1
|
Grubic Z, Burek Kamenaric M, Maskalan M, Desnica L, Mikulic M, Stingl Jankovic K, Durakovic N, Vrhovac R, Serventi Seiwerth R, Zunec R. HLA class I supertypes and HLA class I alleles influence the outcome after allogeneic hematopoietic stem cell transplant from unrelated matched donor. Transpl Immunol 2025; 88:102167. [PMID: 39716646 DOI: 10.1016/j.trim.2024.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
This retrospective study analyses the impact HLA heterozygosity, supertypes, and alleles have on incidence of graft versus host disease (GvHD), relapse, overall survival (OS), disease-free survival (DFS) and transplant-related mortality (TRM) after HSCT. The study included patients who underwent HSCT, typed at allele resolution level for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 loci. The analysis performed on the entire patient cohort (N = 232) showed that HLA-B07 supertype positive patients demonstrated decreased incidence of relapse, better OS and DFS in comparison to those negative for HLA-B07 supertype. Further, a higher incidence of TRM was observed among patients positive for HLA-B27 supertype. Significant association of the HLA-A*02:01 allele presence with decreased incidence of GvHD was found. The occurrence of HLA-A*11:01 allele was associated with a worse OS, DFS and a higher rate of TRM. The analysis of the subgroup of patients with AML or MDS (N = 148) showed an association of HLA-A24 supertype with a worse OS. The HLA-B07 supertype positive patients demonstrated a lower incidence of relapse and a better DFS. A decline in OS and a higher TRM rate were observed among patients positive for HLA-B27 supertype. The presence of HLA-A*11:01 allele was indicative of a worse OS, DFS and a higher rate of TRM. The associations of HLA and HSCT clinical outcome parameters found in this study justify further investigation of this matter.
Collapse
Affiliation(s)
- Zorana Grubic
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Croatia.
| | - Marija Burek Kamenaric
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Croatia
| | - Marija Maskalan
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Croatia
| | - Lana Desnica
- Department of Hematology, Internal Clinic, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirta Mikulic
- Department of Hematology, Internal Clinic, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Katarina Stingl Jankovic
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Croatia
| | - Nadira Durakovic
- Department of Hematology, Internal Clinic, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Radovan Vrhovac
- Department of Hematology, Internal Clinic, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ranka Serventi Seiwerth
- Department of Hematology, Internal Clinic, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Renata Zunec
- Tissue Typing Centre, Clinical Department for Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Croatia
| |
Collapse
|
2
|
Basmenj ER, Pajhouh SR, Ebrahimi Fallah A, naijian R, Rahimi E, Atighy H, Ghiabi S, Ghiabi S. Computational epitope-based vaccine design with bioinformatics approach; a review. Heliyon 2025; 11:e41714. [PMID: 39866399 PMCID: PMC11761309 DOI: 10.1016/j.heliyon.2025.e41714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
The significance of vaccine development has gained heightened importance in light of the COVID-19 pandemic. In such critical circumstances, global citizens anticipate researchers in this field to swiftly identify a vaccine candidate to combat the pandemic's root cause. It is widely recognized that the vaccine design process is traditionally both time-consuming and costly. However, a specialized subfield within bioinformatics, known as "multi-epitope vaccine design" or "reverse vaccinology," has significantly decreased the time and costs of the vaccine design process. The methodology reverses itself in this subfield and finds a potential vaccine candidate by analyzing the pathogen's genome. Leveraging the tools available in this domain, we strive to pinpoint the most suitable antigen for crafting a vaccine against our target. Once the optimal antigen is identified, the next step involves uncovering epitopes within this antigen. The immune system recognizes particular areas of an antigen as epitopes. By characterizing these crucial segments, we gain the opportunity to design a vaccine centered around these epitopes. Subsequently, after identifying and assembling the vital epitopes with the assistance of linkers and adjuvants, our vaccine candidate can be formulated. Finally, employing computational techniques, we can thoroughly evaluate the designed vaccine. This review article comprehensively covers the entire multi-epitope vaccine development process, starting from obtaining the pathogen's genome to identifying the relevant vaccine candidate and concluding with an evaluation. Furthermore, we will delve into the essential tools needed at each stage, comparing and introducing them.
Collapse
Affiliation(s)
| | | | | | - Rafe naijian
- Student research committee, faculty of pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elmira Rahimi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Atighy
- School of Pharmacy, Centro Escolar University, Manila, Philippines
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shamim Ghiabi
- Tehran Azad University of Medical Sciences, Faculty of Pharmaceutical Sciences, Iran
| |
Collapse
|
3
|
Talarico L, Rakaj A, Tancioni L. Unveiling MHC- DAB Polymorphism Within the Western Balkan Salmonid Hotspot: Preliminary Outcomes from Native Trouts of Ohrid Lake and the Drin-Skadar Drainage (Albania). BIOLOGY 2024; 13:1060. [PMID: 39765727 PMCID: PMC11673393 DOI: 10.3390/biology13121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Due to their involvement in pathogen-mediated immune responses, the hypervariable genes of the Major Histocompatibility Complex (MHC) have become a paradigm for investigating the evolution and maintenance of genetic (adaptive) diversity, contextually providing insight into the viability of wild populations, which is meaningful for conservation. Here, we provide the first preliminary characterization of MHC polymorphism and evolution in trouts from Albania, a known hotspot of Salmonid diversity harboring ecologically and phylogenetically distinct native (threatened) taxa. Overall, 36 trout-including Lake Ohrid-endemic Salmo ohridanus and S. letnica, and both riverine and lacustrine native brown trout (the S. trutta complex) from the Drin-Skadar drainage-were genotyped at the MHC-DAB locus through next-generation amplicon sequencing. We identified 34 alleles (including 30 novel alleles), unveiling remarkable population/taxon MHC-DAB distinctiveness. Despite apparent functional (supertype) similarity, S. letnica and the S. trutta complex showed MHC-typical high sequence/allele diversity and evidence of global/codon-specific positive selection, particularly at antigen-binding sites. Conversely, deep-water-adapted S. ohridanus revealed unexpectedly reduced allelic/supertype diversity and relaxed selection. Evolution by reticulation and signals of trans-species polymorphism emerged from sequence genealogies. Further investigations and increased sampling will provide a deeper understanding of the evolutionary mechanisms yielding the observed pattern of MHC diversity across Albanian trout taxa and populations.
Collapse
Affiliation(s)
- Lorenzo Talarico
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome “Tor Vergata”, Via Cracovia 1, 00133 Rome, Italy (L.T.)
| | - Arnold Rakaj
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome “Tor Vergata”, Via Cracovia 1, 00133 Rome, Italy (L.T.)
- National Inter-University Consortium for Marine Sciences (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Lorenzo Tancioni
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome “Tor Vergata”, Via Cracovia 1, 00133 Rome, Italy (L.T.)
| |
Collapse
|
4
|
Doytchinova I, Atanasova M, Sotirov S, Dimitrov I. In Silico Identification of Peanut Peptides Suitable for Allergy Immunotherapy in HLA-DRB1*03:01-Restricted Patients. Pharmaceuticals (Basel) 2024; 17:1097. [PMID: 39204201 PMCID: PMC11357649 DOI: 10.3390/ph17081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peanut allergy, a prevalent and potentially severe condition affecting millions worldwide, has been linked to specific human leukocyte antigens (HLAs), suggesting increased susceptibility. Employing an immunoinformatic strategy, we developed a "logo model" based on amino acid frequencies in the peptide binding core and used it to predict peptides originating from 28 known peanut allergens binding to HLA-DRB1*03:01, one of the susceptibility alleles. These peptides hold promise for immunotherapy in HLA-DRB1*03:01 carriers, offering reduced allergenicity compared to whole proteins. By targeting essential epitopes, immunotherapy can modulate immune responses with minimal risk of severe reactions. This precise approach could induce immune tolerance with fewer adverse effects, presenting a safer and more effective treatment for peanut allergy and other allergic conditions.
Collapse
Affiliation(s)
- Irini Doytchinova
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (M.A.); (S.S.); (I.D.)
| | | | | | | |
Collapse
|
5
|
Sugio T, Uchida N, Miyawaki K, Ohno Y, Eto T, Mori Y, Yoshimoto G, Kikushige Y, Kunisaki Y, Mizuno S, Nagafuji K, Iwasaki H, Kamimura T, Ogawa R, Miyamoto T, Taniguchi S, Akashi K, Kato K. Prognostic impact of HLA supertype mismatch in single-unit cord blood transplantation. Bone Marrow Transplant 2024; 59:466-472. [PMID: 38238452 DOI: 10.1038/s41409-023-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 04/06/2024]
Abstract
The "human leukocyte antigen (HLA) supertype" is a functional classification of HLA alleles, which was defined by structural features and peptide specificities, and has been reportedly associated with the clinical outcomes of viral infections and autoimmune diseases. Although the disparity in each HLA locus was reported to have no clinical significance in single-unit cord blood transplantation (sCBT), the clinical significance of the HLA supertype in sCBT remains unknown. Therefore, we retrospectively analyzed clinical data of 1603 patients who received sCBT in eight institutes in Japan between 2000 and 2017. Each HLA allele was categorized into 19 supertypes, and the prognostic effect of disparities was then assessed. An HLA-B supertype mismatch was identified as a poor prognostic factor (PFS: hazard ratio [HR] = 1.23, p = 0.00044) and was associated with a higher cumulative incidence (CI) of relapse (HR = 1.24, p = 0.013). However, an HLA-B supertype mismatch was not associated with the CI of acute and chronic graft-versus-host-disease. The multivariate analysis for relapse and PFS showed the significance of an HLA-B supertype mismatch independent of allelic mismatches, and other previously reported prognostic factors. HLA-B supertype-matched grafts should be selected in sCBT.
Collapse
Affiliation(s)
- Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuju Ohno
- Department of Hematology, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Goichi Yoshimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinichi Mizuno
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Nagafuji
- Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiromi Iwasaki
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | | | - Ryosuke Ogawa
- Department of Hematology, JCHO Kyushu Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Shuichi Taniguchi
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
6
|
Ferreira D, San‐Jose LM, Roulin A, Gaigher A, Fumagalli L. Limited associations between MHC diversity and reproductive success in a bird species with biparental care. Ecol Evol 2024; 14:e10950. [PMID: 38384825 PMCID: PMC10879840 DOI: 10.1002/ece3.10950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024] Open
Abstract
The selective pressure from pathogens on individuals can have direct consequences on reproduction. Genes from the major histocompatibility complex (MHC) are central to the vertebrate adaptive immune system and pathogen resistance. In species with biparental care, each sex has distinct reproductive roles and levels of investment, and due to a trade-off with immunity, one can expect different selective regimes acting upon the MHC of each parent. Here, we addressed whether couples combine each other's variation at MHC loci to increase their breeding success. Specifically, we used a 23-year dataset from a barn owl population (Tyto alba) to understand how MHC class Iα and IIβ functional divergence and supertypes of each parent were associated with clutch size and fledging success. We did not detect associations between MHC diversity and supertypes with the clutch size or with the fledging success. In addition, to understand the relative contribution from the MHC of the genetic parents and the social parents, we analyzed the fledging success using only a cross-fostered dataset. We found several associations of weak-to-moderate effect sizes between the father's MHC and fledging success: (i) lower MHC-Iα divergence in the genetic father increases fledging success, which might improve paternal care during incubation, and (ii) one and two MHC-IIβ DAB2 supertypes in the social father decrease and increase, respectively, fledging success, which may affect the paternal care after hatching. Furthermore, fledging success increased when both parents did not carry MHC-IIβ DAB1 supertype 2, which could suggest conditional effects of this supertype. Although our study relied on a substantial dataset, we showed that the associations between MHC diversity and reproductive success remain scarce and of complex interpretation in the barn owl. Moreover, our results highlighted the need to incorporate more than one proxy of reproductive success and several MHC classes to capture more complex associations.
Collapse
Affiliation(s)
- Diana Ferreira
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Luis M. San‐Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRSUniversité Toulouse III Paul Sabatier, IRDToulouseFrance
| | - Alexandre Roulin
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Arnaud Gaigher
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
- Research Unit for Evolutionary Immunogenomics, Department of BiologyUniversity of HamburgHamburgGermany
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Swiss Human Institute of Forensic Taphonomy, University Centre of Legal Medicine Lausanne‐GenevaLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Migalska M, Węglarczyk K, Dudek K, Homa J. Evolutionary trade-offs constraining the MHC gene expansion: beyond simple TCR depletion model. Front Immunol 2024; 14:1240723. [PMID: 38259496 PMCID: PMC10801004 DOI: 10.3389/fimmu.2023.1240723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The immune system is as much shaped by the pressure of pathogens as it is by evolutionary trade-offs that constrain its structure and function. A perfect example comes from the major histocompatibility complex (MHC), molecules that initiate adaptive immune response by presentation of foreign antigens to T cells. The remarkable, population-level polymorphism of MHC genes is assumed to result mainly from a co-evolutionary arms race between hosts and pathogens, while the limited, within-individual number of functional MHC loci is thought to be the consequence of an evolutionary trade-off between enhanced pathogen recognition and excessive T cell depletion during negative selection in the thymus. Certain mathematical models and infection studies suggest that an intermediate individual MHC diversity would thus be optimal. A recent, more direct test of this hypothesis has shown that the effects of MHC diversity on T-cell receptor (TCR) repertoires may differ between MHC classes, supporting the depletion model only for MHC class I. Here, we used the bank vole (Myodes=Cletronomys glareolus), a rodent species with variable numbers of expressed MHC genes, to test how an individual MHC diversity influences the proportions and TCR repertoires of responding T cell subsets. We found a non-linear relationship between MHC diversity and T cell proportions (with intermediate MHC numbers coinciding with the largest T cell proportions), perhaps reflecting an optimality effect of balanced positive and negative thymic selection. The association was strongest for the relationship between MHC class I and splenic CD8+ T cells. The CD8+ TCR richness alone was unaffected by MHC class I diversity, suggesting that MHC class I expansion may be limited by decreasing T cell counts, rather than by direct depletion of TCR richness. In contrast, CD4+ TCR richness was positively correlated with MHC class II diversity, arguing against a universal TCR depletion. It also suggests that different evolutionary forces or trade-offs may limit the within-individual expansion of the MHC class II loci.
Collapse
Affiliation(s)
- Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Yamamoto H, Miyashita Y, Minamiguchi H, Hosomichi K, Yoshida S, Kioka H, Shinomiya H, Nagata H, Onoue K, Kawasaki M, Kuramoto Y, Nomura A, Toma Y, Watanabe T, Yamada T, Ishihara Y, Nagata M, Kato H, Hakui H, Saito Y, Asano Y, Sakata Y. Human leukocyte antigen-DQ risk heterodimeric haplotypes of left ventricular dysfunction in cardiac sarcoidosis: an autoimmune view of its role. Sci Rep 2023; 13:19767. [PMID: 37957180 PMCID: PMC10643531 DOI: 10.1038/s41598-023-46915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiac sarcoidosis (CS) is the scarring of heart muscles by autoimmunity, leading to heart abnormalities and patients with sarcoidosis with cardiac involvements have poor prognoses. Due to the small number of patients, it is difficult to stratify all patients of CS by human leukocyte antigen (HLA) analysis. We focused on the structure of antigen-recognizing pockets in heterodimeric HLA-class II, in addition to DNA sequences, and extracted high-affinity combinations of antigenic epitopes from candidate autoantigen proteins and HLA. Four HLA heterodimer-haplotypes (DQA1*05:03/05:05/05:06/05:08-DQB1*03:01) were identified in 10 of 68 cases. Nine of the 10 patients had low left ventricular ejection fraction (< 50%). Fourteen amino-acid sequences constituting four HLA anchor pockets encoded by the HLA haplotypes were all common, suggesting DQA1*05:0X-DQB1*03:01 exhibit one group of heterodimeric haplotypes. The heterodimeric haplotypes recognized eight epitopes from different proteins. Assuming that autoimmune mechanisms might be activated by molecular mimicry, we searched for bacterial species having peptide sequences homologous to the eight epitopes. Within the peptide epitopes form the SLC25A4 and DSG2, high-homology sequences were found in Cutibacterium acnes and Mycobacterium tuberculosis, respectively. In this study, we detected the risk heterodimeric haplotypes of ventricular dysfunction in CS by searching for high-affinity HLA-class II and antigenic epitopes from candidate cardiac proteins.
Collapse
Affiliation(s)
- Hironori Yamamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Minamiguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruki Shinomiya
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruno Nagata
- Department of Cardiovascular Medicine, University of the Ryukyus Graduate School of Medicine, Nakagami, Okinawa, 903-0215, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Masato Kawasaki
- Department of Cardiology, Osaka General Medical Center, Osaka, Osaka, 558-8558, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Nomura
- Innovative Research Center, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yuichiro Toma
- Department of Cardiovascular Medicine, University of the Ryukyus Graduate School of Medicine, Nakagami, Okinawa, 903-0215, Japan
| | - Tetsuya Watanabe
- Department of Cardiology, Osaka General Medical Center, Osaka, Osaka, 558-8558, Japan
| | - Takahisa Yamada
- Department of Cardiology, Osaka General Medical Center, Osaka, Osaka, 558-8558, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- The 1st Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Medical Ethics and Medical Genetics, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, 606-8501, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideyuki Hakui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Prefecture Seiwa Medical Center, Nara, Nara, 636-0802, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Zhang J, Wang S, Xu C, Wang S, Du J, Niu M, Yang J, Li Y. Pathogenic selection promotes adaptive immune variations against serious bottlenecks in early invasions of bullfrogs. iScience 2023; 26:107316. [PMID: 37539025 PMCID: PMC10393753 DOI: 10.1016/j.isci.2023.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive genetic variations are key for understanding evolutionary processes influencing invasions. However, we have limited knowledge on how adaptive genetic diversity in invasive species responds to new pathogenic environments. Here, we compared variations in immune major histocompatibility complex (MHC) class-II β gene and neutral loci in relation to pathogenic chytrid fungus (Batrachochytrium dendrobatidis, Bd) infection across invasive and native populations of American bullfrog between China and United States (US). Chinese invasive populations show a 60% reduction in neutral cytb variations relative to US native populations, and there were similar MHC variation and functional diversity between them. One MHC allele private to China was under recent positive selection and associated with decreased Bd infection, partly explaining the lower Bd prevalence for Chinese populations than for native US populations. These results suggest that pathogen-mediated selection favors adaptive MHC variations and functional diversity maintenance against serious bottlenecks during the early invasions (within 15 generations) of bullfrogs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Jiacong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Meiling Niu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxue Yang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
10
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
11
|
Shen Y, Parks JM, Smith JC. HLA-Clus: HLA class I clustering based on 3D structure. BMC Bioinformatics 2023; 24:189. [PMID: 37161375 PMCID: PMC10169335 DOI: 10.1186/s12859-023-05297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND In a previous paper, we classified populated HLA class I alleles into supertypes and subtypes based on the similarity of 3D landscape of peptide binding grooves, using newly defined structure distance metric and hierarchical clustering approach. Compared to other approaches, our method achieves higher correlation with peptide binding specificity, intra-cluster similarity (cohesion), and robustness. Here we introduce HLA-Clus, a Python package for clustering HLA Class I alleles using the method we developed recently and describe additional features including a new nearest neighbor clustering method that facilitates clustering based on user-defined criteria. RESULTS The HLA-Clus pipeline includes three stages: First, HLA Class I structural models are coarse grained and transformed into clouds of labeled points. Second, similarities between alleles are determined using a newly defined structure distance metric that accounts for spatial and physicochemical similarities. Finally, alleles are clustered via hierarchical or nearest-neighbor approaches. We also interfaced HLA-Clus with the peptide:HLA affinity predictor MHCnuggets. By using the nearest neighbor clustering method to select optimal allele-specific deep learning models in MHCnuggets, the average accuracy of peptide binding prediction of rare alleles was improved. CONCLUSIONS The HLA-Clus package offers a solution for characterizing the peptide binding specificities of a large number of HLA alleles. This method can be applied in HLA functional studies, such as the development of peptide affinity predictors, disease association studies, and HLA matching for grafting. HLA-Clus is freely available at our GitHub repository ( https://github.com/yshen25/HLA-Clus ).
Collapse
Affiliation(s)
- Yue Shen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Nelson-Flower MJ, Grieves LA, Reid JM, Germain RR, Lazic S, Taylor SS, MacDougall-Shackleton EA, Arcese P. Immune genotypes, immune responses, and survival in a wild bird population. Mol Ecol 2023. [PMID: 36919652 DOI: 10.1111/mec.16923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Individuals vary in their immune genotype, inbreeding coefficient f, immune responses, survival to adulthood, and adult longevity. However, whether immune genes predict survival or longevity, whether such relationships are mediated through immune responses, and how f affects immune genotype remain unclear. We use a wild song sparrow (Melospiza melodia) population in which survival to adulthood, adult longevity, and f were measured precisely, and in which immune responses have previously been assessed. We investigate four toll-like receptor (TLR) and the major histocompatibility complex (MHC) class IIB exon 2 genes. We test whether immune genes predict fitness (survival to adulthood or adult longevity); whether immune genes predict immune response; whether immune response predicts fitness and whether fitness, immune responses, or immune genotypes are correlated with f. We find that survival to adulthood is not associated with immune gene variation, but adult longevity is decreased by high MHC allele diversity (especially in birds that were relatively outbred), and by the presence of a specific MHC supertype. Immune responses were affected by specific immune genotypes. Survival to adulthood and adult longevity were not predicted by immune response, implying caution in the use of immune response as a predictor for fitness. We also found no relationship between f and immune genotype. This finding indicates that immune gene associations with longevity and immune response are not artefacts of f, and suggests that pathogen-mediated selection at functional loci can slow the loss of genetic variation arising from genetic drift and small population size.
Collapse
Affiliation(s)
- Martha J Nelson-Flower
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, Langara College, Vancouver, British Columbia, Canada
| | - Leanne A Grieves
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jane M Reid
- Centre for Biodiversity Dynamics, Institut for Biologi, NTNU, Trondheim, Norway
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ryan R Germain
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Kobenhavn, Denmark
| | - Savo Lazic
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University and AgCenter, Baton Rouge, Louisiana, USA
| | | | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Shen Y, Parks JM, Smith JC. HLA Class I Supertype Classification Based on Structural Similarity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:103-114. [PMID: 36453976 DOI: 10.4049/jimmunol.2200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
HLA class I proteins, a critical component in adaptive immunity, bind and present intracellular Ags to CD8+ T cells. The extreme polymorphism of HLA genes and associated peptide binding specificities leads to challenges in various endeavors, including neoantigen vaccine development, disease association studies, and HLA typing. Supertype classification, defined by clustering functionally similar HLA alleles, has proven helpful in reducing the complexity of distinguishing alleles. However, determining supertypes via experiments is impractical, and current in silico classification methods exhibit limitations in stability and functional relevance. In this study, by incorporating three-dimensional structures we present a method for classifying HLA class I molecules with improved breadth, accuracy, stability, and flexibility. Critical for these advances is our finding that structural similarity highly correlates with peptide binding specificity. The new classification should be broadly useful in peptide-based vaccine development and HLA-disease association studies.
Collapse
Affiliation(s)
- Yue Shen
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; and
| | - Jeremy C Smith
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; and.,Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| |
Collapse
|
14
|
Fischer JC, Balz V, Jazmati D, Bölke E, Freise NF, Keitel V, Feldt T, Jensen BEO, Bode J, Lüdde T, Häussinger D, Adams O, Schneider EM, Enczmann J, Rox JM, Hermsen D, Schulze-Bosse K, Kindgen-Milles D, Knoefel WT, van Griensven M, Haussmann J, Tamaskovics B, Plettenberg C, Scheckenbach K, Corradini S, Pedoto A, Maas K, Schmidt L, Grebe O, Esposito I, Ehrhardt A, Peiper M, Buhren BA, Calles C, Stöhr A, Gerber PA, Lichtenberg A, Schelzig H, Flaig Y, Rezazadeh A, Budach W, Matuschek C. Prognostic markers for the clinical course in the blood of patients with SARS-CoV-2 infection. Eur J Med Res 2022; 27:255. [PMID: 36411478 PMCID: PMC9676819 DOI: 10.1186/s40001-022-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The presentation of peptides and the subsequent immune response depend on the MHC characteristics and influence the specificity of the immune response. Several studies have found an association between HLA variants and differential COVID-19 outcomes and have shown that HLA genotypes are associated with differential immune responses against SARS-CoV-2, particularly in severely ill patients. Information, whether HLA haplotypes are associated with the severity or length of the disease in moderately diseased individuals is absent. METHODS Next-generation sequencing-based HLA typing was performed in 303 female and 231 male non-hospitalized North Rhine Westphalian patients infected with SARS-CoV2 during the first and second wave. For HLA-Class I, we obtained results from 528 patients, and for HLA-Class II from 531. In those patients, who became ill between March 2020 and January 2021, the 22 most common HLA-Class I (HLA-A, -B, -C) or HLA-Class II (HLA -DRB1/3/4, -DQA1, -DQB1) haplotypes were determined. The identified HLA haplotypes as well as the presence of a CCR5Δ32 mutation and number of O and A blood group alleles were associated to disease severity and duration of the disease. RESULTS The influence of the HLA haplotypes on disease severity and duration was more pronounced than the influence of age, sex, or ABO blood group. These associations were sex dependent. The presence of mutated CCR5 resulted in a longer recovery period in males. CONCLUSION The existence of certain HLA haplotypes is associated with more severe disease.
Collapse
Affiliation(s)
- Johannes C. Fischer
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Vera Balz
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Danny Jazmati
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Edwin Bölke
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Noemi F. Freise
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Verena Keitel
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Torsten Feldt
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Björn-Erik Ole Jensen
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Johannes Bode
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Tom Lüdde
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Dieter Häussinger
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Ortwin Adams
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - E. Marion Schneider
- grid.410712.10000 0004 0473 882XDivision of Experimental Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Jürgen Enczmann
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Jutta M. Rox
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Derik Hermsen
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Karin Schulze-Bosse
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Detlef Kindgen-Milles
- grid.14778.3d0000 0000 8922 7789Department of Anesthesiology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wolfram Trudo Knoefel
- grid.14778.3d0000 0000 8922 7789Department of Surgery and Interdisciplinary Surgical Intensive Care Unit, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Martijn van Griensven
- grid.5012.60000 0001 0481 6099Department cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan Haussmann
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Balint Tamaskovics
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Plettenberg
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Kathrin Scheckenbach
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Stefanie Corradini
- grid.5252.00000 0004 1936 973XDepartment of Radiation Oncology, LMU University of Munich, Munich, Germany
| | - Alessia Pedoto
- grid.51462.340000 0001 2171 9952Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Kitti Maas
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Livia Schmidt
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Olaf Grebe
- Department of Cardiology and Rhythmology, Petrus Hospital, Wuppertal, Germany
| | - Irene Esposito
- grid.14778.3d0000 0000 8922 7789Institute of Pathology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Anja Ehrhardt
- grid.412581.b0000 0000 9024 6397Institute of Virology, University of Witten/Herdecke, Witten, Germany
| | - Matthias Peiper
- grid.14778.3d0000 0000 8922 7789Medical Faculty, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Bettina Alexandra Buhren
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Calles
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Andreas Stöhr
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Peter Arne Gerber
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Artur Lichtenberg
- grid.14778.3d0000 0000 8922 7789Department of Cardiac Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Hubert Schelzig
- grid.14778.3d0000 0000 8922 7789Department of Vascular Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Yechan Flaig
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Amir Rezazadeh
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wilfried Budach
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christiane Matuschek
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
15
|
Evaluation of Genetic Diversity and Parasite-Mediated Selection of MHC Class I Genes in Emberiza godlewskii (Passeriformes: Emberizidae). DIVERSITY 2022. [DOI: 10.3390/d14110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The major histocompatibility complex (MHC) is a multi-copy immune gene family in vertebrates. Its genes are highly variable and code for antigen-presenting molecules. Characterization of MHC genes in different species and investigating the mechanisms that shape MHC diversity is an important goal in understanding the evolution of biological diversity. Here we developed a next-generation sequencing (NGS) protocol to genotype the MHC class I genes of 326 Godlewski’s buntings (Emberiza godlewskii) sampled in the Western mountain area of Beijing from 2014 to 2016. A total of 184 functional alleles were identified, including both non-classical and classical alleles, clustering into nine supertypes. Compared with other passerine birds, the number of MHC class I alleles per individual in Godlewski’s buntings is high (mean 16.1 ± 3.3, median 16). In addition, we demonstrated signatures of historical and contemporary selection on MHC genes. Reflecting historical selection, ten amino acid sites in the antigen-binding domain showed signatures of balancing selection, eight of which exhibit high amino acid polymorphism. In terms of contemporary selection, we found that specific MHC supertypes were nominally associated with the infection of two malaria parasite lineages. These findings indicate the action of historical and possibly also contemporary balancing selection and suggest negative frequency-dependent or fluctuating selection as possible selection mechanisms.
Collapse
|
16
|
Migalska M, Przesmycka K, Alsarraf M, Bajer A, Behnke-Borowczyk J, Grzybek M, Behnke JM, Radwan J. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Mol Ecol 2022; 31:3400-3415. [PMID: 35510766 PMCID: PMC9325469 DOI: 10.1111/mec.16486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex (MHC) genes encode proteins crucial for adaptive immunity of vertebrates. Negative frequency-dependent selection (NFDS), resulting from adaptation of parasites to common MHC types, has been hypothesized to maintain high, functionally relevant polymorphism of MHC, but demonstration of this relationship has remained elusive. In particular, differentiation of NFDS from fluctuating selection, resulting from changes in parasite communities in time and space (FS), has proved difficult in short-term studies. Here, we used temporal data, accumulated through long-term monitoring of helminths infecting bank voles (Myodes glareolus), to test specific predictions of NFDS on MHC class II. Data were collected in three, moderately genetically differentiated subpopulations in Poland, which were characterized by some stable spatiotemporal helminth communities but also events indicating introduction of new species and loss of others. We found a complex association between individual MHC diversity and species richness, where intermediate numbers of DRB supertypes correlated with lowest species richness, but the opposite was true for DQB supertypes - arguing against universal selection for immunogenetic optimality. We also showed that particular MHC supertypes explain a portion of the variance in prevalence and abundance of helminths, but this effect was subpopulation-specific, which is consistent with both NFDS and FS. Finally, in line with NFDS, we found that certain helminths that have recently colonized or spread in a given subpopulation, more frequently or intensely infected voles with MHC supertypes that have been common in the recent past. Overall, our results highlight complex spatial and temporal patterns of MHC-parasite associations, the latter being consistent with Red Queen coevolutionary dynamics.
Collapse
Affiliation(s)
- Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karolina Przesmycka
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Mohammed Alsarraf
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Bajer
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Maciej Grzybek
- Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-429, Gdynia, Poland
| | - Jerzy M Behnke
- School of Life Science, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
17
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
18
|
Ratcliffe FC, Garcia de Leaniz C, Consuegra S. MHC class I-α population differentiation in a commercial fish, the European sea bass (Dicentrarchus labrax). Anim Genet 2022; 53:340-351. [PMID: 35274334 PMCID: PMC9314080 DOI: 10.1111/age.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Identifying population structuring in highly fecund marine species with high dispersal rates is challenging, but critical for conservation and stock delimitation for fisheries management. European sea bass (Dicentrarchus labrax) is a commercial species of fisheries and aquaculture relevance whose stocks are declining in the North Atlantic, despite management measures to protect them and identifying their fine population structure is needed for managing their exploitation. As for other marine fishes, neutral genetic markers indicate that eastern Atlantic sea bass form a panmictic population and is currently managed as arbitrarily divided stocks. The genes of the major histocompatibility complex (MHC) are key components of the adaptive immune system and ideal candidates to assess fine structuring arising from local selective pressures. We used Illumina sequencing to characterise allelic composition and signatures of selection at the MHC class I-α region of six D. labrax populations across the Atlantic range. We found high allelic diversity driven by positive selection, corresponding to moderate supertype diversity, with 131 alleles clustering into four to eight supertypes, depending on the Bayesian information criterion threshold applied, and a mean number of 13 alleles per individual. Alleles could not be assigned to particular loci, but private alleles allowed us to detect regional genetic structuring not found previously using neutral markers. Our results suggest that MHC markers can be used to detect cryptic population structuring in marine species where neutral markers fail to identify differentiation. This is particularly critical for fisheries management, and of potential use for selective breeding or identifying escapes from sea farms.
Collapse
Affiliation(s)
- Frances C Ratcliffe
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
19
|
Rueda JC, Arcos-Burgos M, Santos AM, Martin-Arsanios D, Villota-Erazo C, Reyes V, Bernal-Macías S, Peláez-Ballestas I, Cardiel MH, Londono J. Human Genetic Host Factors and Its Role in the Pathogenesis of Chikungunya Virus Infection. Front Med (Lausanne) 2022; 9:654395. [PMID: 35252226 PMCID: PMC8888679 DOI: 10.3389/fmed.2022.654395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that causes acute arthropathy in humans. It is an arthropod-borne virus transmitted initially by the Aedes (Ae) aegypti and after 2006's epidemic in La Reunion by Ae albopictus due to an adaptive mutation of alanine for valine in the position 226 of the E1 glycoprotein genome (A226V). The first isolated cases of CHIKV were reported in Tanzania, however since its arrival to the Western Hemisphere in 2013, the infection became a pandemic. After a mosquito bite from an infected viremic patient the virus replicates eliciting viremia, fever, rash, myalgia, arthralgia, and arthritis. After the acute phase, CHIKV infection can progress to a chronic stage where rheumatic symptoms can last for several months to years. Although there is a great number of studies on the pathogenesis of CHIKV infection not only in humans but also in animal models, there still gaps in the proper understanding of the disease. To this date, it is unknown why a percentage of patients do not develop clinical symptoms despite having been exposed to the virus and developing an adaptive immune response. Also, controversy stills exist on the pathogenesis of chronic joint symptoms. It is known that host immune response to an infectious disease is reflected on patient's symptoms. At the same time, it is now well-established that host genetic variation is an important component of the varied onset, severity, and outcome of infectious disease. It is essential to understand the interaction between the aetiological agent and the host to know the chronic sequelae of the disease. The present review summarizes the current findings on human host genetics and its relationship with immune response in CHIKV infection.
Collapse
Affiliation(s)
- Juan C. Rueda
- Faculty of Medicine and Engineering, Universidad de La Sabana, Chía, Colombia
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Faculty of Medicine, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Ana M. Santos
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Daniel Martin-Arsanios
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Catalina Villota-Erazo
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Viviana Reyes
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Santiago Bernal-Macías
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | | | | | - John Londono
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
- *Correspondence: John Londono
| |
Collapse
|
20
|
Bukhari SNH, Jain A, Haq E, Mehbodniya A, Webber J. Machine Learning Techniques for the Prediction of B-Cell and T-Cell Epitopes as Potential Vaccine Targets with a Specific Focus on SARS-CoV-2 Pathogen: A Review. Pathogens 2022; 11:146. [PMID: 35215090 PMCID: PMC8879824 DOI: 10.3390/pathogens11020146] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
The only part of an antigen (a protein molecule found on the surface of a pathogen) that is composed of epitopes specific to T and B cells is recognized by the human immune system (HIS). Identification of epitopes is considered critical for designing an epitope-based peptide vaccine (EBPV). Although there are a number of vaccine types, EBPVs have received less attention thus far. It is important to mention that EBPVs have a great deal of untapped potential for boosting vaccination safety-they are less expensive and take a short time to produce. Thus, in order to quickly contain global pandemics such as the ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), as well as epidemics and endemics, EBPVs are considered promising vaccine types. The high mutation rate of SARS-CoV-2 has posed a great challenge to public health worldwide because either the composition of existing vaccines has to be changed or a new vaccine has to be developed to protect against its different variants. In such scenarios, time being the critical factor, EBPVs can be a promising alternative. To design an effective and viable EBPV against different strains of a pathogen, it is important to identify the putative T- and B-cell epitopes. Using the wet-lab experimental approach to identify these epitopes is time-consuming and costly because the experimental screening of a vast number of potential epitope candidates is required. Fortunately, various available machine learning (ML)-based prediction methods have reduced the burden related to the epitope mapping process by decreasing the potential epitope candidate list for experimental trials. Moreover, these methods are also cost-effective, scalable, and fast. This paper presents a systematic review of various state-of-the-art and relevant ML-based methods and tools for predicting T- and B-cell epitopes. Special emphasis is placed on highlighting and analyzing various models for predicting epitopes of SARS-CoV-2, the causative agent of COVID-19. Based on the various methods and tools discussed, future research directions for epitope prediction are presented.
Collapse
Affiliation(s)
- Syed Nisar Hussain Bukhari
- University Institute of Computing, Chandigarh University, NH-95, Chandigarh-Ludhiana Highway, Mohali 140413, India;
| | - Amit Jain
- University Institute of Computing, Chandigarh University, NH-95, Chandigarh-Ludhiana Highway, Mohali 140413, India;
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India;
| | - Abolfazl Mehbodniya
- Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Kuwait City 20185145, Kuwait;
| | - Julian Webber
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan;
| |
Collapse
|
21
|
Michalik M, Djahanschiri B, Leo JC, Linke D. An Update on "Reverse Vaccinology": The Pathway from Genomes and Epitope Predictions to Tailored, Recombinant Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:45-71. [PMID: 34918241 DOI: 10.1007/978-1-0716-1892-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the concept of reverse vaccinology. They all follow the same basic principles-mining available genome and proteome information for antigen candidates, and recombinantly expressing them for vaccine production. Some of the same principles have been used successfully for cancer therapy approaches. In this review, we focus on infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.
Collapse
Affiliation(s)
| | - Bardya Djahanschiri
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Jack C Leo
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Individual copy number variation and extensive diversity between major MHC-DAB1 allelic lineages in the European bitterling. Immunogenetics 2022; 74:497-505. [PMID: 35015128 PMCID: PMC9467946 DOI: 10.1007/s00251-021-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
Polymorphism of the major histocompatibility complex (MHC), DAB1 gene was characterized for the first time in the European bitterling (Rhodeus amarus), a freshwater fish employed in studies of host-parasite coevolution and mate choice, taking advantage of newly designed primers coupled with high-throughput amplicon sequencing. Across 221 genotyped individuals, we detected 1–4 variants per fish, with 28% individuals possessing 3–4 variants. We identified 36 DAB1 variants, and they showed high sequence diversity mostly located within predicted antigen-binding sites, and both global and codon-specific excess of non-synonymous mutations. Despite deep divergence between two major allelic lineages, functional diversity was surprisingly low (3 supertypes). Overall, these findings suggest the role of positive and balancing selection in promotion and long-time maintenance of DAB1 polymorphism. Further investigations will clarify the role of pathogen-mediated selection to drive the evolution of DAB1 variation.
Collapse
|
23
|
Million KM, Lively CM. Trans-specific polymorphism and the convergent evolution of supertypes in major histocompatibility complex class II genes in darters ( Etheostoma). Ecol Evol 2022; 12:e8485. [PMID: 36311547 PMCID: PMC9601779 DOI: 10.1002/ece3.8485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Major Histocompatibility Complex (MHC) genes are one of the most polymorphic gene groups known in vertebrates. MHC genes also exhibit allelic variants that are shared among taxa, referred to as trans-specific polymorphism (TSP). The role that selection plays in maintaining such high diversity within species, as well as TSP, is an ongoing discussion in biology. In this study, we used deep-sequencing techniques to characterize MHC class IIb gene diversity in three sympatric species of darters. We found at least 5 copies of the MHC gene in darters, with 126 genetic variants encoding 122 unique amino acid sequences. We identified four supertypes based on the binding properties of proteins encoded by the sequences. Although each species had a unique pool of variants, many variants were shared between species pairs and across all three species. Phylogenetic analysis showed that the variants did not group together monophyletically based on species identity or on supertype. An expanded phylogenetic analysis showed that some darter alleles grouped together with alleles from other percid fishes. Our findings show that TSP occurs in darters, which suggests that balancing selection is acting at the genotype level. Supertypes, however, are most likely evolving convergently, as evidenced by the fact that alleles do not form monophyletic groups based on supertype. Our research demonstrates that selection may be acting differently on MHC genes at the genotype and supertype levels, selecting for the maintenance of high genotypic diversity while driving the convergent evolution of similar MHC phenotypes across different species.
Collapse
Affiliation(s)
- Kara M. Million
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | | |
Collapse
|
24
|
James SA, Ong HS, Hari R, Khan AM. A systematic bioinformatics approach for large-scale identification and characterization of host-pathogen shared sequences. BMC Genomics 2021; 22:700. [PMID: 34583643 PMCID: PMC8477458 DOI: 10.1186/s12864-021-07657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications. Results This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions. Conclusion Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07657-4.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia.,Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, 800211, Nigeria
| | - Hui San Ong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Ranjeev Hari
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia. .,Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
25
|
Phillips KP, Cable J, Mohammed RS, Chmielewski S, Przesmycka KJ, van Oosterhout C, Radwan J. Functional immunogenetic variation, rather than local adaptation, predicts ectoparasite infection intensity in a model fish species. Mol Ecol 2021; 30:5588-5604. [PMID: 34415650 PMCID: PMC9292977 DOI: 10.1111/mec.16135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Natural host populations differ in their susceptibility to infection by parasites, and these intrapopulation differences are still an incompletely understood component of host‐parasite dynamics. In this study, we used controlled infection experiments with wild‐caught guppies (Poecilia reticulata) and their ectoparasite Gyrodactylus turnbulli to investigate the roles of local adaptation and host genetic composition (immunogenetic and neutral) in explaining differences in susceptibility to infection. We found differences between our four study host populations that were consistent between two parasite source populations, with no indication of local adaptation by either host or parasite at two tested spatial scales. Greater values of host population genetic variability metrics broadly aligned with lower population mean infection intensity, with the best alignments associated with major histocompatibility complex (MHC) “supertypes”. Controlling for intrapopulation differences and potential inbreeding variance, we found a significant negative relationship between individual‐level functional MHC variability and infection: fish carrying more MHC supertypes experienced infections of lower severity, with limited evidence for supertype‐specific effects. We conclude that population‐level differences in host infection susceptibility probably reflect variation in parasite selective pressure and/or host evolutionary potential, underpinned by functional immunogenetic variation.
Collapse
Affiliation(s)
- Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,School of Biological Earth & Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport, Co. Mayo, Ireland
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ryan S Mohammed
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
26
|
Lizbeth RSG, Jazmín GM, José CB, Marlet MA. Immunoinformatics study to search epitopes of spike glycoprotein from SARS-CoV-2 as potential vaccine. J Biomol Struct Dyn 2021; 39:4878-4892. [PMID: 32583729 PMCID: PMC7332869 DOI: 10.1080/07391102.2020.1780944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/07/2020] [Indexed: 11/01/2022]
Abstract
The Coronavirus disease named COVID-19 is caused by the virus reported in 2019 first identified in China. The cases of this disease have increased and as of June 1st, 2020 there are more than 216 countries affected. Pharmacological treatments have been proposed based on the resemblance of the HIV virus. With regard to prevention there is no vaccine, thus, we proposed to explore the spike protein due to its presence on the viral surface, and it also contains the putative viral entry receptor as well as the fusion peptide (important in the genome release). In this work we have employed In Silico techniques such as immunoinformatics tools which permit the identification of potential immunogenic regions on the viral surface (spike glycoprotein). From these analyses, we identified four epitopes E332-370, E627-651, E440-464 and E694-715 that accomplish essential features such as promiscuity, conservation grade, exposure and universality, and they also form stable complexes with MHCII molecule. We suggest that these epitopes could generate a specific immune response, and thus, they could be used for future applications such as the design of new epitope vaccines against the SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramírez-Salinas Gema Lizbeth
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - García-Machorro Jazmín
- Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Correa-Basurto José
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Martínez-Archundia Marlet
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
27
|
Talarico L, Marta S, Rossi AR, Crescenzo S, Petrosino G, Martinoli M, Tancioni L. Balancing selection, genetic drift, and human-mediated introgression interplay to shape MHC (functional) diversity in Mediterranean brown trout. Ecol Evol 2021; 11:10026-10041. [PMID: 34367556 PMCID: PMC8328470 DOI: 10.1002/ece3.7760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen-mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC-DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human-mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.
Collapse
Affiliation(s)
- Lorenzo Talarico
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| | - Silvio Marta
- Department of Environmental Science and PolicyUniversity of MilanMilanItaly
| | - Anna Rita Rossi
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Simone Crescenzo
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Gerardo Petrosino
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Marco Martinoli
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)Centro di Zootecnia e AcquacolturaMonterotondoItaly
| | - Lorenzo Tancioni
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
28
|
Schetelig J, Heidenreich F, Baldauf H, Trost S, Falk B, Hoßbach C, Real R, Roers A, Lindemann D, Dalpke A, Kolditz M, de With K, Bornhäuser M, Bonifacio EE, Rücker-Braun E, Lange V, Markert J, Barth R, Hofmann JA, Sauter J, Bernas SN, Schmidt AH. Individual HLA-A, -B, -C, and -DRB1 Genotypes Are No Major Factors Which Determine COVID-19 Severity. Front Immunol 2021; 12:698193. [PMID: 34381451 PMCID: PMC8350391 DOI: 10.3389/fimmu.2021.698193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
HLA molecules are key restrictive elements to present intracellular antigens at the crossroads of an effective T-cell response against SARS-CoV-2. To determine the impact of the HLA genotype on the severity of SARS-CoV-2 courses, we investigated data from 6,919 infected individuals. HLA-A, -B, and -DRB1 allotypes grouped into HLA supertypes by functional or predicted structural similarities of the peptide-binding grooves did not predict COVID-19 severity. Further, we did not observe a heterozygote advantage or a benefit from HLA diplotypes with more divergent physicochemical peptide-binding properties. Finally, numbers of in silico predicted viral T-cell epitopes did not correlate with the severity of SARS-CoV-2 infections. These findings suggest that the HLA genotype is no major factor determining COVID-19 severity. Moreover, our data suggest that the spike glycoprotein alone may allow for abundant T-cell epitopes to mount robust T-cell responses not limited by the HLA genotype.
Collapse
Affiliation(s)
- Johannes Schetelig
- Clinical Trials Unit, DKMS, Dresden, Germany.,Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | - Falk Heidenreich
- Clinical Trials Unit, DKMS, Dresden, Germany.,Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | | | - Sarah Trost
- Clinical Trials Unit, DKMS, Dresden, Germany
| | - Bose Falk
- Clinical Trials Unit, DKMS, Dresden, Germany
| | | | - Ruben Real
- Clinical Trials Unit, DKMS, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, TU Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Kolditz
- Division of Pulmonology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katja de With
- Division of Infectious Diseases, TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | - Ezio E Bonifacio
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Elke Rücker-Braun
- Clinical Trials Unit, DKMS, Dresden, Germany.,Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | | | - Jan Markert
- DKMS, Stem Cell Donor Registry, Tübingen, Germany
| | - Ralf Barth
- DKMS, Stem Cell Donor Registry, Tübingen, Germany
| | | | | | | | - Alexander H Schmidt
- Clinical Trials Unit, DKMS, Dresden, Germany.,DKMS Life Science Lab, Dresden, Germany.,DKMS, Stem Cell Donor Registry, Tübingen, Germany
| |
Collapse
|
29
|
Smallbone W, Ellison A, Poulton S, van Oosterhout C, Cable J. Depletion of MHC supertype during domestication can compromise immunocompetence. Mol Ecol 2020; 30:736-746. [PMID: 33274493 PMCID: PMC7898906 DOI: 10.1111/mec.15763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in infectious disease resistance. The presence of certain MHC alleles and functionally similar groups of MHC alleles (i.e., supertypes) has been associated with resistance to particular parasite species. Farmed and domesticated fish stocks are often depleted in their MHC alleles and supertype diversity, possibly as a consequence of artificial selection for desirable traits, inbreeding (loss of heterozygosity), genetic drift (loss of allelic diversity) and/or reduced parasite biodiversity. Here we quantify the effects of depletion of MHC class II genotype and supertype variation on resistance to the parasite Gyrodactylus turnbulli in guppies (Poecilia reticulata). Compared to the descendants of wild‐caught guppies, ornamental fish had a significantly reduced MHC variation (i.e., the numbers of MHC alleles and supertypes per individual, and per population). In addition, ornamental fish were significantly more susceptible to G. turnbulli infections, accumulating peak intensity 10 times higher than that of their wildtype counterparts. Four out of 13 supertypes were associated with a significantly reduced parasite load, and the presence of some supertypes had a dramatic effect on the intensity of infection. Remarkably, the ornamental and wildtype fish differed in the supertypes that were associated with parasite resistance. Analysis with a genetic algorithm showed that resistance‐conferring supertypes of the wildtype and ornamental fish shared two unique amino acids in the peptide‐binding region of the MHC that were not found in any other alleles. These data show that the supertype demarcation captures some, but not all, of the variation in the immune function of the alleles. This study highlights the importance of managing functional MHC diversity in livestock, and suggests there might be some immunological redundancy among MHC supertypes.
Collapse
Affiliation(s)
| | - Amy Ellison
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon Poulton
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
30
|
Balancing selection versus allele and supertype turnover in MHC class II genes in guppies. Heredity (Edinb) 2020; 126:548-560. [PMID: 32985616 DOI: 10.1038/s41437-020-00369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Selection pressure from parasites is thought to be a major force shaping the extreme polymorphism of the major histocompatibility complex (MHC) genes, but the modes and consequences of selection remain unclear. Here, we analyse MHC class II and microsatellite diversity in 16 guppy (Poecilia reticulata) populations from two islands (Trinidad and Tobago) that have been separated for at least 10 ky. Within-population MHC diversity was high, but allele sharing was limited within islands and even lower between islands, suggesting relatively fast turnover of alleles. Allelic lineages strongly supported in phylogenetic analyses tended to be island-specific, suggesting rapid lineage sorting, and an expansion of an allelic lineage private to Tobago was observed. New alleles appear to be generated locally at a detectably high frequency. We did not detect a consistent signature of local adaptation, but FST outlier analysis suggested that balancing selection may be the more general process behind spatial variation in MHC allele frequencies in this system, particularly within Trinidad. We found no evidence for divergent allele advantage within populations, or for decreased genetic structuring of MHC supertypes compared to MHC alleles. The dynamic and complex nature of MHC evolution we observed in guppies, coupled with some evidence for balancing selection shaping MHC allele frequencies, are consistent with Red Queen processes of host-parasite coevolution.
Collapse
|
31
|
Gagnon M, Yannic G, Boyer F, Côté SD. Adult survival in migratory caribou is negatively associated with MHC functional diversity. Heredity (Edinb) 2020; 125:290-303. [PMID: 32728043 DOI: 10.1038/s41437-020-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) are involved in acquired immunity in vertebrates. Only a few studies have investigated the fitness consequences of MHC gene diversity in wild populations. Here, we looked at the association between annual survival and body mass and MHC-DRB exon 2 (MHC-DRB) genetic diversity, obtained from high-throughput sequencing, in two declining migratory caribou (Rangifer tarandus) herds. To disentangle the potential direct and general effects of MHC-DRB genetic diversity, we compared different indices of diversity that were either based on DNA-sequence variation or on physicochemical divergence of the translated peptides, thereby covering a gradient of allelic-to-functional diversity. We found that (1) body mass was not related to MHC-DRB diversity or genotype, and (2) adult survival probability was negatively associated with point accepted mutation distance, a corrected distance that considers the likelihood of each amino acid substitution to be accepted by natural selection. In addition, we found no evidence of fluctuating selection over time on MHC-DRB diversity. We concluded that direct effects were involved in the negative relationship between MHC functional diversity and survival, although the mechanism underlying this result remains unclear. A possible explanation could be that individuals with higher MHC diversity suffer higher costs of immunity (immunopathology). Our results suggest that genetic diversity is not always beneficial even in genes that are likely to be strongly shaped by balancing selection.
Collapse
Affiliation(s)
- Marianne Gagnon
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Steeve D Côté
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
32
|
HLA loci predisposing to immune TTP in Japanese: potential role of the shared ADAMTS13 peptide bound to different HLA-DR. Blood 2020; 135:2413-2419. [DOI: 10.1182/blood.2020005395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare autoimmune disorder caused by neutralizing anti-ADAMTS13 autoantibodies. In white individuals, HLA allele DRB1*11 is a predisposing factor for iTTP, whereas DRB1*04 is a protective factor. However, the role of HLA in Asians is unclear. In this study, we analyzed 10 HLA loci using next-generation sequencing in 52 Japanese patients with iTTP, and the allele frequency in the iTTP group was compared with that in a Japanese control group. We identified the following HLA alleles as predisposing factors for iTTP in the Japanese population: DRB1*08:03 (odds ratio [OR], 3.06; corrected P [Pc] = .005), DRB3/4/5*blank (OR, 2.3; Pc = .007), DQA1*01:03 (OR, 2.25; Pc = .006), and DQB1*06:01 (OR,: 2.41; Pc = .003). The estimated haplotype consisting of these 4 alleles was significantly more frequent in the iTTP group than in the control group (30.8% vs 6.0%; Pc < .001). DRB1*15:01 and DRB5*01:01 were weak protective factors for iTTP (OR, 0.23; Pc = .076; and OR, 0.23, Pc = .034, respectively). On the other hand, DRB1*11 and DRB1*04 were not associated with iTTP in the Japanese. These findings indicated that predisposing and protective factors for iTTP differ between Japanese and white individuals. HLA-DR molecules encoded by DRB1*08:03 and DRB1*11:01 have different peptide-binding motifs, but interestingly, bound to the shared ADAMTS13 peptide in an in silico prediction model.
Collapse
|
33
|
Biedrzycka A, Popiołek M, Zalewski A. Host-parasite interactions in non-native invasive species are dependent on the levels of standing genetic variation at the immune locus. BMC Evol Biol 2020; 20:43. [PMID: 32299345 PMCID: PMC7164242 DOI: 10.1186/s12862-020-01610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Parasites may mediate the success of biological invasions through their effect on host fitness and thus, on host population growth and stability. However, a release from the pressure of parasites is strongly related to the genetic differentiation of the host. In invasive host populations, the number of available genetic variants, allowing them to ‘fight’ the infection, are likely to be influenced by founder events and genetic drift. The level standing genetic variation of invasive populations may be crucial in successfully adapting to new environments and resisting diseases. We studied invasive populations of raccoon that experienced a random reduction in genetic diversity during the establishment and evaluated the relationship between host immune genetic diversity and intestinal parasites infection. Results We distinguished two different genetic clusters that are characterized by different sets of functionally relevant MHC-DRB alleles. Both clusters were characterized by considerably different allele-parasite associations and different levels of parasite infection. The specific resistance MHC-DRB alleles explained the lower prevalence of Digenea parasites. An increased infection intensity was related to the presence of two MHC-DRB alleles. One of these alleles significantly decreased in frequency over time, causing a decrease of Digenea abundance in raccoons in consecutive years. Conclusions Our findings suggest that intestinal parasites can exert selective pressure on an invasive host with lowered levels of immune genetic diversity and contribute to promoting local adaptation over time. The random genetic drift that created the two different genetic clusters in the invasive raccoon range imposed completely different MHC-parasite associations, strongly associated with the infection status of populations. Our findings underline the role of standing genetic variation in shaping host-parasite relationships and provide empirical support that functional genetic variation may be, at least partly, responsible for differences in the success of invasive populations.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Marcin Popiołek
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wroclaw, Poland
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, ul. Stoczek 1, 17-230, Białowieża, Poland
| |
Collapse
|
34
|
Biedrzycka A, Konopiński M, Hoffman E, Trujillo A, Zalewski A. Comparing raccoon major histocompatibility complex diversity in native and introduced ranges: Evidence for the importance of functional immune diversity for adaptation and survival in novel environments. Evol Appl 2020; 13:752-767. [PMID: 32211065 PMCID: PMC7086054 DOI: 10.1111/eva.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The adaptive potential of invasive species is related to the genetic diversity of the invader, which is influenced by genetic drift and natural selection. Typically, the genetic diversity of invaders is studied with neutral genetic markers; however, the expectation of reduced diversity has not been consistently supported by empirical studies. Here, we describe and interpret genetic diversity at both neutral microsatellite loci and the immune-related MHC-DRB locus of native and invasive populations of raccoon to better understand of how drift and selection impact patterns of genetic diversity during the invasion process. We found that despite the loss of many MHC (major histocompatibility complex) alleles in comparison with native populations, functional MHC supertypes are preserved in the invasive region. In the native raccoon population, the number of supertypes within individuals was higher than expected under a neutral model. The high level of individual functional divergence may facilitate the adaptation to local conditions in the invasive range. In the invasive populations, we also detected increased population structure at microsatellites compared to the MHC locus, further suggesting that balancing selection is acting on adaptively important regions of the raccoon genome. Finally, we found that alleles known to exhibit resistance to rabies in the native range, Prlo-DRB*4, Prlo-DRB*16 and Prlo-DRB*102, were the most common alleles in the European populations, suggesting directional selection is acting on this locus. Our research shows empirical support for the importance of functional immune diversity for adaptation and survival in novel environments.
Collapse
Affiliation(s)
| | - Maciej Konopiński
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Eric Hoffman
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Alexa Trujillo
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Andrzej Zalewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
35
|
Vlček J, Štefka J. Association between louse abundance and MHC II supertypes in Galápagos mockingbirds. Parasitol Res 2020; 119:1597-1605. [PMID: 32006226 DOI: 10.1007/s00436-020-06617-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
Major histocompatibility complex class II (MHC II) is an essential molecule triggering the adaptive immune response by the presentation of pathogens to helper T cells. The association between individual MHC II variants and various parasites has become a frequent finding in studies of vertebrate populations. However, although bird ectoparasites have a significant effect on their host's fitness, and the host's immune system can regulate ectoparasitic infections, no study has yet investigated the association between MHC II polymorphism and ectoparasite infection in the populations of free-living birds. Here, we test whether an association exists between the abundance of a chewing louse (Myrsidea nesomimi) and MHC II polymorphism of its hosts, the Galápagos mockingbirds (Mimus). We have found that the presence of two MHC II supertypes (functionally differentiated clusters) was significantly associated with louse abundance. This pattern supports the theory that a co-evolutionary interaction stands behind the maintenance of MHC polymorphism. Moreover, we have found a positive correlation between louse abundance and heterophil/lymphocyte ratio (an indicator of immunological stress) that serves as an additional piece of evidence that ectoparasite burden is affected by immunological state of Galápagos mockingbirds.
Collapse
Affiliation(s)
- Jakub Vlček
- Institute of Parasitology, Biology Centre CAS, Branišovská 1160/31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská, 1760, České Budějovice, Czech Republic.
| | - Jan Štefka
- Institute of Parasitology, Biology Centre CAS, Branišovská 1160/31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská, 1760, České Budějovice, Czech Republic
| |
Collapse
|
36
|
Lacaze P, Ronaldson KJ, Zhang EJ, Alfirevic A, Shah H, Newman L, Strahl M, Smith M, Bousman C, Francis B, Morris AP, Wilson T, Rossello F, Powell D, Vasic V, Sebra R, McNeil JJ, Pirmohamed M. Genetic associations with clozapine-induced myocarditis in patients with schizophrenia. Transl Psychiatry 2020; 10:37. [PMID: 32066683 PMCID: PMC7026069 DOI: 10.1038/s41398-020-0722-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Clozapine is the most effective antipsychotic drug for schizophrenia, yet it can cause life-threatening adverse drug reactions, including myocarditis. The aim of this study was to determine whether schizophrenia patients with clozapine-induced myocarditis have a genetic predisposition compared with clozapine-tolerant controls. We measured different types of genetic variation, including genome-wide single-nucleotide polymorphisms (SNPs), coding variants that alter protein expression, and variable forms of human leucocyte antigen (HLA) genes, alongside traditional clinical risk factors in 42 cases and 67 controls. We calculated a polygenic risk score (PRS) based on variation at 96 different genetic sites, to estimate the genetic liability to clozapine-induced myocarditis. Our genome-wide association analysis identified four SNPs suggestive of increased myocarditis risk (P < 1 × 10-6), with odds ratios ranging 5.5-13.7. The SNP with the lowest P value was rs74675399 (chr19p13.3, P = 1.21 × 10-7; OR = 6.36), located in the GNA15 gene, previously associated with heart failure. The HLA-C*07:01 allele was identified as potentially predisposing to clozapine-induced myocarditis (OR = 2.89, 95% CI: 1.11-7.53), consistent with a previous report of association of the same allele with clozapine-induced agranulocytosis. Another seven HLA alleles, including HLA-B*07:02 (OR = 0.25, 95% CI: 0.05-1.2) were found to be putatively protective. Long-read DNA sequencing provided increased resolution of HLA typing and validated the HLA associations. The PRS explained 66% of liability (P value = 9.7 × 10-5). Combining clinical and genetic factors together increased the proportion of variability accounted for (r2 0.73, P = 9.8 × 10-9). However, due to the limited sample size, individual genetic associations were not statistically significant after correction for multiple testing. We report novel candidate genetic associations with clozapine-induced myocarditis, which may have potential clinical utility, but larger cohorts are required for replication.
Collapse
Affiliation(s)
- Paul Lacaze
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Kathlyn J. Ronaldson
- grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
| | - Eunice J. Zhang
- grid.269741.f0000 0004 0421 1585MRC Centre for Drug Safety Science, Wolfson Centre for Personalised Medicine, University of Liverpool, The Royal Liverpool and Broadgreen University Hospitals NHS Trust, and Liverpool Health Partners, Liverpool, UK
| | - Ana Alfirevic
- grid.269741.f0000 0004 0421 1585MRC Centre for Drug Safety Science, Wolfson Centre for Personalised Medicine, University of Liverpool, The Royal Liverpool and Broadgreen University Hospitals NHS Trust, and Liverpool Health Partners, Liverpool, UK
| | - Hardik Shah
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Leah Newman
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Maya Strahl
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Melissa Smith
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Chad Bousman
- grid.22072.350000 0004 1936 7697Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB Canada
| | - Ben Francis
- grid.10025.360000 0004 1936 8470Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Andrew P. Morris
- grid.10025.360000 0004 1936 8470Department of Biostatistics, University of Liverpool, Liverpool, UK ,grid.5379.80000000121662407Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Trevor Wilson
- grid.452824.dMedical Genomics Facility, Hudson Institute of Medical Research, Melbourne, VIC Australia
| | - Fernando Rossello
- grid.1008.90000 0001 2179 088XUniversity of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC Australia
| | - David Powell
- grid.1002.30000 0004 1936 7857Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC Australia
| | - Vivien Vasic
- grid.452824.dMedical Genomics Facility, Hudson Institute of Medical Research, Melbourne, VIC Australia
| | - Robert Sebra
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John J. McNeil
- grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
| | - Munir Pirmohamed
- grid.269741.f0000 0004 0421 1585MRC Centre for Drug Safety Science, Wolfson Centre for Personalised Medicine, University of Liverpool, The Royal Liverpool and Broadgreen University Hospitals NHS Trust, and Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
37
|
Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol 2019; 28:5115-5132. [PMID: 31614047 DOI: 10.1111/mec.15276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023]
Abstract
Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small-to-moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small-to-moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate-to-large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.
Collapse
Affiliation(s)
- Arnaud Gaigher
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Luis M San-Jose
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Alexandre Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Rekdal SL, Anmarkrud JA, Lifjeld JT, Johnsen A. Extra‐pair mating in a passerine bird with highly duplicated major histocompatibility complex class II: Preference for the golden mean. Mol Ecol 2019; 28:5133-5144. [DOI: 10.1111/mec.15273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Arild Johnsen
- Natural History Museum University of Oslo Oslo Norway
| |
Collapse
|
39
|
Zhang S, Chen J, Hong P, Li J, Tian Y, Wu Y, Wang S. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules. J Immunol Methods 2019; 476:112685. [PMID: 31678214 DOI: 10.1016/j.jim.2019.112685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Promiscuous peptides that can be presented by multiple human leukocyte antigens (HLAs) have great potential for the development of vaccines with wide population coverage. However, the current available methods for the prediction of peptides that bind to major histocompatibility complex (MHC) are mainly aimed at the rapid or mass screening of potential T cell epitopes from pathogen antigens or proteomics. The current approaches do not allow deciphering the contribution of the residue at each peptide position to the promiscuous binding ability of the peptide or obtaining guidelines for the design of promiscuous peptides. In this study, we re-evaluated and characterized four matrix-based prediction models that have been extensively used for the prediction of HLA-binding peptides and found that the prediction models generated based on the average relative binding (ARB) matrix shared a consistent and conservative threshold for all well-studied HLA class I alleles. Evaluations performed using datasets of HLA supertype-specific peptides with various cross-binding abilities and peptide mutant analogues indicated that the ARB-based binding matrices could be used to decipher and design promiscuous peptides that bind to multiple HLA molecules. A web-based tool called PromPDD was developed using ARB matrix-based models, and this tool enables the prediction, deciphering and design of promiscuous peptides that bind to multiple HLA molecules within or across HLA supertypes in a simpler and more direct manner. Furthermore, we expanded the application of PromPDD to HLA class I alleles with limited experimentally verified data by generating pan-specific matrices using a derived modular method, and 2641 HLA molecules encoded by HLA-A and HLA-B genes are available in PromPDD. PromPDD, which is freely available at http://www.immunoinformatics.net/PromPDD/, is the first tool for the deciphering and design of promiscuous peptides that bind to HLA class I molecules.
Collapse
Affiliation(s)
- Songlin Zhang
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jian Chen
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peijian Hong
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinru Li
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Tian
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Shufeng Wang
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
40
|
Grogan KE, Harris RL, Boulet M, Drea CM. Genetic variation at MHC class II loci influences both olfactory signals and scent discrimination in ring-tailed lemurs. BMC Evol Biol 2019; 19:171. [PMID: 31438845 PMCID: PMC6704550 DOI: 10.1186/s12862-019-1486-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/21/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diversity at the Major Histocompatibility Complex (MHC) is critical to health and fitness, such that MHC genotype may predict an individual's quality or compatibility as a competitor, ally, or mate. Moreover, because MHC products can influence the components of bodily secretions, an individual's body odors may signal its MHC composition and influence partner identification or mate choice. Here, we investigated MHC-based signaling and recipient sensitivity by testing for odor-gene covariance and behavioral discrimination of MHC diversity and pairwise dissimilarity in a strepsirrhine primate, the ring-tailed lemur (Lemur catta). METHODS First, we coupled genotyping of the MHC class II gene, DRB, with gas chromatography-mass spectrometry of genital gland secretions to investigate if functional genetic diversity is signaled by the chemical diversity of lemur scent secretions. We also assessed if the chemical similarity between individuals correlated with their MHC-DRB similarity. Next, we assessed if lemurs discriminated this chemically encoded, genetic information in opposite-sex conspecifics. RESULTS We found that both sexes signaled overall MHC-DRB diversity and pairwise MHC-DRB similarity via genital secretions, but in a sex- and season-dependent manner. Additionally, the sexes discriminated absolute and relative MHC-DRB diversity in the genital odors of opposite-sex conspecifics, suggesting that lemur genital odors function to advertise genetic quality. CONCLUSIONS In summary, genital odors of ring-tailed lemurs provide honest information about an individual's absolute and relative MHC quality. Complementing evidence in humans and Old World monkeys, we suggest that reliance on scent signals to communicate MHC quality may be important across the primate lineage.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Pennsylvania State University, 516 Carpenter Building, University Park, PA, 16802, USA.
| | - Rachel L Harris
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Marylène Boulet
- Department of Biological Sciences, Bishop's University, Sherbrooke, Canada
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
41
|
Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci U S A 2019; 116:5021-5026. [PMID: 30796191 DOI: 10.1073/pnas.1807864116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Major histocompatibility complex (MHC) genes encode proteins that initiate adaptive immune responses through the presentation of foreign antigens to T cells. The high polymorphism found at these genes, thought to be promoted and maintained by pathogen-mediated selection, contrasts with the limited number of MHC loci found in most vertebrates. Although expressing many diverse MHC genes should broaden the range of detectable pathogens, it has been hypothesized to also cause deletion of larger fractions of self-reactive T cells, leading to a detrimental reduction of the T cell receptor (TCR) repertoire. However, a key prediction of this TCR depletion hypothesis, that the TCR repertoire should be inversely related to the individual MHC diversity, has never been tested. Here, using high-throughput sequencing and advanced sequencing error correction, we provide evidence of such an association in a rodent species with high interindividual variation in the number of expressed MHC molecules, the bank vole (Myodes glareolus). Higher individual diversity of MHC class I, but not class II, was associated with smaller TCR repertoires. Our results thus provide partial support for the TCR depletion model, while also highlighting the complex, potentially MHC class-specific mechanisms by which autoreactivity may trade off against evolutionary expansion of the MHC gene family.
Collapse
|
42
|
Anczurowski M, Hirano N. Mechanisms of HLA-DP Antigen Processing and Presentation Revisited. Trends Immunol 2018; 39:960-964. [PMID: 30416081 DOI: 10.1016/j.it.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/01/2022]
Abstract
Polymorphisms in HLA-DP can modulate interactions with the invariant chain chaperone, contributing independently to differences in the peptide repertoire presented on DP. The resulting presentation of intracellular antigens directly to CD4+ T cells may partly explain genetic and clinical studies describing previously unexplained links between polymorphism in DP and disease.
Collapse
Affiliation(s)
- Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
43
|
Ejsmond MJ, Phillips KP, Babik W, Radwan J. The role of MHC supertypes in promoting trans-species polymorphism remains an open question. Nat Commun 2018; 9:4362. [PMID: 30341302 PMCID: PMC6195607 DOI: 10.1038/s41467-018-06821-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Maciej J Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.,Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Karl P Phillips
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, T23 N73K, Ireland.,Marine Institute, Furnace, Newport, Co. Mayo, F28 PF65, Ireland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Institute of Environmental Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan, Poland.
| |
Collapse
|
44
|
Hacking JD, Stuart‐Fox D, Godfrey SS, Gardner MG. Specific MHC class I supertype associated with parasite infection and color morph in a wild lizard population. Ecol Evol 2018; 8:9920-9933. [PMID: 30386586 PMCID: PMC6202711 DOI: 10.1002/ece3.4479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
The major histocompatibility complex (MHC) is a large gene family that plays a central role in the immune system of all jawed vertebrates. Nonavian reptiles are underrepresented within the MHC literature and little is understood regarding the mechanisms maintaining MHC diversity in this vertebrate group. Here, we examined the relative roles of parasite-mediated selection and sexual selection in maintaining MHC class I diversity of a color polymorphic lizard. We discovered evidence for parasite-mediated selection acting via rare-allele advantage or fluctuating selection as ectoparasite load was significantly lower in the presence of a specific MHC supertype (functional clustering of alleles): supertype four. Based on comparisons between ectoparasite prevalence and load, and assessment of the impact of ectoparasite load on host fitness, we suggest that supertype four confers quantitative resistance to ticks or an intracellular tickborne parasite. We found no evidence for MHC-associated mating in terms of pair genetic distance, number of alleles, or specific supertypes. An association was uncovered between supertype four and male throat color morph. However, it is unlikely that male throat coloration acts as a signal of MHC genotype to conspecifics because we found no evidence to suggest that male throat coloration predicts male mating status. Overall, our results suggest that parasite-mediated selection plays a role in maintaining MHC diversity in this population via rare-allele advantage and/or fluctuating selection. Further work is required to determine whether sexual selection also plays a role in maintaining MHC diversity in agamid lizards.
Collapse
Affiliation(s)
- Jessica D. Hacking
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Devi Stuart‐Fox
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Michael G. Gardner
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
| |
Collapse
|
45
|
Sutton JT, Helmkampf M, Steiner CC, Bellinger MR, Korlach J, Hall R, Baybayan P, Muehling J, Gu J, Kingan S, Masuda BM, Ryder OA. A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species. Genes (Basel) 2018; 9:genes9080393. [PMID: 30071683 PMCID: PMC6115840 DOI: 10.3390/genes9080393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/16/2022] Open
Abstract
Genome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, which can inform conservation management. Here, we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the ʻAlalā (Corvus hawaiiensis; Hawaiian crow). As the only remaining native crow species in Hawaiʻi, the ʻAlalā survived solely in a captive-breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the ʻAlalā genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important in conservation management, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.
Collapse
Affiliation(s)
- Jolene T Sutton
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | - Martin Helmkampf
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | - Cynthia C Steiner
- Institute for Conservation Research, San Diego Zoo, Escondido, CA 92027, USA.
| | - M Renee Bellinger
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | | | | | | | | | - Jenny Gu
- Pacific Biosciences, Menlo Park, CA 94025, USA.
| | | | - Bryce M Masuda
- Institute for Conservation Research, San Diego Zoo Global, Volcano, HI 96785, USA.
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, CA 92027, USA.
| |
Collapse
|
46
|
Biedrzycka A, Bielański W, Ćmiel A, Solarz W, Zając T, Migalska M, Sebastian A, Westerdahl H, Radwan J. Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine. Mol Ecol 2018; 27:2594-2603. [PMID: 29654666 DOI: 10.1111/mec.14592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen-mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high-throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long-term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease.
Collapse
Affiliation(s)
| | - Wojciech Bielański
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Adam Ćmiel
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Wojciech Solarz
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Migalska
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alvaro Sebastian
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
47
|
Anczurowski M, Yamashita Y, Nakatsugawa M, Ochi T, Kagoya Y, Guo T, Wang CH, Rahman MA, Saso K, Butler MO, Hirano N. Mechanisms underlying the lack of endogenous processing and CLIP-mediated binding of the invariant chain by HLA-DP 84Gly. Sci Rep 2018; 8:4804. [PMID: 29555965 PMCID: PMC5859192 DOI: 10.1038/s41598-018-22931-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
While the principles of classical antigen presentation via MHC class II are well-established, the mechanisms for the many routes of cross-presentation by which endogenous antigens become associated with class II molecules are not fully understood. We have recently demonstrated that the single amino acid polymorphism HLA-DPβ84Gly (DP84Gly) is critical to abrogate class II invariant chain associated peptide (CLIP) region-mediated binding of invariant chain (Ii) to DP, allowing endoplasmic reticulum (ER)-resident endogenous antigens to constitutively associate with DP84Gly such as DP4. In this study, we demonstrate that both the CLIP and N-terminal non-CLIP Ii regions cooperatively generate an Ii conformation that cannot associate with DP84Gly via the CLIP region. We also demonstrate the ability of DP4 to efficiently process and present antigens encoded in place of CLIP in a chimeric Ii, regardless of wild type Ii and HLA-DM expression. These data highlight the complex interplay between DP polymorphisms and the multiple Ii regions that cooperatively regulate this association, ultimately controlling the presentation of endogenous antigens on DP molecules. These results may also offer a mechanistic explanation for recent studies identifying the differential effects between DP84Gly and DP84Asp as clinically relevant in human disease.
Collapse
Affiliation(s)
- Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
48
|
Phillips KP, Cable J, Mohammed RS, Herdegen-Radwan M, Raubic J, Przesmycka KJ, van Oosterhout C, Radwan J. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. Proc Natl Acad Sci U S A 2018; 115:1552-1557. [PMID: 29339521 PMCID: PMC5816137 DOI: 10.1073/pnas.1708597115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host-pathogen "Red Queen" coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional "supertypes") increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F2 descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35-37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host-pathogen coevolution.
Collapse
Affiliation(s)
- Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Joanne Cable
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Ryan S Mohammed
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jarosław Raubic
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland;
| |
Collapse
|
49
|
Killian MS, Teque F, Sudhagoni R. Analysis of the CD8 + T cell anti-HIV activity in heterologous cell co-cultures reveals the benefit of multiple HLA class I matches. Immunogenetics 2018; 70:99-113. [PMID: 28735348 DOI: 10.1007/s00251-017-1021-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Abstract
CD8+ T lymphocytes can reduce the production of human immunodeficiency virus 1 (HIV-1) by CD4+ T cells by cytotoxic and non-cytotoxic mechanisms. To investigate the involvement of human leukocyte antigen (HLA) class I compatibility in anti-HIV responses, we co-cultured primary CD8+ T cells, isolated from the peripheral blood of HIV-1-infected individuals, with panels of autologous and heterologous acutely HIV-1-infected primary CD4+ T cells. Altogether, CD8+ T cell anti-HIV activity was evaluated in more than 200 co-cultures. Marked heterogeneity in HIV-1 replication levels was observed among the co-cultures sharing a common CD8+ T cell source. The co-cultures that exhibited greater than 50% reduction in HIV production were found to have significantly increased numbers of matching HLA class I alleles (Yates chi-square = 54.21; p < 0.001). With CD8+ T cells from HIV controllers and asymptomatic viremic individuals, matching HLA-B and/or HLA-C alleles were more predictive of strong anti-HIV activity than matching HLA-A alleles. Overall, HLA class I genotype matches were more closely associated with CD8+ T cell anti-HIV activity than supertype pairings. Antibodies against HLA class I and CD3 reduced the CD8+ T cell anti-HIV activity. Stimulated CD8+ T cells exhibited increased anti-HIV activity and reduced dependency on HLA compatibility. These findings provide evidence that the maximal suppression of HIV replication by CD8+ T cells requires the recognition of multiple epitopes. These studies provide insight for HIV vaccine development, and the analytic approach can be useful for the functional characterization of HLA class I alleles and tentative HLA class I supertypes.
Collapse
Affiliation(s)
- M Scott Killian
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St, Vermillion, SD, 57069, USA.
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD, 57069, USA.
| | - Fernando Teque
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramu Sudhagoni
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD, 57069, USA
| |
Collapse
|
50
|
Fundamentals and Methods for T- and B-Cell Epitope Prediction. J Immunol Res 2017; 2017:2680160. [PMID: 29445754 PMCID: PMC5763123 DOI: 10.1155/2017/2680160] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
Adaptive immunity is mediated by T- and B-cells, which are immune cells capable of developing pathogen-specific memory that confers immunological protection. Memory and effector functions of B- and T-cells are predicated on the recognition through specialized receptors of specific targets (antigens) in pathogens. More specifically, B- and T-cells recognize portions within their cognate antigens known as epitopes. There is great interest in identifying epitopes in antigens for a number of practical reasons, including understanding disease etiology, immune monitoring, developing diagnosis assays, and designing epitope-based vaccines. Epitope identification is costly and time-consuming as it requires experimental screening of large arrays of potential epitope candidates. Fortunately, researchers have developed in silico prediction methods that dramatically reduce the burden associated with epitope mapping by decreasing the list of potential epitope candidates for experimental testing. Here, we analyze aspects of antigen recognition by T- and B-cells that are relevant for epitope prediction. Subsequently, we provide a systematic and inclusive review of the most relevant B- and T-cell epitope prediction methods and tools, paying particular attention to their foundations.
Collapse
|