1
|
Kobayashi O, Taguchi A, Nakajima T, Ikeda Y, Saito K, Kawana K. Immunotherapy that leverages HPV-specific immune responses for precancer lesions of cervical cancer. Taiwan J Obstet Gynecol 2024; 63:22-28. [PMID: 38216264 DOI: 10.1016/j.tjog.2023.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 01/14/2024] Open
Abstract
Cervical cancer and its precursor lesion, cervical intraepithelial neoplasia (CIN), are caused by high-risk human papillomavirus (HPV) viral infection and are highly susceptible to host immunity targeting of HPV viral proteins, which include both foreign antigens and cancer antigens expressed by tumors. Immunotherapy that induces Th1 immunoreactivity against viral proteins is expected to take advantage of this immunological regression mechanism. However, although cancer immunotherapies for cervical cancer and CIN have been developed over the past several decades, none have been commercialized. Most of these immunotherapies target the viral cancer proteins E6 and E7, which are generally the same. The reasons for the underdevelopment of HPV-targeted immunotherapy differ depending on whether the target is invasive cancer or CIN. We here summarize the developmental history of cancer immunotherapy for CIN and discuss strategies for solving the problems that led to this underdevelopment. We note that CIN is a mucosal lesion and propose that inducing mucosal immunity may be the key.
Collapse
Affiliation(s)
- Osamu Kobayashi
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takahiro Nakajima
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Japan
| | - Keisuke Saito
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Japan.
| |
Collapse
|
2
|
Ruddle NH. Regulation, Maintenance, and Remodeling of High Endothelial Venules in Homeostasis, Inflammation, and Cancer. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100705. [PMID: 38523879 PMCID: PMC10956444 DOI: 10.1016/j.cophys.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High endothelial venules (HEVs), high walled cuboidal blood vessels, through their expression of adhesion molecules and chemokines, allow the entrance of lymphoid cells into primary, secondary, and tertiary lymphoid structures (aka tertiary lymphoid organs). HEV heterogeneity exists between various lymphoid organs in their expression of peripheral node addressin (PNAd) and mucosal vascular addressin adhesion molecule 1(MAdCAM-1). Transcriptomic analyses reveal extensive heterogeneity, plasticity, and regulation of HEV gene expression in ontogeny, acute inflammation, and chronic inflammation within and between lymphoid organs. Rules regulating HEV development are flexible in inflammation. HEVs in tumor tertiary lymphoid structures are diagnostic of favorable clinical outcome and response to Immunotherapy, including immune check point blockade. Immunotherapy induces HEVs and provides an entrance for naïve, central memory, and effector cells and a niche for stem like precursor cells. Understanding HEV regulation will permit their exploitation as routes for drug delivery to autoimmune lesions, rejecting organs, and tumors.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520-8034
| |
Collapse
|
3
|
Ruddle NH. Lymphotoxin and TNF: how it all began-a tribute to the travelers. Cytokine Growth Factor Rev 2014; 25:83-9. [PMID: 24636534 PMCID: PMC4027955 DOI: 10.1016/j.cytogfr.2014.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
The journey from the discoveries of lymphotoxin (LT) and tumor necrosis factor (TNF) to the present day age of cytokine inhibitors as therapeutics has been an exciting one with many participants and highs and lows; the saga is compared to that in "The Wizard of Oz". This communication summarizes the contributions of key players in the discovery of the cytokines and their receptors, the changes in nomenclature, and the discovery of the LT family's crucial role in secondary and tertiary lymphoid organs. The remarkable advances in therapeutics are detailed as are remaining problems. Finally, special tribute is paid to two pioneers in the field who have recently passed away: Byron H. Waksman and Lloyd Old.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health 60 College St., New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Parker VJ, Solano ME, Arck PC, Douglas AJ. Diet-induced obesity may affect the uterine immune environment in early-mid pregnancy, reducing NK-cell activity and potentially compromising uterine vascularization. Int J Obes (Lond) 2013; 38:766-74. [PMID: 24080794 DOI: 10.1038/ijo.2013.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate the effect of obesity in early-mid pregnancy on crucial pregnancy hormones and the uterine immune environment. BACKGROUND Obesity impacts reproductive ability, adversely affecting conception and leading to complications in pregnancy. Obesity is often regarded as a stress state and an immune disease, both of which may contribute to pregnancy failure. We previously demonstrated that stress in early pregnancy greatly alters progesterone secretion. As progesterone is an immunomodulator, altered progesterone secretion may adversely modify the maternal immune system. In the current study, we test the hypothesis that obesity during pregnancy adversely alters the uterine immune environment. METHODS An obese mouse model was created by feeding C57/BL6 mice on a high-fat (HF)/sugar diet for 12 weeks before pregnancy. Control mice were fed on lower-fat/sugar chow. Mice were mated, and on day 7.5 of pregnancy plasma progesterone and prolactin were measured by immunoassay. Cells from the uterus-draining inguinal lymph nodes were collected for analysis of the uterine immune response by flow cytometry. RESULTS Diet-induced obesity increased the secretion of progesterone and altered a number of uterine natural killer (NK)- and T-cell responses. These included a marked reduction in the percentage of leucocyte-derived NK cells and reduced expression of interferon-γ (IFN-γ) in the NK cells compared with control mice. CONCLUSIONS Maternal obesity, induced by an HF diet, may lead to a reduction in the expression of IFN-γ in NK cells. NK-cell-derived IFN-γ is reported to be involved in supporting uterine spiral artery remodelling. Thus, obesity in early pregnancy may compromise vascularization by reducing the expression of IFN-γ-positive NK cells. Furthermore, the expression of uterine CD8(+) cells was reduced in the HF diet-fed mice, suggesting obesity may adversely alter the maternal immune adaptation that is essential for effective pregnancy.
Collapse
Affiliation(s)
- V J Parker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - M E Solano
- Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P C Arck
- Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A J Douglas
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Chen H, Zheng D, Abbott J, Liu L, Bartee MY, Long M, Davids J, Williams J, Feldmann H, Strong J, Grau KR, Tibbetts S, Macaulay C, McFadden G, Thoburn R, Lomas DA, Spinale FG, Virgin HW, Lucas A. Myxomavirus-derived serpin prolongs survival and reduces inflammation and hemorrhage in an unrelated lethal mouse viral infection. Antimicrob Agents Chemother 2013; 57:4114-27. [PMID: 23774438 PMCID: PMC3754305 DOI: 10.1128/aac.02594-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/30/2013] [Indexed: 01/10/2023] Open
Abstract
Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c(+) splenocytes (macrophage and dendritic cells) and reduced CD11b(+) tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis.
Collapse
Affiliation(s)
- Hao Chen
- Divisions of Cardiology and Rheumatology, Department of Medicine
- Department of Molecular Genetics and Microbiology
| | - Donghang Zheng
- Divisions of Cardiology and Rheumatology, Department of Medicine
- Department of Molecular Genetics and Microbiology
| | - Jeff Abbott
- College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Liying Liu
- Divisions of Cardiology and Rheumatology, Department of Medicine
| | - Mee Y. Bartee
- Divisions of Cardiology and Rheumatology, Department of Medicine
- Department of Molecular Genetics and Microbiology
| | - Maureen Long
- College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jennifer Davids
- Divisions of Cardiology and Rheumatology, Department of Medicine
- Department of Molecular Genetics and Microbiology
| | | | - Heinz Feldmann
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James Strong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | | | - Grant McFadden
- Department of Molecular Genetics and Microbiology
- Viron Therapeutics, Inc., London, Ontario, Canada
| | - Robert Thoburn
- Divisions of Cardiology and Rheumatology, Department of Medicine
| | - David A. Lomas
- Division of Pulmonary Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Francis G. Spinale
- Department of Surgery, Medical University of South Carolina, Department of Cell Biology and Anatomy, South Carolina, USA
| | - Herbert W. Virgin
- Departments of Pathology and Immunology and Molecular Microbiology, Washington University, St Louis, Missouri, USA
| | - Alexandra Lucas
- Divisions of Cardiology and Rheumatology, Department of Medicine
- Department of Molecular Genetics and Microbiology
- Viron Therapeutics, Inc., London, Ontario, Canada
| |
Collapse
|
6
|
Delayed but effective induction of mucosal memory immune responses against genital HSV-2 in the absence of secondary lymphoid organs. Mucosal Immunol 2013; 6:56-68. [PMID: 22718264 DOI: 10.1038/mi.2012.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine whether local immunization in the absence of secondary lymphoid organs (SLOs) could establish effective antiviral memory responses in the female genital tract, we examined immunity in the vaginal tracts of LTα-/- mice, LTα-/- SPL (splenectomized), and control C57BL/6 (WT) mice. All three groups of mice were immunized intravaginally (IVAG) with attenuated thymidine kinase-negative (TK(-)) Herpes simplex virus type 2 (HSV-2) and challenged 4-6 weeks later with wild-type (WT) HSV-2. Both groups of LTα-/- mice exhibited delayed viral clearance and prolonged genital pathology after immunization. Following IVAG WT HSV-2 challenge, LTα-/- and LTα-/- SPL mice had significantly lower levels of HSV-2-specific IgG and IgA in the vaginal secretions. Although the frequency of B and T cells in the vaginal mucosa was comparable or higher in both groups of LTα-/- mice, lower frequency of HSV-2-specific interferon-γ (IFNγ)-producing CD3+ T cells was seen after immunization and after challenge, compared with WT group. Despite this, immunized mice in all three groups showed complete sterile protection against IVAG WT HSV-2 challenge. These results show that even in the absence of SLOs, IVAG immunization generates effector memory immune responses at genital mucosa that can provide antiviral protection against subsequent viral exposures. This will inform new strategies to design mucosal vaccines against sexually transmitted infections.
Collapse
|
7
|
Shin H, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 2012; 491:463-7. [PMID: 23075848 PMCID: PMC3499630 DOI: 10.1038/nature11522] [Citation(s) in RCA: 478] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
The majority of successful existing vaccines rely on neutralizing antibodies, which may not require specific anatomical localization of B cells. However, efficacious vaccines that rely on T cells for protection have been difficult to develop, as robust systemic memory T cell responses do not necessarily correlate with host protection1. In peripheral sites, tissue-resident memory T cells provide superior protection compared to circulating memory T cells2,3. Here, we describe a simple and non-inflammatory vaccine strategy that enables the establishment of a protective memory T cell pool within peripheral tissue. The female genital tract, which is a portal of entry for sexually transmitted infections (STIs), is an immunologically restrictive tissue that prevents entry of activated T cells in the absence of inflammation or infection4. To overcome this obstacle, we explored a vaccine strategy we term “prime and pull” to establish local tissue-resident memory T cells at a site of potential viral exposure. This approach relies on two steps: 1) conventional parenteral vaccination to elicit systemic T cell responses (prime), followed by 2) recruitment of activated T cells via topical chemokine application to the restrictive genital tract (pull), where such T cells establish a long-term niche and mediate protective immunity. Prime and pull protocol reduces the spread of infectious HSV-2 into the sensory neurons and prevents development of clinical disease. These results reveal a promising vaccination strategy against HSV-2, and potentially against other STIs such as HIV-1.
Collapse
Affiliation(s)
- Haina Shin
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
8
|
Abstract
After infection, most antigen-specific memory T cells reside in nonlymphoid tissues. Tissue-specific programming during priming leads to directed migration of T cells to the appropriate tissue, which promotes the development of tissue-resident memory in organs such as intestinal mucosa and skin. Mechanisms that regulate the retention of tissue-resident memory T cells include transforming growth factor-β (TGF-β)-mediated induction of the E-cadherin receptor CD103 and downregulation of the chemokine receptor CCR7. These pathways enhance protection in internal organs, such as the nervous system, and in the barrier tissues--the mucosa and skin. Memory T cells that reside at these surfaces provide a first line of defense against subsequent infection, and defining the factors that regulate their development is critical to understanding organ-based immunity.
Collapse
Affiliation(s)
- Brian S Sheridan
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | |
Collapse
|
9
|
Retinoic acid as a vaccine adjuvant enhances CD8+ T cell response and mucosal protection from viral challenge. J Virol 2011; 85:8316-27. [PMID: 21653670 DOI: 10.1128/jvi.00781-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vaccine-induced memory T cells localized at mucosal sites can provide rapid protection from viral infection. All-trans-retinoic acid (ATRA) has been shown to act physiologically to induce the expression of gut-homing receptors on lymphocytes. We tested whether the administration of exogenous ATRA during a systemic vaccination of mice could enhance the generation of mucosal CD8(+) T cell immunity, which might represent a strategy for establishing better protection from viral infection via mucosal routes. ATRA induced the expression of CCR9 and α4β7 on both mouse and human CD8(+) T cells activated in vitro. The administration of ATRA to mice during in vivo priming with a replication-defective recombinant adenovirus vector expressing the lymphocytic choriomeningitis virus glycoprotein (LCMVgp) (Ad5gp) increased numbers of both effector and memory T cells in intestinal mucosal tissues and showed higher frequencies of systemic central memory-like T cells that exhibited enhanced proliferation during boosting immunization with recombinant modified vaccinia virus Ankara expressing LCMVgp (MVAgp). Mice that received ATRA during Ad5gp vaccination were more resistant to intravaginal challenge by recombinant vaccinia virus expressing LCMVgp (VVgp), reflecting in part stronger T cell recall responses in situ. Thus, ATRA appears to be useful as an adjuvant during vaccination to increase memory T cell responses and protection from viral infection at mucosal sites and may facilitate the development of more effective vaccines against mucosally transmitted pathogens such as HIV.
Collapse
|
10
|
Martinelli E, Tharinger H, Frank I, Arthos J, Piatak M, Lifson JD, Blanchard J, Gettie A, Robbiani M. HSV-2 infection of dendritic cells amplifies a highly susceptible HIV-1 cell target. PLoS Pathog 2011; 7:e1002109. [PMID: 21738472 PMCID: PMC3128120 DOI: 10.1371/journal.ppat.1002109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/23/2011] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) increases the risk of HIV-1 infection and, although several reports describe the interaction between these two viruses, the exact mechanism for this increased susceptibility remains unclear. Dendritic cells (DCs) at the site of entry of HSV-2 and HIV-1 contribute to viral spread in the mucosa. Specialized DCs present in the gut-associated lymphoid tissues produce retinoic acid (RA), an important immunomodulator, able to influence HIV-1 replication and a key mediator of integrin α₄β₇ on lymphocytes. α₄β₇ can be engaged by HIV-1 on the cell-surface and CD4⁺ T cells expressing high levels of this integrin (α₄β₇ (high)) are particularly susceptible to HIV-1 infection. Herein we provide in-vivo data in macaques showing an increased percentage of α₄β₇ (high) CD4⁺ T cells in rectal mucosa, iliac lymph nodes and blood within 6 days of rectal exposure to live (n = 11), but not UV-treated (n = 8), HSV-2. We found that CD11c⁺ DCs are a major target of HSV-2 infection in in-vitro exposed PBMCs. We determined that immature monocyte-derived DCs (moDCs) express aldehyde dehydrogenase ALDH1A1, an enzyme essential for RA production, which increases upon HSV-2 infection. Moreover, HSV-2-infected moDCs significantly increase α₄β₇ expression on CD4⁺ T lymphocytes and HIV-1 infection in DC-T cell mixtures in a RA-dependent manner. Thus, we propose that HSV-2 modulates its microenviroment, influencing DC function, increasing RA production capability and amplifying a α₄β₇ (high)CD4⁺ T cells. These factors may play a role in increasing the susceptibility to HIV-1.
Collapse
Affiliation(s)
- Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, Unites States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, Unites States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, Unites States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
11
|
Summers Deluca L, Gommerman JL. The lymphotoxin pathway as a novel regulator of dendritic cell function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:363-74. [PMID: 21153340 DOI: 10.1007/978-1-4419-6612-4_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Niess JH. Role of gut-resident dendritic cells in inflammatory bowel disease. Expert Rev Clin Immunol 2010; 5:451-61. [PMID: 20477041 DOI: 10.1586/eci.09.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal immune system, innate and adaptive, is continuously exposed to challenges provided by the enteric flora. In most cases, the result of mucosal immune responses is the development of tolerance. Mucosal dendritic cells initiate and regulate local immune responses. Uncontrolled local immune responses are thought to be a major factor in the development of inflammatory bowel disease, such as Crohn's disease and ulcerative colitis. This review will discuss the function of dendritic cells in the recognition of the enteric flora and their role in the development of intestinal inflammation.
Collapse
Affiliation(s)
- Jan Hendrik Niess
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, Tomio K, Kojima S, Oda K, Sewaki T, Yasugi T, Kozuma S, Taketani Y. Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine 2010; 28:2810-7. [DOI: 10.1016/j.vaccine.2010.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/22/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
|
14
|
Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. THE JOURNAL OF IMMUNOLOGY 2009; 183:2205-12. [PMID: 19661265 DOI: 10.4049/jimmunol.0804324] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secondary lymphoid organs (SLOs) include lymph nodes, spleen, Peyer's patches, and mucosal tissues such as the nasal-associated lymphoid tissue, adenoids, and tonsils. Less discretely anatomically defined cellular accumulations include the bronchus-associated lymphoid tissue, cryptopatches, and isolated lymphoid follicles. All SLOs serve to generate immune responses and tolerance. SLO development depends on the precisely regulated expression of cooperating lymphoid chemokines and cytokines such as LTalpha, LTbeta, RANKL, TNF, IL-7, and perhaps IL-17. The relative importance of these factors varies between the individual lymphoid organs. Participating in the process are lymphoid tissue initiator, lymphoid tissue inducer, and lymphoid tissue organizer cells. These cells and others that produce crucial cytokines maintain SLOs in the adult. Similar signals regulate the transition from inflammation to ectopic or tertiary lymphoid tissues.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520--8089, USA
| | | |
Collapse
|
15
|
Abstract
The gastrointestinal innate and adaptive immune system continuously faces the challenge of potent stimuli from the commensal microflora and food constituents. These local immune responses require a tight control, the outcome of which is in most cases the induction of tolerance. Local T cell immunity is an important compartment of the specific intestinal immune system. T cell reactivity is programmed during the initial stage of its activation by professional presenting cells. Mucosal dendritic cells (DCs) are assumed to play key roles in regulating immune responses in the antigen-rich gastrointestinal environment. Mucosal DCs are a heterogeneous population that can either initiate (innate and adaptive) immune responses, or control intestinal inflammation and maintain tolerance. Defects in this regulation are supposed to lead to the two major forms of inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC). This review will discuss the emerging role of mucosal DCs in regulating intestinal inflammation and immune responses.
Collapse
|
16
|
Thompson JM, Nicholson MG, Whitmore AC, Zamora M, West A, Iwasaki A, Staats HF, Johnston RE. Nonmucosal alphavirus vaccination stimulates a mucosal inductive environment in the peripheral draining lymph node. THE JOURNAL OF IMMUNOLOGY 2008; 181:574-85. [PMID: 18566424 DOI: 10.4049/jimmunol.181.1.574] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The strongest mucosal immune responses are induced following mucosal Ag delivery and processing in the mucosal lymphoid tissues, and much is known regarding the immunological parameters which regulate immune induction via this pathway. Recently, experimental systems have been identified in which mucosal immune responses are induced following nonmucosal Ag delivery. One such system, footpad delivery of Venezuelan equine encephalitis virus replicon particles (VRP), led to the local production of IgA Abs directed against both expressed and codelivered Ags at multiple mucosal surfaces in mice. In contrast to the mucosal delivery pathway, little is known regarding the lymphoid structures and immunological components that are responsible for mucosal immune induction following nonmucosal delivery. In this study, we have used footpad delivery of VRP to probe the constituents of this alternative pathway for mucosal immune induction. Following nonmucosal VRP delivery, J chain-containing, polymeric IgA Abs were detected in the peripheral draining lymph node (DLN), at a time before IgA detection at mucosal surfaces. Further analysis of the VRP DLN revealed up-regulated alpha4beta7 integrin expression on DLN B cells, expression of mucosal addressin cell adhesion molecule 1 on the DLN high endothelia venules, and production of IL-6 and CC chemokines, all characteristics of mucosal lymphoid tissues. Taken together, these results implicate the peripheral DLN as an integral component of an alternative pathway for mucosal immune induction. A further understanding of the critical immunological and viral components of this pathway may significantly improve both our knowledge of viral-induced immunity and the efficacy of viral-based vaccines.
Collapse
Affiliation(s)
- Joseph M Thompson
- Department of Microbiology and Immunology, Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Monitoring of vaccine-specific gamma interferon induction in genital mucosa of mice by real-time reverse transcription-PCR. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:757-64. [PMID: 18367582 DOI: 10.1128/cvi.00392-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Collapse
|
18
|
Liu W, Kelly KA. Prostaglandin E2 modulates dendritic cell function during chlamydial genital infection. Immunology 2007; 123:290-303. [PMID: 17680801 PMCID: PMC2433296 DOI: 10.1111/j.1365-2567.2007.02642.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inflammatory responses mediated by antigen-presenting dendritic cells (DCs), can be modulated by the presence of prostaglandins (PG), including prostaglandin E2 (PGE2). PGE2 modifies the production of an immune response by altering DC function through PGE2 receptors. PGE2 is produced by epithelial cells lining the murine female reproductive tract during Chlamydia muridarum infection and likely manipulates the antichlamydial immune response during antigen uptake in the genital mucosa. Our data demonstrate that the PGE2 present locally in the genital tract upon chlamydial genital infection enhanced the recruitment of CD11b+ conventional DCs, but not CD45R+ plasmacytoid DCs, to infected genital tract tissue and draining lymph nodes in vivo. Furthermore, exposure to PGE2 in vitro during infection of murine bone-marrow-derived conventional DCs (cDCs) boosted interleukin-10 mRNA and protein while not influencing interleukin-12p40 production. Infection of cDCs markedly increased mRNA production of the costimulatory molecules CD86, CD40 and a member of the C-type lectin family, DEC-205, but addition of PGE2 increased other costimulatory molecules and C-type lectins. Also, exposure of PGE2 to infected cDCs increased FcgammaRIII and FcgammaRIIb, suggesting that PGE2 enhances the uptake and presentation of C. muridarum and augments production of the antichlamydial adaptive immune response. Taken together, the data suggest that exposure of infected cDCs to PGE2 drives production of a diverse adaptive immune response with implications for regulating tissue inflammation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
19
|
Abstract
The internal surfaces of the human body are covered by distinct types of epithelial cells and mucus-secreting cells. The mucosal surfaces serve many vital functions, such as respiration (nasal passage and lung), absorption (gastrointestinal tract), excretion (lung, urinary tract, large intestine), and reproduction (reproductive tract). In performing these functions, the host is inevitably exposed to environmental antigens, food particles, commensal flora, and pathogens. Mucosal surfaces contain specialized dendritic cells (DCs) capable of sensing these external stimuli and mounting appropriate local responses depending on the nature of the elements they encounter. In the absence of pathogens, mucosal DCs either ignore the antigen or induce regulatory responses. Upon recognition of microorganisms that invade the mucosal barrier, mucosal DCs mount robust protective immunity. This review highlights progress in our understanding of how mucosal DCs process external information and direct appropriate responses by mobilizing various cells of the innate and adaptive immune systems to achieve homeostasis and protection.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
20
|
Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Invest 2006; 116:2622-32. [PMID: 16998590 PMCID: PMC1570377 DOI: 10.1172/jci28993] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/01/2006] [Indexed: 12/29/2022] Open
Abstract
Ectopic expression of CC chemokine ligand 21 (CCL21) in the thyroid leads to development of lymphoid structures that resemble those observed in Hashimoto thyroiditis. Deletion of the inhibitor of differentiation 2 (Id2) gene, essential for generation of CD3-CD4+ lymphoid tissue-inducer (LTi) cells and development of secondary lymphoid organs, did not affect formation of tertiary lymphoid structures. Rather, mature CD3+CD4+ T cells were critical for the development of tertiary lymphoid structures. The initial stages of this process involved interaction of CD3+CD4+ T cells with DCs, the appearance of peripheral-node addressin-positive (PNAd+) vessels, and production of chemokines that recruit lymphocytes and DCs. These findings indicate that the formation of tertiary lymphoid structures does not require Id2-dependent conventional LTis but depends on a program initiated by mature CD3+CD4+ T cells.
Collapse
Affiliation(s)
- Tatjana Marinkovic
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alexandre Garin
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yoshifumi Yokota
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yang-Xin Fu
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nancy H. Ruddle
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Glaucia C. Furtado
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sergio A. Lira
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York, USA.
Department of Molecular Genetics, School of Medicine, University of Fukui, Fukui, Japan.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Nagurskaya EV, Zaitseva LG, Kobets NV, Kireeva IV, Bekhalo VA, Kozlov AY, Klimova RR, Gur'yanova SV, Andronova TM, Shingarova LN, Boldyreva EF, Nekrasova OV. Comparative study of macrophage response in mice after DNA immunization and infection with herpes simplex virus type 1. Bull Exp Biol Med 2006; 140:716-9. [PMID: 16848234 DOI: 10.1007/s10517-006-0064-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional activity of macrophages and intensity of T cell immune response in mice were studied after intravaginal and intraperitoneal infection with herpes simplex virus type 1 and DNA vaccination in combination with adjuvant treatment (recombinant granulocyte-macrophage colony-stimulating factor and glucosaminylmuramyl dipeptide). DNA vaccination induced a virus-specific T cell immune response with no macrophagic inflammatory reaction. Infection with herpes simplex virus type 1 was accompanied by sustained inflammation, but not by the T cell immune response.
Collapse
Affiliation(s)
- E V Nagurskaya
- N. F. Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mi W, Prentice TW, Young CR, Johnson RR, Sieve AN, Meagher MW, Welsh CJR. Restraint stress decreases virus-induced pro-inflammatory cytokine mRNA expression during acute Theiler's virus infection. J Neuroimmunol 2006; 178:49-61. [PMID: 16828879 DOI: 10.1016/j.jneuroim.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 05/13/2006] [Accepted: 05/17/2006] [Indexed: 11/30/2022]
Abstract
Stressful life events have been associated with the onset and/or exacerbation of multiple sclerosis (MS). Our previous studies have indicated that restraint stress (RS) reduces inflammation and virus-induced chemokine expression in the Theiler's virus-induced demyelination (TVID) model of MS. Here we report that RS significantly reduced the virus-induced interferon-gamma mRNA levels in the brain. Additionally, mRNA levels of lymphotoxin-beta, tumor necrosis factor-alpha, and interferon-gamma in the brain were negatively correlated with viral titers in the brain. These results indicated an immunosuppressive effect of stress during early TVID causing impaired viral clearance, which may be a potential exacerbating factor for later demyelination.
Collapse
Affiliation(s)
- W Mi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 2006; 7:344-53. [PMID: 16550197 DOI: 10.1038/ni1330] [Citation(s) in RCA: 539] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of lymphoid organs can be viewed as a continuum. At one end are the 'canonical' secondary lymphoid organs, including lymph nodes and spleen; at the other end are 'ectopic' or tertiary lymphoid organs, which are cellular accumulations arising during chronic inflammation by the process of lymphoid neogenesis. Secondary lymphoid organs are genetically 'preprogrammed' and 'prepatterned' during ontogeny, whereas tertiary lymphoid organs arise under environmental influences and are not restricted to specific developmental 'windows' or anatomic locations. Between these two boundaries are other types of lymphoid tissues that are less developmentally but more environmentally regulated, such as Peyer's patches, nasal-associated lymphoid tissue, bronchial-associated lymphoid tissue and inducible bronchial-associated lymphoid tissue. Their regulation, functions and potential effects are discussed here.
Collapse
Affiliation(s)
- Danielle L Drayton
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8034, USA
| | | | | | | |
Collapse
|
24
|
Ying X, Chan K, Shenoy P, Hill M, Ruddle NH. Lymphotoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:135-46. [PMID: 15632007 PMCID: PMC1602284 DOI: 10.1016/s0002-9440(10)62239-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of nasal-associated lymphoid tissue (NALT) development is incompletely understood with regard to the roles of cytokines, chemokines, and vascular addressins. Development of the wild-type NALT continued in the immediate postnatal period with gradual increases in cellularity, compartmentalization into T- and B-cell zones, and expression of lymphotoxin (LT)-alpha, LT-beta, and lymphoid chemokines (CCL21, CCL19, CXCL13). High endothelial venules (HEVs) developed that expressed GlyCAM-1, HEC-6ST [an enzyme crucial for expression of luminal peripheral node addressin (PNAd)], and PNAd itself. LT-beta(-/-) and LT-alpha(-/-) NALTs had fewer cells than those of wild-type mice, reduced (LT-beta(-/-)) or absent (LT-alpha(-/-)) lymphoid chemokines, and no T- and B-cell compartmentalization. LT-beta(-/-) HEVs expressed only abluminal PNAd and no HEC-6ST or GlyCAM-1. LT-alpha(-/-) HEVs had no PNAd, HEC-6ST, or GlyCAM-1. Because intranasal immunization gives rise to vaginal IgA, immunization of LT-beta(-/-) mice, which retain cervical lymph nodes, might generate such a response. Intranasal immunization with ovalbumin and cholera toxin revealed lower cytokine levels in the LT-alpha(-/-) and LT-beta(-/-) NALTs, and undetectable vaginal IgA. In contrast, splenic cytokines and serum IgG titers, although reduced, were detectable. These data indicate that LT-alpha(3) and LT-alpha(1)beta(2) cooperatively contribute to NALT development and function through regulation of lymphoid chemokines and adhesion molecules; they are the first to implicate LT-alpha(1)beta(2) in GlyCAM-1 regulation in NALT HEV development.
Collapse
Affiliation(s)
- Xiaoyan Ying
- Yale University School of Medicine, Department of Epidemiology and Public Health, 60 College St., P.O. Box 208034, New Haven, CT 06520-8034, USA
| | | | | | | | | |
Collapse
|