1
|
Zhou Y, Hubscher CH. Biomarker expression level changes within rectal gut-associated lymphoid tissues in spinal cord-injured rats. Immunohorizons 2025; 9:vlaf002. [PMID: 40048710 PMCID: PMC11884801 DOI: 10.1093/immhor/vlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Neurogenic bowel dysfunction (NBD) is common after spinal cord injury (SCI). Gut-associated lymphoid tissue (GALT), an organized structure within the mucosal immune system, is important for the maintenance of gut homeostasis and body health and serves as the first line barrier/defense against diet antigens, commensal microbiota, pathogens, and toxins in mucosal areas. The current study examined gene expression levels along six segments of anorectal tissue using real-time polymerase chain reaction (RT-PCR) in uninjured rats (28-day sham surgical controls) and at both 28- and 42-days post-T9 contusion injury. Consistent with our previous report of functional regional differences in the ano-rectum, we demonstrate the existence of GALTs located primarily within the segment at 3-4.5 cm from the rectal dentate line (termed rectal GALTs-rGALTs) in shams with upregulated gene expression levels of multiple biomarkers, including B cell and T cell-related genes, major histocompatibility complex (MHC) class II molecules, and germinal center (GC)-related genes, which was further confirmed by histologic examination. In the same rectal tissue segment following T9 SCI, inflammation-related genes were upregulated at 28 days post-injury (DPI) indicating that microbial infection and inflammation of rGALTs modified structure and function of rGALTs, while at 42 DPI rGALTs exhibited resolution of inflammation and impaired structure/function for extrafollicular B cell responses. Taken together, our data suggest that rGALTs exists in rat rectum for homeostasis of gut microbiota/barrier. SCI induces microbial infection and inflammation in rectal tissues containing rGALTs, which could contribute to development of SCI-related gut microbiome dysbiosis, NBD, and systemic diseases.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| |
Collapse
|
2
|
Amon L, Dudziak D, Backer RA, Clausen BE, Gmeiner C, Heger L, Jacobi L, Lehmann CHK, Probst HC, Seichter A, Tchitashvili G, Tochoedo NR, Trapaidze L, Vurnek D. Guidelines for DC preparation and flow cytometry analysis of mouse lymphohematopoietic tissues. Eur J Immunol 2023; 53:e2249893. [PMID: 36563125 DOI: 10.1002/eji.202249893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human DC from lymphoid organs, and various non-lymphoid tissues. Within this chapter, detailed protocols are presented that allow for the generation of single-cell suspensions from mouse lymphohematopoietic tissues including spleen, peripheral lymph nodes, and thymus, with a focus on the subsequent analysis of DC by flow cytometry. However, prepared single-cell suspensions can be subjected to other applications including sorting and cellular enrichment procedures, RNA sequencing, Western blotting, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
- Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christina Gmeiner
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Hans-Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lizi Trapaidze
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Elchaninov A, Vishnyakova P, Lokhonina A, Kiseleva V, Menyailo E, Antonova M, Mamedov A, Arutyunyan I, Bolshakova G, Goldshtein D, Bao X, Fatkhudinov T, Sukhikh G. Spleen regeneration after subcutaneous heterotopic autotransplantation in a mouse model. Biol Res 2023; 56:15. [PMID: 36991509 PMCID: PMC10053607 DOI: 10.1186/s40659-023-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia.
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiya Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Viktoria Kiseleva
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Antonova
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aiaz Mamedov
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dmitry Goldshtein
- Laboratory of Stem Cells Genetics, Research Center of Medical Genetics, Moscow, Russia
| | - Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Pezoldt J, Wiechers C, Zou M, Litovchenko M, Biocanin M, Beckstette M, Sitnik K, Palatella M, van Mierlo G, Chen W, Gardeux V, Floess S, Ebel M, Russeil J, Arampatzi P, Vafardanejad E, Saliba AE, Deplancke B, Huehn J. Postnatal expansion of mesenteric lymph node stromal cells towards reticular and CD34 + stromal cell subsets. Nat Commun 2022; 13:7227. [PMID: 36433946 PMCID: PMC9700677 DOI: 10.1038/s41467-022-34868-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.
Collapse
Affiliation(s)
- Joern Pezoldt
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carolin Wiechers
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mangge Zou
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maria Litovchenko
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marjan Biocanin
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Beckstette
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.512472.7Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, 30625 Hannover, Germany ,grid.7491.b0000 0001 0944 9128Genome Informatics Group, Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Katarzyna Sitnik
- grid.6583.80000 0000 9686 6466Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Palatella
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Guido van Mierlo
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wanze Chen
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Gardeux
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Stefan Floess
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maria Ebel
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julie Russeil
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Panagiota Arampatzi
- grid.8379.50000 0001 1958 8658Core Unit Systems Medicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Ehsan Vafardanejad
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Bart Deplancke
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jochen Huehn
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
6
|
Xiong L, Nutt SL, Seillet C. Innate lymphoid cells: More than just immune cells. Front Immunol 2022; 13:1033904. [PMID: 36389661 PMCID: PMC9643152 DOI: 10.3389/fimmu.2022.1033904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Since their discovery, innate lymphoid cells (ILCs) have been described as the innate counterpart of the T cells. Indeed, ILCs and T cells share many features including their common progenitors, transcriptional regulation, and effector cytokine secretion. Several studies have shown complementary and redundant roles for ILCs and T cells, leaving open questions regarding why these cells would have been evolutionarily conserved. It has become apparent in the last decade that ILCs, and rare immune cells more generally, that reside in non-lymphoid tissue have non-canonical functions for immune cells that contribute to tissue homeostasis and function. Viewed through this lens, ILCs would not be just the innate counterpart of T cells, but instead act as a link between sensory cells that monitor any changes in the environment that are not necessarily pathogenic and instruct effector cells that act to maintain body homeostasis. As these non-canonical functions of immune cells are operating in absence of pathogenic signals, it opens great avenues of research for immunologists that they now need to identify the physiological cues that regulate these cells and how the process confers a finer level of control and a greater flexibility that enables the organism to adapt to changing environmental conditions. In the review, we highlight how ILCs participate in the physiologic function of the tissue in which they reside and how physiological cues, in particular neural inputs control their homeostatic activity.
Collapse
Affiliation(s)
- Le Xiong
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Seillet
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Cyril Seillet,
| |
Collapse
|
7
|
Han J, Wan M, Ma Z, He P. The TOX subfamily: all-round players in the immune system. Clin Exp Immunol 2022; 208:268-280. [PMID: 35485425 PMCID: PMC9226143 DOI: 10.1093/cei/uxac037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
The thymocyte selection-related HMG box protein (TOX) subfamily comprises evolutionarily conserved DNA-binding proteins, and is expressed in certain immune cell subsets and plays key roles in the development of CD4+ T cells, innate lymphoid cells (ILCs), T follicular helper (Tfh) cells, and in CD8+ T-cell exhaustion. Although its roles in CD4+ T and natural killer (NK) cells have been extensively studied, recent findings have demonstrated previously unknown roles for TOX in the development of ILCs, Tfh cells, as well as CD8+ T-cell exhaustion; however, the molecular mechanism underlying TOX regulation of these immune cells remains to be elucidated. In this review, we discuss recent studies on the influence of TOX on the development of various immune cells and CD8+ T-cell exhaustion and the roles of specific TOX family members in the immune system. Moreover, this review suggests candidate regulatory targets for cell therapy and immunotherapies.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Makris S, de Winde CM, Horsnell HL, Cantoral-Rebordinos JA, Finlay RE, Acton SE. Immune function and dysfunction are determined by lymphoid tissue efficacy. Dis Model Mech 2022; 15:dmm049256. [PMID: 35072206 PMCID: PMC8807573 DOI: 10.1242/dmm.049256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.
Collapse
Affiliation(s)
- Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte M. de Winde
- Department for Molecular Cell Biology and Immunology, Amsterdam UMC, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Harry L. Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jesús A. Cantoral-Rebordinos
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel E. Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Gong X, Xia L, Su Z. Friend or foe of innate lymphoid cells in inflammation-associated cardiovascular disease. Immunology 2020; 162:368-376. [PMID: 32967038 DOI: 10.1111/imm.13271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
As a distinctive population of leucocytes, innate lymphoid cells (ILCs) participate in immune-mediated diseases and play crucial roles in tissue remodelling after injury. ILC lineages can be divided into helper ILCs and cytotoxic ILCs. Most helper ILCs are integrated into the fabric of tissues and produce different types of cytokines involving in the pathogenesis of many kinds of cardiovascular disease and form intricate response circuits with adaptive immune cells. However, the specific phenotype and function of helper ILC subsets in cardiovascular diseases are still poorly understood. In this review, we firstly highlight the distribution of helper ILCs in cardiovascular system and further discuss the potential contribution of helper ILCs in inflammation-associated cardiovascular disease.
Collapse
Affiliation(s)
- Xiangmei Gong
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Lymph node stromal cells: cartographers of the immune system. Nat Immunol 2020; 21:369-380. [PMID: 32205888 DOI: 10.1038/s41590-020-0635-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
Lymph nodes (LNs) are strategically positioned at dedicated sites throughout the body to facilitate rapid and efficient immunity. Central to the structural integrity and framework of LNs, and the recruitment and positioning of leukocytes therein, are mesenchymal and endothelial lymph node stromal cells (LNSCs). Advances in the last decade have expanded our understanding and appreciation of LNSC heterogeneity, and the role they play in coordinating immunity has grown rapidly. In this review, we will highlight the functional contributions of distinct stromal cell populations during LN development in maintaining immune homeostasis and tolerance and in the activation and control of immune responses.
Collapse
|
11
|
Oherle K, Acker E, Bonfield M, Wang T, Gray J, Lang I, Bridges J, Lewkowich I, Xu Y, Ahlfeld S, Zacharias W, Alenghat T, Deshmukh H. Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs. Immunity 2020; 52:275-294.e9. [PMID: 32075728 PMCID: PMC7382307 DOI: 10.1016/j.immuni.2020.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 05/16/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.
Collapse
Affiliation(s)
- Katherine Oherle
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Elizabeth Acker
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Madeline Bonfield
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Timothy Wang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Ian Lang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - James Bridges
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shawn Ahlfeld
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - William Zacharias
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hitesh Deshmukh
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
12
|
Domingues RG, Hepworth MR. Immunoregulatory Sensory Circuits in Group 3 Innate Lymphoid Cell (ILC3) Function and Tissue Homeostasis. Front Immunol 2020; 11:116. [PMID: 32117267 PMCID: PMC7015949 DOI: 10.3389/fimmu.2020.00116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen a revolution in our understanding of how cells of the immune system are modulated and regulated not only via complex interactions with other immune cells, but also through a range of potent inputs derived from diverse and varied biological systems. Within complex tissue environments, such as the gastrointestinal tract and lung, these systems act to orchestrate and temporally align immune responses, regulate cellular function, and ensure tissue homeostasis and protective immunity. Group 3 Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical regulators of host-commensal mutualism—and respond rapidly to damage, inflammation and infection to restore tissue health. Recent findings place ILC3s as strategic integrators of environmental signals. As a consequence, ILC3s are ideally positioned to detect perturbations in cues derived from the environment—such as the diet and microbiota—as well as signals produced by the host nervous, endocrine and circadian systems. Together these cues act in concert to induce ILC3 effector function, and form critical sensory circuits that continually function to reinforce tissue homeostasis. In this review we will take a holistic, organismal view of ILC3 biology and explore the tissue sensory circuits that regulate ILC3 function and align ILC3 responses with changes within the intestinal environment.
Collapse
Affiliation(s)
- Rita G Domingues
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Matthew R Hepworth
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Camara A, Cordeiro OG, Alloush F, Sponsel J, Chypre M, Onder L, Asano K, Tanaka M, Yagita H, Ludewig B, Flacher V, Mueller CG. Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity 2019; 50:1467-1481.e6. [DOI: 10.1016/j.immuni.2019.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
|
15
|
IL-4Rα-Expressing B Cells Are Required for CXCL13 Production by Fibroblastic Reticular Cells. Cell Rep 2019; 27:2442-2458.e5. [DOI: 10.1016/j.celrep.2019.04.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/14/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
|
16
|
Özbek M, Bayraktaroğlu AG. Developmental study on the ileal Peyer's patches of sheep, and cytokeratin-18 as a possible marker for M cells in follicle associated epithelium. Acta Histochem 2019; 121:311-322. [PMID: 30745250 DOI: 10.1016/j.acthis.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Peyer's patches are known as the immune sensors of the intestine because of their ability to transport luminal antigens. The objective of this study was both to assess the prenatal and postnatal development of sheep ileal Peyer's patches with respect to histomorphology, distribution of CD4+ and CD8+ cells, and localization of proliferating and apoptotic cells, and to examine the morphology of M cells and expression of CK18 in follicle associated epithelium (FAE). We also hypothesized that CK18 could be a potential marker for M cell. Peyer's patches completed their histomorphological development in prenatal period and involuted in the postnatal period. The distribution of the CD4+ and CD8+ cells was similar in the last trimester of pregnancy (days 120-150) and the postnatal period, but differed in the early stages of foetal development (days 70-120). In the prenatal period, the follicular area displayed high levels of proliferation and apoptosis. We observed CK18 immunoreaction only in FAE. While M cells were devoid of microfolds in the early stages of the prenatal period, these cells acquired a prismatic shape and bore distinct apical microfolds in the late prenatal period and postnatal period. As a result, it was determined that, in sheep, the development of the ileal Peyer's patches occurred in the prenatal period, independent of exogenous antigenic stimulation, and in association with high levels of lymphopoiesis and apoptosis in the follicles. We found, for the first time, that CK18 is a novel and reliable marker for FAE in sheep ileal Peyer's patches. We suggest that CK18 positive cells in FAE are M cells.
Collapse
Affiliation(s)
- Mehmet Özbek
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Burdur, Turkey.
| | - Alev Gürol Bayraktaroğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
17
|
Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N. Innate Lymphoid Cells in the Maternal and Fetal Compartments. Front Immunol 2018; 9:2396. [PMID: 30416502 PMCID: PMC6212529 DOI: 10.3389/fimmu.2018.02396] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Pregnancy success is orchestrated by the complex balance between the maternal and fetal immune systems. Herein, we summarize the potential role of innate lymphoid cells (ILCs) in the maternal and fetal compartments. We reviewed published literature describing different ILC subsets [ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells] in the uterus, decidua, fetal tissues [liver, secondary lymphoid organs (SLO), intestine, and lung] and amniotic cavity. ILC1s, ILC2s, and ILC3s are present in the murine uterus prior to and during pregnancy but have only been detected in the non-pregnant endometrium in humans. Specifically, ILC2s reside in the murine uterus from mid-pregnancy to term, ILC1s increase throughout gestation, and ILC3s remain constant. Yet, LTi cells have only been detected in the non-pregnant murine uterus. In the human decidua, ILC1s, ILC3s, and LTi-like cells are more abundant during early gestation, whereas ILC2s increase at the end of pregnancy. Decidual ILC1s were also detected during mid-gestation in mice. Interestingly, functional decidual ILC2s and ILC3s increased in women who underwent spontaneous preterm labor, indicating the involvement of such cells in this pregnancy complication. Fetal ILCs exist in the liver, SLO, intestine, lung, and amniotic cavity. The fetal liver is thought to be the source of ILC progenitors since the differentiation of these cells from hematopoietic stem cells occurs at this site, and mature ILC subsets can be found in this compartment as well. The interaction between LTi cells and specialized stromal cells is important during the formation of SLO. Mature ILCs are found at the mucosal surfaces of the lung and intestine, from where they can extravasate into the amniotic cavity. Amniotic fluid ILCs express high levels of RORγt, CD161, and CD103, hallmarks of ILC3s. Such cells are more abundant in the second trimester than later in gestation. Although amniotic fluid ILC3s produce IL-17A and TNFα, indicating their functionality, their numbers in patients with intra-amniotic infection/inflammation remain unchanged compared to those without this pregnancy complication. Collectively, these findings suggest that maternal (uterine and decidual) ILCs play central roles in both the initiation and maintenance of pregnancy, and fetal ILCs participate in the development of immunity.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
18
|
Prados A, Muñoz-Fernández R, Fernandez-Rubio P, Olivares EG. Characterization of mesenchymal stem/stromal cells with lymphoid tissue organizer cell potential in tonsils from children. Eur J Immunol 2018; 48:829-843. [PMID: 29435977 DOI: 10.1002/eji.201746963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Lymphoid tissue organizer (LTo) cells, identified in mouse and human embryos, are thought to be precursors of stromal cells in secondary lymphoid organs. Whether LTo cells are present in human adults, however remains unknown. We obtained 15 stromal cell lines from tonsils from children who underwent tonsillectomy, and studied the antigen phenotype of these tonsil stromal cell (TSC) lines by flow cytometry and RT-PCR. Cell lines met the minimal criteria proposed by the International Society for Cellular Therapy to define human mesenchymal stem/stromal cells (MSCs): plastic-adherent capacity; expression of CD73, CD90 and CD105, lack of CD45, CD19 and HLA-DR; and capacity to differentiate into adipocytes, osteoblasts and chondrocytes. Furthermore, our TSC lines exhibited an antigen phenotype and functional characteristics very similar to those seen in murine embryo LTo cells: they expressed chemokines CCL19, CCL21 and CXCL13, cytokines TRANCE and IL-7, and adhesion molecules ICAM-1, mucosal addressin cell adhesion molecule (MadCAM)-1 and VCAM-1. The expression of LTo cell-associated markers and functions were upregulated by lymphotoxin (LT)α1β2 and TNF, two cytokines involved in the development and maturation of secondary lymphoid tissues. Our results show that TSCs are tonsil MSCs that differentiate into LTo-like cells in response to the effects of these cytokines.
Collapse
Affiliation(s)
- Alejandro Prados
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Spain
| | - Raquel Muñoz-Fernández
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Spain
| | - Pablo Fernandez-Rubio
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Spain.,Unidad de Gestión Clínica Laboratorios, Complejo Hospitalario Universitario de Granada, Spain
| |
Collapse
|
19
|
Yang J, Cornelissen F, Papazian N, Reijmers RM, Llorian M, Cupedo T, Coles M, Seddon B. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med 2018; 215:1069-1077. [PMID: 29472496 PMCID: PMC5881462 DOI: 10.1084/jem.20170518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Yang et al. identify a new function for IL-7 in permitting efficient entry of T and B lymphocytes into lymph nodes. Maintenance of ILC3s by IL-7 is implicated because ILC3-deficient chimeras exhibit similar trafficking defects. IL-7 is essential for the development and homeostasis of T and B lymphocytes and is critical for neonatal lymph node organogenesis because Il7−/− mice lack normal lymph nodes. Whether IL-7 is a continued requirement for normal lymph node structure and function is unknown. To address this, we ablated IL-7 function in normal adult hosts. Either inducible Il7 gene deletion or IL-7R blockade in adults resulted in a rapid loss of lymph node cellularity and a corresponding defect in lymphocyte entry into lymph nodes. Although stromal and dendritic cell components of lymph nodes were present in normal numbers and representation, innate lymphoid cell (ILC) subpopulations were substantially decreased after IL-7 ablation. Testing lymphocyte homing in bone marrow chimeras reconstituted with Rorc−/− bone marrow confirmed that ILC3s in lymph nodes are required for normal lymphocyte homing. Collectively, our data suggest that maintenance of intact lymph nodes relies on IL-7–dependent maintenance of ILC3 cells.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, England, UK
| | - Ferry Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rogier M Reijmers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miriam Llorian
- The Francis Crick Institute, Kings Cross, London, England, UK
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, England, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, England, UK
| |
Collapse
|
20
|
Zhong C, Zheng M, Zhu J. Lymphoid tissue inducer-A divergent member of the ILC family. Cytokine Growth Factor Rev 2018; 42:5-12. [PMID: 29454785 DOI: 10.1016/j.cytogfr.2018.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
Abstract
Innate lymphoid cells (ILCs) that are capable of producing effector cytokines reminiscent of CD4+ T helper (Th) cells during infections and tissue inflammations have drawn much attention in the immunology field in recent years. Within the ILCs, the lymphoid tissue inducer (LTi) cells that play a critical role in lymphoid organogenesis were identified long before the establishment of the ILC concept. LTi cells, developed and functioning mainly at the fetal stage, and LTi-like cells, presumably generated during the adulthood, are regarded as a subset of type 3 ILCs (ILC3s) because they express the ILC3 lineage-defining transcription factor RORγt, and like other ILC3s, can produce an ILC3 signature cytokine IL-22 and initiate protective immune responses against extracellular bacteria. However, LTi/LTi-like cells have a unique gene expression pattern, and they develop from a progenitor that is distinct from the progenitor of all other ILCs and the progenitor of conventional natural killer (cNK) cells. There are also several other unique features of LTi/LTi-like cells comparing to non-LTi ILC3s. In addition to their classical function in lymphoid organogenesis, LTi/LTi-like cells also have specialized functions in association with the adaptive immune system, which include their effects on T and B cell development, activation and function. In this review, we summarize these specific features of LTi/LTi-like cells and propose that these cells should be considered as a separated innate lymphoid lineage in parallel with other non-LTi ILCs and cNK cells.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Tan JKH, Watanabe T. Determinants of postnatal spleen tissue regeneration and organogenesis. NPJ Regen Med 2018; 3:1. [PMID: 29367882 PMCID: PMC5770394 DOI: 10.1038/s41536-018-0039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/27/2022] Open
Abstract
The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases.
Collapse
Affiliation(s)
- Jonathan K. H. Tan
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229 Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507 Japan
- The Tazuke Kofukai Medical Research Institute/Kitano Hospital, Osaka, 530-8480 Japan
| |
Collapse
|
22
|
Leukocyte-Stromal Interactions Within Lymph Nodes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:1-22. [PMID: 30155619 DOI: 10.1007/978-3-319-78127-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymph nodes play a crucial role in the formation and initiation of immune responses, allowing lymphocytes to efficiently scan for foreign antigens and serving as rendezvous points for leukocyte-antigen interactions. Here we describe the major stromal subsets found in lymph nodes, including fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells, marginal reticular cells, follicular dendritic cells and other poorly defined subsets such as integrin alpha-7+ pericytes. We focus on biomedically relevant interactions with T cells, B cells and dendritic cells, describing pro-survival mechanisms of support for these cells, promotion of their migration and tolerance-inducing mechanisms that help keep the body free of autoimmune-mediated damage.
Collapse
|
23
|
Vascularized Jejunal Mesenteric Lymph Node Transfer: A Novel Surgical Treatment for Extremity Lymphedema. J Am Coll Surg 2017; 225:650-657. [DOI: 10.1016/j.jamcollsurg.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022]
|
24
|
Głobińska A, Kowalski ML. Innate lymphoid cells: the role in respiratory infections and lung tissue damage. Expert Rev Clin Immunol 2017; 13:991-999. [DOI: 10.1080/1744666x.2017.1366314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna Głobińska
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Wang C, Sun W, Ye Y, Bomba HN, Gu Z. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics 2017; 7:3504-3516. [PMID: 28912891 PMCID: PMC5596439 DOI: 10.7150/thno.19017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.
Collapse
Affiliation(s)
- Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Abstract
The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology.
Collapse
Affiliation(s)
- Yotam E Bar-Ephraïm
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Barone F, Gardner DH, Nayar S, Steinthal N, Buckley CD, Luther SA. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation. Front Immunol 2016; 7:477. [PMID: 27877173 PMCID: PMC5100680 DOI: 10.3389/fimmu.2016.00477] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies.
Collapse
Affiliation(s)
- Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Nathalie Steinthal
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
28
|
Lee YGE, Koh GY. Coordinated lymphangiogenesis is critical in lymph node development and maturation. Dev Dyn 2016; 245:1189-1197. [PMID: 27623309 DOI: 10.1002/dvdy.24456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lymph node (LN) formation requires multiple but coordinated signaling from intrinsic and extrinsic cellular components during embryogenesis. However, the contribution and role of lymphatic vessels (LVs) in LN formation and maturation are poorly defined. Here, using lymphatic-specific reporters, Prox1-GFP mice and Vegfc+/LacZ mice, we analyzed migration, assembly, and ingrowth of lymphatic endothelial cells (LECs) in LNs during pre- and postnatal development. RESULTS Prox1+ LECs form string-like connections rather than lymph sac-like structures until E14.5, but the LEC coverage around LN anlagen completes before birth. Compared to wild-type littermates, Vegfc+/LacZ mice had markedly smaller LNs in neonates and adults, presumably due to the decrease in LTi cell clusters and migrating Prox1+ LECs during embryogenesis. In addition, Vegfc-haploinsufficiency or inhibition of VEGFR3 signaling led to an impairment of LN LV ingrowth, resulting in a significant decrease in LN volume. These data indicate that VEGF-C/VEGFR3 signaling plays a substantial role in normal LN formation through proper migration and organization of LECs. CONCLUSIONS Taken together, our results provide compelling evidence that the contribution of LVs through VEGF-C/VEGFR3 signaling is critical in LN development and maturation. Developmental Dynamics 245:1189-1197, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yulia Ga-Eun Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Gou Young Koh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| |
Collapse
|
29
|
Prados A, Kollias G, Koliaraki V. CollagenVI-Cre mice: A new tool to target stromal cells in secondary lymphoid organs. Sci Rep 2016; 6:33027. [PMID: 27604178 PMCID: PMC5015111 DOI: 10.1038/srep33027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
Stromal cells in secondary lymphoid organs (SLOs) are non-hematopoietic cells involved in the regulation of adaptive immune responses. Three major stromal populations have been identified in adult SLOs: fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs) and marginal reticular cells (MRCs). The properties of these individual populations are not clearly defined, mainly due to the lack of appropriate genetic tools, especially for MRCs. Here, we analyzed stromal cell targeting in SLOs from a transgenic mouse strain that expresses Cre recombinase under the CollagenVI promoter, using lineage tracing approaches. We show that these mice target specifically MRCs and FDCs, but not FRCs in Peyer’s patches and isolated lymphoid follicles in the intestine. In contrast, stromal cells in lymph nodes and the spleen do not express the transgene, which renders ColVI-cre mice ideal for the specific targeting of stromal cells in the gut-associated lymphoid tissue (GALT). This funding further supports the hypothesis of organ-specific stromal precursors in SLOs. Interestingly, in all tissues analyzed, there was also high specificity for perivascular cells, which have been proposed to act as FDC precursors. Taken together, ColVI-Cre mice are a useful new tool for the dissection of MRC- and FDC-specific functions and plasticity in the GALT.
Collapse
Affiliation(s)
- Alejandro Prados
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece
| | - George Kollias
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Koliaraki
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece
| |
Collapse
|
30
|
Koning JJ, Konijn T, Lakeman KA, O'Toole T, Kenswil KJG, Raaijmakers MHGP, Michurina TV, Enikolopov G, Mebius RE. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2686-94. [PMID: 27574301 DOI: 10.4049/jimmunol.1501162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice. At day of birth, both mesenchymal CD31(-) and endothelial CD31(+) LTo cells were GFP(+), and only the population of CD31(-) LTo cells contained mesenchymal precursors. These CD31(-)nestin(+) cells are found in the T and B cell zones or in close association with high endothelial venules in adult lymph nodes. Fate mapping of nestin(+) cells unambiguously revealed the contribution of nestin(+) precursor cells to the mesenchymal as well as the endothelial stromal populations within lymph nodes. However, postnatal tamoxifen induced targeting of nestin(+) cells in nes-creER mice showed that most endothelial cells and only a minority of the nonendothelial cells were labeled. Overall our data show that nestin(+) cells contribute to all subsets of the complex stromal populations that can be found in lymph nodes.
Collapse
Affiliation(s)
- Jasper J Koning
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Kim A Lakeman
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands
| | - Keane J G Kenswil
- Department of Hematology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Erasmus Stem Cell Institute, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Marc H G P Raaijmakers
- Department of Hematology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Erasmus Stem Cell Institute, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Tatyana V Michurina
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794; Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724; and Department of Nano-, Bio-, Information, and Cognitive Sciences, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Grigori Enikolopov
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794; Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724; and Department of Nano-, Bio-, Information, and Cognitive Sciences, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, the Netherlands;
| |
Collapse
|
31
|
Chypre M, Seaman J, Cordeiro OG, Willen L, Knoop KA, Buchanan A, Sainson RCA, Williams IR, Yagita H, Schneider P, Mueller CG. Characterization and application of two RANK-specific antibodies with different biological activities. Immunol Lett 2016; 171:5-14. [PMID: 26773232 DOI: 10.1016/j.imlet.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools.
Collapse
Affiliation(s)
- Mélanie Chypre
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry, University of Strasbourg, Strasbourg 67000, France; Prestwick Chemical, Blvd Gonthier d'Andernach, Parc d'innovation, 67400 Illkirch, France
| | | | - Olga G Cordeiro
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry, University of Strasbourg, Strasbourg 67000, France
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Kathryn A Knoop
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Ifor R Williams
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Christopher G Mueller
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry, University of Strasbourg, Strasbourg 67000, France.
| |
Collapse
|
32
|
Hoorweg K, Narang P, Li Z, Thuery A, Papazian N, Withers DR, Coles MC, Cupedo T. A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4257-4263. [PMID: 26378073 DOI: 10.4049/jimmunol.1402584] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 08/22/2015] [Indexed: 11/19/2022]
Abstract
Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs.
Collapse
Affiliation(s)
- Kerim Hoorweg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Priyanka Narang
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Zhi Li
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Anne Thuery
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David R Withers
- Medical Research Council Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Mark C Coles
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Abstract
Over the past decade, a series of discoveries relating to fibroblastic reticular cells (FRCs) — immunologically specialized myofibroblasts found in lymphoid tissue — has promoted these cells from benign bystanders to major players in the immune response. In this Review, we focus on recent advances regarding the immunobiology of lymph node-derived FRCs, presenting an updated view of crucial checkpoints during their development and their dynamic control of lymph node expansion and contraction during infection. We highlight the robust effects of FRCs on systemic B cell and T cell responses, and we present an emerging view of FRCs as drivers of pathology following acute and chronic viral infections. Lastly, we review emerging therapeutic advances that harness the immunoregulatory properties of FRCs.
Collapse
|
34
|
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J. Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annu Rev Immunol 2015; 33:715-45. [DOI: 10.1146/annurev-immunol-032713-120252] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher D. Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Saba Nayar
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Cecile Bénézech
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Jorge Caamaño
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
35
|
Di Caro G, Castino GF, Bergomas F, Cortese N, Chiriva-Internati M, Grizzi F, Mantovani A, Marchesi F. Tertiary lymphoid tissue in the tumor microenvironment: from its occurrence to immunotherapeutic implications. Int Rev Immunol 2015; 34:123-133. [PMID: 25901857 DOI: 10.3109/08830185.2015.1018416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recruitment of immune and inflammatory cells in the microenvironment of solid tumors is highly heterogeneous and follows patterns, varying according to the organ of origin and stage of disease, with critical roles in the process of cancer onset and progression. While adaptive cells are endowed with anti-tumor activities, inflammatory components of the immune infiltrate orchestrate an immunosuppressive microenvironment that reveals ambivalent functions of the immune contexture in the tumor milieu. The balance between opposing pro-tumoral and anti-tumoral immune pathways, which occur concomitantly in the tumor microenvironment, and the regulatory networks of these phenomena have been the target of several immunotherapeutic strategies. While the scarcity of adaptive immune effectors in tumors correlates with dismal prognosis, the pathways of activation of tumor-specific lymphocytes are yet to be fully elucidated. Recently, the occurrence of tertiary lymphoid tissue was revealed to be critical in mediating the dynamics of T cell recruitment and local activation of immune cells in the tumor microenvironment. Thus, tertiary lymphoid tissue assessment and targeting emerge as a promising approach for the design of novel prognostic immune signatures and immunotherapeutic strategies. The immunological behavior of tertiary lymphoid tissue, its occurrence in the tumor immune microenvironment and its clinical relevance are discussed here.
Collapse
Affiliation(s)
- Giuseppe Di Caro
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center , Rozzano, Milan , Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chang JE, Turley SJ. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol 2014; 36:30-9. [PMID: 25499856 DOI: 10.1016/j.it.2014.11.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
Abstract
The initiation of adaptive immune responses depends upon the careful maneuvering of lymphocytes and antigen into and within strategically placed lymph nodes (LNs). Non-hematopoietic stromal cells form the cellular infrastructure that directs this process. Once regarded as merely structural features of lymphoid tissues, these cells are now appreciated as essential regulators of immune cell trafficking, fluid flow, and LN homeostasis. Recent advances in the identification and in vivo targeting of specific stromal populations have resulted in striking new insights to the function of stromal cells and reveal a level of complexity previously unrealized. We discuss here recent discoveries that highlight the pivotal role that stromal cells play in orchestrating immune cell homeostasis and adaptive immunity.
Collapse
Affiliation(s)
- Jonathan E Chang
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
37
|
Tan JKH, Watanabe T. Murine spleen tissue regeneration from neonatal spleen capsule requires lymphotoxin priming of stromal cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1194-203. [PMID: 24951816 DOI: 10.4049/jimmunol.1302115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spleen is a tissue with regenerative capacity, which allows autotransplantation of human spleen fragments to counteract the effects of splenectomy. We now reveal in a murine model that transplant of neonatal spleen capsule alone leads to the regeneration of full spleen tissue. This finding indicates that graft-derived spleen stromal cells, but not lymphocytes, are essential components of tissue neogenesis, a finding verified by transplant and regeneration of Rag1KO spleen capsules. We further demonstrate that lymphotoxin and lymphoid tissue inducer cells participate in two key elements of spleen neogenesis, bulk tissue regeneration and white pulp organization, identifying a lymphotoxin-dependent pathway for neonatal spleen regeneration that contrasts with previously defined lymphotoxin-independent embryonic spleen organogenesis.
Collapse
Affiliation(s)
- Jonathan K H Tan
- Astellas-Kyoto University (AK) Project, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Watanabe
- Astellas-Kyoto University (AK) Project, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
38
|
Jarjour M, Jorquera A, Mondor I, Wienert S, Narang P, Coles MC, Klauschen F, Bajénoff M. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. ACTA ACUST UNITED AC 2014; 211:1109-22. [PMID: 24863064 PMCID: PMC4042641 DOI: 10.1084/jem.20132409] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The lymph node follicular dendritic cell (FDC) network is derived from the expansion and differentiation of marginal reticular cells, as are the new FDCs generated during an immune response. Follicular dendritic cells (FDCs) regulate B cell function and development of high affinity antibody responses but little is known about their biology. FDCs associate in intricate cellular networks within secondary lymphoid organs. In vitro and ex vivo methods, therefore, allow only limited understanding of the genuine immunobiology of FDCs in their native habitat. Herein, we used various multicolor fate mapping systems to investigate the ontogeny and dynamics of lymph node (LN) FDCs in situ. We show that LN FDC networks arise from the clonal expansion and differentiation of marginal reticular cells (MRCs), a population of lymphoid stromal cells lining the LN subcapsular sinus. We further demonstrate that during an immune response, FDCs accumulate in germinal centers and that neither the recruitment of circulating progenitors nor the division of local mature FDCs significantly contributes to this accumulation. Rather, we provide evidence that newly generated FDCs also arise from the proliferation and differentiation of MRCs, thus unraveling a critical function of this poorly defined stromal cell population.
Collapse
Affiliation(s)
- Meryem Jarjour
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Audrey Jorquera
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Isabelle Mondor
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Priyanka Narang
- Center for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD York, England, UK
| | - Mark C Coles
- Center for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD York, England, UK
| | - Frederick Klauschen
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| |
Collapse
|
39
|
TNFα-dependent development of lymphoid tissue in the absence of RORγt⁺ lymphoid tissue inducer cells. Mucosal Immunol 2014; 7:602-14. [PMID: 24129162 PMCID: PMC4264842 DOI: 10.1038/mi.2013.79] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
Abstract
Lymphoid tissue often forms within sites of chronic inflammation. Here we report that expression of the proinflammatory cytokine tumor necrosis factor α (TNFα) drives development of lymphoid tissue in the intestine. Formation of this ectopic lymphoid tissue was not dependent on the presence of canonical RORgt(+) lymphoid tissue-inducer (LTi) cells, because animals expressing increased levels of TNFα but lacking RORgt(+) LTi cells (TNF/Rorc(gt)(-/-) mice) developed lymphoid tissue in inflamed areas. Unexpectedly, such animals developed several lymph nodes (LNs) that were structurally and functionally similar to those of wild-type animals. TNFα production by F4/80(+) myeloid cells present within the anlagen was important for the activation of stromal cells during the late stages of embryogenesis and for the activation of an organogenic program that allowed the development of LNs. Our results show that lymphoid tissue organogenesis can occur in the absence of LTi cells and suggest that interactions between TNFα-expressing myeloid cells and stromal cells have an important role in secondary lymphoid organ formation.
Collapse
|
40
|
van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, Almeida FF, Ibiza S, Barbosa I, Goverse G, Labão-Almeida C, Godinho-Silva C, Konijn T, Schooneman D, O'Toole T, Mizee MR, Habani Y, Haak E, Santori FR, Littman DR, Schulte-Merker S, Dzierzak E, Simas JP, Mebius RE, Veiga-Fernandes H. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 2014; 508:123-7. [PMID: 24670648 PMCID: PMC4932833 DOI: 10.1038/nature13158] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
The impact of the nutritional status during foetal life in the overall health of adults has been recognised1. However dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs (SLOs) occurs during embryogenesis and is considered to be developmentally programmed2,3. SLO formation dependents on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells2,3,4,5. Here we show that foetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero pre-setting the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi differentiation was controlled by maternal retinoid intake and foetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, while RA receptors directly regulated the Rorc locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
Collapse
Affiliation(s)
- Serge A van de Pavert
- 1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2] Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands. [3]
| | - Manuela Ferreira
- 1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal [2]
| | - Rita G Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Hélder Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rosalie Molenaar
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Lara Moreira-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisca F Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sales Ibiza
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Inês Barbosa
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gera Goverse
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Dennis Schooneman
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Mark R Mizee
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Yasmin Habani
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Esther Haak
- Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Fabio R Santori
- Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Dan R Littman
- Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Elaine Dzierzak
- Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Reina E Mebius
- 1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2]
| | - Henrique Veiga-Fernandes
- 1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal [2]
| |
Collapse
|
41
|
van de Pavert SA, Mebius RE. Development of secondary lymphoid organs in relation to lymphatic vasculature. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:81-91. [PMID: 24276888 DOI: 10.1007/978-3-7091-1646-3_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the initial event in lymphatic endothelial specification occurs slightly before the initiation of lymph node formation in mice, the development of lymphatic vessels and lymph nodes occurs within the same embryonic time frame. Specification of lymphatic endothelial cells starts around embryonic day 10 (E10), followed by endothelial cell budding and formation of the first lymphatic structures. Through lymphatic endothelial cell sprouting these lymph sacs give rise to the lymphatic vasculature which is complete by E15.5 in mice. It is within this time frame that lymph node formation is initiated and the first structure is secured in place. As lymphatic vessels are crucially involved in the functionality of the lymph nodes, the recent insight that both structures depend on common developmental signals for their initiation provides a molecular mechanism for their coordinated formation. Here, we will describe the common developmental signals needed to properly start the formation of lymphatic vessels and lymph nodes and their interdependence in adult life.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands,
| | | |
Collapse
|
42
|
Benezech C, Caamano JH. Generation of lymph node-fat pad chimeras for the study of lymph node stromal cell origin. J Vis Exp 2013:e50952. [PMID: 24378826 DOI: 10.3791/50952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The stroma is a key component of the lymph node structure and function. However, little is known about its origin, exact cellular composition and the mechanisms governing its formation. Lymph nodes are always encapsulated in adipose tissue and we recently demonstrated the importance of this relation for the formation of lymph node stroma. Adipocyte precursor cells migrate into the lymph node during its development and upon engagement of the Lymphotoxin-b receptor switch off adipogenesis and differentiate into lymphoid stromal cells (Bénézech et al.). Based on the lymphoid stroma potential of adipose tissue, we present a method using a lymph node/fat pad chimera that allows the lineage tracing of lymph node stromal cell precursors. We show how to isolate newborn lymph nodes and EYFP(+) embryonic adipose tissue and make a LN/ EYFP(+) fat pad chimera. After transfer under the kidney capsule of a host mouse, the lymph node incorporates local adipose tissue precursor cells and finishes its formation. Progeny analysis of EYFP(+) fat pad cells in the resulting lymph nodes can be performed by flow-cytometric analysis of enzymatically digested lymph nodes or by immunofluorescence analysis of lymph nodes cryosections. By using fat pads from different knockout mouse models, this method will provide an efficient way of analyzing the origin of the different lymph node stromal cell populations.
Collapse
Affiliation(s)
- Cecile Benezech
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham
| | | |
Collapse
|
43
|
Coles M, Veiga-Fernandes H. Insight into lymphoid tissue morphogenesis. Immunol Lett 2013; 156:46-53. [PMID: 23954810 DOI: 10.1016/j.imlet.2013.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022]
Abstract
Secondary lymphoid organs (SLO) are crucial structures for immune-surveillance and rapid immune responses allowing resident lymphocytes to encounter antigen-presenting cells that carry antigens from peripheral tissues. These structures develop during embryonic life through a tightly regulated process that involves interactions between haematopoietic and mesenchymal cells. Importantly, this morphogenesis potential is maintained throughout life since in chronic inflammatory conditions novel "tertiary lymphoid organs" can be generated by processes that are reminiscent of embryonic SLO development. In this review we will discuss early events in SLO morphogenesis, focusing on haematopoietic and mesenchymal cell subsets implicated on the development of lymphoid organs.
Collapse
Affiliation(s)
- Mark Coles
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
44
|
Chai Q, Onder L, Scandella E, Gil-Cruz C, Perez-Shibayama C, Cupovic J, Danuser R, Sparwasser T, Luther SA, Thiel V, Rülicke T, Stein JV, Hehlgans T, Ludewig B. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 2013; 38:1013-24. [PMID: 23623380 PMCID: PMC7111182 DOI: 10.1016/j.immuni.2013.03.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/29/2013] [Indexed: 01/11/2023]
Abstract
The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection. Novel transgenic mouse model that targets FRCs in adult lymph nodes FRC-specific ablation of the LTβR did not abrogate LN development Myofibroblastic FRC precursors generate the basic infrastructure of the adult LN LTβR-mediated FRC maturation is critical for the maintenance of immunocompentence
Collapse
Affiliation(s)
- Qian Chai
- Institute of Immunobiology, Kantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brendolan A, Caamaño JH. Mesenchymal cell differentiation during lymph node organogenesis. Front Immunol 2012; 3:381. [PMID: 23248630 PMCID: PMC3522075 DOI: 10.3389/fimmu.2012.00381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
Secondary lymphoid tissues such as lymph nodes are essential for the interactions between antigen presenting cells and lymphocytes that result in adaptive immune responses that protect the host against invading pathogens. The specialized architecture of these organs facilitates the cognate interactions between antigen-loaded dendritic cells and lymphocytes expressing their specific receptor as well as B-T cell interactions that are at the core of long lasting adaptive immune responses. Lymph nodes develop during embryogenesis as a result of a series of cross-talk interactions between a hematopoietically derived cell lineage called lymphoid tissue inducer cells and stromal cells of mesenchymal origin to form the anlagen of these organs. This review will present an overview of the different signaling pathways and maturation steps that mesenchymal cells undergo during the process of lymph node formation such as cell specification, priming, and maturation to become lymphoid tissue stromal organizer cells.
Collapse
Affiliation(s)
- Andrea Brendolan
- Division of Molecular Oncology, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
46
|
Cupedo T, Stroock A, Coles M. Application of tissue engineering to the immune system: development of artificial lymph nodes. Front Immunol 2012; 3:343. [PMID: 23162557 PMCID: PMC3499788 DOI: 10.3389/fimmu.2012.00343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/28/2012] [Indexed: 01/05/2023] Open
Abstract
The goal of tissue engineering and regenerative medicine is to develop synthetic versions of human organs for transplantation, in vitro toxicology testing and to understand basic mechanisms of organ function. A variety of different approaches have been utilized to replicate the microenvironments found in lymph nodes including the use of a variety of different bio-materials, culture systems, and the application of different cell types to replicate stromal networks found in vivo. Although no system engineered so far can fully replicate lymph node function, progress has been made in the development of microenvironments that can promote the initiation of protective immune responses. In this review we will explore the different approaches utilized to recreate lymph node microenvironments and the technical challenges required to recreate a fully functional immune system in vitro.
Collapse
Affiliation(s)
- Tom Cupedo
- Department of Hematology, Erasmus University Medical Center Rotterdam, Netherlands
| | | | | |
Collapse
|
47
|
Bénézech C, Mader E, Desanti G, Khan M, Nakamura K, White A, Ware CF, Anderson G, Caamaño JH. Lymphotoxin-β receptor signaling through NF-κB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells. Immunity 2012; 37:721-34. [PMID: 22940098 PMCID: PMC3809035 DOI: 10.1016/j.immuni.2012.06.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/20/2012] [Accepted: 06/30/2012] [Indexed: 01/08/2023]
Abstract
Lymph node development during embryogenesis involves lymphotoxin-β receptor engagement and subsequent differentiation of a poorly defined population of mesenchymal cells into lymphoid tissue organizer cells. Here, we showed that embryonic mesenchymal cells with characteristics of adipocyte precursors present in the microenvironment of lymph nodes gave rise to lymph node organizer cells. Signaling through the lymphotoxin-β receptor controlled the fate of adipocyte precursor cells by blocking adipogenesis and instead promoting lymphoid tissue stromal cell differentiation. This effect involved activation of the NF-κB2-RelB signaling pathway and inhibition of the expression of the key adipogenic factors Pparγ and Cebpα. In vivo organogenesis assays show that embryonic and adult adipocyte precursor cells can migrate into newborn lymph nodes and differentiate into a variety of lymph node stromal cells. Thus, we propose that adipose tissues act as a source of lymphoid stroma for lymph nodes and other lymphoid structures associated with fat.
Collapse
Affiliation(s)
- Cécile Bénézech
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Emma Mader
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Guillaume Desanti
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mahmood Khan
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kyoko Nakamura
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea White
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Carl F. Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Graham Anderson
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jorge H. Caamaño
- School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
48
|
Mueller CG, Hess E. Emerging Functions of RANKL in Lymphoid Tissues. Front Immunol 2012; 3:261. [PMID: 22969763 PMCID: PMC3432452 DOI: 10.3389/fimmu.2012.00261] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) members play pivotal roles in embryonic development of lymphoid tissue and their homeostasis. RANKL (Receptor activator of NF-κB ligand, also called TRANCE, TNFSF11) is recognized as an important player in bone homeostasis and lymphoid tissue formation. In its absence bone mass control is deregulated and lymph nodes fail to develop. While its function in bone is well described, there is still little functional insight into the action of RANKL in lymphoid tissue development and homeostasis. Here we provide an overview of the known functions of RANKL, its signaling receptor RANK and its decoy receptor OPG from the perspective of lymphoid tissue development and immune activation in the mouse. Expressed by the hematopoietic lymphoid tissue inducing (LTi) cells and the mesenchymal lymphoid tissue organizer (LTo) cells, RANKL was shown to stimulate Lymphotoxin (LT) expression and to be implicated in LTi cell accumulation. Our recent finding that RANKL also triggers proliferation of adult lymph node stroma suggests that RANKL may furthermore directly activate LTo cells. Beyond bone, the RANKL-RANK-OPG triad plays important roles in immunobiology that are waiting to be unraveled.
Collapse
Affiliation(s)
- Christopher G Mueller
- CNRS, Laboratory of Therapeutic Immunology and Chemistry, Institut de Biologie Moléculaire et Cellulaire, University of Strasbourg Strasbourg, France
| | | |
Collapse
|
49
|
Ferreira M, Domingues RG, Veiga-Fernandes H. Stroma cell priming in enteric lymphoid organ morphogenesis. Front Immunol 2012; 3:219. [PMID: 22837761 PMCID: PMC3402974 DOI: 10.3389/fimmu.2012.00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/07/2012] [Indexed: 12/18/2022] Open
Abstract
The lymphoid system is equipped with a network of specialized platforms located at strategic sites, which grant strict immune-surveillance and efficient immune responses. The development of these peripheral secondary lymphoid organs (SLO) occurs mainly in utero, while tertiary lymphoid structures can form in adulthood generally in response to persistent infection and inflammation. Regardless of the lymphoid tissue and intrinsic cellular and molecular differences, it is now well established that the recruitment of fully functional lymphoid tissue inducer (LTi) cells to presumptive lymphoid organ sites, and their consequent close and reciprocal interaction with resident stroma cells, are central to SLO formation. In contrast, the nature of events that initially prime resident sessile stroma cells to recruit and retain LTi cells remains poorly understood. Recently, new findings revealed early phases of SLO development putting emphasis on mesenchymal and lymphoid tissue initiator cells. Herein we discuss the main tenets of enteric lymphoid organs genesis and focus in the most recent findings that open new perspectives to the understanding of the early phases of lymphoid morphogenesis.
Collapse
Affiliation(s)
- Manuela Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
50
|
Katakai T. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer. Front Immunol 2012; 3:200. [PMID: 22807928 PMCID: PMC3395019 DOI: 10.3389/fimmu.2012.00200] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/28/2012] [Indexed: 11/13/2022] Open
Abstract
The architecture of secondary lymphoid organs (SLOs) is supported by several non-hematopoietic stromal cells. Currently it is established that two distinct stromal subsets, follicular dendritic cells and fibroblastic reticular cells, play crucial roles in the formation of tissue compartments within SLOs, i.e., the follicle and T zone, respectively. Although stromal cells in the anlagen are essential for SLO development, the relationship between these primordial cells and the subsets in adulthood remains poorly understood. In addition, the roles of stromal cells in the entry of antigens into the compartments through some tissue structures peculiar to SLOs remain unclear. A recently identified stromal subset, marginal reticular cells (MRCs), covers the margin of SLOs that are primarily located in the outer edge of follicles and construct a unique reticulum. MRCs are closely associated with specialized endothelial or epithelial structures for antigen transport. The similarities in marker expression profiles and successive localization during development suggest that MRCs directly descend from organizer stromal cells in the anlagen. Therefore, MRCs are thought to be a crucial stromal component for the organization and function of SLOs.
Collapse
Affiliation(s)
- Tomoya Katakai
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Moriguchi, Osaka, Japan
| |
Collapse
|