1
|
Bongoni AK, Kiss B, McRae JL, Salvaris EJ, Fisicaro N, Muntz F, Németh BZ, Nagy ZA, Kocsis A, Gál P, Cowan PJ, Pál G. Targeting the complement lectin pathway with a highly specific MASP-2 inhibitor protects against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2025; 122:e2424754122. [PMID: 40228118 PMCID: PMC12037010 DOI: 10.1073/pnas.2424754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common complication in several clinical scenarios including kidney transplantation. Mannan-binding lectin-associated serine proteinase (MASP)-2 is essential for activation of the complement lectin pathway, which has been implicated in the pathogenesis of renal IRI and therefore represents a potential therapeutic target. We developed a new, affinity-enhanced MASP-2 inhibitor, EVO24, by directed evolution of the D2 domain of human tissue factor pathway inhibitor. EVO24 was fused with a human IgG1-Fc to create the homodimer EVO24L, which potently and selectively inhibited the lectin pathway in human and mouse serum in vitro. EVO24L was tested in a mouse model of unilateral warm renal IRI. EVO24L administered before and after ischemia significantly protected against IRI, with improved renal function as well as reduced tubular injury and inflammatory cell infiltration at 24 h compared to vehicle-treated mice. Immunofluorescence analyses showed reduced deposition of complement components (C3d, C4d, and C9) and reduced expression of VCAM-1, indicating a decrease in complement activation and endothelial cell activation. Additionally, EVO24L treatment lowered plasma levels of complement C5a, hyaluronan (a marker of endothelial glycocalyx shedding), and the proinflammatory cytokines IL-6 and TNF-α. Our findings indicate that EVO24L inhibits acute inflammatory responses in renal IRI by blocking the lectin pathway, confirming the important role of this pathway in acute ischemic kidney injury and warranting further investigation of EVO24L in clinical settings.
Collapse
Affiliation(s)
- Anjan K. Bongoni
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Jennifer L. McRae
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Fenella Muntz
- Bioresources Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Bálint Zoltán Németh
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Andrea Kocsis
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
- Institute of Molecular Life Sciences, Hungarian Research Network, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Péter Gál
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
- Institute of Molecular Life Sciences, Hungarian Research Network, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Peter J. Cowan
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC3052, Australia
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| |
Collapse
|
2
|
Stocker BW, LaCroix IS, Erickson C, Gallagher LT, Ramser BJ, Thielen O, Hallas W, Mitra S, Moore EE, Hansen K, D'Alessandro A, Silliman CC, Cohen MJ. Trauma patients with type O blood exhibit unique multiomics signature with decreased lectin pathway of complement levels. J Trauma Acute Care Surg 2024; 97:753-763. [PMID: 38745347 PMCID: PMC11502284 DOI: 10.1097/ta.0000000000004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND Patients with type O blood may have an increased risk of hemorrhagic complications because of lower baseline levels of von Willebrand factor and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond von Willebrand factor and factor VIII alone. METHODS Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multiomics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multiomics data were compared between patients with type O blood versus all other patients. RESULTS There were 288 patients with multiomics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend toward decreased mortality secondary to traumatic brain injury compared with other causes (traumatic brain injury, 44.4% vs. 87.5%; p = 0.055). Type O patients had decreased levels of mannose-binding lectin and mannose-binding lectin-associated serine proteases 1 and 2, which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION Blood type O patients have a unique multiomics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase, possibly leading to a survival advantage, especially in traumatic brain injury. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
Affiliation(s)
- Benjamin W Stocker
- From the Department of Surgery (B.W.S., L.T.G., B.J.R., O.T., W.H., S.M., E.E.M., C.C.S., M.J.C.), and Department of Biochemistry and Molecular Genetics (I.S.L., C.E., K.H., A.D.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora; Department of Surgery (E.E.M.), Ernest E Moore Shock Trauma Center, Denver Health Medical Center; Vitalant Research Institute (C.C.S.), Denver; and Department of Pediatrics (C.C.S.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zafirovski A, Zafirovska M, Kuhelj D, Pintar T. The Impact of Biomarkers on the Early Detection of Acute Mesenteric Ischemia. Biomedicines 2023; 12:85. [PMID: 38255192 PMCID: PMC10812952 DOI: 10.3390/biomedicines12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND acute mesenteric ischemia (AMI) is a life-threatening condition that is caused by inadequate blood flow through the mesenteric vessel and is related to high mortality rates due to systemic complications. This study aims to systematically review the available literature concerning the major findings of possible biomarkers for early detection of acute mesenteric ischemia in the human population. METHODS studies that measured the performance of biomarkers during acute mesenteric ischemia were identified with the search of PubMed, Embase, Medline, and Cochrane library. RESULTS from a total of 654 articles, 46 articles examining 14 different biomarkers were filtered, falling within our inclusion criteria. Intestinal fatty acid-binding protein (I-FABP) was the most commonly researched biomarker regarding AMI, with sensitivity ranging from 61.5% to 100% and specificity ranging from 40% to 100%. The second most commonly researched biomarker was D-dimer, with a sensitivity of 60-100% and a specificity of 18-85.71%. L-lactate had a sensitivity of 36.6-90.91% and a specificity of 64.29-96%. Several parameters within the blood count were examined as potential markers for AMI, including NLR, PLR, MPV, RDW, DNI, and IG. Citrulline, interleukin 6 (IL-6), and procalcitonin (PCT) were the least-researched biomarkers. CONCLUSION different biomarkers showed different accuracies in detecting AMI. I-FABP and D-dimer have been the most researched and shown to be valuable in the diagnosis of AMI, whereas L-lactate could be used as an additional tool. Ischemia-modified albumin (IMA), alpha glutathione S-transferase (αGST), interleukin 6 (IL-6), and citrulline showed potential use in their respective studies. However, further research needs to be done on larger sample sizes and with controls to reduce bias. Several studies showed that neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), mean platelet volume (MPV), red-cell distribution width (RDW), delta neutrophil index (DNI), and immature granulocytes (IGs) might be useful, as well at the same time be widely distributed and affordable in combination with other markers presenting higher specificity and sensitivity.
Collapse
Affiliation(s)
- Aleksandar Zafirovski
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (M.Z.); (D.K.)
- Department of Radiology, General Hospital Jesenice, Cesta Maršala Tita 112, 4270 Jesenice, Slovenia
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Marija Zafirovska
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (M.Z.); (D.K.)
| | - Dimitrij Kuhelj
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (M.Z.); (D.K.)
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Tadeja Pintar
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (M.Z.); (D.K.)
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Wu F, Dorman B, Zeineddin A, Kozar RA. Fibrinogen Inhibits Metalloproteinase-9 Activation and Syndecan-1 Cleavage to Protect Lung Function in ApoE Null Mice After Hemorrhagic Shock. J Surg Res 2023; 288:208-214. [PMID: 37023568 PMCID: PMC10192037 DOI: 10.1016/j.jss.2023.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/05/2022] [Accepted: 02/18/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Obesity is associated with higher mortality following trauma, although the pathogenesis is unclear. Both obesity and trauma are associated with syndecan-1 shedding and metalloproteinase-9 (MMP-9) activation, which can adversely affect endothelial cell function. We recently demonstrated that fibrinogen stabilizes endothelial cell surface syndecan-1 to reduce shedding and maintain endothelial barrier integrity. We thus hypothesized that MMP-9 activation and syndecan-1 shedding would be exacerbated by obesity after trauma but attenuated by fibrinogen-based resuscitation. MATERIALS AND METHODS ApoE null (-/-) mice were fed a Western diet to induce obesity. Mice were subjected to hemorrhage shock and laparotomy then resuscitated with Lactated Ranger's (LR) or LR containing fibrinogen and compared to null and lean sham wild type mice. Mean arterial pressure (MAP) was monitored. Bronchial alveolar lavage protein as an indicator of permeability and lung histopathologic injury were assessed. Syndecan-1 protein and active MMP-9 protein were measured. RESULTS MAP was similar between lean sham and ApoE-/- sham mice. However, following hemorrhage, ApoE-/- mice resuscitated with fibrinogen had significantly higher MAP than LR mice. Lung histopathologic injury and permeability were increased in LR compared to fibrinogen resuscitated animals. Compared with lean sham mice, both active MMP-9 and cleaved syndecan-1 level were significantly higher in ApoE-/- sham mice. Resuscitation with fibrinogen but not lactated Ringers largely reduced these changes. CONCLUSIONS Fibrinogen as a resuscitative adjunct in ApoE-/- mice after hemorrhage shock augmented MAP and reduced histopathologic injury and lung permeability, suggesting fibrinogen protects the endothelium by inhibiting MMP-9-mediated syndecan-1 cleavage in obese mice.
Collapse
Affiliation(s)
- Feng Wu
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brooke Dorman
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ahmad Zeineddin
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rosemary Ann Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Zeineddin A, Wu F, Dong JF, Vesselinov R, Neal MD, Corash L, Pati S, Kozar RA. Early lyophilized cryoprecipitate enhances the ADAMTS13/VWF ratio to reduce systemic endotheliopathy and lessen lung injury in a mouse multiple-trauma hemorrhage model. J Trauma Acute Care Surg 2023; 95:S137-S143. [PMID: 37211640 PMCID: PMC10389395 DOI: 10.1097/ta.0000000000004065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Recent studies in severely injured patients suggest an important role of von Willebrand Factor (VWF) and ADAMTS13 in the endotheliopathy of trauma (EoT). We hypothesized that the early use of cryoprecipitate would be effective as an endothelial protector by supplementing physiologic VWF and ADAMTS13 to reverse the EoT. We tested a pathogen-reduced lyophilized cryoprecipitate (LPRC) that could expedite the early administration of cryoprecipitate in the battlefield. METHODS A mouse multiple-trauma model with uncontrolled hemorrhage (UCH) from liver injury was utilized followed by hypotensive resuscitation (mean arterial pressure, 55-60) × 3 hours with lactated Ringer's (LR), fresh frozen plasma (FFP), conventional pathogen-reduced cryoprecipitate (CC), and LPRC. Blood was collected for measurement of syndecan-1, VWF, and ADAMTS13 by ELISA. Lungs were stained for histopathologic injury and syndecan-1 and bronchial alveolar lavage (BAL) fluid harvested for protein as an indicator of permeability. Statistical analysis was by ANOVA followed by Bonferroni correction. RESULTS Following multiple trauma and UCH, blood loss was similar across groups. Mean volume of resuscitation was higher in the LR group compared with the other resuscitation groups. Lung histopathologic injury, syndecan-1 immunostaining and BAL protein were higher with LR compared with resuscitation with FFP and CC, while LPRC further reduced BAL compared with FFP and CC. The ADAMTS13/VWF ratio was significantly lower in LR but improved with FFP and CC, comparable to shams while LPRC further increased this ratio. CONCLUSION The protective effects of CC and LPRC were comparable to FFP in ameliorating the EoT in our murine multiple trauma and UCH model. Lyophilized cryoprecipitate may also provide additional benefit by enhancing the ADAMTS13/VWF ratio. These data provide evidence of the safety and efficacy of LPRC and warrants further investigation for its potential application in military settings once approved for human administration.
Collapse
|
6
|
Vidaurre MDPH, Osborn BK, Lowak KD, McDonald MM, Wang YWW, Pa V, Richter JR, Xu Y, Arnold K, Liu J, Cardenas JC. A 3- O-sulfated heparan sulfate dodecasaccharide (12-mer) suppresses thromboinflammation and attenuates early organ injury following trauma and hemorrhagic shock. Front Immunol 2023; 14:1158457. [PMID: 37122735 PMCID: PMC10140401 DOI: 10.3389/fimmu.2023.1158457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Dysregulated inflammation and coagulation are underlying mechanisms driving organ injury after trauma and hemorrhagic shock. Heparan sulfates, cell surface glycosaminoglycans abundantly expressed on the endothelial surface, regulate a variety of cellular processes. Endothelial heparan sulfate containing a rare 3-O-sulfate modification on a glucosamine residue is anticoagulant and anti-inflammatory through high-affinity antithrombin binding and sequestering of circulating damage-associated molecular pattern molecules. Our goal was to evaluate therapeutic potential of a synthetic 3-O-sulfated heparan sulfate dodecasaccharide (12-mer, or dekaparin) to attenuate thromboinflammation and prevent organ injury. Methods Male Sprague-Dawley rats were pre-treated subcutaneously with vehicle (saline) or dekaparin (2 mg/kg) and subjected to a trauma/hemorrhagic shock model through laparotomy, gut distention, and fixed-pressure hemorrhage. Vehicle and dekaparin-treated rats were resuscitated with Lactated Ringer's solution (LR) and compared to vehicle-treated fresh-frozen-plasma-(FFP)-resuscitated rats. Serial blood samples were collected at baseline, after induction of shock, and 3 hours after fluid resuscitation to measure hemodynamic and metabolic shock indicators, inflammatory mediators, and thrombin-antithrombin complex formation. Lungs and kidneys were processed for organ injury scoring and immunohistochemical analysis to quantify presence of neutrophils. Results Induction of trauma and hemorrhagic shock resulted in significant increases in thrombin-antithrombin complex, inflammatory markers, and lung and kidney injury scores. Compared to vehicle, dekaparin treatment did not affect induction, severity, or recovery of shock as indicated by hemodynamics, metabolic indicators of shock (lactate and base excess), or metrics of bleeding, including overall blood loss, resuscitation volume, or hematocrit. While LR-vehicle-resuscitated rodents exhibited increased lung and kidney injury, administration of dekaparin significantly reduced organ injury scores and was similar to organ protection conferred by FFP resuscitation. This was associated with a significant reduction in neutrophil infiltration in lungs and kidneys and reduced lung fibrin deposition among dekaparin-treated rats compared to vehicle. No differences in organ injury, neutrophil infiltrates, or fibrin staining between dekaparin and FFP groups were observed. Finally, dekaparin treatment attenuated induction of thrombin-antithrombin complex and inflammatory mediators in plasma following trauma and hemorrhagic shock. Conclusion Anti-thromboinflammatory properties of a synthetic 3-O-sulfated heparan sulfate 12-mer, dekaparin, could provide therapeutic benefit for mitigating organ injury following major trauma and hemorrhagic shock.
Collapse
Affiliation(s)
- Maria del Pilar Huby Vidaurre
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baron K. Osborn
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaylie D. Lowak
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michelle M. McDonald
- Department of Pathology and Laboratory Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yao-Wei W. Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Veda Pa
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Department of Surgery, Division of Trauma and Acute Care Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katelyn Arnold
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica C. Cardenas
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
The Role of Complement in HSCT-TMA: Basic Science to Clinical Practice. Adv Ther 2022; 39:3896-3915. [PMID: 35781192 PMCID: PMC9402756 DOI: 10.1007/s12325-022-02184-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022]
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a common complication occurring post-HSCT and is associated with substantial morbidity and mortality if not promptly identified and treated. Emerging evidence suggests a central role for the complement system in the pathogenesis of HSCT-TMA. The complement system has also been shown to interact with other pathways and processes including coagulation and inflammation, all of which are activated following HSCT. Three endothelial cell-damaging “hits” are required for HSCT-TMA genesis: a genetic predisposition or existing damage, an endothelial cell-damaging conditioning regimen, and additional damaging insults. Numerous risk factors for the development of HSCT-TMA have been identified (including primary diagnosis, graft type, and conditioning regimen) and validated lists of relatively simple diagnostic signs and symptoms exist, many utilizing routine clinical and laboratory assessments. Despite the relative ease with which HSCT-TMA can be screened for, it is often overlooked or masked by other common post-transplant conditions. Recent evidence that patients with HSCT-TMA may also concurrently present with these differential diagnoses only serve to further confound its identification and treatment. HSCT-TMA may be treated, or even prevented, by removing or ameliorating triggering “hits”, and recent studies have also shown substantial utility of complement-targeted therapies in this patient population. Further investigation into optimal management and treatment strategies is needed. Greater awareness of TMA post-HSCT is urgently needed to improve patient outcomes; the objective of this article is to clarify current understanding, explain underlying complement biology and provide simple tools to aid the early recognition, management, and monitoring of HSCT-TMA.
Collapse
|
9
|
Hu Q, Liu X, Liu Z, Liu Z, Zhang H, Zhang Q, Huang Y, Chen Q, Wang W, Zhang X. Dexmedetomidine reduces enteric glial cell injury induced by intestinal ischaemia-reperfusion injury through mitochondrial localization of TERT. J Cell Mol Med 2022; 26:2594-2606. [PMID: 35366055 PMCID: PMC9077307 DOI: 10.1111/jcmm.17261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
This study was performed to uncover the effects of dexmedetomidine on oxidative stress injury induced by mitochondrial localization of telomerase reverse transcriptase (TERT) in enteric glial cells (EGCs) following intestinal ischaemia-reperfusion injury (IRI) in rat models. Following establishment of intestinal IRI models by superior mesenteric artery occlusion in Wistar rats, the expression and distribution patterns of TERT were detected. The IRI rats were subsequently treated with low or high doses of dexmedetomidine, followed by detection of ROS, MDA and GSH levels. Calcein cobalt and rhodamine 123 staining were also carried out to detect mitochondrial permeability transition pore (MPTP) and the mitochondrial membrane potential (MMP), respectively. Moreover, oxidative injury of mtDNA was determined, in addition to analyses of EGC viability and apoptosis. Intestinal tissues and mitochondria of EGCs were badly damaged in the intestinal IRI group. In addition, there was a reduction in mitochondrial localization of TERT, oxidative stress, whilst apoptosis of EGCs was increased and proliferation was decreased. On the other hand, administration of dexmedetomidine was associated with promotion of mitochondrial localization of TERT, whilst oxidative stress, MPTP and mtDNA in EGCs, and EGC apoptosis were all inhibited, and the MMP and EGC viability were both increased. A positive correlation was observed between different doses of dexmedetomidine and protective effects. Collectively, our findings highlighted the antioxidative effects of dexmedetomidine on EGCs following intestinal IRI, as dexmedetomidine alleviated mitochondrial damage by enhancing the mitochondrial localization of TERT.
Collapse
Affiliation(s)
- Qian Hu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiao‐Ming Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zheng‐Ren Liu
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zhi‐Yi Liu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huai‐Gen Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qin Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yuan‐Lu Huang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiu‐Hong Chen
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wen‐Xiang Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - XueKang Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
10
|
Mossanen Parsi M, Duval C, Ariëns RAS. Vascular Dementia and Crosstalk Between the Complement and Coagulation Systems. Front Cardiovasc Med 2021; 8:803169. [PMID: 35004913 PMCID: PMC8733168 DOI: 10.3389/fcvm.2021.803169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular Dementia (VaD) is a neurocognitive disorder caused by reduced blood flow to the brain tissue, resulting in infarction, and is the second most common type of dementia. The complement and coagulation systems are evolutionary host defence mechanisms activated by acute tissue injury to induce inflammation, clot formation and lysis; recent studies have revealed that these systems are closely interlinked. Overactivation of these systems has been recognised to play a key role in the pathogenesis of neurological disorders such as Alzheimer's disease and multiple sclerosis, however their role in VaD has not yet been extensively reviewed. This review aims to bridge the gap in knowledge by collating current understanding of VaD to enable identification of complement and coagulation components involved in the pathogenesis of this disorder that may have their effects amplified or supressed by crosstalk. Exploration of these mechanisms may unveil novel therapeutic targets or biomarkers that would improve current treatment strategies for VaD.
Collapse
Affiliation(s)
| | | | - Robert A. S. Ariëns
- Discovery and Translational Science Department, School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Gavriilaki E, Ho VT, Schwaeble W, Dudler T, Daha M, Fujita T, Jodele S. Role of the lectin pathway of complement in hematopoietic stem cell transplantation-associated endothelial injury and thrombotic microangiopathy. Exp Hematol Oncol 2021; 10:57. [PMID: 34924021 PMCID: PMC8684592 DOI: 10.1186/s40164-021-00249-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022] Open
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a life-threatening syndrome that occurs in adult and pediatric patients after hematopoietic stem cell transplantation. Nonspecific symptoms, heterogeneity within study populations, and variability among current diagnostic criteria contribute to misdiagnosis and underdiagnosis of this syndrome. Hematopoietic stem cell transplantation and associated risk factors precipitate endothelial injury, leading to HSCT-TMA and other endothelial injury syndromes such as hepatic veno-occlusive disease/sinusoidal obstruction syndrome, idiopathic pneumonia syndrome, diffuse alveolar hemorrhage, capillary leak syndrome, and graft-versus-host disease. Endothelial injury can trigger activation of the complement system, promoting inflammation and the development of endothelial injury syndromes, ultimately leading to organ damage and failure. In particular, the lectin pathway of complement is activated by damage-associated molecular patterns (DAMPs) on the surface of injured endothelial cells. Pattern-recognition molecules such as mannose-binding lectin (MBL), collectins, and ficolins—collectively termed lectins—bind to DAMPs on injured host cells, forming activation complexes with MBL-associated serine proteases 1, 2, and 3 (MASP-1, MASP-2, and MASP-3). Activation of the lectin pathway may also trigger the coagulation cascade via MASP-2 cleavage of prothrombin to thrombin. Together, activation of complement and the coagulation cascade lead to a procoagulant state that may result in development of HSCT-TMA. Several complement inhibitors targeting various complement pathways are in clinical trials for the treatment of HSCT-TMA. In this article, we review the role of the complement system in HSCT-TMA pathogenesis, with a focus on the lectin pathway.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department-BMT Unit, G Papanikolaou Hospital, Leof. Papanikolaou, Pilea Chortiatis 570 10, Thessaloniki, Greece.
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Thomas Dudler
- Discovery and Development, Omeros Corporation, 201 Elliott Ave W, Seattle, WA, 98119, USA
| | - Mohamed Daha
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Teizo Fujita
- Department Fukushima Prefectural General Hygiene Institute, 61-Watari-Nakakado, Fukushima, Fukushima, 960-8141, Japan
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| |
Collapse
|
12
|
Howard MC, Nauser CL, Vizitiu DA, Sacks SH. Fucose as a new therapeutic target in renal transplantation. Pediatr Nephrol 2021; 36:1065-1073. [PMID: 32472330 PMCID: PMC8009799 DOI: 10.1007/s00467-020-04588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
Ischaemia/reperfusion injury (IRI) is an inevitable and damaging consequence of the process of kidney transplantation, ultimately leading to delayed graft function and increased risk of graft loss. A key driver of this adverse reaction in kidneys is activation of the complement system, an important part of the innate immune system. This activation causes deposition of complement C3 on renal tubules as well as infiltration of immune cells and ultimately damage to the tubules resulting in reduced kidney function. Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement. CL-11 binds to a ligand that is exposed on the renal tubules by the stress caused by IRI, and through attached proteases, CL-11 activates complement and this contributes to the consequences outlined above. Recent work in our lab has shown that this damage-associated ligand contains a fucose residue that aids CL-11 binding and promotes complement activation. In this review, we will discuss the clinical context of renal transplantation, the relevance of the complement system in IRI, and outline the evidence for the role of CL-11 binding to a fucosylated ligand in IRI as well as its downstream effects. Finally, we will detail the simple but elegant theory that increasing the level of free fucose in the kidney acts as a decoy molecule, greatly reducing the clinical consequences of IRI mediated by CL-11.
Collapse
Affiliation(s)
- Mark C Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Christopher L Nauser
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Steven H Sacks
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Wu M, Rowe JM, Fleming SD. Complement Initiation Varies by Sex in Intestinal Ischemia Reperfusion Injury. Front Immunol 2021; 12:649882. [PMID: 33868287 PMCID: PMC8047102 DOI: 10.3389/fimmu.2021.649882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
Intestinal ischemia reperfusion (IR)-induced tissue injury represents an acute inflammatory response with significant morbidity and mortality. The mechanism of IR-induced injury is not fully elucidated, but recent studies suggest a critical role for complement activation and for differences between sexes. To test the hypothesis that complement initiation differs by sex in intestinal IR, we performed intestinal IR on male and female WT C57B6L/, C1q-/-, MBL-/-, or properdin (P)-/- mice. Intestinal injury, C3b and C5a production and ex vivo secretions were analyzed. Initial studies demonstrated a difference in complement mRNA and protein in male and female WT mice. In response to IR, male C1q-, MBL- and P-deficient mice sustained less injury than male WT mice. In contrast, only female MBL-/- mice sustained significantly less injury than female wildtype mice. Importantly, wildtype, C1q-/- and P-/- female mice sustained significant less injury than the corresponding male mice. In addition, both C1q and MBL expression and deposition increased in WT male mice, while only elevated MBL expression and deposition occurred in WT female mice. These data suggested that males use both C1q and MBL pathways, while females tend to depend on lectin pathway during intestinal IR. Females produced significantly less serum C5a in MBL-/- and P-/- mice. Our findings suggested that complement activation plays a critical role in intestinal IR in a sex-dependent manner.
Collapse
Affiliation(s)
- Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jennifer M. Rowe
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Fresh frozen plasma attenuates lung injury in a novel model of prolonged hypotensive resuscitation. J Trauma Acute Care Surg 2021; 89:S118-S125. [PMID: 32282752 DOI: 10.1097/ta.0000000000002719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hemorrhagic shock remains a leading cause of early death among severely injured in both civilian and military settings. As future military operations will require strategies allowing prolonged field care of the injured, we sought to develop an in vivo model of prolonged hypotensive resuscitation (PHR) and to evaluate the role of plasma-based resuscitation in this model. We hypothesized that resuscitation with fresh frozen plasma (FFP) would mitigate lung injury when compared with Hextend in a rodent model of PHR. METHODS Mice underwent laparotomy and hemorrhagic shock (mean arterial blood pressure, 35 ± 5 mm Hg × 90 minutes) followed by PHR with either FFP or Hextend to maintain a mean arterial blood pressure of 55 mm Hg to 60 mm Hg for 6 hours. Sham animals underwent cannulation only. At the end of 6 hours, animals were euthanized, and lung tissue harvested for measurement of histopathologic injury, inflammation and permeability using hematoxylin and eosin staining, myeloperoxidase immunofluorescence staining and Evans Blue dye. Pulmonary syndecan-1 immunostaining was assessed as an indicator of endothelial cell integrity. RESULTS All animals in the FFP, Hextend, and sham groups survived to the end of resuscitation. Resuscitation with FFP mitigated lung histopathologic injury compared with Hextend (histologic injury score of 4.38 ± 2.07 vs. 7.5 ± 0.93, scale of 0-9, p = 0.002) and was comparable to shams (histologic injury score of 4.0 ± 1.93, scale of 0-9, p = 0.99). Fresh frozen plasma also reduced lung inflammation (0.116 ± 0.044 vs. 0.308 ± 0.054 relative fluorescence of myeloperoxidase, p = 0.002) and restored pulmonary syndecan-1 (0.514 ± 0.061 vs. 0.059 ± 0.021, relative syndecan-1 fluorescence, p < 0.001) when compared with Hextend. Consistently, FFP mitigated lung hyperpermeability compared with Hextend (7.30 ± 1.34 μg vs. 14.91 ± 5.55 μg Evans blue/100 mg lung tissue, p = 0.005). CONCLUSION We have presented a novel model of PHR of military relevance to the prolonged field care environment. In this model, FFP maintains its pulmonary protective effects using a PHR strategy compared with Hextend, which supports the need for further development and implementation of plasma-based resuscitation in the forward environment. LEVEL OF EVIDENCE Basic science.
Collapse
|
15
|
Peck CT, Strauß S, Stahl GL, Vogt PM, Busche MN. Mannose-binding lectin (MBL) and the lectin complement pathway play a role in cutaneous ischemia and reperfusion injury. Innov Surg Sci 2020; 5:43-51. [PMID: 33506093 PMCID: PMC7798300 DOI: 10.1515/iss-2020-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 11/15/2022] Open
Abstract
Objectives Cutaneous ischemia/reperfusion (CI/R) injury has shown to play a significant role in chronic wounds such as decubitus ulcers, diabetic foot ulcers, atherosclerotic lesions, and venous stasis wounds. CI/R also plays a role in free tissue transfer in reconstructive microsurgery and has been linked to clinical burn-depth progression after thermal injury. While the role of the complement system has been elucidated in multiple organ systems, evidence is lacking with respect to its role in the skin. Therefore, we evaluated the role of the complement system in CI/R injury. Methods Using a single pedicle skin flap mouse model of acute CI/R, we performed CI/R in wild-type (WT) mice and complement knock out (KO) mice, deficient in either C1q (C1q KO; classical pathway inhibition), mannose-binding lectin (MBL null; lectin pathway inhibition) or factor B (H2Bf KO; alternative pathway inhibition). Following 10 h ischemia and 7 days reperfusion, mice were sacrificed, flaps harvested and flap viability assessed via Image J software. The flap necrotic area was expressed as % total flap area. In another group, mice were sacrificed following CI/R with 10 h ischemia and 48 h reperfusion. Two cranial skin flap samples were taken for gene expression analysis of IL1b, IL6, TNFα, ICAM1, VCAM1, IL10, IL13 using real-time polymerase chain reaction (RT-PCR). Results Following CI/R, MBL null mice had a statistically significant smaller %necrotic flap area compared to WT mice (10.6 vs. 43.1%; p<0.05) suggesting protection from CI/R. A significantly reduced mean %necrotic flap area was not seen in either C1q KO or H2Bf KO mice relative to WT (22.9 and 31.3 vs. 43.1%; p=0.08 and p=0.244, respectively). There were no statistically significant differences between groups for markers of inflammation (TNFα, ICAM1, VCAM1, IL1b, IL6). In contrast, mRNA levels of IL10, a regulator of inflammation, were significantly increased in the MBL null group (p=0.047). Conclusions We demonstrated for the first time a significant role of MBL and the lectin complement pathway in ischemia/reperfusion injury of the skin and a potential role for IL10 in attenuating CI/R injury, as IL10 levels were significantly increased in the tissue from the CI/R-protected MBL null group.
Collapse
Affiliation(s)
- Claas-Tido Peck
- Hannover Medical School, Department of Plastic, Aesthetic, Hand, and Reconstructive Surgery, Hannover, Germany
| | - Sarah Strauß
- Hannover Medical School, Department of Plastic, Aesthetic, Hand, and Reconstructive Surgery, Hannover, Germany
| | - Gregory L Stahl
- Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter-Maria Vogt
- Hannover Medical School, Department of Plastic, Aesthetic, Hand, and Reconstructive Surgery, Hannover, Germany
| | - Marc N Busche
- Hannover Medical School, Department of Plastic, Aesthetic, Hand, and Reconstructive Surgery, Hannover, Germany.,Leverkusen Hospital gGmbH, Department of Plastic and Aesthetic Surgery, Burn Surgery, Leverkusen, Germany
| |
Collapse
|
16
|
Koucký M, Malíčková K, Kopřivová H, Cindrová-Davies T, Čapek V, Pařízek A. Serum mannose-binding lectin (MBL) concentrations are reduced in non-pregnant women with previous adverse pregnancy outcomes. Scand J Immunol 2020; 92:e12892. [PMID: 32335925 DOI: 10.1111/sji.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
Mannose-binding lectin (MBL) is an important component of the innate immunity, and it is responsible not only for opsonization of micro-organisms, but also for efferocytosis. The aim of this study was to investigate whether MBL concentrations and lectin complement pathway activity are altered in non-pregnant women with previous adverse pregnancy outcomes. Patients were divided into four groups on the basis of their history of pregnancy complications, including control patients who had uncomplicated pregnancies and term deliveries (control, n = 33), and three groups of patients with a history of pregnancy complications, including preterm labour (n = 29), recurrent miscarriage (n = 19) or unexplained intrauterine foetal death (IUFD; n = 17). All women enrolled in the study had an interval of three to six months following their previous pregnancy, and they agreed to have a blood sample taken. We found significantly higher MBL concentrations and functional activity of the lectin complement pathway in healthy controls who had previous uneventful term pregnancies (1341 ng/mL; activity 100% (IQR: 62%-100%)), compared to women with the history of IUFD (684 ng/mL, P = .008; activity 8.5% (IQR: 0%-97.8%), P = .011), recurrent miscarriage (524 ng/mL, P = .022; activity 44% (IQR: 4%-83%), P = .011) or preterm labour (799 ng/mL, P = .022; activity 62.5% (IQR: 0%-83%), P = .003). Our results suggest that inadequate function of the complement lectin pathway is associated with a higher risk of preterm labour, recurrent miscarriage and unexplained intrauterine foetal death.
Collapse
Affiliation(s)
- Michal Koucký
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Karin Malíčková
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Helena Kopřivová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Tereza Cindrová-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Antonín Pařízek
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
17
|
Frederiksen K, Krag AE, Larsen JB, Kiil BJ, Thiel S, Hvas AM. Remote ischemic preconditioning does not influence lectin pathway protein levels in head and neck cancer patients undergoing surgery. PLoS One 2020; 15:e0230411. [PMID: 32267878 PMCID: PMC7141620 DOI: 10.1371/journal.pone.0230411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer patients who undergo tumor removal, and reconstructive surgery by transfer of a free tissue flap, are at high risk of surgical site infection and ischemia-reperfusion injury. Complement activation through the lectin pathway (LP) may contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) is a recent experimental treatment targeting ischemia-reperfusion injury. The study aims were to investigate LP protein plasma levels in head and neck cancer patients compared with healthy individuals, to explore whether RIPC affects LP protein levels in head and neck cancer surgery, and finally to examine the association between postoperative LP protein levels and the risk of surgical site infection. METHODS Head and neck cancer patients (n = 60) undergoing tumor resection and reconstructive surgery were randomized 1:1 to RIPC or sham intervention administered intraoperatively. Blood samples were obtained preoperatively, 6 hours after RIPC/sham, and on the first postoperative day. LP protein plasma levels were measured utilizing time-resolved immunofluorometric assays. RESULTS H-ficolin and M-ficolin levels were significantly increased in cancer patients compared with healthy individuals (both P ≤ 0.02). Conversely, mannan-binding lectin (MBL)-associated serine protease (MASP)-1, MASP-3, collectin liver-1 (CL-L1), and MBL-associated protein of 44 kilodalton (MAp44) levels were decreased in cancer patients compared with healthy individuals (all P ≤ 0.04). A significant reduction in all LP protein levels was observed after surgery (all P < 0.001); however, RIPC did not affect LP protein levels. No difference was demonstrated in postoperative LP protein levels between patients who developed surgical site infection and patients who did not (all P > 0.13). CONCLUSIONS The LP was altered in head and neck cancer patients. LP protein levels were reduced after surgery, but intraoperative RIPC did not influence the LP. Postoperative LP protein levels were not associated with surgical site infection.
Collapse
Affiliation(s)
- Kristine Frederiksen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Engel Krag
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Birgitte Jul Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Takasumi M, Omori T, Machida T, Ishida Y, Hayashi M, Suzuki T, Homma Y, Endo Y, Takahashi M, Ohira H, Fujita T, Sekine H. A novel complement inhibitor sMAP-FH targeting both the lectin and alternative complement pathways. FASEB J 2020; 34:6598-6612. [PMID: 32219899 DOI: 10.1096/fj.201902475r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 03/08/2020] [Indexed: 02/02/2023]
Abstract
Inhibition of the complement activation has emerged as an option for treatment of a range of diseases. Activation of the lectin and alternative pathways (LP and AP, respectively) contribute to the deterioration of conditions in certain diseases such as ischemia-reperfusion injuries and age-related macular degeneration (AMD). In the current study, we generated dual complement inhibitors of the pathways MAp44-FH and sMAP-FH by fusing full-length MAp44 or small mannose-binding lectin-associated protein (sMAP), LP regulators, with the N-terminal five short consensus repeat (SCR) domains of complement factor H (SCR1/5-FH), an AP regulator. The murine forms of both fusion proteins formed a complex with endogenous mannose-binding lectin (MBL) or ficolin A in the circulation when administered in mice intraperitoneally. Multiple complement activation assays revealed that sMAP-FH had significantly higher inhibitory effects on activation of the LP and AP in vivo as well as in vitro compared to MAp44-FH. Human form of sMAP-FH also showed dual inhibitory effects on LP and AP activation in human sera. Our results indicate that the novel fusion protein sMAP-FH inhibits both the LP and AP activation in mice and in human sera, and could be an effective therapeutic agent for diseases in which both the LP and AP activation are significantly involved.
Collapse
Affiliation(s)
- Mika Takasumi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Tomoko Omori
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Manabu Hayashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Toshiyuki Suzuki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima-City, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| |
Collapse
|
19
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Chipman AM, Pati S, Potter D, Wu F, Lin M, Kozar RA. Is all plasma created equal? A pilot study of the effect of interdonor variability. J Trauma Acute Care Surg 2020; 88:121-127. [PMID: 31688783 PMCID: PMC7055504 DOI: 10.1097/ta.0000000000002529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clinical benefits of plasma as an adjunct for treatment of hemorrhagic shock (HS) have been well established. However, its use is not without risk. Little is understood regarding the clinical implications of plasma variability. We hypothesized there to be interdonor variability in plasma that would impact endothelial and organ function postinjury. METHODS Pulmonary endothelial cells (ECs) were incubated with plasma from 24 random donors, and transendothelial electrical resistance was measured. Plasma units with a more or less protective effect on reducing EC permeability were selected for testing in vivo. Syndecan-1 and cytokines were measured. Mice underwent laparotomy and then HS followed by resuscitation with the selected plasma units and were compared with mice receiving no resuscitation and shams. Lung tissue was sectioned and stained for myeloperoxidase and pulmonary syndecan-1 and scored for lung histopathologic injury. RESULTS Plasma from 24 donors revealed variability in the reversal of EC monolayer hyperpermeability; transendothelial electrical resistance for the more protective plasma was significantly higher than that for the less protective plasma (0.801 ± 0.022 vs. 0.744 ± 0.035; p = 0.002). Syndecan-1 was also markedly increased in the less protective compared with the more protective plasma (38427 ± 1257 vs. 231 ± 172 pg/mL, p < 0.001), while cytokines varied. In vivo, the more protective plasma mitigated lung histopathologic injury compared with the less protective plasma (1.56 ± 0.27 vs. 2.33 ± 0.47, respectively; p = 0.005). Similarly, myeloperoxidase was significantly reduced in the more protective compared with the less protective plasma group (2.590 ± 0.559 vs. 6.045 ± 1.885; p = 0.02). Lastly, pulmonary syndecan-1 immunostaining was significantly increased in the more protective compared with the less protective plasma group (20.909 ± 8.202 vs. 9.325 ± 3.412; p = 0.018). CONCLUSION These data demonstrate significant interdonor variability in plasma that can adversely influence the protective effects of plasma-based resuscitation on HS-induced lung injury. This may have important implications for patient safety and clinical outcomes.
Collapse
Affiliation(s)
- Amanda M Chipman
- From the Department of Surgery, Shock Trauma Center (A.M.C., R.A.K., F.W.), School of Medicine, University of Maryland, Baltimore, Maryland; and Department of Lab Medicine (S.P., D.P., M.L.), University of California, San Francisco, California
| | | | | | | | | | | |
Collapse
|
21
|
Szakács D, Kocsis A, Szász R, Gál P, Pál G. Novel MASP-2 inhibitors developed via directed evolution of human TFPI1 are potent lectin pathway inhibitors. J Biol Chem 2019; 294:8227-8237. [PMID: 30952698 PMCID: PMC6527154 DOI: 10.1074/jbc.ra119.008315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
The lectin pathway (LP) of the complement system is an important antimicrobial defense mechanism, but it also contributes significantly to ischemia reperfusion injury (IRI) associated with myocardial infarct, stroke, and several other clinical conditions. Mannan-binding lectin-associated serine proteinase 2 (MASP-2) is essential for LP activation, and therefore, it is a potential drug target. We have previously developed the first two generations of MASP-2 inhibitors by in vitro evolution of two unrelated canonical serine proteinase inhibitors. These inhibitors were selective LP inhibitors, but their nonhuman origin rendered them suboptimal lead molecules for drug development. Here, we present our third-generation MASP-2 inhibitors that were developed based on a human inhibitor scaffold. We subjected the second Kunitz domain of human tissue factor pathway inhibitor 1 (TFPI1 D2) to directed evolution using phage display to yield inhibitors against human and rat MASP-2. These novel TFPI1-based MASP-2 inhibitor (TFMI-2) variants are potent and selective LP inhibitors in both human and rat serum. Directed evolution of the first Kunitz domain of TFPI1 had already yielded the potent kallikrein inhibitor, Kalbitor® (ecallantide), which is an FDA-approved drug to treat acute attacks of hereditary angioedema. Like hereditary angioedema, acute IRI is also related to the uncontrolled activation of a specific plasma serine proteinase. Therefore, TFMI-2 variants are promising lead molecules for drug development against IRI.
Collapse
Affiliation(s)
- Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest
| | - Róbert Szász
- Department of Hematology, Institute of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest; EvolVeritas Biotechnology Ltd., Somogyi Béla u. 17, H-6600 Szentes, Hungary.
| |
Collapse
|
22
|
Karadeniz E, Bayramoğlu A, Atamanalp SS. Sensitivity and Specificity of the Platelet-Lymphocyte Ratio and the Neutrophil-Lymphocyte Ratio in Diagnosing Acute Mesenteric Ischemia in Patients Operated on for the Diagnosis of Mesenteric Ischemia: A Retrospective Case-Control Study. J INVEST SURG 2019; 33:774-781. [PMID: 30885018 DOI: 10.1080/08941939.2019.1566418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim: The present study aims to determine whether various hematological parameters and ratios of patients could be used to diagnose AMI. Materials and Methods: The subjects of the study are the patients who were hospitalized with an acute mesenteric ischemia (AMI) pre-diagnosis and underwent surgery as a consequence. The patients who were determined to have the diagnosis of AMI intraoperatively are categorized in the AMI Group. The patients whose operations do not reveal AMI (negative exploration) are categorized in the Control Group. These two groups are compared in terms of hematological parameters and rates. Results: In the study, the PLR (p = 0.017), NLR (p = 0.33), PDW (0.023), RDW (p = 0.025) values are significantly higher in the AMI group compared to the control group while the LYMP (p = 0.023) count is significantly lower. Conclusions: For the patients admitted to the emergency clinics with suspected AMI, the increased PLR, NLR, PDW, and RDW values together with the reduced lymphocyte count can be used to support the diagnosis.
Collapse
Affiliation(s)
- Erdem Karadeniz
- Department of General Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Atıf Bayramoğlu
- Department of Emergency Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
23
|
Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol 2018; 9:1851. [PMID: 30135690 PMCID: PMC6092519 DOI: 10.3389/fimmu.2018.01851] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various complement proteins with special emphasis on the components of the lectin (LP) and the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), which are responsible for the activation of the cascade, are straightforward targets of inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also subjects of drug development. Recent discoveries about cross-talks between the LP and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated serine proteases (MASPs) are not just responsible for LP activation, but they are also indispensable for efficient AP activation. Activated MASP-3 has recently been shown to be the enzyme that continuously supplies factor D (FD) for the AP by cleaving pro-factor D (pro-FD). In this aspect, MASP-3 emerges as a novel feasible target for the regulation of AP activity. MASP-1 was shown to be required for AP activity on various surfaces, first of all on LPS of Gram-negative bacteria.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
24
|
Wu F, Peng Z, Park PW, Kozar RA. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock. Shock 2018; 48:340-345. [PMID: 28107214 DOI: 10.1097/shk.0000000000000832] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Syndecan-1 (Sdc1) is considered a biomarker of injury to the endothelial glycocalyx following hemorrhagic shock, with shedding of Sdc1 deleterious. Resuscitation with fresh frozen plasma (FFP) has been correlated with restitution of pulmonary Sdc1 and reduction of lung injury, but the precise contribution of Sdc1 to FFPs protection in the lung remains unclear. Human lung endothelial cells were used to assess the time and dose-dependent effect of FFP on Sdc1 expression and the effect of Sdc1 silencing on in vitro endothelial cell permeability and actin stress fiber formation. Wild-type and Sdc1 mice were subjected to hemorrhagic shock followed by resuscitation with lactated Ringers (LR) or FFP and compared with shock alone and shams. Lungs were harvested after 3 h for analysis of permeability, histology, and inflammation and for measurement of syndecan- 2 and 4 expression. In vitro, FFP enhanced pulmonary endothelial Sdc1 expression in time- and dose-dependent manners and loss of Sdc1 in pulmonary endothelial cells worsened permeability and stress fiber formation by FFP. Loss of Sdc1 in vivo led to equivalency between LR and FFP in restoring pulmonary injury, inflammation, and permeability after shock. Lastly, Sdc1 mice demonstrated a significant increase in pulmonary syndecan 4 expression after hemorrhagic shock and FFP-based resuscitation. Taken together, our findings support a key role for Sdc1 in modulating pulmonary protection by FFP after hemorrhagic shock. Our results also suggest that other members of the syndecan family may at least be contributing to FFP's effects on the endothelium, an area that warrants further investigation.
Collapse
Affiliation(s)
- Feng Wu
- *Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland †Department of Anesthesia, University of Texas Health Science Center at Houston, Houston, Texas ‡Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
25
|
Pati S, Peng Z, Wataha K, Miyazawa B, Potter DR, Kozar RA. Lyophilized plasma attenuates vascular permeability, inflammation and lung injury in hemorrhagic shock. PLoS One 2018; 13:e0192363. [PMID: 29394283 PMCID: PMC5796727 DOI: 10.1371/journal.pone.0192363] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/21/2018] [Indexed: 11/18/2022] Open
Abstract
In severe trauma and hemorrhage the early and empiric use of fresh frozen plasma (FFP) is associated with decreased morbidity and mortality. However, utilization of FFP comes with the significant burden of shipping and storage of frozen blood products. Dried or lyophilized plasma (LP) can be stored at room temperature, transported easily, reconstituted rapidly with ready availability in remote and austere environments. We have previously demonstrated that FFP mitigates the endothelial injury that ensues after hemorrhagic shock (HS). In the current study, we sought to determine whether LP has similar properties to FFP in its ability to modulate endothelial dysfunction in vitro and in vivo. Single donor LP was compared to single donor FFP using the following measures of endothelial cell (EC) function in vitro: permeability and transendothelial monolayer resistance; adherens junction preservation; and leukocyte-EC adhesion. In vivo, using a model of murine HS, LP and FFP were compared in measures of HS- induced pulmonary vascular inflammation and edema. Both in vitro and in vivo in all measures of EC function, LP demonstrated similar effects to FFP. Both FFP and LP similarly reduced EC permeability, increased transendothelial resistance, decreased leukocyte-EC binding and persevered adherens junctions. In vivo, LP and FFP both comparably reduced pulmonary injury, inflammation and vascular leak. Both FFP and LP have similar potent protective effects on the vascular endothelium in vitro and in lung function in vivo following hemorrhagic shock. These data support the further development of LP as an effective plasma product for human use after trauma and hemorrhagic shock.
Collapse
Affiliation(s)
- Shibani Pati
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Zhanglong Peng
- Department of Anesthesia, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Katherine Wataha
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel R Potter
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rosemary A Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
26
|
Fritzinger D, Gorsuch B, Stahl G, Vogel CW. Complement depletion with humanised cobra venom factor: Efficacy in preclinical models of vascular diseases. Thromb Haemost 2017; 113:548-52. [DOI: 10.1160/th14-04-0300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
SummaryThe complement system is an intrinsic part of the immune system and has important functions in both innate and adaptive immunity. On the other hand, inadvertent or misdirected complement activation is also involved in the pathogenesis of many diseases, contributing solely or significantly to tissue injury and disease development. Multiple approaches to develop pharmacological agents to inhibit complement are currently being pursued. We have developed a conceptually different approach of not inhibiting but depleting complement, based on the complement-depleting activities of cobra venom factor (CVF), a non-toxic cobra venom component with structural and functional homology to complement component C3. We developed a humanised version of CVF by creating human complement component C3 derivatives with complement-depleting activities of CVF (humanised CVF) as a promising therapeutic agent for diseases with complement pathogenesis. Here we review the beneficial therapeutic effect of humanised CVF in several murine models of vascular diseases such as reperfusion injury.
Collapse
|
27
|
Wenk M, Van Aken H, Zarbock A. The New World Health Organization Recommendations on Perioperative Administration of Oxygen to Prevent Surgical Site Infections: A Dangerous Reductionist Approach? Anesth Analg 2017; 125:682-687. [PMID: 28682957 DOI: 10.1213/ane.0000000000002256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In October 2016, the World Health Organization (WHO) published recommendations for preventing surgical site infections (SSIs). Among those measures is a recommendation to administer oxygen at an inspired fraction of 80% intra- and postoperatively for up to 6 hours. SSIs have been identified as a global health problem, and the WHO should be commended for their efforts. However, this recommendation focuses only on the patient's "wound," ignores other organ systems potentially affected by hyperoxia, and may ultimately worsen patient outcomes.The WHO advances a "strong recommendation" for the use of a high inspired oxygen fraction even though the quality of evidence is only moderate. However, achieving this goal by disregarding other potentially lethal complications seems inappropriate, particularly in light of the weak evidence underpinning the use of high fractions of oxygen to prevent SSI. Use of such a strategy thus should be intensely discussed by anesthesiologists and perioperative physicians.Normovolemia, normotension, normoglycemia, normothermia, and normoventilation can clearly be safely applied to most patients in most clinical scenarios. But the liberal application of hyperoxemia intraoperatively and up to 6 hours postoperatively, as suggested by the WHO, is questionable from the viewpoint of anesthesia and perioperative medicine, and its effects will be discussed in this article.
Collapse
Affiliation(s)
- Manuel Wenk
- From the Department of Anesthesiology and Intensive Care, University Hospital Münster, Münster, Germany
| | | | | |
Collapse
|
28
|
Zhuang H, Han S, Li Y, Kienhöfer D, Lee P, Shumyak S, Meyerholz R, Rosadzinski K, Rosner D, Chan A, Xu Y, Segal M, Sobel E, Yang LJ, Hoffmann MH, Reeves WH. A Novel Mechanism for Generating the Interferon Signature in Lupus: Opsonization of Dead Cells by Complement and IgM. Arthritis Rheumatol 2017; 68:2917-2928. [PMID: 27274010 DOI: 10.1002/art.39781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In vitro studies suggest that the type I interferon (IFN) signature seen in most lupus patients results from Fcγ receptor-mediated uptake of nucleic acid-containing immune complexes by plasmacytoid dendritic cells and engagement of endosomal Toll-like receptors. The aim of this study was to reexamine the pathogenesis of the IFN signature in vivo. METHODS Lupus was induced in mice by injecting pristane. Some mice were treated with normal immunoglobulin or with cobra venom factor to deplete complement. The IFN signature was evaluated by polymerase chain reaction. The IFN signature also was determined in C4-deficient patients and control subjects. RESULTS Wild-type C57BL/6 mice with pristane-induced lupus developed a strong IFN signature, which was absent in immunoglobulin-deficient (μMT), C3-/- , and CD18-/- mice. Intravenous infusion of normal IgM, but not IgG, restored the IFN signature in μMT mice, and the IFN signature in wild-type mice was inhibited by depleting complement, suggesting that opsonization by IgM and complement is involved in IFN production. Consistent with that possibility, the levels of "natural" IgM antibodies reactive with dead cells were increased in pristane-treated wild-type mice compared with untreated controls, and in vivo phagocytosis of dead cells was impaired in C3-deficient mice. To examine the clinical relevance of these findings, we identified 10 C4-deficient patients with lupus-like disease and compared them with 152 C4-intact patients and 21 healthy controls. In comparison with C4-intact patients, C4-deficient patients had a different clinical/serologic phenotype and lacked the IFN signature. CONCLUSION These studies define previously unrecognized roles of natural IgM, complement, and complement receptors in generating the IFN signature in lupus.
Collapse
Affiliation(s)
| | | | - Yi Li
- University of Florida, Gainesville
| | | | - Pui Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Yuan Xu
- University of Florida, Gainesville
| | | | | | | | | | | |
Collapse
|
29
|
Intraluminal tranexamic acid inhibits intestinal sheddases and mitigates gut and lung injury and inflammation in a rodent model of hemorrhagic shock. J Trauma Acute Care Surg 2017; 81:358-65. [PMID: 27027557 DOI: 10.1097/ta.0000000000001056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intravenous tranexamic acid (TXA) is an effective adjunct after hemorrhagic shock (HS) because of its antifibrinolytic properties. TXA is also a serine protease inhibitor, and recent laboratory data demonstrated that intraluminal TXA into the small bowel inhibited digestive proteases and protected the gut. A Disintegrin And Metalloproteinase 17 (ADAM-17) and tumor necrosis factor α (TNF-α) are effective sheddases of intestinal syndecan-1, which when shed, exposes the underlying intestinal epithelium to digestive proteases and subsequent systemic insult. We therefore hypothesized that intraluminal TXA as a serine protease inhibitor would reduce intestinal sheddases and syndecan-1 shedding, mitigating gut and distant organ (lung) damage. METHODS Mice underwent 90 minutes of HS to a mean arterial pressure of 35 ± 5 mm Hg followed by the intraluminal administration of TXA or vehicle. After 3 hours, the small intestine, lung, and blood were collected for analysis. RESULTS Intraluminal TXA significantly reduced gut and lung histopathologic injury and inflammation compared with HS alone. Gut, lung, and systemic ADAM-17 and TNF-α were significantly increased by HS but lessened by TXA. In addition, gut and lung syndecan-1 immunostaining were preserved and systemic shedding lessened after TXA. TXA reduced ADAM-17 and TNF-α, but not syndecan-1, in TXA-sham animals compared with sham vehicles. CONCLUSION Results of the present study demonstrate a beneficial effect of intraluminal TXA in the gut and lung after experimental HS in part because of the inhibition of the syndecan-1 shedding by ADAM-17 and TNF-α. Further studies are needed to determine if orally administered TXA could provide similar intestinal protection and thus be of potential benefit to patients with survivable hemorrhage at risk for organ injury. This is particularly relevant in patients or soldiers who may not have access to timely medical care.
Collapse
|
30
|
Chun N, Haddadin AS, Liu J, Hou Y, Wong KA, Lee D, Rushbrook JI, Gulaya K, Hines R, Hollis T, Nistal Nuno B, Mangi AA, Hashim S, Pekna M, Catalfamo A, Chin HY, Patel F, Rayala S, Shevde K, Heeger PS, Zhang M. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury. PLoS One 2017; 12:e0179450. [PMID: 28662037 PMCID: PMC5491012 DOI: 10.1371/journal.pone.0179450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury.
Collapse
Affiliation(s)
- Nicholas Chun
- Nephrology Division, Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ala S. Haddadin
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Junying Liu
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Yunfang Hou
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Karen A. Wong
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Daniel Lee
- Department of Surgery, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Julie I. Rushbrook
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Karan Gulaya
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Roberta Hines
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tamika Hollis
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Beatriz Nistal Nuno
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Abeel A. Mangi
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sabet Hashim
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marcela Pekna
- Department of Medical Chemistry and Cell Biology, Göteborg University, Göteborg, Sweden
| | - Amy Catalfamo
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Hsiao-ying Chin
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Foramben Patel
- Department of Biomedical Sciences, Long Island University, Brookville, New York, United States of America
| | - Sravani Rayala
- Department of Biomedical Sciences, Long Island University, Brookville, New York, United States of America
| | - Ketan Shevde
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Peter S. Heeger
- Nephrology Division, Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ming Zhang
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Cell Biology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
31
|
Cernoch M, Viklicky O. Complement in Kidney Transplantation. Front Med (Lausanne) 2017; 4:66. [PMID: 28611987 PMCID: PMC5447724 DOI: 10.3389/fmed.2017.00066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
The complement system is considered to be an important part of innate immune system with a significant role in inflammation processes. The activation can occur through classical, alternative, or lectin pathway, resulting in the creation of anaphylatoxins C3a and C5a, possessing a vast spectrum of immune functions, and the assembly of terminal complement cascade, capable of direct cell lysis. The activation processes are tightly regulated; inappropriate activation of the complement cascade plays a significant role in many renal diseases including organ transplantation. Moreover, complement cascade is activated during ischemia/reperfusion injury processes and influences delayed graft function of kidney allografts. Interestingly, complement system has been found to play a role in both acute cellular and antibody-mediated rejections and thrombotic microangiopathy. Therefore, complement system may represent an interesting therapeutical target in kidney transplant pathologies.
Collapse
Affiliation(s)
- Marek Cernoch
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
32
|
Lack of species-specific difference in pulmonary function when using mouse versus human plasma in a mouse model of hemorrhagic shock. J Trauma Acute Care Surg 2017; 81:S171-S176. [PMID: 27768665 DOI: 10.1097/ta.0000000000001221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. METHODS Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. RESULTS There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. CONCLUSION The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
Collapse
|
33
|
Abstract
An underlying genetic predisposition to necrotizing enterocolitis (NEC) is increasingly being recognized. Candidate gene or pathway approaches as well as genome-wide approaches are beginning to identify potential pathogenic variants for NEC in premature infants. However, a majority of these studies have not yielded definitive results because of limited sample size and lack of validation. Despite these challenges, understanding the contribution of genetic variation to NEC is important for providing new insights into the pathogenesis of NEC as well as allowing for targeted care of infants with inherent susceptibility. In this review we provide a summary of published genetic association studies in NEC along with defining the challenges and possible future approaches.
Collapse
Affiliation(s)
- Alain Cuna
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City, 2401 Gillham Rd, Kansas City, MO 64108
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City, 2401 Gillham Rd, Kansas City, MO 64108.
| |
Collapse
|
34
|
Mannose-Binding Lectin: Biologic Characteristics and Role in the Susceptibility to Infections and Ischemia-Reperfusion Related Injury in Critically Ill Neonates. J Immunol Res 2017; 2017:7045630. [PMID: 28246614 PMCID: PMC5299167 DOI: 10.1155/2017/7045630] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 01/14/2023] Open
Abstract
The mannose-binding lectin (MBL) is a member of the collectin family, belonging to the innate immunity system. Genetic, biologic, and clinical properties of MBL have been widely investigated throughout the last decades, although some interesting aspects of its potential clinical relevance are still poorly understood. Low circulating concentrations of MBL have been associated with increased risk of infection and poor neurologic outcome in neonates. On the other hand, an excessive and uncontrolled inflammatory response by the neonatal intestine after the exposure to luminal bacteria, leading to an increased production of MBL, may be involved in the onset of necrotizing enterocolitis. The purpose of the present review is to summarize the current knowledge about genetic and biologic characteristics of MBL and its role in the susceptibility to infections and to ischemia-reperfusion related tissue injuries to better explore its clinical relevance during the perinatal period and the possible future therapeutic applications.
Collapse
|
35
|
Orsini F, Chrysanthou E, Dudler T, Cummings WJ, Takahashi M, Fujita T, Demopulos G, De Simoni MG, Schwaeble W. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J Neuroinflammation 2016; 13:213. [PMID: 27577570 PMCID: PMC5006610 DOI: 10.1186/s12974-016-0684-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. This work defines the contributions of each of the three LP-associated enzymes-mannan-binding lectin-associated serine protease (MASP)-1, MASP-2, and MASP-3-to ischemic brain injury in experimental mouse models of stroke. METHODS Focal cerebral ischemia was induced in wild-type (WT) mice or mice deficient for defined complement components by transient middle cerebral artery occlusion (tMCAO) or three-vessel occlusion (3VO). The inhibitory MASP-2 antibody was administered systemically 7 and 3.5 days before and at reperfusion in WT mice in order to assure an effective MASP-2 inhibition throughout the study. Forty-eight hours after ischemia, neurological deficits and infarct volumes were assessed. C3 deposition and microglia/macrophage morphology were detected by immunohistochemical, immunofluorescence, and confocal analyses. RESULTS MASP-2-deficient mice (MASP-2(-/-)) and WT mice treated with an antibody that blocks MASP-2 activity had significantly reduced neurological deficits and histopathological damage after transient ischemia and reperfusion compared to WT or control-treated mice. Surprisingly, MASP-1/3(-/-) mice were not protected, while mice deficient in factor B (fB(-/-)) showed reduced neurological deficits compared to WT mice. Consistent with behavioral and histological data, MASP-2(-/-) had attenuated C3 deposition and presented with a significantly higher proportion of ramified, surveying microglia in contrast to the hypertrophic pro-inflammatory microglia/macrophage phenotype seen in the ischemic brain tissue of WT mice. CONCLUSIONS This work demonstrates the essential role of the low-abundant MASP-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy
| | - Elvina Chrysanthou
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.,Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.,MRC Toxicology Unit, Leicester, LE1 9HN, UK
| | - Thomas Dudler
- OMEROS Corporation, 201 Elliott Ave W, Seattle, WA, 98119, USA
| | | | - Minoru Takahashi
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | | | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.
| | - Wilhelm Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
36
|
Yuan B, Zhou S, Lu Y, Liu J, Jin X, Wan H, Wang F. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis. Gut Liver 2016; 9:734-40. [PMID: 25717051 PMCID: PMC4625702 DOI: 10.5009/gnl14155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability.
Collapse
Affiliation(s)
- Bosi Yuan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuping Zhou
- Department of Gastroenterology and Hepatology, The First People's Hospital of Huainan, Huainan, China
| | - Youke Lu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiong Liu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinxin Jin
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Haijun Wan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
37
|
Holers VM, Tomlinson S, Kulik L, Atkinson C, Rohrer B, Banda N, Thurman JM. New therapeutic and diagnostic opportunities for injured tissue-specific targeting of complement inhibitors and imaging modalities. Semin Immunol 2016; 28:260-7. [PMID: 27282113 DOI: 10.1016/j.smim.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023]
Abstract
Despite substantial opportunity and commercial interest in developing drugs that modulate the complement system in a broad range of non-orphan indications, several obstacles remain to be overcome. Among these issues is the biophysical nature of complement proteins, whose circulating levels are typically very high and whose turnover rates are relatively rapid, especially in the setting of chronic inflammatory conditions. This situation necessitates the use of very high levels of therapeutic compounds in order to achieve both multi-pathway and multiple effector mechanism inhibition. In addition, one must avoid infectious complications or the systemic impairment of the other important physiological functions of complement. Herein we focus on the development of a novel therapeutic strategy based on injured tissue-specific targeting of complement inhibitors using the antigen-combining domains of a small subset of natural IgM antibodies, which as endogenous antibodies specifically recognize sites of local damage across a broad range of tissues and locally activate complement C3, resulting in C3 fragment covalent fixation. Because the use of such recombinant tissue-targeting inhibitors precludes the utility of measuring systemic levels of complement biomarkers or function, since a goal of this targeting strategy is to leave those processes intact and unimpeded, we also briefly describe a new method designed to quantitatively measure using imaging modalities the inhibition of generation of fixed C3 fragments at sites of inflammation/injury. In addition to the ability to determine whether complement activation is locally constrained with the use of inhibitors, there is also a broader application of this imaging approach to inflammatory and autoimmune diseases characterized by local complement activation.
Collapse
Affiliation(s)
- V Michael Holers
- Departments of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO, United States.
| | - Stephen Tomlinson
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Liudmila Kulik
- Departments of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Department of Surgery, Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC, United States
| | - Bärbel Rohrer
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States; Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
| | - Nirmal Banda
- Departments of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
38
|
Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ? Semin Immunol 2016; 28:250-9. [PMID: 27179705 DOI: 10.1016/j.smim.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
The part of the innate immune system that communicates and effectively primes the adaptive immune system was termed "complement" by Ehrlich to reflect its complementarity to antibodies having previously been described as "alexine" (i.e protective component of serum) by Buchner and Bordet. It has been established that complement is not solely produced systemically but may have origin in different tissues where it can influence organ specific functions that may affect the outcome of transplanted organs. This review looks at the role of complement in particular to kidney transplantation. We look at current literature to determine whether blockade of the peripheral or central compartments of complement production may prevent ischaemic reperfusion injury or rejection in the transplanted organ. We also review new therapeutics that have been developed to inhibit components of the complement cascade with varying degrees of success leading to an increase in our understanding of the multiple triggers of this complex system. In addition, we consider whether biomarkers in this field are effective markers of disease or treatment.
Collapse
Affiliation(s)
- R M Montero
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| | - S H Sacks
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom.
| | - R A Smith
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
39
|
Kahlow BS, Nery RA, Skare TL, Ribas CAPM, Ramos GP, Petisco RD. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2016; 29:57-9. [PMID: 27120743 PMCID: PMC4851154 DOI: 10.1590/0102-6720201600010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022]
Abstract
Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes
carbohydrate patterns found on the surface of a large number of pathogenic
micro-organisms, activating the complement system. However, this protein seems to
increase the tissue damage after ischemia. In this paper is reviewed some aspects of
harmful role of the mannose binding lectin in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Barbara Stadler Kahlow
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Araldi Nery
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Thelma L Skare
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | | | - Gabriela Piovezani Ramos
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Roberta Dombroski Petisco
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
40
|
Ciencewicki JM, Verhein KC, Gerrish K, McCaw ZR, Li J, Bushel PR, Kleeberger SR. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone. Am J Physiol Lung Cell Mol Physiol 2016; 311:L280-91. [PMID: 27106289 DOI: 10.1152/ajplung.00205.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kirsten C Verhein
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kevin Gerrish
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and
| | - Zachary R McCaw
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jianying Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| |
Collapse
|
41
|
Stravalaci M, De Blasio D, Orsini F, Perego C, Palmioli A, Goti G, Bernardi A, De Simoni MG, Gobbi M. A New Surface Plasmon Resonance Assay for In Vitro Screening of Mannose-Binding Lectin Inhibitors. ACTA ACUST UNITED AC 2016; 21:749-57. [PMID: 26969323 DOI: 10.1177/1087057116637563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022]
Abstract
Mannose-binding lectin (MBL) is a circulating protein that acts as a soluble pattern recognition molecule of the innate immunity. It binds to carbohydrate patterns on the surface of pathogens or of altered self-cells, with activation of the lectin pathway of the complement system. Recent evidence indicates that MBL contributes to the pathophysiology of ischemia-reperfusion injury and other conditions. Thus, MBL inhibitors offer promising therapeutic strategies, since they prevent the interaction of MBL with its target sugar arrays. We developed and characterized a novel assay based on surface plasmon resonance for in vitro screening of these compounds, which may be useful before the more expensive and time-consuming in vivo studies. The assay measures the inhibitor's ability to interfere with the binding of murine MBL-A or MBL-C, or of human recombinant MBL, to mannose residues immobilized on the sensor chip surface. We have applied the assay to measure the IC50 of synthetic glycodendrimers, two of them with neuroprotective properties in animal models of MBL-mediated injuries.
Collapse
Affiliation(s)
- Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Orsini
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Carlo Perego
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Giulio Goti
- Department of Chemistry, University of Milan, Milan, Italy
| | - Anna Bernardi
- Department of Chemistry, University of Milan, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
42
|
Grootjans J, Lenaerts K, Buurman WA, Dejong CHC, Derikx JPM. Life and death at the mucosal-luminal interface: New perspectives on human intestinal ischemia-reperfusion. World J Gastroenterol 2016; 22:2760-2770. [PMID: 26973414 PMCID: PMC4777998 DOI: 10.3748/wjg.v22.i9.2760] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion (IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the (potential) future clinical implications.
Collapse
|
43
|
Shushimita S, van der Pol P, W.F. de Bruin R, N. M. Ijzermans J, van Kooten C, Dor FJMF. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction. PLoS One 2015; 10:e0137795. [PMID: 26367533 PMCID: PMC4569339 DOI: 10.1371/journal.pone.0137795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI) in mice. We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.
Collapse
Affiliation(s)
- Shushimita Shushimita
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pieter van der Pol
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron W.F. de Bruin
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan N. M. Ijzermans
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. M. F. Dor
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Gonzalez LM, Moeser AJ, Blikslager AT. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol 2015; 308:G63-75. [PMID: 25414098 PMCID: PMC4297854 DOI: 10.1152/ajpgi.00112.2013] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Liara M. Gonzalez
- 1Department of Clinical Sciences, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina; and
| | - Adam J. Moeser
- 2Department of Population Health and Pathobiology, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
| | - Anthony T. Blikslager
- 1Department of Clinical Sciences, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina; and
| |
Collapse
|
46
|
Tahir M, Arshid S, Heimbecker AMC, Castro MS, Souza Montero EFD, Fontes B, Fontes W. Evaluation of the effects of ischemic preconditioning on the hematological parameters of rats subjected to intestinal ischemia and reperfusion. Clinics (Sao Paulo) 2015; 70:61-8. [PMID: 25672431 PMCID: PMC4321002 DOI: 10.6061/clinics/2015(01)11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Intestinal ischemia/reperfusion often leads to acute lung injury and multiple organ failure. Ischemic preconditioning is protective in nature and reduces tissue injuries in animal and human models. Although hematimetric parameters are widely used as diagnostic tools, there is no report of the influence of intestinal ischemia/reperfusion and ischemic preconditioning on such parameters. We evaluated the hematological changes during ischemia/reperfusion and preconditioning in rats. METHODS Forty healthy rats were divided into four groups: control, laparotomy, intestinal ischemia/reperfusion and ischemic preconditioning. The intestinal ischemia/reperfusion group received 45 min of superior mesenteric artery occlusion, while the ischemic preconditioning group received 10 min of short ischemia and reperfusion before 45 min of prolonged occlusion. A cell counter was used to analyze blood obtained from rats before and after the surgical procedures and the hematological results were compared among the groups. RESULTS The results showed significant differences in hematimetric parameters among the groups. The parameters that showed significant differences included lymphocyte, white blood cells and granulocyte counts; hematocrit; mean corpuscular hemoglobin concentration; red cell deviation width; platelet count; mean platelet volume; plateletcrit and platelet distribution width. CONCLUSION The most remarkable parameters were those related to leukocytes and platelets. Some of the data, including the lymphocyte and granulocytes counts, suggest that ischemic preconditioning attenuates the effect of intestinal ischemia/reperfusion on circulating blood cells. Our work contributes to a better understanding of the hematological responses after intestinal ischemia/reperfusion and IPC, and the present findings may also be used as predictive values.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Biochemistry and Protein Chemistry, Cell Biology Dept, University of Brasilia, Brasilia, DF, Brazil
| | - Samina Arshid
- Laboratory of Surgical Physiopathology (LIM-62), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria C Heimbecker
- Laboratory of Surgical Physiopathology (LIM-62), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Cell Biology Dept, University of Brasilia, Brasilia, DF, Brazil
| | - Edna Frasson de Souza Montero
- Laboratory of Surgical Physiopathology (LIM-62), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Cell Biology Dept, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
47
|
Keizer MP, Pouw RB, Kamp AM, Patiwael S, Marsman G, Hart MH, Zeerleder S, Kuijpers TW, Wouters D. TFPI inhibits lectin pathway of complement activation by direct interaction with MASP-2. Eur J Immunol 2014; 45:544-50. [DOI: 10.1002/eji.201445070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/14/2014] [Accepted: 10/24/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Mischa P. Keizer
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
- Emma Children's Hospital; Academic Medical Center (AMC); University of Amsterdam; Amsterdam the Netherlands
- Department of Blood Cell Research; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Richard B. Pouw
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Angela M. Kamp
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Sanne Patiwael
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Gerben Marsman
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Margreet H. Hart
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Taco W. Kuijpers
- Emma Children's Hospital; Academic Medical Center (AMC); University of Amsterdam; Amsterdam the Netherlands
- Department of Blood Cell Research; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| | - Diana Wouters
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
48
|
Elevated Serum Mannose-Binding Lectin Levels Are Associated with Poor Outcome After Acute Ischemic Stroke in Patients with Type 2 Diabetes. Mol Neurobiol 2014; 52:1330-1340. [PMID: 25341475 DOI: 10.1007/s12035-014-8941-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 01/04/2023]
Abstract
The activation of the complement system may be involved in the pathology of stroke and type 2 diabetes (T2DM). We therefore evaluated the long-term prognostic value of early measurement of serum mannose-binding lectin (MBL) levels, an activator of the complement system, in Chinese T2DM with acute ischemic stroke (AIS). Serum MBL levels were determined in T2DM patients with AIS (N = 188). The adjudicated end points were 1-year functional outcomes and mortality. The prognostic value of MBL was compared with the National Institutes of Health Stroke Scale score and with other known outcome predictors. Patients with an unfavorable outcomes and nonsurvivors had significantly increased MBL levels on admission (P < 0.0001 and P < 0.0001). Multivariate logistic regression analysis adjusted for common risk factors showed that MBL was an independent predictor of functional outcome (odds ratio (OR) = 8.99, 95% CI 2.21-30.12) and mortality (OR = 13.22, 95% CI 2.05-41.21). The area under the receiver operating characteristic curve of MBL was 0.75 (95% CI 0.68-0.83) for functional outcome and 0.85 (95% CI 0.80-0.90) for mortality. In type 2 diabetic patients with stroke, high levels of MBL predict future functional outcomes and mortality. This indicated that the elevated MBL levels may play a significant role in the pathology of the subsequent damage and that the pathways leading to complement activation warrant further exploration as potential therapeutic targets to improve the prognosis for these patients.
Collapse
|
49
|
Genster N, Takahashi M, Sekine H, Endo Y, Garred P, Fujita T. Lessons learned from mice deficient in lectin complement pathway molecules. Mol Immunol 2014; 61:59-68. [PMID: 25060538 DOI: 10.1016/j.molimm.2014.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/04/2023]
Abstract
The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from studies of these.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuichi Endo
- Radioisotope Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Teizo Fujita
- Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
50
|
Vogel CW, Finnegan PW, Fritzinger DC. Humanized cobra venom factor: Structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol 2014; 61:191-203. [DOI: 10.1016/j.molimm.2014.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|