1
|
Stratton MS, López-Domínguez JA, Canella A, Ramsey JJ, Cortopassi GA. Differential effects of short-term and long-term ketogenic diet on gene expression in the aging mouse brain. J Nutr Health Aging 2025; 29:100427. [PMID: 39662156 DOI: 10.1016/j.jnha.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Aging is associated with multiple neurodegenerative conditions that severely limit quality of life and can shorten lifespan. Studies in rodents indicate that in addition to extending lifespan, the ketogenic diet (KD) improves cognitive function in aged animals, yet long term adherence to KD in Humans is poor. OBJECTIVES To broadly investigate what mechanisms might be activated in the brain in response to ketogenic diet. METHODS We conducted transcriptome wide analysis on whole brain samples from 13-month-old mice, 13-month-old mice fed a ketogenic diet for 1 month, 26-month-old mice, and 26-month-old mice fed a ketogenic diet for 14 months. RESULTS As expected, analysis of differently expressed genes between the old (26 month) vs younger mice (13 month) showed clear activation of inflammation and complement system pathways with aging. Analysis between the 26-month-old animals fed ketogenic diet for 14 months with 26-month-old animals fed control diet indicate that long-term KD resulted in activation of LRP, TCF7L2 (WNT pathway), and IGF1 signaling. There was also a significant increase in the expression of SOX2-dependent oligodendrocyte/myelination markers, though TCF7L2 and SOX2 dependent gene sets were largely overlapping. Remarkably, the effect of 1 month of ketogenic diet was minimal and there was no congruence between gene expression effects of short-term KD vs long-term KD. CONCLUSIONS This work informs target identification efforts for aging and neurodegenerative disorder therapeutics discovery while also establishing differential effects of short-term vs long-term KD on gene expression in the brain.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| | - José Alberto López-Domínguez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Alessandro Canella
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Gino A Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| |
Collapse
|
2
|
Zhang H, Wang N, Xu Y, Pei M, Zheng Y. Comparative analysis of peripheral blood immunoinflammatory landscapes in patients with acute cholangitis and its secondary septic shock using single-cell RNA sequencing. Biochem Biophys Res Commun 2023; 683:149121. [PMID: 37864923 DOI: 10.1016/j.bbrc.2023.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Acute cholangitis (AC) is a key pathogeny of septic shock, which has a high mortality rate. AC has significant clinical heterogeneity, but no study has analyzed the discrepancies in immunoresponsiveness between AC and its secondary septic shock. The immune inflammatory responses play a critical role in the development of septic shock. METHODS We performed single-cell RNA sequencing (scRNA-seq) to analyze the differences of immunocytes in immunoresponse and inflammation between the early stages of AC (A1, A2, and A3) and its secondary septic shock (B1, B2, and B3). RESULTS This study has identified seven cell types, including T cells, B cells, plasma cells, neutrophils, monocytes, platelets and erythrocytes. We mainly focused on neutrophils, monocytes, and T cells. Neutrophil subpopulation analysis indicated that neutrophil progenitors (proNeus) were identified in neutrophil subsets. Compared with patients suffering from AC, the gene phenotypes of proNeus (ELANE, AZU1, MPO, and PRTN3) were significantly upregulated in septic shock. The differentiation direction of neutrophil subsets in peripheral blood mononuclear cells (PBMCs) was determined; Moreover, the proNeus in septic shock presented a state of "expansion", with upregulation of neutrophil degranulation and downregulation of monocyte and T cell proliferation. Neutrophils-7 (CCL5, RPL23A, RPL13, RPS19 and RPS18) were mainly involved in the regulation of cellular functions. The neutrophils-7 subpopulation in septic shock were in a state of "exhaustion", and its biological functions showed the characteristics of weakening neutrophil migration and phagocytosis, etc., which maked infection difficult to control and aggravated the development of septic shock. Analysis of monocyte and T cell subpopulations showed that the expression genes and biological functions of subpopulations were closely related to immunoinflammatory regulation. In addition, CCL3 - CCR1, CXCL1 - CXCR2 and other ligand-receptors were highly expressed in neutrophils and monocytes, enhancing interactions between immune cells. CONCLUSION ScRNA-seq revealed significant differences in immune cells between AC and its secondary septic shock, which were primarily manifested in the cellular numbers, differentially expressed genes, functions of cellular subsets, differentiation trajectories, cell-cell interactions and so on. We identified many subsets of neutrophil, T cell and monocyte were associated with inflammation and immunosuppression induced by septic shock. These provided a reference for accurately evaluating the pathological severity of patients with AC and discovering the targets for therapy.
Collapse
Affiliation(s)
- He Zhang
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Yuntian Xu
- Department of Emergency, The Third Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mingchao Pei
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yun Zheng
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Abolghasemi S, Bikhof Torbati M, Pakzad P, Ghafouri-Fard S. Gene expression analysis of SOCS, STAT and PIAS genes in lung cancer patients. Pathol Res Pract 2023; 249:154760. [PMID: 37586215 DOI: 10.1016/j.prp.2023.154760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
One of the most devastating diseases with the highest prevalence and mortality rate worldwide is lung cancer. Non-small cell lung cancer (NSCLC) is the subtype of lung cancer in 85% of cases. In this work, the expression levels of the STAT, SOCS and PIAS family genes involved in angiogenesis, proliferation and differentiation were examined. Using QRT-PCR technique, the expression level of STAT3 gene was assessed and tumor tissue samples had higher expression than normal tissue. In addition, the histological grade of adenocarcinoma was associated with the increase in STAT3 gene expression. The expression of the SOCS1 and SOCS2 genes in tumors was measured to be 0.58-fold and 0.36-fold lower than in healthy samples adjacent to the tumor, but this reduction in expression was not significant. In addition, when examining the relationship between the expression of SOCS1 and 2 and the clinical features of tumor samples, there was a significant decrease in the expression of the SOCS1 and 2 genes in the adenocarcinoma subtype. Compared to neighboring tumor samples, the expression of PIAS1 in the tumors was not different with controls. Our research revealed that tissue samples from adenocarcinoma had higher levels of STAT3 expression. Taken together, the mentioned genes can be suggested as possible targets for further studies in NSCLC.
Collapse
Affiliation(s)
- Solmaz Abolghasemi
- College of Biology Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini(RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, School of Biology Sciences, North Branch, Islamic Azad University, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
5
|
Chatterjee S, Yabaji SM, Rukhlenko OS, Bhattacharya B, Waligurski E, Vallavoju N, Ray S, Kholodenko BN, Brown LE, Beeler AB, Ivanov AR, Kobzik L, Porco JA, Kramnik I. Channeling macrophage polarization by rocaglates increases macrophage resistance to Mycobacterium tuberculosis. iScience 2021; 24:102845. [PMID: 34381970 PMCID: PMC8333345 DOI: 10.1016/j.isci.2021.102845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/22/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.
Collapse
Affiliation(s)
- Sujoy Chatterjee
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Shivraj M. Yabaji
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Bidisha Bhattacharya
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Emily Waligurski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nandini Vallavoju
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, USA
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Aaron B. Beeler
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| |
Collapse
|
6
|
Shifts of Immune Cell Populations Differ in Response to Different Effectors of Beige Remodeling of Adipose Tissue. iScience 2020; 23:101765. [PMID: 33294778 PMCID: PMC7683338 DOI: 10.1016/j.isci.2020.101765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
White adipose tissue (WAT) is a dynamic tissue, which responds to environmental stimuli and dietary cues by changing its morphology and metabolic capacity. The ability of WAT to undergo a beige remodeling has become an appealing strategy to combat obesity and its comorbidities. Here, by using single-cell RNA sequencing, we provide a comprehensive atlas of the cellular dynamics during beige remodeling. We reveal drastic changes both in the overall cellular composition and transcriptional states of individual cell subtypes between Adrb3- and cold-induced beiging. Moreover, we demonstrate that cold induces a myeloid to lymphoid shift of the immune compartment compared to Adrb3 activation. Further analysis showed that, Adrb3 stimulation leads to activation of the interferon/Stat1 pathways favoring infiltration of myeloid immune cells, while repression of this pathway by cold promotes lymphoid immune cell recruitment. These findings highlight that pharmacological mimetics may not provide the same beneficial effects as physiological stimuli.
Collapse
|
7
|
Feng Y, Zhang J, Wen C, Sedem Dzah C, Chidimma Juliet I, Duan Y, Zhang H. Recent advances in Agaricus bisporus polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Bednarz-Misa I, Diakowska D, Szczuka I, Fortuna P, Kubiak A, Rosińczuk J, Krzystek-Korpacka M. Interleukins 4 and 13 and Their Receptors Are Differently Expressed in Gastrointestinal Tract Cancers, Depending on the Anatomical Site and Disease Advancement, and Improve Colon Cancer Cell Viability and Motility. Cancers (Basel) 2020; 12:E1463. [PMID: 32512917 PMCID: PMC7352212 DOI: 10.3390/cancers12061463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Immunosuppressive interleukins (IL)-4 and 13 may directly promote cancer but neither their status nor role in gastrointestinal tract is clarified. We aim at quantifying ILs and their receptors in paired normal-tumor samples (n = 49/51) and sera (n = 263), using immunoassays and RTqPCR, and screening for their effect on colonic cancer cells. Both ILs were elevated locally at protein level in all cancers but only IL13 transcripts in colon were upregulated. Interleukin and their receptor expression reflected cancer pathology to varying degrees, with the association frequently inverse and manifested in non-cancerous tissue. Positive correlation with cancer-promoting genes BCL2, BCLxL, HIF1A, VEGFA, ACTA2, CCL2, PTGS2, and CDKN1A, but not Ki67, was demonstrated, particularly for ILs' receptors. Circulating IL-4 was elevated in all, while IL-13 only in colorectal or esophageal cancers, reflecting their advancement. IL4Ra and IL13Ra1 transcripts were downregulated by hypoxia and, in Caco-2, also by IL-4. Interleukin stimulation slightly improved colonic cancer cell viability, weakly upregulating BCL2 and Ki67 in HCT116 and HT-29. It affected cell motility more markedly and was consistently accompanied by upregulation of claudin-2. Gastrointestinal tract cancers are associated with IL-4 and IL-13 upregulation, which may facilitate cancer growth. Targeting both interleukins as an antineoplastic strategy warrants further investigation.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (I.S.); (P.F.); (A.K.)
| | - Dorota Diakowska
- Department of Gastrointestinal and General Surgery, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Izabela Szczuka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (I.S.); (P.F.); (A.K.)
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (I.S.); (P.F.); (A.K.)
| | - Agnieszka Kubiak
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (I.S.); (P.F.); (A.K.)
| | - Joanna Rosińczuk
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (I.S.); (P.F.); (A.K.)
| |
Collapse
|
9
|
Zhou J, Li Z, Wu T, Zhao Q, Zhao Q, Cao Y. LncGBP9/miR-34a axis drives macrophages toward a phenotype conducive for spinal cord injury repair via STAT1/STAT6 and SOCS3. J Neuroinflammation 2020; 17:134. [PMID: 32345320 PMCID: PMC7187522 DOI: 10.1186/s12974-020-01805-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The macrophage in SCI are skewed toward the M1 phenotype that might cause the failure to post-SCI repair. Methods SCI model was established in Balb/c mice, and the changes in macrophage phenotypes after SCI were monitored. Bioinformatic analyses were performed to select factors that might regulate macrophage polarization after SCI. Mouse bone marrow-derived macrophages (BMDMs) were isolated, identified, and induced for M1 or M2 polarization; the effects of lncRNA guanylate binding protein-9 (lncGBP9) and suppressor of cytokine signaling 3 (SOCS3) on macrophages polarization were examined in vitro and in vivo. The predicted miR-34a binding to lncGBP9 and SOCS3 was validated; the dynamic effects of lncGBP9 and miR-34a on SOCS3, signal transducer and activator of transcription 1 (STAT1)/STAT6 signaling, and macrophage polarization were examined. Finally, we investigated whether STAT6 could bind the miR-34a promoter to activate its transcription. Results In SCI Balb/c mice, macrophage skewing toward M1 phenotypes was observed after SCI. In M1 macrophages, lncGBP9 silencing significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of Interleukin (IL)-6 and IL-12; in M2 macrophages, lncGBP9 overexpression increased SOCS3 mRNA expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 and transforming growth factor-beta 1 (TGF-β1), indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after the operation, further indicating that lncGBP9 silencing revised the predominance of M1 phenotype at the late stage of secondary injury after SCI, therefore improving the repair after SCI. IncGBP9 competed with SOCS3 for miR-34a binding to counteract miR-34a-mediated suppression on SOCS3 and then modulated STAT1/STAT6 signaling and the polarization of macrophages. STAT6 bound the promoter of miR-34a to activate its transcription. Conclusions In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization through STAT1/STAT6 signaling. STAT6 bound the promoter of miR-34a to activate its transcription, thus forming two different regulatory loops to modulate the phenotype of macrophages after SCI.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyue Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, 410008, PR of China
| | - Qun Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qiancheng Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, 410008, PR of China.
| |
Collapse
|
10
|
The Expression Levels of IL-4/IL-13/STAT6 Signaling Pathway Genes and SOCS3 Could Help to Differentiate the Histopathological Subtypes of Non-Small Cell Lung Carcinoma. Mol Diagn Ther 2019; 22:621-629. [PMID: 30105735 PMCID: PMC6132440 DOI: 10.1007/s40291-018-0355-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background The interleukin (IL)-4/IL-13/signal transducer and activator of transcription (STAT) 6 signaling pathway and the SOCS3 gene, one of its main regulators, constitute an important link between the inflammation process in the epithelial cells and inflammatory-related tumorigenesis. The present study is the first to evaluate IL-4, IL-13, STAT6, and SOCS3 mRNA expression in non-small cell lung carcinoma (NSCLC) histopathological subtypes. Methods Gene expression levels were assessed using TaqMan® probes by quantitative reverse transcription PCR (qRT-PCR) in lung tumor samples and unchanged lung tissue samples. Results Increased expression of IL-4, IL-13, and STAT6 was observed in all histopathological NSCLC subtypes (squamous cell carcinoma [SCC], adenocarcinoma [AC], and large cell carcinoma [LCC]). Significantly higher expression of IL-13 and STAT6 (p = 0.019 and p = 0.008, respectively) was found in SCC than in LCC. No statistically significant differences were found for IL-4. Significantly higher SOCS3 expression was found in LCC than in AC (p = 0.027). A negative correlation (rho = –0.519) was observed for the STAT6 and SOCS3 genes in SCC (p = 0.005). No associations were found between gene expression and tumor staging (post-operative Tumor Node Metastasis [pTNM], American Joint Committee on Cancer [AJCC]), patients’ age, sex, or history of smoking. Conclusions As the number of LCC cases in our study was quite low, the statistically significant results obtained should be confirmed in a larger group of patients, particularly as the relationships identified between increased IL-4, IL-13, and STAT6 mRNA expression and decreased SOCS3 expression suggest that these genes may serve as potential diagnostic markers for differentiating between NSCLC histopathological subtypes.
Collapse
|
11
|
Qin C, Liu Q, Hu ZW, Zhou LQ, Shang K, Bosco DB, Wu LJ, Tian DS, Wang W. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics 2018; 8:5434-5451. [PMID: 30555556 PMCID: PMC6276098 DOI: 10.7150/thno.27882] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022] Open
Abstract
Rationale: Ischemic white matter damage frequently results in myelin loss, accompanied with microglial activation. We previously found that directing microglia towards an anti-inflammatory phenotype provided a beneficial microenvironment and helped maintain white matter integrity during chronic cerebral hypoperfusion. However, the molecular mechanisms underlying microglial polarization remain elusive. Methods: Hypoperfusion induced white matter damage mice model and lipopolysaccharide (LPS) induced primary cultured microglia were established. Autophagy activation in microglia was detected both in vivo and in vitro by immunofluorescence, Western blot and electron microscopy. Autophagy inhibitors/agonist were administrated to investigate the role of autophagic process in modulating microglial phenotypes. Quantitative real time-polymerase chain reaction and Western blot were carried out to investigate the possible pathway. Results: We identified rapid accumulation of autophagosomes in primary cultured microglia exposed to LPS and within activated microglia during white matter ischemic damage. Autophagy inhibitors switched microglial function from pro-inflammatory to anti-inflammatory phenotype. Furthermore, we found TLR4, one of the major receptors binding LPS, was most highly expressed on microglia in corpus callosum during white matter ischemic damage, and TLR4 deficiency could mimic the phenomenon in microglial functional transformation, and exhibit a protective activity in chronic cerebral hypoperfusion. Whereas, the anti-inflammatory phenotype of microglia in TLR4 deficiency group was largely abolished by the activation of autophagic process. Finally, our transcriptional analysis confirmed that the up-regulation of STAT1 and down-regulation of STAT6 in microglia exposure to LPS could be reversed by autophagy inhibition. Conclusion: These results indicated that TLR4-dependent autophagy regulates microglial polarization and induces ischemic white matter damage via STAT1/6 pathway.
Collapse
|
12
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 848] [Impact Index Per Article: 121.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
High Triglycerides Are Associated with Low Thrombocyte Counts and High VEGF in Nephropathia Epidemica. J Immunol Res 2016; 2016:8528270. [PMID: 28053993 PMCID: PMC5178363 DOI: 10.1155/2016/8528270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023] Open
Abstract
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN-γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN-γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity.
Collapse
|
14
|
He C, Yu CR, Mattapallil MJ, Sun L, Larkin III J, Egwuagu CE. SOCS1 Mimetic Peptide Suppresses Chronic Intraocular Inflammatory Disease (Uveitis). Mediators Inflamm 2016; 2016:2939370. [PMID: 27703302 PMCID: PMC5040805 DOI: 10.1155/2016/2939370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
Uveitis is a potentially sight-threatening disease characterized by repeated cycles of remission and recurrent inflammation. The JAK/STAT pathway regulates the differentiation of pathogenic Th1 and Th17 cells that mediate uveitis. A SOCS1 mimetic peptide (SOCS1-KIR) that inhibits JAK2/STAT1 pathways has recently been shown to suppress experimental autoimmune uveitis (EAU). However, it is not clear whether SOCS1-KIR ameliorated uveitis by targeting JAK/STAT pathways of pathogenic lymphocytes or via inhibition of macrophages and antigen-presenting cells that also enter the retina during EAU. To further investigate mechanisms that mediate SOCS1-KIR effects and evaluate the efficacy of SOCS1-KIR as an investigational drug for chronic uveitis, we induced EAU in rats by adoptive transfer of uveitogenic T-cells and monitored disease progression and severity by slit-lamp microscopy, histology, and optical coherence tomography. Topical administration of SOCS1-KIR ameliorated acute and chronic posterior uveitis by inhibiting Th17 cells and the recruitment of inflammatory cells into retina while promoting expansion of IL-10-producing Tregs. We further show that SOCS1-KIR conferred protection of resident retinal cells that play critical role in vision from cytotoxic effects of inflammatory cytokines by downregulating proapoptotic genes. Thus, SOCS1-KIR suppresses uveitis and confers neuroprotective effects and might be exploited as a noninvasive treatment for chronic uveitis.
Collapse
Affiliation(s)
- Chang He
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Cheng-Rong Yu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary J. Mattapallil
- Immunoregulation Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lin Sun
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Larkin III
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Charles E. Egwuagu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Ihrie MD, Duke KS, Taylor AJ, Bonner JC. Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes. Am J Respir Cell Mol Biol 2016; 53:625-36. [PMID: 25807359 DOI: 10.1165/rcmb.2014-0221oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Asthma is characterized by a T helper type 2 phenotype and by chronic allergen-induced airway inflammation (AAI). Environmental exposure to air pollution ultrafine particles (i.e., nanoparticles) exacerbates AAI, and a concern is possible exacerbation posed by engineered nanoparticles generated by emerging nanotechnologies. Signal transducer and activator of transcription (STAT) 1 is a transcription factor that maintains T helper type 1 cell development. However, the role of STAT1 in regulating AAI or exacerbation by nanoparticles has not been explored. In this study, mice with whole-body knockout of the Stat1 gene (Stat1(-/-)) or wild-type (WT) mice were sensitized to ovalbumin (OVA) allergen and then exposed to multiwalled carbon nanotubes (MWCNTs) by oropharygneal aspiration. In Stat1(-/-) and WT mice, OVA increased eosinophils in bronchoalveolar lavage fluid, whereas MWCNTs increased neutrophils. Interestingly, OVA sensitization prevented MWCNT-induced neutrophilia and caused only eosinophilic inflammation. Stat1(-/-) mice displayed increased IL-13 in bronchoalveolar lavage fluid at 1 day compared with WT mice after treatment with OVA or OVA and MWCNTs. At 21 days, the lungs of OVA-sensitized Stat1(-/-) mice displayed increased eosinophilia, goblet cell hyperplasia, airway fibrosis, and subepithelial apoptosis. MWCNTs further increased OVA-induced goblet cell hyperplasia, airway fibrosis, and apoptosis in Stat1(-/-) mice at 21 days. These changes corresponded to increased levels of profibrogenic mediators (transforming growth factor-β1, TNF-α, osteopontin) but decreased IL-10 in Stat1(-/-) mice. Finally, fibroblasts isolated from the lungs of Stat1(-/-) mice produced significantly more collagen mRNA and protein in response to transforming growth factor-β1 compared with WT lung fibroblasts. Our results support a protective role for STAT1 in chronic AAI and exacerbation of remodeling caused by MWCNTs.
Collapse
Affiliation(s)
- Elizabeth A Thompson
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Brian C Sayers
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Ellen E Glista-Baker
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Kelly A Shipkowski
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Mark D Ihrie
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Katherine S Duke
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Alexia J Taylor
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - James C Bonner
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
16
|
Transcriptomics identified a critical role for Th2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity. Proc Natl Acad Sci U S A 2014; 111:E3081-90. [PMID: 25024218 DOI: 10.1073/pnas.1406322111] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Allergic diseases, orchestrated by hyperactive CD4(+) Th2 cells, are some of the most common global chronic diseases. Therapeutic intervention relies upon broad-scale corticosteroids with indiscriminate impact. To identify targets in pathogenic Th2 cells, we took a comprehensive approach to identify the microRNA (miRNA) and mRNA transcriptome of highly purified cytokine-expressing Th1, Th2, Th9, Th17, and Treg cells both generated in vitro and isolated ex vivo from allergy, infection, and autoimmune disease models. We report here that distinct regulatory miRNA networks operate to regulate Th2 cells in house dust mite-allergic or helminth-infected animals and in vitro Th2 cells, which are distinguishable from other T cells. We validated several miRNA (miR) candidates (miR-15a, miR-20b, miR-146a, miR-155, and miR-200c), which targeted a suite of dynamically regulated genes in Th2 cells. Through in-depth studies using miR-155(-/-) or miR-146a(-/-) T cells, we identified that T-cell-intrinsic miR-155 was required for type-2 immunity, in part through regulation of S1pr1, whereas T-cell-intrinsic miR-146a was required to prevent overt Th1/Th17 skewing. These data identify miR-155, but not miR-146a, as a potential therapeutic target to alleviate Th2-medited inflammation and allergy.
Collapse
|
17
|
Augmented miR-150 expression associated with depressed SOCS1 expression involved in dengue haemorrhagic fever. J Infect 2014; 69:366-74. [PMID: 24907421 DOI: 10.1016/j.jinf.2014.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Suppressors of cytokine signalling (SOCS) proteins regulate cytokine responses and control immune balance. The objective of our study was to determine whether the expression of SOCS1 and its potential regulatory microRNAs (miRNAs) in leukocytes is correlated to the development of dengue haemorrhagic fever (DHF). METHODS We performed a case-control study to investigate the SOCS1 and miRNA expression in leukocytes for patients with DF and DHF in a DENV-2 outbreak that occurred in Taiwan between 2002 and 2003. We performed reverse transcription polymerase chain reaction to evaluate the expression of SOCS1 and its regulatory miRNAs in mononuclear leukocytes obtained from patients with or without DHF. The reciprocal relationship between SOCS1 and miR-150 expression was validated in DENV-2-infected peripheral mononuclear cells (PBMCs). RESULTS SOCS1 expression and lower IFN-γ level were significantly reduced in DHF patients, but not in patients with DF. Elevated SOCS1 and reduced miR-150 levels were detected 24 h after DENV-2 infection in PBMCs. Transfection of a miR-150 mimic into CD14(+) cells infected with DENV-2 suppressed the induction of SOCS1 expression in a dose-dependent manner. CONCLUSION We demonstrate for the first time that augmented miR-150 expression with depressed SOCS1 expression in CD14(+) cells are associated with the pathogenesis of DHF.
Collapse
|
18
|
Diaferia GR, Cirulli V, Biunno I. SEL1L regulates adhesion, proliferation and secretion of insulin by affecting integrin signaling. PLoS One 2013; 8:e79458. [PMID: 24324549 PMCID: PMC3854660 DOI: 10.1371/journal.pone.0079458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/28/2013] [Indexed: 12/16/2022] Open
Abstract
SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function.
Collapse
Affiliation(s)
| | - Vincenzo Cirulli
- Department of Medicine, University of Washington, Institute for Stem Cells and Regenerative Medicine, Seattle, Washington, United States of America
- * E-mail: (VC); (IB)
| | - Ida Biunno
- Stem Cell Science Unit, IRCCS Multimedica, Milan, Italy
- Institute of Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
- * E-mail: (VC); (IB)
| |
Collapse
|
19
|
Glycyrrhizin represses total parenteral nutrition-associated acute liver injury in rats by suppressing endoplasmic reticulum stress. Int J Mol Sci 2013; 14:12563-80. [PMID: 23771023 PMCID: PMC3709800 DOI: 10.3390/ijms140612563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022] Open
Abstract
Total parenteral nutrition (TPN) is an artificial way to support daily nutritional requirements by bypassing the digestive system, but long-term TPN administration may cause severe liver dysfunction. Glycyrrhizin is an active component of licorice root that has been widely used to treat chronic hepatitis. The aim of this study is to investigate the hepatoprotective effect of glycyrrhizin on TPN-associated acute liver injury in vivo. Liver dysfunction was induced by intravenous infusion of TPN at a flow rate of 20 mL/kg/h for three h in Sprague Dawley rats. The rats were pretreated with Glycyrrhizin (1, 3 and 10 mg/kg intravenously). After receiving TPN or saline (control group) for three h, the rats were sacrificed, blood samples were collected for biochemical analyses and liver tissue was removed for histopathological and immunohistochemical examination. We found that aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TB) and triglyceride (TG) levels were significantly increased in the TPN group without glycyrrhizin pretreatment and decreased in the glycyrrhizin-pretreated TPN group in a dose-dependent manner. The stained liver sections showed that glycyrrhizin relieved acute liver injury. The upregulation of serum protein biomarkers of reactive nitrogen species, including nitrotyrosine and inducible NO synthase (iNOS), were attenuated by glycyrrhizin pretreatment. Levels of endoplasmic reticulum (ER) stress factors, such as phosphorylation of JNK1/2, p38 MAPK and CHOP, were decreased by glycyrrhizin pretreatment. In summary, our results suggest that glycyrrhizin decreases TPN-associated acute liver injury factors by suppressing endoplasmic reticulum stress and reactive nitrogen stress.
Collapse
|
20
|
Miyamoto T. STATs and macrophage fusion. JAKSTAT 2013; 2:e24777. [PMID: 24069561 PMCID: PMC3772113 DOI: 10.4161/jkst.24777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 01/17/2023] Open
Abstract
Macrophages play a pivotal role in host defense against multiple foreign materials such as bacteria, parasites and artificial devices. Some macrophage lineage cells, namely osteoclasts and foreign body giant cells (FBGCs), form multi-nuclear giant cells by the cell-cell fusion of mono-nuclear cells. Osteoclasts are bone-resorbing cells, and are formed in the presence of RANKL on the surface of bones, while FBGCs are formed in the presence of IL-4 or IL-13 on foreign materials such as artificial joints, catheters and parasites. Recently, fusiogenic mechanisms and the molecules required for the cell-cell fusion of these macrophage lineage cells were, at least in part, clarified. Dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP), both of which comprise seven transmembrane domains, are required for both osteoclast and FBGC cell-cell fusion. STAT6 was demonstrated to be required for the cell-cell fusion of FBGCs but not osteoclasts. In this review, advances in macrophage cell-cell fusion are discussed.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Department of Orthopedic Surgery; Department of Integrated Bone Metabolism and Immunology; Keio Kanrinmaru Project; Keio University School of Medicine; Tokyo, Japan
| |
Collapse
|
21
|
Hakim O, Sung MH, Nakayamada S, Voss TC, Baek S, Hager GL. Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation. Genome Res 2012; 23:462-72. [PMID: 23212947 PMCID: PMC3589535 DOI: 10.1101/gr.147652.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher-order genome organization shows tissue-specific patterns. However, functional relevance and the mechanisms shaping the genome architecture are poorly understood. Here we report a profound shift from promiscuous to highly selective genome organization that accompanies the effector lineage choice of differentiating T cells. As multipotent naive cells receive antigenic signals and commit to a T helper (Th) pathway, the genome-wide contacts of a lineage-specific cytokine locus are preferentially enriched for functionally relevant genes. Despite the establishment of divergent interactomes and global reprogramming of transcription in Th1 versus Th2, the overall expression status of the contact genes is surprisingly similar between the two lineages. Importantly, during differentiation, the genomic contacts are retained and strengthened precisely at DNA binding sites of the specific lineage-determining STAT transcription factor. In cells from the specific STAT knock-out mouse, the signature cytokine locus is unable to shed the promiscuous contacts established in the naive T cells, indicating the importance of genomic STAT binding. Altogether, the global aggregation of STAT binding loci from genic and nongenic regions highlights a new role for differentiation-promoting transcription factors in direct specification of higher-order nuclear architecture through interacting with regulatory regions. Such subnuclear environments have significant implications for efficient functioning of the mature effector lymphocytes.
Collapse
Affiliation(s)
- Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Wei M, Liu B, Gu Q, Su L, Yu Y, Zhu Z. Stat6 cooperates with Sp1 in controlling breast cancer cell proliferation by modulating the expression of p21(Cip1/WAF1) and p27 (Kip1). Cell Oncol (Dordr) 2012. [PMID: 23184467 DOI: 10.1007/s13402-012-0115-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The signal transducer and activator of transcription 6 (Stat6), a member of the family of DNA-binding proteins, has been identified as a critical cell differentiation modulator in breast cancer cells. As of yet, the mechanisms underlying this function have remained largely unknown. To further elucidate the role of Stat6 in breast cancer development, we investigated the consequences of exogenous Stat6 expression. METHODS Proliferation assays and flow cytometry assays were conducted to evaluate the putative role of Stat6 on cell proliferation. To this end, we produced synchronized cells after a double thymidine block, as confirmed by FACS analysis. mRNA levels of Stat6 were measured by RNase protection analysis. To confirm the interaction among proteins, we employed GST pull-down assays and immunoprecipitation assays. Luciferase assays and ChIP assays were used to assess the transcriptional activity. RESULTS Compared to control breast cancer cells, we found that exogenous Stat6 expression plays a critical role in controlling cell proliferation. Also in different breast tumor cell lines, endogenous Stat6 expression was found to be positively related to a lower proliferation rate. Interestingly, in human breast cancer cells Stat6 functions in G1/S cell cycle progression, and the growth-inhibitory effect of Stat6 was shown to be mediated by induction of the G1 cyclin-dependent kinase inhibitors p21(Cip1/WAF1) (p21) and p27(Kip1) (p27). Simultaneously, G1-related cyclin/cyclin-dependent kinase activities and pRB phosphorylation were markedly reduced, and cell cycle progression was blocked in the G1 phase. Stat6 knockdown resulted in enhanced cell proliferation and a decrease in p21 and p27 mRNA levels in the steroid-responsive and non-responsive T-47D and MDA-MB-231 cell lines, respectively. In addition, the stimulatory effect of Stat6 on p21 and p27 gene transcription was found to be associated with interaction of Stat6 with the transcription factor Sp1 at the proximal Sp1-binding sites in their respective promoters. CONCLUSIONS Together, these results identify Stat6 as an important cell differentiation regulatory protein functioning, at least in part, by interacting with Sp1 to activate the p21 and p27 gene promoters in breast cancer cells.
Collapse
Affiliation(s)
- Min Wei
- Breast Department, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
23
|
Miyamoto H, Katsuyama E, Miyauchi Y, Hoshi H, Miyamoto K, Sato Y, Kobayashi T, Iwasaki R, Yoshida S, Mori T, Kanagawa H, Fujie A, Hao W, Morioka H, Matsumoto M, Toyama Y, Miyamoto T. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. J Biol Chem 2012; 287:32479-84. [PMID: 22865856 DOI: 10.1074/jbc.m112.358226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrophage lineage cells such as osteoclasts and foreign body giant cells (FBGCs) form multinuclear cells by cell-cell fusion of mononuclear cells. Recently, we reported that two seven-transmembrane molecules, osteoclast stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP), were essential for osteoclast and FBGC cell-cell fusion in vivo and in vitro. However, signaling required to regulate FBGC fusion remained largely unknown. Here, we show that signal transducer and activator of transcription 1 (STAT1) deficiency in macrophages enhanced cell-cell fusion and elevated DC-STAMP expression in FBGCs. By contrast, lack of STAT6 increased STAT1 activation, significantly inhibiting cell-cell fusion and decreasing OC-STAMP and DC-STAMP expression in IL-4-induced FBGCs. Furthermore, either STAT1 loss or co-expression of OC-STAMP/DC-STAMP was sufficient to induce cell-cell fusion of FBGCs without IL-4. We conclude that the STAT6-STAT1 axis regulates OC-STAMP and DC-STAMP expression and governs fusogenic mechanisms in FBGCs.
Collapse
Affiliation(s)
- Hiroya Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosen MJ, Frey MR, Washington MK, Chaturvedi R, Kuhnhein LA, Matta P, Revetta FL, Wilson KT, Polk DB. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 2011; 17:2224-34. [PMID: 21308881 PMCID: PMC3120916 DOI: 10.1002/ibd.21628] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Interleukin 13 (IL-13) is upregulated in ulcerative colitis (UC) and increases colon epithelial permeability by inducing apoptosis and expression of the pore-forming tight junction protein claudin-2. IL-13 induces activation of signal transducer and activator of transcription 6 (STAT6). However, the STAT6 phosphorylation status in patients with UC is unknown, as is the effect of STAT6 inhibition on colonic epithelium exposed to IL-13. The study aims were to determine if mucosal STAT6 phosphorylation is increased in patients with UC, and if STAT6 inhibition attenuates IL-13-induced colon epithelial cell dysfunction. METHODS Immunohistochemical staining for phosphorylated (p) STAT6 was performed on colonic tissue from newly diagnosed pediatric subjects with UC (early UC) or Crohn's disease (CD), colectomy tissue from adults with UC (advanced UC), and controls. Colon HT-29 and T84 cells were transfected with STAT6 small interfering RNA (siRNA), or treated with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor that inhibits STAT6, prior to IL-13 treatment. RESULTS The median score for epithelial pSTAT6 was 0 in control subjects, 2 in early UC (versus control P = 0.019), 4 in advanced UC (P = 0.003), and 0 in CD (P = 0.4). Cell transfection with STAT6 siRNA prevented IL-13-induced apoptosis and claudin-2 expression. SAHA inhibited IL-13-induced STAT6 phosphorylation, apoptosis, and claudin-2 expression, and mitigated IL-13-induced reductions in transepithelial resistance. CONCLUSIONS UC is associated with increased colonic epithelial STAT6 phosphorylation, and STAT6 inhibition prevents IL-13-induced apoptosis and barrier disruption. These data identify STAT6 as a novel target for UC treatment and support further study of SAHA as a therapeutic agent.
Collapse
Affiliation(s)
- Michael J Rosen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Whyte CS, Bishop ET, Rückerl D, Gaspar-Pereira S, Barker RN, Allen JE, Rees AJ, Wilson HM. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol 2011; 90:845-54. [PMID: 21628332 DOI: 10.1189/jlb.1110644] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macrophages become activated by their environment and develop polarized functions: classically activated (M1) macrophages eliminate pathogens but can cause tissue injury, whereas alternatively activated (M2) macrophages promote healing and repair. Mechanisms directing polarized activation, especially in vivo, are not understood completely, and here, we examined the role of SOCS proteins. M2 macrophages activated in vitro or elicited by implanting mice i.p. with the parasitic nematode Brugia malayi display a selective and IL-4-dependent up-regulation of SOCS1 but not SOCS3. Using siRNA-targeted knockdown in BMDM, we reveal that the enhanced SOCS1 is crucial for IL-4-induced M2 characteristics, including a high arginase I:iNOS activity ratio, suppression of T cell proliferation, attenuated responses to IFN-γ/LPS, and curtailed SOCS3 expression. Importantly, SOCS1 was essential in sustaining the enhanced PI3K activity that drives M2 activation, defining a new regulatory mechanism by which SOCS1 controls M2 polarization. By contrast, for M1 macrophages, SOCS1 was not only an important regulator of proinflammatory mediators (IL-6, IL-12, MHC class II, NO), but critically, for M1, we show that SOCS1 also restricted IL-10 secretion and arginase I activity, which otherwise would limit the efficiency of M1 macrophage proinflammatory responses. Together, our results uncover SOCS1, not only as a feedback inhibitor of inflammation but also as a critical molecular switch that tunes key signaling pathways to effectively program different sides of the macrophage balance.
Collapse
Affiliation(s)
- Claire S Whyte
- Division of Applied Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cooney LA, Towery K, Endres J, Fox DA. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4440-50. [PMID: 21949021 DOI: 10.4049/jimmunol.1002860] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Th17 cells are highly pathogenic in a variety of immune-mediated diseases, and a thorough understanding of the mechanisms of cytokine-mediated suppression of Th17 cells has great therapeutic potential. In this article, we characterize the regulation of both in vitro- and in vivo-derived Th17 cells by IL-4. We demonstrate that IL-4 suppresses reactivation of committed Th17 cells, even in the presence of TGF-β, IL-6, and IL-23. Downregulation of IL-17 by IL-4 is dependent on STAT6 and mediated by inhibition of STAT3 binding at the Il17a promoter. Although Th1 cytokines were shown to induce IFN-γ expression by Th17 cells, IL-4 does not induce a Th2 phenotype in Th17 cells. Suppression by IL-4 is stable and long-lived when applied to immature Th17 cells, but cells that have undergone multiple rounds of stimulation, either in vivo during a Th17-mediated inflammatory disease, or in vitro, become resistant to suppression by IL-4 and lose the ability to signal through IL-4R. Thus, although IL-4 is a potent suppressor of the Th17 genetic program at early stages after differentiation, prolonged stimulation renders Th17 cells impervious to regulatory cytokines.
Collapse
Affiliation(s)
- Laura A Cooney
- Division of Rheumatology, Department of Internal Medicine and Rheumatic Disease Research Core Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
27
|
Fujimoto A, Akifusa S, Hirofuji T, Yamashita Y. Involvement of suppressor of cytokine signaling-1 in globular adiponectin-induced granulocyte colony-stimulating factor in RAW 264 cell. Mol Immunol 2011; 48:2052-8. [DOI: 10.1016/j.molimm.2011.06.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 01/03/2023]
|
28
|
Oh HM, Yu CR, Golestaneh N, Amadi-Obi A, Lee YS, Eseonu A, Mahdi RM, Egwuagu CE. STAT3 protein promotes T-cell survival and inhibits interleukin-2 production through up-regulation of Class O Forkhead transcription factors. J Biol Chem 2011; 286:30888-30897. [PMID: 21730069 DOI: 10.1074/jbc.m111.253500] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Much is known about the role of STAT3 in regulating differentiation of interleukin-17-producing Th17 cells, but its function in other lymphocyte subsets is not well understood. In this report, we reveal wide-ranging functions of STAT3 in T-cells and provide evidence that STAT3 is convergence point for mechanisms that regulate lymphocyte quiescence and those controlling T-cell activation and survival. We show here that STAT3 inhibits T-lymphocyte proliferation by up-regulating the expression of Class-O Forkhead transcription factors, which play essential roles in maintaining T-cells in quiescent state. We further show that STAT3 binds directly to FoxO1 or FoxO3a promoter and that STAT3-deficiency resulted in down-regulation of the expression of FoxO1, FoxO3a and FoxO-target genes (IκB and p27Kip1). Compared with wild-type T-cells, STAT3-deficient T-cells produced more IL-2, due in part, to marked decrease in IκB-mediated sequestration of NF-κB in the cytoplasm and resultant enhancement of NF-κB activation. However, the high level of IL-2 production by STAT3-deficient T-cells was partially restored to normal levels by overexpressing FoxO1. It is notable that their exaggerated increase in IL-2 production rendered STAT3-deficient lymphocytes more susceptible to activation-induced cell death, suggesting that STAT3 might protect T-cells from apoptosis by limiting their production of IL-2 through up-regulation of FoxO1/FoxO3a expression. Moreover, we found that STAT3 enhanced survival of activated T-cells by up-regulating OX-40 and Bcl-2 while down-regulating FasL and Bad expression, suggesting that similar to role of FoxOs in regulating the lifespan of worms, STAT3 and FoxO pathways converge to regulate lifespan of T-lymphocytes.
Collapse
Affiliation(s)
- Hyun-Mee Oh
- Molecular Immunology Section, Laboratory of Immunology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nady Golestaneh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, D.C. 20057
| | - Ahjoku Amadi-Obi
- Molecular Immunology Section, Laboratory of Immunology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun Sang Lee
- Molecular Immunology Section, Laboratory of Immunology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Amarachi Eseonu
- Department of Biomedical Engineering, Harvard College, Harvard University, Cambridge, Massachusetts 02138
| | - Rashid M Mahdi
- Molecular Immunology Section, Laboratory of Immunology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, NEI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
29
|
Wang X, Liu X, Fang J, Lu Y, He J, Yao X, Yao Z, Yang J. Coactivator P100 protein enhances STAT6-dependent transcriptional activation but has no effect on STAT1-mediated gene transcription. Anat Rec (Hoboken) 2010; 293:1010-6. [PMID: 20225206 DOI: 10.1002/ar.21143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of STAT proteins consists of seven members that mediate highly specific functions in cytokine signaling. STAT6 is a critical regulator of transcription for interleukin-4 (IL-4)-induced genes. Activation of gene expression involves recruitment of coactivator proteins that function as bridging factors connecting sequence-specific transcription factors to the basal transcription machinery, and as chromatin-modifying enzymes. In this report, we show that the coacitivator p100 protein can interact with STAT6 through its SN domain both in vivo and in vitro, resulting in enhancement of STAT6-mediated gene transcriptional acitivation. Consistent with our previous reports, we identified intracellular localization of p100 and STAT-6 by confocal microscopy examined in response to IL-4. Moreover, in consideration of STAT molecules sharing significant homology in structure and function, we detected whether p100 can associate with STAT-1. In conclusion, this study found no evidence that p100 functions as a transcriptional coactivator for STAT1-dependent gene regulation.
Collapse
Affiliation(s)
- Xinting Wang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mesenchymal cell survival in airway and interstitial pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2010; 3:15. [PMID: 20738867 PMCID: PMC2940818 DOI: 10.1186/1755-1536-3-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/25/2010] [Indexed: 02/06/2023]
Abstract
Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis.
Collapse
|
31
|
Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Nonaka K, Yamashita Y. Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 2010; 111:597-606. [DOI: 10.1002/jcb.22745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Woodward EA, Prêle CM, Nicholson SE, Kolesnik TB, Hart PH. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 2010; 131:118-27. [PMID: 20406299 DOI: 10.1111/j.1365-2567.2010.03281.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-alpha production by IL-4. IL-4 suppressed LPS-induced TNF-alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-alpha production by bone-marrow derived macrophages from wild-type mice, Ifngamma(-/-) mice and mice lacking SOCS1 (Socs1(-/-)Ifngamma(-/-)). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-alpha production by IL-4.
Collapse
Affiliation(s)
- Eleanor A Woodward
- Inflammation Laboratory, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
33
|
Hu X, Ivashkiv LB. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 2009; 31:539-50. [PMID: 19833085 PMCID: PMC2774226 DOI: 10.1016/j.immuni.2009.09.002] [Citation(s) in RCA: 693] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/17/2009] [Indexed: 02/08/2023]
Abstract
Interferon-gamma (IFN-gamma) is an important mediator of immunity and inflammation that utilizes the JAK-STAT signaling pathway to activate the STAT1 transcription factor. Many functions of IFN-gamma have been ascribed to direct STAT1-mediated induction of immune effector genes, but recently it has become clear that key IFN-gamma functions are mediated by cross-regulation of cellular responses to other cytokines and inflammatory factors. Here, we review mechanisms by which IFN-gamma and STAT1 regulate signaling by Toll-like receptors, inflammatory factors, tissue-destructive cytokines, anti-inflammatory cytokines, and cytokines that activate opposing STATs. These signaling mechanisms reveal insights about how IFN-gamma regulates macrophage activation, inflammation, tissue remodeling, and helper and regulatory T cell differentiation and how Th1 and Th17 cell responses are integrated in autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| |
Collapse
|
34
|
Hale MB, Krutzik PO, Samra SS, Crane JM, Nolan GP. Stage dependent aberrant regulation of cytokine-STAT signaling in murine systemic lupus erythematosus. PLoS One 2009; 4:e6756. [PMID: 19707593 PMCID: PMC2727051 DOI: 10.1371/journal.pone.0006756] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/21/2009] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease of unknown etiology that involves multiple interacting cell types driven by numerous cytokines and autoimmune epitopes. Although the initiating events leading to SLE pathology are not understood, there is a growing realization that dysregulated cytokine action on immune cells plays an important role in promoting the inflammatory autoimmune state. We applied phospho-specific flow cytometry to characterize the extent to which regulation of cytokine signal transduction through the STAT family of transcription factors is disturbed during the progression of SLE. Using a panel of 10 cytokines thought to have causal roles in the disease, we measured signaling responses at the single-cell level in five immune cell types from the MRLlpr murine model. This generated a highly multiplexed view of how cytokine stimuli are processed by intracellular signaling networks in adaptive and innate immune cells during different stages of SLE pathogenesis. We report that robust changes in cytokine signal transduction occur during the progression of SLE in multiple immune cell subtypes including increased T cell responsiveness to IL-10 and ablation of Stat1 responses to IFNalpha, IFNgamma, IL-6, and IL-21, Stat3 responses to IL-6, Stat5 responses to IL-15, and Stat6 responses to IL-4. We found increased intracellular expression of Suppressor of Cytokine Signaling 1 protein correlated with negative regulation of Stat1 responses to inflammatory cytokines. The results provide evidence of negative feedback regulation opposing inflammatory cytokines that have self-sustaining activities and suggest a cytokine-driven oscillator circuit may drive the periodic disease activity observed in many SLE patients.
Collapse
Affiliation(s)
- Matthew B. Hale
- The Baxter Laboratory of Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter O. Krutzik
- The Baxter Laboratory of Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shamsher S. Samra
- The Baxter Laboratory of Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janelle M. Crane
- The Baxter Laboratory of Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Garry P. Nolan
- The Baxter Laboratory of Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Yu CR, Mahdi RM, Liu X, Zhang A, Naka T, Kishimoto T, Egwuagu CE. SOCS1 regulates CCR7 expression and migration of CD4+ T cells into peripheral tissues. THE JOURNAL OF IMMUNOLOGY 2008; 181:1190-8. [PMID: 18606672 DOI: 10.4049/jimmunol.181.2.1190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressors of cytokine signaling (SOCS) proteins control many aspects of lymphocyte function through regulation of STAT pathways. SOCS1-deficient mice develop severe skin and eye diseases that result from massive infiltration of inflammatory cells into these tissues. In this study, we have used SOCS1-, STAT1-, or STAT6-deficient mice, as well as, T cells with stable overexpression or deletion of SOCS1, to examine whether SOCS1 is involved in regulating lymphocyte trafficking to peripheral tissues. We show that SOCS1-deficient mice have increased numbers of T cells with characteristics of effector memory cells and expression of CCR7, a protein that promotes retention of T cells in lymphoid tissues, is markedly reduced in these cells. The decrease in CCR7 expression correlates with hyperactivation of STAT6, suggesting that aberrant recruitment of T cells into SOCS1-deficient mouse skin or eye results from abrogation of negative feedback regulation of STAT6 activation and CCR7 expression. Consistent with in vivo regulation of CCR7 expression and lymphocyte migration by SOCS1, forced overexpression of SOCS1 in T cells up-regulates CCR7 expression and enhances chemotaxis toward CCL19 or CCL21. CCR6 and CXCR3 are also up-regulated on SOCS1-deficient T cells and in situ analysis of the cornea or retina further reveal that these cells may mediate the chronic skin and eye inflammation through recruitment of Th1 and Th17 cells into these tissues. Collectively, these results suggest that SOCS1 regulates steady-state levels of chemokine receptors through its inhibitory effects on STAT pathways and this may underscore its role in regulating recruitment and retention of effector cells into nonlymphoid tissues.
Collapse
Affiliation(s)
- Cheng-Rong Yu
- Laboratory of Immunology, Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu X, Lee YS, Yu CR, Egwuagu CE. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. THE JOURNAL OF IMMUNOLOGY 2008; 180:6070-6. [PMID: 18424728 DOI: 10.4049/jimmunol.180.9.6070] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th17 cells are implicated in CNS autoimmune diseases. We show that mice with targeted-deletion of Stat3 in CD4(+) T cells (CD4(Stat3)(-/-)) do not develop experimental autoimmune uveoretinitis (EAU) or experimental autoimmune encephalomyelitis. Defective Th17 differentiation noted in CD4(Stat3)(-/-) mice is compensated by exaggerated increases in Foxp3-, IL-10-, IL-4-, and IFN-gamma-expressing T cells, suggesting critical roles of STAT3 in shaping Ag-specific CD4(+) T cell repertoire. In mice with EAU, a high percentage of IL-17-expressing T cells in their peripheral lymphoid organs also secrete IFN-gamma while these double-expressors are absent in CD4(Stat3)(-/-) and wild-type mice without EAU, raising the intriguing possibility that uveitis maybe mediated by Th17 and IL-17-expressing Th1 cells. Resistance of Stat3-deficient mice to EAU derives in part from an inability of uveitogenic Th17 and Th1 cells to enter eyes or brain of the CD4(Stat3)(-/-) mouse because of the reduction in the expression of activated alpha4/beta1 integrins on CD4(Stat3)(-/-) T cells. Adoptive transfer of activated interphotoreceptor retinoid-binding protein-specific uveitogenic T cells induced in CD4(Stat3)(-/-) mice a severe EAU characterized by development of retinal folds, infiltration of inflammatory cells into the retina, and destruction of retinal architecture, underscoring our contention that the loss of STAT3 in CD4(+) T cells results in an intrinsic developmental defect that renders CD4(Stat3)(-/-) resistant to CNS inflammatory diseases. STAT3 requirement for IL-17 production by Th17, generation of double positive T cells expressing IL-17 and IFN-gamma, and for T cell trafficking into CNS tissues suggests that STAT3 may be a therapeutic target for modulating uveitis, sceritis, or multiple sclerosis.
Collapse
Affiliation(s)
- Xuebin Liu
- Section of Molecular Immunology, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
37
|
Liu X, Mameza MG, Lee YS, Eseonu CI, Yu CR, Kang Derwent JJ, Egwuagu CE. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells. Diabetes 2008; 57:1651-8. [PMID: 18356406 PMCID: PMC2756726 DOI: 10.2337/db07-1761] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Suppressors of cytokine signaling (SOCS) are implicated in the etiology of diabetes, obesity, and metabolic syndrome. Here, we show that some SOCS members are induced, while others are constitutively expressed, in retina and examine whether persistent elevation of SOCS levels in retina by chronic inflammation or cellular stress predisposes to developing insulin resistance in retina, a condition implicated in diabetic retinopathy. RESEARCH DESIGN AND METHODS SOCS-mediated insulin resistance and neuroprotection in retina were investigated in 1) an experimental uveitis model, 2) SOCS1 transgenic rats, 3) insulin-deficient diabetic rats, 4) retinal cells depleted of SOCS6 or overexpressing SOCS1/SOCS3, and 5) oxidative stress and light-induced retinal degeneration models. RESULTS We show that constitutive expression of SOCS6 protein in retinal neurons may improve glucose metabolism, while elevated SOCS1/SOCS3 expression during uveitis induces insulin resistance in neuroretina. SOCS-mediated insulin resistance, as indicated by its inhibition of basally active phosphoinositide 3-kinase/AKT signaling in retina, is validated in retina-specific SOCS1 transgenic rats and retinal cells overexpressing SOCS1/SOCS3. We further show that the SOCS3 level is elevated in retina by oxidative stress, metabolic stress of insulin-deficient diabetes, or light-induced retinal damage and protects ganglion cells from apoptosis, suggesting that upregulation of SOCS3 may be a common physiologic response of neuroretinal cells to cellular stress. CONCLUSIONS Our data suggest two-sided roles of SOCS proteins in retina. Whereas SOCS proteins may improve glucose metabolism, mitigate deleterious effects of inflammation, and promote neuroprotection, persistent SOCS3 expression caused by chronic inflammation or cellular stress can induce insulin resistance and inhibit neurotrophic factors, such as ciliary neurotrophic factor, leukemia inhibitory factor, and insulin, that are essential for retinal cell survival.
Collapse
Affiliation(s)
- Xuebin Liu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Marie G. Mameza
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yun Sang Lee
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Chikezie I. Eseonu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biomedical Engineering, Harvard College, Harvard University, Cambridge, Massachusetts
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer J. Kang Derwent
- Department of Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
König R, Cai P, Guo X, Ansari GAS. Transcriptomic analysis reveals early signs of liver toxicity in female MRL +/+ mice exposed to the acylating chemicals dichloroacetyl chloride and dichloroacetic anhydride. Chem Res Toxicol 2008; 21:572-82. [PMID: 18293905 DOI: 10.1021/tx7002728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dichloroacetyl chloride (DCAC) is a reactive metabolite of trichloroethene (TCE). TCE and its metabolites have been implicated in the induction of organ-specific and systemic autoimmunity, in the acceleration of autoimmune responses, and in the development of liver toxicity and hepatocellular carcinoma. In humans, effects of environmental toxicants are often multifactorial and detected only after long-term exposure. Therefore, we developed a mouse model to determine mechanisms by which DCAC and related acylating agents affect the liver. Autoimmune-prone female MRL +/+ mice were injected intraperitoneally with 0.2 mmol/kg of DCAC or dichloroacetic anhydride (DCAA) in corn oil twice weekly for six weeks. No overt liver pathology was detectable. Using microarray gene expression analysis, we detected changes in the liver transcriptome consistent with inflammatory processes. Both acylating toxicants up-regulated the expression of acute phase response and inflammatory genes. Furthermore, metallothionein genes were strongly up-regulated, indicating effects of the toxicants on zinc ion homeostasis and stress responses. In addition, DCAC and DCAA induced the up-regulation of several genes indicative of tumorigenesis. Our data provide novel insight into early mechanisms for the induction of liver disease by acylating agents. The data also demonstrate the power of microarray analysis in detecting early changes in liver function following exposure to environmental toxicants.
Collapse
Affiliation(s)
- Rolf König
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
39
|
Böttcher I, Bellinghausen I, König B, Knop J, Saloga J. Different regulation of T helper 1- and T helper 2-promoting cytokine signalling factors in human dendritic cells after exposure to protein versus contact allergens. Immunology 2008; 123:139-44. [PMID: 18154619 DOI: 10.1111/j.1365-2567.2007.02754.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cytokine-dependent T helper 1 (Th1) differentiation versus T helper 2 (Th2) differentiation is controlled by distinct transcription factors. Previously, we have demonstrated that immature human dendritic cells (DC) from blood donors with allergies show rapid phosphorylation of the Th2-associated signal transducer and activator of transcription 6 (STAT6) upon contact with protein allergens. In the present study we investigated whether this process is regulated by the downstream molecules suppressor of cytokine signalling (SOCS) and/or by the factors T-bet and GATA3. Therefore, immature DC of grass or birch pollen-allergic donors were treated with the respective Th2-promoting protein allergens, and, for comparison, with the Th1-promoting contact allergen 5-chloro-2-methylisothiazolinone plus 2-methylisothiazolinone (MCI/MI) or with the antigen tetanus toxoid. Changes in the mRNA levels of SOCS1, SOCS3, T-bet and GATA3 were analysed by quantitative real-time polymerase chain reaction. Exposure of DC to protein allergens led to the up-regulation of the Th2-associated genes SOCS3 and GATA3, whereas the contact allergen MCI/MI preferentially enhanced the expression of the Th1-associated gene T-bet. Treatment of immature DC with the antigen tetanus toxoid increased both Th1- and Th2-associated genes. Our data indicate that polarization of type 1 versus type 2 immune responses takes place already at the level of antigen-presenting cells, involving molecules similar to those used in T-cell polarization.
Collapse
Affiliation(s)
- Ingo Böttcher
- Department of Dermatology, University of Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
40
|
Gernez Y, Tirouvanziam R, Nguyen KD, Herzenberg LA, Krensky AM, Nadeau KC. Altered phosphorylated signal transducer and activator of transcription profile of CD4+CD161+ T cells in asthma: modulation by allergic status and oral corticosteroids. J Allergy Clin Immunol 2007; 120:1441-8. [PMID: 17919711 DOI: 10.1016/j.jaci.2007.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 01/21/2023]
Abstract
BACKGROUND Asthma is a complex immunologic disorder linked to altered cytokine signaling. OBJECTIVE We tested whether asthmatic patients showed any change in cytokine-dependent signal transducer and activator of transcription (STAT) levels, focusing on the central/effector-memory CD4(+)CD161(+) subset, which represents 15% to 25% of circulating T cells. METHODS We quantified intracellular levels of active phosphorylated STAT (phospho-STAT) 1, 3, 5, and 6 by means of flow cytometry, without any activation or expansion. RESULTS Baseline phospho-STAT1 and phospho-STAT6 levels were increased in CD4(+)CD161(+) T cells from asthmatic patients compared with those from healthy control subjects (by 10- and 8-fold, respectively). This asthma-associated alteration was both subset specific because no change was seen in CD4(+)CD161(-)CD25(+) (regulatory T cells) and CD4(+)CD161(-)CD25(-) subsets and isoform specific because phospho-STAT5 and phospho-STAT3 levels were unchanged. Among asthmatic patients, phospho-STAT1 and phospho-STAT6 levels correlated negatively with each other, suggesting antagonistic regulation. Oral corticosteroid (OCS) treatment significantly decreased phospho-STAT6 and IL-4 levels but not phospho-STAT1 levels. Disease parameters showing significant correlations with phospho-STAT1, phospho-STAT6, or both included age at onset, plasma IgE levels, and levels of the T(H)2 cytokines IL-4 and IL-10 and the T(H)1 cytokine IL-2. Overall, combined phospho-STAT1 and phospho-STAT6 measurements showed excellent predictive value for identifying (1) asthmatic patients versus healthy control subjects, (2) allergic versus nonallergic asthmatic patients, and (3) asthmatic patients taking versus those not taking OCSs. CONCLUSION Baseline changes in phospho-STAT1 and phospho-STAT6 levels in blood CD4(+)CD161(+) T cells identify asthmatic patients and mirror their allergic status and response to OCSs. CLINICAL IMPLICATIONS These results confirm the pathologic importance of activated STAT1 and STAT6 in asthma and suggest their potential use as clinical biomarkers.
Collapse
Affiliation(s)
- Yael Gernez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Frisullo G, Mirabella M, Angelucci F, Caggiula M, Morosetti R, Sancricca C, Patanella AK, Nociti V, Iorio R, Bianco A, Tomassini V, Pozzilli C, Tonali PA, Matarese G, Batocchi AP. The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J Neuroimmunol 2007; 192:174-83. [PMID: 17904647 DOI: 10.1016/j.jneuroim.2007.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 12/23/2022]
Abstract
In this study we observed higher serum leptin levels in relapsing-remitting multiple sclerosis (RRMS) patients during remission than in controls. The expression of leptin receptor (ObR) was higher in CD8+ T cells and monocytes from RRMS patients in relapse than in patients in remission and in controls. Relapsing patients showed high levels of pSTAT3 and low expression of SOCS3 and leptin administration induced an up-regulation of pSTAT3 only in monocytes from patients in relapse. Our data suggest that ObR may be involved in the development of clinical relapses in RRMS patients and suggest a rationale for potential targeting of the leptin axis during MS.
Collapse
Affiliation(s)
- Giovanni Frisullo
- Istituto di Neurologia, Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007; 13:711-8. [PMID: 17496900 DOI: 10.1038/nm1585] [Citation(s) in RCA: 670] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/11/2007] [Indexed: 12/14/2022]
Abstract
T-helper type 17 cells (T(H)17) are implicated in rodent models of immune-mediated diseases. Here we report their involvement in human uveitis and scleritis, and validate our findings in experimental autoimmune uveoretinitis (EAU), a model of uveitis. T(H)17 cells were present in human peripheral blood mononuclear cells (PBMC), and were expanded by interleukin (IL)-2 and inhibited by interferon (IFN)-gamma. Their numbers increased during active uveitis and scleritis and decreased following treatment. IL-17 was elevated in EAU and upregulated tumor necrosis factor (TNF)-alpha in retinal cells, suggesting a mechanism by which T(H)17 may contribute to ocular pathology. Furthermore, IL-27 was constitutively expressed in retinal ganglion and photoreceptor cells, was upregulated by IFN-gamma and inhibited proliferation of T(H)17. These findings suggest that T(H)1 cells may mitigate uveitis by antagonizing the T(H)17 phenotype through the IFN-gamma-mediated induction of IL-27 in target tissue. The finding that IL-2 promotes T(H)17 expansion provides explanations for the efficacy of IL-2R antibody therapy in uveitis, and suggests that antagonism of T(H)17 by IFN-gamma and/or IL-27 could be used for the treatment of chronic inflammation.
Collapse
Affiliation(s)
- Ahjoku Amadi-Obi
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Egwuagu CE, Yu CH, Mahdi RM, Mameza M, Eseonu C, Takase H, Ebong S. Cytokine-induced retinal degeneration: role of suppressors of cytokine signaling (SOCS) proteins in protection of the neuroretina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:275-81. [PMID: 17249584 DOI: 10.1007/0-387-32442-9_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
44
|
Acacia de Sa Pinheiro A, Morrot A, Chakravarty S, Overstreet M, Bream JH, Irusta PM, Zavala F. IL-4 induces a wide-spectrum intracellular signaling cascade in CD8+T cells. J Leukoc Biol 2007; 81:1102-10. [PMID: 17200144 DOI: 10.1189/jlb.0906583] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-4 has distinct effects on the differentiation and functional properties of CD8+ T cells. In vivo studies have shown that it is critical for the development of protective memory responses against tumors and infections by Leishmania and Plasmodium parasites. The intracellular signaling events mediated by IL-4/IL-4 receptor (IL-4R) interactions on CD4+ T cells have been studied extensively; however, the nature of IL-4-induced signaling on CD8+ T cells has not been characterized. Using naïve, activated, as well as differentiated CD8+ T cells, we show that IL-4 has a strong in vivo and in vitro antiapoptotic effect on activated and resting CD8+ T cells. We demonstrate that IL-4 induces the phosphorylation of the IL-4R, which is followed by the activation of at least two distinct intracellular signaling cascades: the Jak1/STAT6 and the insulin receptor substrate/PI-3K/protein kinase B pathways. We also found that IL-4 induces the Jak3-mediated phosphorylation and nuclear migration of STAT1, STAT3, and STAT5 in naïve, activated, as well as differentiated, IFN-gamma-producing CD8+ T cells. The induction of this broad signaling activity in CD8+ T cells coincides with a transcriptional activity of suppressors of cytokine signaling genes, which are decreased significantly in comparison with CD4+ T cells. To our knowledge, this report constitutes the first comprehensive analysis of the signaling events that shape CD8+ T cell responses to IL-4.
Collapse
Affiliation(s)
- Ana Acacia de Sa Pinheiro
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ingram JL, Antao-Menezes A, Mangum JB, Lyght O, Lee PJ, Elias JA, Bonner JC. Opposing actions of Stat1 and Stat6 on IL-13-induced up-regulation of early growth response-1 and platelet-derived growth factor ligands in pulmonary fibroblasts. THE JOURNAL OF IMMUNOLOGY 2006; 177:4141-8. [PMID: 16951379 DOI: 10.4049/jimmunol.177.6.4141] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-13 is a key cytokine involved in airway remodeling in asthma. We previously reported that IL-13 stimulated the mitogenesis of lung fibroblasts via platelet-derived growth factor (PDGF)-AA. In this report, we show that IL-13 increases PDGF-A and PDGF-C mRNA levels through a dual intracellular cascade that requires coactivation of Stat6 and Stat1 to impact transcriptional regulation of the early growth response (Egr)-1 gene, which then drives PDGF expression. Increased levels of PDGF-AA and PDGF-CC protein were observed in vivo in the airways of IL-13 transgenic mice. IL-13 up-regulated PDGF-A and PDGF-C mRNA levels in lung fibroblasts isolated from three different background strains of mice. However, IL-13-induced PDGF-A and PDGF-C mRNA levels were significantly reduced in Stat6-deficient (Stat6(-/-)) fibroblasts as compared with wild-type Stat6(+/+) fibroblasts. In contrast, IL-13-induced PDGF-A and PDGF-C mRNAs were enhanced in Stat1(-/-) fibroblasts as compared with Stat1(+/+) fibroblasts. IL-13 did not up-regulate PDGF-A or PDGF-C mRNA levels in Egr-1(-/-) fibroblasts. Moreover, IL-13 did not increase Egr-1 mRNA and protein levels in Stat6(-/-) fibroblasts and yet enhanced Egr-1 mRNA and protein levels in Stat1(-/-) fibroblasts. Our findings support the hypothesis that Stat6 and Stat1 exert stimulatory and inhibitory effects on Egr-1 and PDGF ligand mRNA transcription, respectively. This novel mechanism could aid in identifying molecular targets for the treatment of chronic airway remodeling and fibrosis in asthma.
Collapse
Affiliation(s)
- Jennifer L Ingram
- CIIT Centers for Health Research, Research Triangle Park, Durham, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Evans MK, Yu CR, Lohani A, Mahdi RM, Liu X, Trzeciak AR, Egwuagu CE. Expression of SOCS1 and SOCS3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals. Oncogene 2006; 26:1941-8. [PMID: 17001312 DOI: 10.1038/sj.onc.1209993] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA-hypermethylation of SOCS genes in breast, ovarian, squamous cell and hepatocellular carcinoma has led to speculation that silencing of SOCS1 and SOCS3 genes might promote oncogenic transformation of epithelial tissues. To examine whether transcriptional silencing of SOCS genes is a common feature of human carcinoma, we have investigated regulation of SOCS genes expression by IFNgamma, IGF-1 and ionizing radiation, in a normal human mammary epithelial cell line (AG11134), two breast-cancer cell lines (MCF-7, HCC1937) and three prostate cancer cell lines. Compared to normal breast cells, we observe a high level constitutive expression of SOCS2, SOCS3, SOCS5, SOCS6, SOCS7, CIS and/or SOCS1 genes in the human cancer cells. In MCF-7 and HCC1937 breast-cancer cells, transcription of SOCS1 is dramatically up-regulated by IFNgamma and/or ionizing-radiation while SOCS3 is transiently down-regulated by IFNgamma and IGF-1, suggesting that SOCS genes are not silenced in these cells by the epigenetic mechanism of DNA-hypermethylation. We further show that the kinetics of SOCS1-mediated feedback inhibition of IFNgamma signaling is comparable to normal breast cells, indicating that the SOCS1 protein in breast-cancer cells is functional. We provide direct evidence that STAT3 pathways are constitutively activated in MCF-7 and HCC1937 cells and may drive the aberrant persistent activation of SOCS genes in breast-cancer cells. Our data therefore suggest that elevated expression of SOCS genes is a specific lesion of breast-cancer cells that may confer resistance to proinflammatory cytokines and trophic factors, by shutting down STAT1/STAT5 signaling that mediate essential functions in the mammary gland.
Collapse
Affiliation(s)
- M K Evans
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Stepkowski SM, Kirken RA. Janus tyrosine kinases and signal transducers and activators of transcription regulate critical functions of T cells in allograft rejection and transplantation tolerance. Transplantation 2006; 82:295-303. [PMID: 16906023 DOI: 10.1097/01.tp.0000228903.03118.be] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Full activation of T cells requires three sequential signals. Engagement by antigen presenting cells (APC) delivers signals 1/2, whereas signal 3 is delivered by multiple cytokines to regulate the immune homeostasis by influencing proliferation, differentiation, and survival/death. Signaling by cytokines acting through their receptors is delivered by two major molecular families, namely Janus tyrosine kinases (Jaks) and signal transducers and activators of transcription (Stats). Findings obtained from mice genetically deficient in Jaks and Stats suggest that these molecules may serve as therapeutic targets to prevent allograft rejection, induce transplantation tolerance, and inhibit autoimmune disease and lymphoid-derived tumors. This review describes the role of Jak tyrosine kinases and Stat transcription factors and their putative function in regulating T and B cell activity.
Collapse
Affiliation(s)
- Stanislaw M Stepkowski
- Department of Surgery, Division of Organ Transplantation, University of Texas Health Science Center at Houston, 77030, USA.
| | | |
Collapse
|
48
|
Mikhak Z, Fleming CM, Medoff BD, Thomas SY, Tager AM, Campanella GS, Luster AD. STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:4959-67. [PMID: 16585592 DOI: 10.4049/jimmunol.176.8.4959] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th1 and Th2 effector CD4+ T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung. Trafficking of Th1 and Th2 cells is differentially regulated as STAT6, which regulates Th2 cell trafficking, had no effect on the trafficking of Th1 cells and STAT1 deficiency did not alter Th2 cell trafficking. We demonstrate that STAT1 control of Th1 cell trafficking is not mediated through T-bet. STAT1 controls the recruitment of Th1 cells through the induction of CXCL9, CXCL10, CXCL11, and CXCL16, whose expression levels in the lung were markedly decreased in STAT1-/- mice. CXCL10 replacement partially restored Th1 cell trafficking in STAT1-deficient mice in vivo, and deficiency in CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, impaired the trafficking of adoptively transferred Th1 cells in wild-type mice. Our work identifies that STAT1 in peripheral tissue regulates the homing of Ag-specific Th1 cells through the induction of a distinct subset of chemokines and establishes that Th1 and Th2 cell trafficking is differentially controlled in vivo by STAT1 and STAT6, respectively.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens
- Cell Movement/immunology
- Cell Proliferation
- Chemokine CXCL10
- Chemokine CXCL11
- Chemokine CXCL16
- Chemokine CXCL6
- Chemokine CXCL9
- Chemokines, CXC/metabolism
- Lung/cytology
- Lung/immunology
- Lung/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Receptors, CXCR3
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Scavenger/metabolism
- STAT1 Transcription Factor/deficiency
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- STAT6 Transcription Factor/deficiency
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Th1 Cells/cytology
- Th1 Cells/immunology
- Th2 Cells/cytology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Zamaneh Mikhak
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Takase H, Yu CR, Liu X, Fujimoto C, Gery I, Egwuagu CE. Induction of suppressors of cytokine signaling (SOCS) in the retina during experimental autoimmune uveitis (EAU): potential neuroprotective role of SOCS proteins. J Neuroimmunol 2006; 168:118-27. [PMID: 16154209 DOI: 10.1016/j.jneuroim.2005.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
Suppressors of cytokine signaling (SOCS) are implicated in immunopathogenic mechanisms of autoimmune diseases. We show here that SOCS expression in retina is temporarily correlated with progression of experimental autoimmune uveitis (EAU), an organ-specific autoimmune disease that serves as model of human uveitis. Peak of EAU correlates with highest SOCS genes expression while disease resolution coincides with their down-regulation. Surprisingly, SOCS5 is constitutively expressed in retina. SOCS5 expression increases significantly during EAU and remains elevated even after disease resolution. Our data suggest that cytokine-inducible SOCS members may be involved in negative regulation of inflammatory cytokines activities during EAU, while constitutively expressed SOCS5 may have neuroprotective functions.
Collapse
Affiliation(s)
- H Takase
- Experimental Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Building 10, Room 10N116, 10 Center Drive, Bethesda, Maryland 20892-1857, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bonnevier JL, Zhang R, Mueller DL. E3 ubiquitin ligases and their control of T cell autoreactivity. Arthritis Res Ther 2005; 7:233-42. [PMID: 16277698 PMCID: PMC1297590 DOI: 10.1186/ar1842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A loss of T cell tolerance underlies the development of most autoimmune diseases. The design of therapeutic strategies to reinstitute immune tolerance, however, is hampered by uncertainty regarding the molecular mechanisms involved in the inactivation of potentially autoreactive T cells. Recently, E3 ubiquitin ligases have been shown to mediate the development of a durable state of unresponsiveness in T cells called clonal anergy. In this review, we will discuss the mechanisms used by E3 ligases to control the activation of T cells and prevent the development of autoimmunity.
Collapse
Affiliation(s)
- Jody L Bonnevier
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ruan Zhang
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel L Mueller
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|