
Abstract
The human microbiota consists of 100 trillion microorganisms that provide important metabolic and biological functions benefiting the host. However, the presence in host plasma of a gut-derived bacteria component, the lipopolysaccharide (LPS), has been identified as a causal or complicating factor in multiple serious diseases such as sepsis and septic shock and, more recently, obesity-associated metabolic disorders. Understanding the precise mechanisms by which gut-derived LPS is transported from the gut lumen to the systemic circulation is crucial to advance our knowledge of LPS-associated diseases and elaborate targeted strategies for their prevention. The aim of this review is to synthetize current knowledge on the host mechanisms limiting the entry and dissemination of LPS into the systemic circulation. To prevent bacterial colonization and penetration, the intestinal epithelium harbors multiple defense mechanisms including the secretion of antimicrobial peptides and mucins as well as detoxification enzymes. Despite this first line of defense, LPS can reach the apical site of intestinal epithelial cells (IECs) and, because of its large size, likely crosses IECs via transcellular transport, either lipid raft- or clathrin-mediated endocytosis or goblet cell-associated passage. However, the precise pathway remains poorly described. Finally, if LPS crosses the gut mucosa, it is directed via the portal vein to the liver, where major detoxification processes occur by deacetylation and excretion through the bile. If this disposal process is not sufficient, LPS enters the systemic circulation, where it is handled by numerous transport proteins that clear it back to the liver for further excretion.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- INRA UR1341 ADNC, Domaine de la Prise, Saint-Gilles, France
| |
Collapse
|
37
|
Kuo WT, Lee TC, Yu LCH. Eritoran Suppresses Colon Cancer by Altering a Functional Balance in Toll-like Receptors That Bind Lipopolysaccharide. Cancer Res 2016; 76:4684-95. [PMID: 27328732 DOI: 10.1158/0008-5472.can-16-0172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/05/2016] [Indexed: 11/16/2022]
Abstract
Colorectal carcinogenesis is affected by overexpression of the lipopolysaccharide (LPS) receptors CD14 and TLR4, which antagonize each other by affecting epithelial cell proliferation and apoptosis. Eritoran is an investigational drug for sepsis treatment that resembles the lipid A moiety of LPS and therefore acts as a TLR4 inhibitor. In the present study, we explored the potential therapeutic uses and mechanisms of action of eritoran in reducing colon cancer progression. Eritoran administration via intracolonic, intragastric, or intravenous routes significantly reduced tumor burden in a chemically induced mouse model of colorectal carcinoma. Decreased proliferation and increased apoptosis were observed in mouse tumor cells after eritoran treatment. In vitro cultures of mouse primary tumor spheroids and human cancer cell lines displayed increased cell proliferation and cell-cycle progression following LPS challenge. This effect was inhibited by eritoran and by silencing CD14 or TLR4. In contrast, apoptosis induced by eritoran was eliminated by silencing CD14 or protein kinase Cζ (PKCζ) but not TLR4. Lastly, LPS and eritoran caused hyperphosphorylation of PKCζ in a CD14-dependent and TLR4-independent manner. Blocking PKCζ activation by a Src kinase inhibitor and a PKCζ-pseudosubstrate prevented eritoran-induced apoptosis. In summary, our work offers a preclinical proof of concept for the exploration of eritoran as a clinical treatment, with a mechanistic rationale to reposition this drug to improve the management of colorectal cancer. Cancer Res; 76(16); 4684-95. ©2016 AACR.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Chun Lee
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
38
|
He Z, Riva M, Björk P, Swärd K, Mörgelin M, Leanderson T, Ivars F. CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes. PLoS One 2016; 11:e0156377. [PMID: 27228163 PMCID: PMC4881898 DOI: 10.1371/journal.pone.0156377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/13/2016] [Indexed: 01/23/2023] Open
Abstract
The cytosolic Ca2+-binding S100A9 and S100A8 proteins form heterodimers that are primarily expressed in human neutrophils and monocytes. We have recently shown that S100A9 binds to TLR4 in vitro and induces TLR4-dependent NF-κB activation and a pro-inflammatory cytokine response in monocytes. In the present report we have further investigated the S100A9-mediated stimulation of TLR4 in monocytes. Using transmission immunoelectron microscopy, we detected focal binding of S100A9 to monocyte membrane subdomains containing the caveolin-1 protein and TLR4. Furthermore, the S100A9 protein was detected in early endosomes of the stimulated cells, indicating that the protein could be internalized by endocytosis. Although stimulation of monocytes with S100A9 was strictly TLR4-dependent, binding of S100A9 to the plasma membrane and endocytosis of S100A9 was still detectable and coincided with CD14 expression in TLR4-deficient cells. We therefore investigated whether CD14 would be involved in the TLR4-dependent stimulation and could show that the S100A9-induced cytokine response was inhibited both in CD14-deficient cells and in cells exposed to CD14 blocking antibodies. Further, S100A9 was not internalized into CD14-deficient cells suggesting a direct role of CD14 in endocytosis of S100A9. Finally, we could detect satiable binding of S100A9 to CD14 in surface plasmon resonance experiments. Taken together, these results indicate that CD14 is a co-receptor of TLR4 in the S100A9-induced cytokine response.
Collapse
Affiliation(s)
- Zhifei He
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matteo Riva
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | | | - Karl Swärd
- Section for Cell and Tissue Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Section for Infection Biology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
39
|
Moser J, Heeringa P, Jongman RM, Zwiers PJ, Niemarkt AE, Yan R, de Graaf IA, Li R, Ravasz Regan E, Kümpers P, Aird WC, van Nieuw Amerongen GP, Zijlstra JG, Molema G, van Meurs M. Intracellular RIG-I Signaling Regulates TLR4-Independent Endothelial Inflammatory Responses to Endotoxin. THE JOURNAL OF IMMUNOLOGY 2016; 196:4681-91. [PMID: 27183587 DOI: 10.4049/jimmunol.1501819] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/01/2016] [Indexed: 12/25/2022]
Abstract
Sepsis is a systemic inflammatory response to infections associated with organ failure that is the most frequent cause of death in hospitalized patients. Exaggerated endothelial activation, altered blood flow, vascular leakage, and other disturbances synergistically contribute to sepsis-induced organ failure. The underlying signaling events associated with endothelial proinflammatory activation are not well understood, yet they likely consist of molecular pathways that act in an endothelium-specific manner. We found that LPS, a critical factor in the pathogenesis of sepsis, is internalized by endothelial cells, leading to intracellular signaling without the need for priming as found recently in immune cells. By identifying a novel role for retinoic acid-inducible gene-I (RIG-I) as a central regulator of endothelial activation functioning independent of TLR4, we provide evidence that the current paradigm of TLR4 solely being responsible for LPS-mediated endothelial responses is incomplete. RIG-I, as well as the adaptor protein mitochondrial antiviral signaling protein, regulates NF-κB-mediated induction of adhesion molecules and proinflammatory cytokine expression in response to LPS. Our findings provide essential new insights into the proinflammatory signaling pathways in endothelial cells and suggest that combined endothelial-specific inhibition of RIG-I and TLR4 will provide protection from aberrant endothelial responses associated with sepsis.
Collapse
Affiliation(s)
- Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Rianne M Jongman
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Anesthesiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Peter J Zwiers
- Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Anita E Niemarkt
- Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Rui Yan
- Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Inge A de Graaf
- Groningen Research Institute of Pharmacy, Division of Pharmacokinetics, Toxicology, and Targeting, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Ranran Li
- Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215; Biochemistry and Molecular Biology Program, Department of Biology, The College of Wooster, Wooster, OH 44691
| | - Philipp Kümpers
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, University Hospital Muenster, 48149 Muenster, Germany; and
| | - William C Aird
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Jan G Zijlstra
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands;
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Pathology and Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
40
|
Ding Y, Qiu Y, Zou L, Tan Z, Dai J, Xu W. Three conserved MyD88-recruiting TLR residues exert different effects on the human TLR4 signaling pathway. Immunol Res 2016; 62:213-21. [PMID: 25948473 DOI: 10.1007/s12026-015-8652-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stimulation of Toll-like receptor (TLR) 4 leads to the activation of both MyD88-dependent and MyD88-independent pathways through the recruitment of adaptors TIRAP/MyD88 and TRIF/TRAM, respectively. However, the molecular basis of the TLR4 Toll/interleukin-1 receptor (TIR) domain in recruiting these downstream adaptors is still not entirely clear. Here, we identify three amino acid residues (714P in the BB loop, 696L in the αA helix and 721N in the αB sheet) conserved in all MyD88-recruited TLRs, but not the TLR3 TIR domain, as being critical for TLR4 responsiveness to LPS. These results were based on the substitution of each residue with a residue of the opposite type (hydrophilic/hydrophobic). However, the responsiveness of the TLR4 mutants to LPS was only partially decreased when each residue was replaced with a residue having the same hydrophilicity/hydrophobicity. This result is likely associated with an alteration in the BB-loop conformation of each TLR4 mutant and its ability to recruit the downstream adaptor TRAM. Thus, we identified three amino acids essential for TLR4 signaling, and their replacement with a residue of the same or opposite hydrophilicity/hydrophobicity greatly affected TLR4 signaling. This study furthers our understanding of the molecular mechanism by which the TLR4 TIR domain modulates TLR4 signaling and also provides new insight for the design of antisepsis therapy.
Collapse
Affiliation(s)
- Yan Ding
- Department of Pathogenic Biology, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Suzuki K, Murakami T, Hu Z, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Human Host Defense Cathelicidin Peptide LL-37 Enhances the Lipopolysaccharide Uptake by Liver Sinusoidal Endothelial Cells without Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:1338-1347. [DOI: 10.4049/jimmunol.1403203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The liver is a major organ that removes waste substances from the blood, and liver sinusoidal endothelial cells (LSECs) are professional scavenger cells, which incorporate and degrade various endogenous and exogenous molecules including pathogenic factor LPS. Mammalian cells express a number of peptide antibiotics that function as effectors in the innate host defense systems. LL-37, a human cathelicidin antimicrobial peptide, has a potent LPS-neutralizing activity and exhibits protective actions on various infection models. However, the effect of LL-37 on the LPS clearance has not been clarified. In this study, to further understand the host-protective mechanism of LL-37, we evaluated the effect of LL-37 on the LPS clearance in vitro. LL-37 enhanced the LPS uptake by human LSECs. Of interest, LL-37 was similarly incorporated into LSECs both in the presence and the absence of LPS, and the incorporated LPS and LL-37 were colocalized in LSECs. Importantly, the uptake of LPS and LL-37 was inhibited by endocytosis inhibitors, heparan sulfate proteoglycan analogs, and glycosaminoglycan lyase treatment of the cells. Moreover, the uptake of LL-37-LPS did not activate TLR4 signaling in both MyD88-dependent and -independent pathways. In addition, the incorporated LL-37-LPS was likely transported to the lysosomes in LSECs. Together these observations suggest that LL-37 enhances the LPS uptake by LSECs via endocytosis through the complex formation with LPS and the interaction with cell-surface heparan sulfate proteoglycans, thereby facilitating the intracellular incorporation and degradation of LPS without cell activation. In this article, we propose a novel function of LL-37 in enhancing LPS clearance.
Collapse
Affiliation(s)
- Kaori Suzuki
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taisuke Murakami
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Zhongshuang Hu
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroshi Tamura
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
- †Laboratory Program Support Consulting Office, Tokyo 160-0023, Japan
| | - Kyoko Kuwahara-Arai
- ‡Department of Bacteriology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; and
| | - Toshiaki Iba
- §Department of Emergency and Disaster Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
42
|
LPS-Stimulated Human Skin-Derived Stem Cells Enhance Neo-Vascularization during Dermal Regeneration. PLoS One 2015; 10:e0142907. [PMID: 26565617 PMCID: PMC4643997 DOI: 10.1371/journal.pone.0142907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/28/2015] [Indexed: 11/26/2022] Open
Abstract
High numbers of adult stem cells are still required to improve the formation of new vessels in scaffolds to accelerate dermal regeneration. Recent data indicate a benefit for vascularization capacity by stimulating stem cells with lipopolysaccharide (LPS). In this study, stem cells derived from human skin (SDSC) were activated with LPS and seeded in a commercially available dermal substitute to examine vascularization in vivo. Besides, in vitro assays were performed to evaluate angiogenic factor release and tube formation ability. Results showed that LPS-activated SDSC significantly enhanced vascularization of the scaffolds, compared to unstimulated stem cells in vivo. Further, in vitro assays confirmed higher secretion rates of proangiogenic as well as proinflammatoric factors in the presence of LPS-activated SDSC. Our results suggest that combining activated stem cells and a dermal substitute is a promising option to enhance vascularization in scaffold-mediated dermal regeneration.
Collapse
|
43
|
Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015; 6:8761. [PMID: 26508369 PMCID: PMC4640152 DOI: 10.1038/ncomms9761] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/28/2015] [Indexed: 02/08/2023] Open
Abstract
Monocytes promote the early host response to infection releasing key pro-inflammatory cytokines, such as IL-1β. The biologically inactive IL-1β precursor is processed to active form by inflammasomes, multi-protein complexes activating caspase-1. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation in response to lipopolysaccharide (LPS) alone. Although this lineage-restricted mechanism is likely to contribute to the pathology of endotoxin shock, signalling pathways regulating this mechanism are currently unknown. Here we report that caspase-4 and caspase-5 mediate IL-1α and IL-1β release from human monocytes after LPS stimulation. Although caspase-4 remains uncleaved, caspase-5 undergoes rapid processing upon LPS treatment. We also identify an additional caspase-5 cleavage product in LPS-stimulated monocytes, which correlates with IL-1 secretion. This one-step pathway requires Syk activity and Ca2+ flux instigated by CD14/TLR4-mediated LPS internalization. Identification of caspase-4/5 as the key determinants of one-step inflammasome activation in human monocytes provides potential targets for therapeutic intervention in endotoxin shock. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation and IL-1 release in response to LPS. Here the authors show that it is mediated by caspases 4 and 5, and characterize caspase 5 cleavage, Syk and calcium signalling as key mediators of this pathway.
Collapse
Affiliation(s)
- Elena Viganò
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore.,University of Milano-Bicocca, PhD program in Translational and Molecular Medicine (DIMET), Ospedale San Gerardo, Via Pergolesi 33, Monza (MB) 20900, Italy
| | - Catherine Emma Diamond
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore.,Faculty of Life Sciences, The University of Manchester, Carys Bannister Building, Dover Street, Manchester M13 9PT, UK
| | - Roberto Spreafico
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Radoslaw M Sobota
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| |
Collapse
|
44
|
Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms 2015; 3:759-91. [PMID: 27682116 PMCID: PMC5023261 DOI: 10.3390/microorganisms3040759] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Although alcohol feeding produces evident intestinal microbial changes in animals, only some alcoholics show evident intestinal dysbiosis, a decrease in Bacteroidetes and an increase in Proteobacteria. Gut dysbiosis is related to intestinal hyperpermeability and endotoxemia in alcoholic patients. Alcoholics further exhibit reduced numbers of the beneficial Lactobacillus and Bifidobacterium. Large amounts of endotoxins translocated from the gut strongly activate Toll-like receptor 4 in the liver and play an important role in the progression of alcoholic liver disease (ALD), especially in severe alcoholic liver injury. Gut microbiota and bacterial endotoxins are further involved in some of the mechanisms of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). There is experimental evidence that a high-fat diet causes characteristic dysbiosis of NAFLD, with a decrease in Bacteroidetes and increases in Firmicutes and Proteobacteria, and gut dysbiosis itself can induce hepatic steatosis and metabolic syndrome. Clinical data support the above dysbiosis, but the details are variable. Intestinal dysbiosis and endotoxemia greatly affect the cirrhotics in relation to major complications and prognosis. Metagenomic approaches to dysbiosis may be promising for the analysis of deranged host metabolism in NASH and cirrhosis. Management of dysbiosis may become a cornerstone for the future treatment of liver diseases.
Collapse
|
45
|
Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. mBio 2015; 6:e01193-15. [PMID: 26463160 PMCID: PMC4620459 DOI: 10.1128/mbio.01193-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host’s epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont.
Collapse
|
46
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
47
|
Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 cells upon LPS activation. PLoS One 2015; 10:e0122529. [PMID: 25836976 PMCID: PMC4383338 DOI: 10.1371/journal.pone.0122529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/20/2015] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor associated with endothelial cells I (SREC-I) was shown to be expressed in immune cells and to play a role in the endocytosis of peptides and antigen presentation. As our previous studies indicated that SREC-I required intact Toll-like receptor 4 (TLR4) expression for its functions in tumor immunity, we examined potential interactions between these two receptors. We have shown here that SREC-I became associated with TLR4 on binding bacterial lipopolysaccharides (LPS) in RAW 264.7 and HEK 293 cells overexpressing these two receptors. The receptors then became internalized together in intracellular endosomes. SREC-I promoted TLR4-induced signal transduction through the NF-kB and MAP kinase pathways, leading to enhanced inflammatory cytokine release. Activation of inflammatory signaling through SREC-I/TLR4 complexes appeared to involve recruitment of the receptors into detergent-insoluble, cholesterol-rich lipid microdomains that contained the small GTPase Cdc42 and the non-receptor tyrosine kinase c-src. Under conditions of SREC-I activation by LPS, TLR4 activity required Cdc42 as well as cholesterol and actin polymerization for signaling through NF-kB and MAP kinase pathways in RAW 264.7 cells. SREC-I appeared to respond differently to another ligand, the molecular chaperone Hsp90 that, while triggering SREC-I-TLR4 binding caused only faint activation of the NF-kB pathway. Our experiments therefore indicated that SREC-I could bind LPS and might be involved in innate inflammatory immune responses to extracellular danger signals in RAW 264.7 cells or bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Jianlin Gong
- Stress Response Center, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Thomas Prince
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
| | - Thiago J. Borges
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- School of Biosciences and Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stuart K. Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kuo WT, Lee TC, Yang HY, Chen CY, Au YC, Lu YZ, Wu LL, Wei SC, Ni YH, Lin BR, Chen Y, Tsai YH, Kung JT, Sheu F, Lin LW, Yu LCH. LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis. Cell Death Differ 2015; 22:1590-604. [PMID: 25633197 DOI: 10.1038/cdd.2014.240] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Colorectal carcinoma (CRC) is characterized by unlimited proliferation and suppression of apoptosis, selective advantages for tumor survival, and chemoresistance. Lipopolysaccharide (LPS) signaling is involved in both epithelial homeostasis and tumorigenesis, but the relative roles had by LPS receptor subunits CD14 and Toll-like receptor 4 (TLR4) are poorly understood. Our study showed that normal human colonocytes were CD14(+)TLR4(-), whereas cancerous tissues were CD14(+)TLR4(+), by immunofluorescent staining. Using a chemical-induced CRC model, increased epithelial apoptosis and decreased tumor multiplicity and sizes were observed in TLR4-mutant mice compared with wild-type (WT) mice with CD14(+)TLR4(+) colonocytes. WT mice intracolonically administered a TLR4 antagonist displayed tumor reduction associated with enhanced apoptosis in cancerous tissues. Mucosa-associated LPS content was elevated in response to CRC induction. Epithelial apoptosis induced by LPS hypersensitivity in TLR4-mutant mice was prevented by intracolonic administration of neutralizing anti-CD14. Moreover, LPS-induced apoptosis was observed in primary colonic organoid cultures derived from TLR4 mutant but not WT murine crypts. Gene silencing of TLR4 increased cell apoptosis in WT organoids, whereas knockdown of CD14 ablated cell death in TLR4-mutant organoids. In vitro studies showed that LPS challenge caused apoptosis in Caco-2 cells (CD14(+)TLR4(-)) in a CD14-, phosphatidylcholine-specific phospholipase C-, sphingomyelinase-, and protein kinase C-ζ-dependent manner. Conversely, expression of functional but not mutant TLR4 (Asp299Gly, Thr399Ile, and Pro714His) rescued cells from LPS/CD14-induced apoptosis. In summary, CD14-mediated lipid signaling induced epithelial apoptosis, whereas TLR4 antagonistically promoted cell survival and cancer development. Our findings indicate that dysfunction in the CD14/TLR4 antagonism may contribute to normal epithelial transition to carcinogenesis, and provide novel strategies for intervention against colorectal cancer.
Collapse
Affiliation(s)
- W-T Kuo
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - T-C Lee
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - H-Y Yang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - C-Y Chen
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y-C Au
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y-Z Lu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - L-L Wu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - S-C Wei
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y-H Ni
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - B-R Lin
- Department of Surgery, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Y Chen
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei, Taiwan.,Department of Chemical Engineering and Material Science, Yuan-Ze University, Tao-Yuan, Taiwan
| | - Y-H Tsai
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei, Taiwan.,Department of Chemical Engineering and Material Science, Yuan-Ze University, Tao-Yuan, Taiwan
| | - J T Kung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - F Sheu
- Department of Horticulture, National Taiwan University, Taipei, Taiwan
| | - L-W Lin
- Department of Pathology, National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
| | - L C-H Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
49
|
Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS One 2014; 9:e113840. [PMID: 25478795 PMCID: PMC4257590 DOI: 10.1371/journal.pone.0113840] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/31/2014] [Indexed: 12/03/2022] Open
Abstract
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.
Collapse
|
50
|
Kwong C, Gilman-Sachs A, Beaman K. An independent endocytic pathway stimulates different monocyte subsets by the a2 N-terminus domain of vacuolar-ATPase. Oncoimmunology 2014; 2:e22978. [PMID: 23483532 PMCID: PMC3583941 DOI: 10.4161/onci.22978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) plays an important role in tumor progression and metastases. A novel peptide from the a2 isoform of V-ATPase called a2NTD has been shown to exert an immunoregulatory role in the tumor microenvironment by controlling the maturation of monocytes toward a tumor-associated macrophage phenotype. Our data indicate that a2NTD binds to the surface of monocytes. a2NTD was preferentially endocytosed by pro-inflammatory monocytes bearing a CD14++CD16+ phenotype, which is associated with the monocyte-to-macrophage maturation process. Both a2NTD binding and internalization led to production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β by CD14++CD16- (classical) and CD14++CD16+ (intermediate) monocytes. a2NTD was internalized via a macropinocytosis mechanism utilizing scavenger receptors. However, the inhibition of a2NTD endocytosis did not reduce cytokine production by monocytes. This points to the existence of two receptors that respond to a2NTD: scavengers receptors that mediate cellular uptake and an hitherto unidentified receptor stimulating the production of inflammatory cytokines. Both of these monocyte receptors may be important in generating the localized inflammation that is often required to promote tumor growth and hence may constitute novel targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Christina Kwong
- Department of Microbiology and Immunology; Chicago Medical School; Rosalind Franklin University of Medicine and Science; Chicago, IL USA
| | | | | |
Collapse
|