1
|
Wang L, Kang J, Jiang H. Intranasal Immunization with a Recombinant Adenovirus Encoding Multi-Stage Antigens of Mycobacterium tuberculosis Preferentially Elicited CD8 + T Cell Immunity and Conferred a Superior Protection in the Lungs of Mice than Bacillus Calmette-Guerin. Vaccines (Basel) 2024; 12:1022. [PMID: 39340053 PMCID: PMC11436211 DOI: 10.3390/vaccines12091022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The development of a tuberculosis (TB) vaccine is imperative. Employing multi-stage Mycobacterium tuberculosis (Mtb) antigens as targeted antigens represents a critical strategy in establishing an effective novel TB vaccine. In this investigation, we evaluated the immunogenicity and protective efficacy of a recombinant adenovirus vaccine expressing two fusion proteins, Ag85B-ESAT6 (AE) and Rv2031c-Rv2626c (R2), derived from multi-stage antigens of Mtb via intranasal administration in mice. Intranasal delivery of Ad-AE-R2 induced both long-lasting mucosal and systemic immunities, with a preferential elicitation of CD8+ T cell immunity demonstrated by the accumulation and retention of CD8+ T cells in BALF, lung, and spleen, as well as the generation of CD8+ TRM cells in BALF and lung tissues. Compared to subcutaneous immunization with Bacillus Calmette-Guerin (BCG), Ad-AE-R2 provided superior protection against high-dose intratracheal BCG challenge, specifically within the lungs of mice. Our findings support the notion that empowering T cells within the respiratory mucosa is crucial for TB vaccine development while highlighting targeting CD8+ T cell immunity as an effective strategy for optimizing TB vaccines and emphasizing that eliciting systemic memory immunity is also vital for the successful development of a TB mucosal vaccine. Furthermore, our results demonstrate that the BCG challenge serves as a convenient and efficient method to evaluate candidate vaccine efficacy.
Collapse
Affiliation(s)
- Limei Wang
- Bacteriology Laboratory, Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Jian Kang
- Bacteriology Laboratory, Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
2
|
Mata-Espinosa D, Lara-Espinosa JV, Barrios-Payán J, Hernández-Pando R. The Use of Viral Vectors for Gene Therapy and Vaccination in Tuberculosis. Pharmaceuticals (Basel) 2023; 16:1475. [PMID: 37895946 PMCID: PMC10610538 DOI: 10.3390/ph16101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tuberculosis (TB), an infection caused by Mycobacterium tuberculosis (Mtb), is one of the primary causes of death globally. The treatment of TB is long and based on several drugs, producing problems in compliance and toxicity, increasing Mtb resistance to first-line antibiotics that result in multidrug-resistant TB and extensively drug-resistant TB. Thus, the need for new anti-TB treatments has increased. Here, we review some model strategies to study gene therapy based on the administration of a recombinant adenovirus that encodes diverse cytokines, such as IFNγ, IL12, GM/CSF, OPN, TNFα, and antimicrobial peptides to enhance the protective immune response against Mtb. These models include a model of progressive pulmonary TB, a model of chronic infection similar to latent TB, and a murine model of pulmonary Mtb transmission to close contacts. We also review new vaccines that deliver Mtb antigens via particle- or virus-based vectors and trigger protective immune responses. The results obtained in this type of research suggest that this is an alternative therapy that has the potential to treat active TB as an adjuvant to conventional antibiotics and a promising preventive treatment for latent TB reactivation and Mtb transmission. Moreover, Ad vector vaccines are adequate for preventing infectious diseases, including TB.
Collapse
Affiliation(s)
| | | | | | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico; (J.V.L.-E.); (J.B.-P.)
| |
Collapse
|
3
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
4
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
5
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
6
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
7
|
Afkhami S, D'Agostino MR, Zhang A, Stacey HD, Marzok A, Kang A, Singh R, Bavananthasivam J, Ye G, Luo X, Wang F, Ang JC, Zganiacz A, Sankar U, Kazhdan N, Koenig JFE, Phelps A, Gameiro SF, Tang S, Jordana M, Wan Y, Mossman KL, Jeyanathan M, Gillgrass A, Medina MFC, Smaill F, Lichty BD, Miller MS, Xing Z. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022; 185:896-915.e19. [PMID: 35180381 PMCID: PMC8825346 DOI: 10.1016/j.cell.2022.02.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022]
Abstract
The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hannah D Stacey
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Art Marzok
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Xiangqian Luo
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fuan Wang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jann C Ang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Uma Sankar
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Natallia Kazhdan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joshua F E Koenig
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Steven F Gameiro
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shangguo Tang
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Manel Jordana
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen L Mossman
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Maria Fe C Medina
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Matthew S Miller
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
8
|
Gomez M, Ahmed M, Das S, McCollum J, Mellett L, Swanson R, Gupta A, Carrigy NB, Wang H, Barona D, Bachchhav S, Gerhardt A, Press C, Archer MC, Liang H, Seydoux E, Kramer RM, Kuehl PJ, Vehring R, Khader SA, Fox CB. Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Front Pharmacol 2022; 12:799034. [PMID: 35126135 PMCID: PMC8814656 DOI: 10.3389/fphar.2021.799034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022] Open
Abstract
Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against Mycobacterium tuberculosis (Mtb) in a murine model when administered via different routes. Four administration routes for the spray-dried ID93+GLA-SE were evaluated along with relevant controls—1) reconstitution and intramuscular injection, 2) reconstitution and intranasal delivery, 3) nasal dry powder delivery via inhalation, and 4) pulmonary dry powder delivery via inhalation. Dry powder intranasal and pulmonary delivery was achieved using a custom nose-only inhalation device, and optimization using representative vaccine-free powder demonstrated that approximately 10 and 44% of the maximum possible delivered dose would be delivered for intranasal delivery and pulmonary delivery, respectively. Spray-dried powder was engineered according to the different administration routes including maintaining approximately equivalent delivered doses of ID93 and GLA. Vaccine properties of the different spray-dried lots were assessed for quality control in terms of nanoemulsion droplet diameter, polydispersity index, adjuvant content, and antigen content. Our results using the Mtb mouse challenge model show that both intranasal reconstituted vaccine delivery as well as pulmonary dry powder vaccine delivery resulted in Mtb control in infected mice comparable to traditional intramuscular delivery. Improved protection in these two vaccinated groups over their respective control groups coincided with the presence of cytokine-producing T cell responses. In summary, our results provide novel vaccine formulations and delivery routes that can be harnessed to provide protection against Mtb infection.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Joseph McCollum
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Leah Mellett
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Rosemary Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Nicholas B. Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shital Bachchhav
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Alana Gerhardt
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Ryan M. Kramer
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| |
Collapse
|
9
|
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading cause of mortality and morbidity due to a single infectious agent. Aerosol infection with Mtb can result in a range of responses from elimination, active, incipient, subclinical, and latent Mtb infections (LTBI), depending on the host's immune response and the dose and nature of infecting bacilli. Currently, BCG is the only vaccine approved to prevent TB. Although BCG confers protection against severe forms of childhood TB, its use in adults and those with comorbid conditions, such as HIV infection, is questionable. Novel vaccines, including recombinant BCG (rBCG), were developed to improve BCG's efficacy and use as an alternative to BCG in a vulnerable population. The first-generation rBCG vaccines had different Mtb antigens and were tested as a prime, prime-boost, or immunotherapeutic intervention. The novel vaccines target one or more of the following requirements, namely prevention of infection (POI), prevention of disease (POD), prevention of recurrence (POR), and therapeutic vaccines to treat a TB disease. Several vaccine candidates currently in development are classified into four primary categories: live attenuated whole-cell vaccine, inactivated whole-cell vaccine, adjuvanted protein subunit vaccine, and viral-vectored vaccine. Each vaccine's immunogenicity, safety, and efficacy are tested in preclinical animal models and further validated through various phases of clinical trials. This chapter summarizes the various TB vaccine candidates under different clinical trial stages and promises better protection against TB.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamilnadu, India
| | - Selvakumar Subbian
- The Public Health Research Institute Center at New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
10
|
Ritter K, Behrends J, Erdmann H, Rousseau J, Hölscher A, Volz J, Prinz I, Lindenstrøm T, Hölscher C. Interleukin-23 instructs protective multifunctional CD4 T cell responses after immunization with the Mycobacterium tuberculosis subunit vaccine H1 DDA/TDB independently of interleukin-17A. J Mol Med (Berl) 2021; 99:1585-1602. [PMID: 34351501 PMCID: PMC8541990 DOI: 10.1007/s00109-021-02100-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-17A-producing T helper (Th)17 cells are increasingly being acknowledged to be associated with protective immunity to Mycobacterium tuberculosis (Mtb). Subunit vaccines potently promote protective immune responses against Mtb infection that correlate with an expansion of IL-23-dependent Th17 cells. Previous studies revealed that after vaccination, IL-23 is required for protection against challenge with Mtb but the underlying IL-23-dependent-and possibly IL-17A-mediated-mechanisms remain elusive. Therefore, we here analyzed the early outcome of Mtb infection in C57BL/6, IL-23p19-deficient (-/-), and IL-17A-/- mice after vaccination with the subunit vaccine H1-DDA/TDB to investigate the role of the IL-23-Th17 immune axis for the instruction of vaccine-induced protection. While in IL-23p19-/- mice the protective effect was reduced, protection after vaccination was maintained in IL-17A-/- animals for the course of infection of 6 weeks, indicating that after vaccination with H1-DDA/TDB early protection against Mtb is-although dependent on IL-23-not mediated by IL-17A. In contrast, IL-17A deficiency appears to have an impact on maintaining long-term protection. In fact, IL-23 instructed the vaccine-induced memory immunity in the lung, in particular the sustained expansion of tumor necrosis factor (TNF)+IL-2+ multifunctional T cells, independently of IL-17A. Altogether, a targeted induction of IL-23 during vaccination against Mtb might improve the magnitude and quality of vaccine-induced memory immune responses. KEY MESSAGES: After subunit Mtb vaccination with H1-DDA/TDB, IL-23 but not IL-17A contributes to vaccine-induced early protection against infection with Mtb. IL-17F does not compensate for IL-17A deficiency in terms of H1-DDA/TDB-induced protection against Mtb infection. IL 23 promotes the H1-DDA/TDB-induced accumulation of effector memory T cells independently of IL 17A. IL-23 arbitrates the induction of H1-specific IFN-γ-TNF+IL-2+ double-positive multifunctional CD4 T cells after subunit Mtb vaccination in an IL-17A-independent manner.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Core Unit, Research Center Borstel, Borstel, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | | | - Johanna Volz
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Center for Molecular Neurobiology Hamburg, Eppendorf University Medical Center, Hamburg, Germany
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
11
|
Kaveh DA, Garcia-Pelayo MC, Bull NC, Sanchez-Cordon PJ, Spiropoulos J, Hogarth PJ. Airway delivery of both a BCG prime and adenoviral boost drives CD4 and CD8 T cells into the lung tissue parenchyma. Sci Rep 2020; 10:18703. [PMID: 33127956 PMCID: PMC7603338 DOI: 10.1038/s41598-020-75734-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Heterologous BCG prime-boost regimens represent a promising strategy for an urgently required improved tuberculosis vaccine. Identifying the mechanisms which underpin the enhanced protection induced by such strategies is one key aim which would significantly accelerate rational vaccine development. Experimentally, airway vaccination induces greater efficacy than parenteral delivery; in both conventional vaccination and heterologous boosting of parenteral BCG immunisation. However, the effect of delivering both the component prime and boost immunisations via the airway is not well known. Here we investigate delivery of both the BCG prime and adenovirus boost vaccination via the airway in a murine model, and demonstrate this approach may be able to improve the protective outcome over parenteral prime/airway boost. Intravascular staining of T cells in the lung revealed that the airway prime regimen induced more antigen-specific multifunctional CD4 and CD8 T cells to the lung parenchyma prior to challenge and indicated the route of both prime and boost to be critical to the location of induced resident T cells in the lung. Further, in the absence of a defined phenotype of vaccine-induced protection to tuberculosis; the magnitude and phenotype of vaccine-specific T cells in the parenchyma of the lung may provide insights into potential correlates of immunity.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK.
| | - M Carmen Garcia-Pelayo
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Naomi C Bull
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK.,Royal Veterinary College, Royal College Street, London, UK
| | | | | | - Philip J Hogarth
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK
| |
Collapse
|
12
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
13
|
D'Agostino MR, Lai R, Afkhami S, Khera A, Yao Y, Vaseghi-Shanjani M, Zganiacz A, Jeyanathan M, Xing Z. Airway Macrophages Mediate Mucosal Vaccine-Induced Trained Innate Immunity against Mycobacterium tuberculosis in Early Stages of Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:2750-2762. [PMID: 32998983 DOI: 10.4049/jimmunol.2000532] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis (TB), is responsible for millions of infections and deaths annually. Decades of TB vaccine development have focused on adaptive T cell immunity, whereas the importance of innate immune contributions toward vaccine efficacy has only recently been recognized. Airway macrophages (AwM) are the predominant host cell during early pulmonary M. tuberculosis infection and, therefore, represent attractive targets for vaccine-mediated immunity. We have demonstrated that respiratory mucosal immunization with a viral-vectored vaccine imprints AwM, conferring enhanced protection against heterologous bacterial challenge. However, it is unknown if innate immune memory also protects against M. tuberculosis In this study, by using a murine model, we detail whether respiratory mucosal TB vaccination profoundly alters the airway innate immune landscape associated with AwM prior to M. tuberculosis exposure and whether such AwM play a critical role in host defense against M. tuberculosis infection. Our study reveals an important role of AwM in innate immune protection in early stages of M. tuberculosis infection in the lung.
Collapse
Affiliation(s)
- Michael R D'Agostino
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
14
|
Afkhami S, Lai R, D'agostino MR, Vaseghi-Shanjani M, Zganiacz A, Yao Y, Jeyanathan M, Xing Z. Single-Dose Mucosal Immunotherapy With Chimpanzee Adenovirus-Based Vaccine Accelerates Tuberculosis Disease Control and Limits Its Rebound After Antibiotic Cessation. J Infect Dis 2020; 220:1355-1366. [PMID: 31198944 DOI: 10.1093/infdis/jiz306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The development of strategies to accelerate disease resolution and shorten antibiotic therapy is imperative in curbing the global tuberculosis epidemic. Therapeutic application of novel vaccines adjunct to antibiotics represents such a strategy. METHODS By using a murine model of pulmonary tuberculosis (TB), we have investigated whether a single respiratory mucosal therapeutic delivery of a novel chimpanzee adenovirus-vectored vaccine expressing Ag85A (AdCh68Ag85A) accelerates TB disease control in conjunction with antibiotics and restricts pulmonary disease rebound after premature (nonsterilizing) antibiotic cessation. RESULTS We find that immunotherapy via the respiratory mucosal, but not parenteral, route significantly accelerates pulmonary mycobacterial clearance, limits lung pathology, and restricts disease rebound after premature antibiotic cessation. We further show that vaccine-activated antigen-specific T cells, particularly CD8 T cells, in the lung play an important role in immunotherapeutic effects. CONCLUSIONS Our results indicate that a single-dose respiratory mucosal immunotherapy with AdCh68Ag85A adjunct to antibiotic therapy has the potential to significantly accelerate disease control and shorten the duration of conventional treatment. Our study provides the proof of principle to support therapeutic applications of viral-vectored vaccines via the respiratory route.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'agostino
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Characterization of local and circulating bovine γδ T cell responses to respiratory BCG vaccination. Sci Rep 2019; 9:15996. [PMID: 31690788 PMCID: PMC6831659 DOI: 10.1038/s41598-019-52565-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine is administered parenterally to infants and young children to prevent tuberculosis (TB) infection. However, the protection induced by BCG is highly variable and the vaccine does not prevent pulmonary TB, the most common form of the illness. Until improved TB vaccines are available, it is crucial to use BCG in a manner which ensures optimal vaccine performance. Immunization directly to the respiratory mucosa has been shown to promote greater protection from TB in animal models. γδ T cells play a major role in host defense at mucosal sites and are known to respond robustly to mycobacterial infection. Their positioning in the respiratory mucosa ensures their engagement in the response to aerosolized TB vaccination. However, our understanding of the effect of respiratory BCG vaccination on γδ T cell responses in the lung is unknown. In this study, we used a calf model to investigate the immunogenicity of aerosol BCG vaccination, and the phenotypic profile of peripheral and mucosal γδ T cells responding to vaccination. We observed robust local and systemic M. bovis-specific IFN-γ and IL-17 production by both γδ and CD4 T cells. Importantly, BCG vaccination induced effector and memory cell differentiation of γδ T cells in both the lower airways and peripheral blood, with accumulation of a large proportion of effector memory γδ T cells in both compartments. Our results demonstrate the potential of the neonatal calf model to evaluate TB vaccine candidates that are to be administered via the respiratory tract, and suggest that aerosol immunization is a promising strategy for engaging γδ T cells in vaccine-induced immunity against TB.
Collapse
|
16
|
Jarvela J, Moyer M, Leahy P, Bonfield T, Fletcher D, Mkono WN, Aung H, Canaday DH, Dazard JE, Silver RF. Mycobacterium tuberculosis-Induced Bronchoalveolar Lavage Gene Expression Signature in Latent Tuberculosis Infection Is Dominated by Pleiotropic Effects of CD4 + T Cell-Dependent IFN-γ Production despite the Presence of Polyfunctional T Cells within the Airways. THE JOURNAL OF IMMUNOLOGY 2019; 203:2194-2209. [PMID: 31541022 DOI: 10.4049/jimmunol.1900230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022]
Abstract
Tuberculosis (TB) remains a worldwide public health threat. Development of a more effective vaccination strategy to prevent pulmonary TB, the most common and contagious form of the disease, is a research priority for international TB control. A key to reaching this goal is improved understanding of the mechanisms of local immunity to Mycobacterium tuberculosis, the causative organism of TB. In this study, we evaluated global M. tuberculosis-induced gene expression in airway immune cells obtained by bronchoalveolar lavage (BAL) of individuals with latent TB infection (LTBI) and M. tuberculosis-naive controls. In prior studies, we demonstrated that BAL cells from LTBI individuals display substantial enrichment for M. tuberculosis-responsive CD4+ T cells compared with matched peripheral blood samples. We therefore specifically assessed the impact of the depletion of CD4+ and CD8+ T cells on M. tuberculosis-induced BAL cell gene expression in LTBI. Our studies identified 12 canonical pathways and a 47-gene signature that was both sensitive and specific for the contribution of CD4+ T cells to local recall responses to M. tuberculosis In contrast, depletion of CD8+ cells did not identify any genes that fit our strict criteria for inclusion in this signature. Although BAL CD4+ T cells in LTBI displayed polyfunctionality, the observed gene signature predominantly reflected the impact of IFN-γ production on a wide range of host immune responses. These findings provide a standard for comparison of the efficacy of standard bacillus Calmette-Guérin vaccination as well as novel TB vaccines now in development at impacting the initial response to re-exposure to M. tuberculosis in the human lung.
Collapse
Affiliation(s)
- Jessica Jarvela
- Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Michelle Moyer
- Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Patrick Leahy
- Case Western Reserve University Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Tracey Bonfield
- Division of Pediatric Pulmonology, Allergy, and Immunology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - David Fletcher
- Division of Pediatric Pulmonology, Allergy, and Immunology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Wambura N Mkono
- Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Htin Aung
- Division of Infectious Diseases and HIV Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106.,Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; and
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106.,Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106; and
| | - Jean-Eudes Dazard
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Richard F Silver
- Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106; .,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| |
Collapse
|
17
|
McShane H. Insights and challenges in tuberculosis vaccine development. THE LANCET. RESPIRATORY MEDICINE 2019; 7:810-819. [PMID: 31416767 DOI: 10.1016/s2213-2600(19)30274-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 02/09/2023]
Abstract
Tuberculosis kills more people than any other pathogen and the need for a universally effective vaccine has never been greater. An effective vaccine will be a key tool in achieving the targets set by WHO in the End TB Strategy. Tuberculosis vaccine development is difficult and slow. Substantial progress has been made in research and development of tuberculosis vaccines in the past 20 years, and two clinical trial results from 2018 provide reason for optimism. However, many challenges to the successful licensure and deployment of an effective tuberculosis vaccine remain. The development of new tools for vaccine evaluation might facilitate these processes, and continued collaborative working and sustained funding will be essential.
Collapse
Affiliation(s)
- Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
19
|
Bull NC, Stylianou E, Kaveh DA, Pinpathomrat N, Pasricha J, Harrington-Kandt R, Garcia-Pelayo MC, Hogarth PJ, McShane H. Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1 + KLRG1 - CD4 + T cells. Mucosal Immunol 2019; 12:555-564. [PMID: 30446726 PMCID: PMC7051908 DOI: 10.1038/s41385-018-0109-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023]
Abstract
BCG, the only vaccine licensed against tuberculosis, demonstrates variable efficacy in humans. Recent preclinical studies highlight the potential for mucosal BCG vaccination to improve protection. Lung tissue-resident memory T cells reside within the parenchyma, potentially playing an important role in protective immunity to tuberculosis. We hypothesised that mucosal BCG vaccination may enhance generation of lung tissue-resident T cells, affording improved protection against Mycobacterium tuberculosis. In a mouse model, mucosal intranasal (IN) BCG vaccination conferred superior protection in the lungs compared to the systemic intradermal (ID) route. Intravascular staining allowed discrimination of lung tissue-resident CD4+ T cells from those in the lung vasculature, revealing that mucosal vaccination resulted in an increased frequency of antigen-specific tissue-resident CD4+ T cells compared to systemic vaccination. Tissue-resident CD4+ T cells induced by mucosal BCG displayed enhanced proliferative capacity compared to lung vascular and splenic CD4+ T cells. Only mucosal BCG induced antigen-specific tissue-resident T cells expressing a PD-1+ KLRG1- cell-surface phenotype. These cells constitute a BCG-induced population which may be responsible for the enhanced protection observed with IN vaccination. We demonstrate that mucosal BCG vaccination significantly improves protection over systemic BCG and this correlates with a novel population of BCG-induced lung tissue-resident CD4+ T cells.
Collapse
Affiliation(s)
- N. C. Bull
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK ,0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - E. Stylianou
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - D. A. Kaveh
- 0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - N. Pinpathomrat
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - J. Pasricha
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - R. Harrington-Kandt
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - M. C. Garcia-Pelayo
- 0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - P. J. Hogarth
- 0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - H. McShane
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Gupta T, LaGatta M, Helms S, Pavlicek RL, Owino SO, Sakamoto K, Nagy T, Harvey SB, Papania M, Ledden S, Schultz KT, McCombs C, Quinn FD, Karls RK. Evaluation of a temperature-restricted, mucosal tuberculosis vaccine in guinea pigs. Tuberculosis (Edinb) 2018; 113:179-188. [PMID: 30514501 DOI: 10.1016/j.tube.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is currently the leading cause of death in humans by a single infectious agent, Mycobacterium tuberculosis. The Bacillus Calmette-Guérin (BCG) vaccine prevents pulmonary TB with variable efficacy, but can cause life-threatening systemic infection in HIV-infected infants. In this study, TBvac85, a derivative of Mycobacterium shottsii expressing M. tuberculosis Antigen 85B, was examined as a safer alternative to BCG. Intranasal vaccination of guinea pigs with TBvac85, a naturally temperature-restricted species, resulted in serum Ag85B-specific IgG antibodies. Delivery of the vaccine by this route also induced protection equivalent to intradermal BCG based on organ bacterial burdens and lung pathology six weeks after aerosol challenge with M. tuberculosis strain Erdman. These results support the potential of TBvac85 as the basis of an effective TB vaccine. Next-generation derivatives expressing multiple M. tuberculosis immunogens are in development.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Monica LaGatta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Shelly Helms
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Rebecca L Pavlicek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Simon O Owino
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stephen B Harvey
- Animal Resources Program, University of Georgia, Athens, GA, USA; Department of Population Heath, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mark Papania
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Ledden
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | - Frederick D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Russell K Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA.
| |
Collapse
|
21
|
Zens KD, Chen JK, Farber DL. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 2018; 1:85832. [PMID: 27468427 DOI: 10.1172/jci.insight.85832] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are a recently defined, noncirculating subset with the potential for rapid in situ protective responses, although their generation and role in vaccine-mediated immune responses is unclear. Here, we assessed TRM generation and lung-localized protection following administration of currently licensed influenza vaccines, including injectable inactivated influenza virus (IIV, Fluzone) and i.n. administered live-attenuated influenza virus (LAIV, FluMist) vaccines. We found that, while IIV preferentially induced strain-specific neutralizing antibodies, LAIV generated lung-localized, virus-specific T cell responses. Moreover, LAIV but not IIV generated lung CD4+ TRM and virus-specific CD8+ TRM, similar in phenotype to those generated by influenza virus infection. Importantly, these vaccine-generated TRM mediated cross-strain protection, independent of circulating T cells and neutralizing antibodies, which persisted long-term after vaccination. Interestingly, intranasal administration of IIV or injection of LAIV failed to elicit T cell responses or provide protection against viral infection, demonstrating dual requirements for respiratory targeting and a live-attenuated strain to establish TRM. The ability of LAIV to generate lung TRM capable of providing long-term protection against nonvaccine viral strains, as demonstrated here, has important implications for protecting the population against emergent influenza pandemics by direct fortification of lung-specific immunity.
Collapse
Affiliation(s)
- Kyra D Zens
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and
| | | | - Donna L Farber
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and.,Department of Surgery, Columbia University Medical Center (CUMC), New York, New York, USA
| |
Collapse
|
22
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
23
|
Jeyanathan M, Yao Y, Afkhami S, Smaill F, Xing Z. New Tuberculosis Vaccine Strategies: Taking Aim at Un-Natural Immunity. Trends Immunol 2018; 39:419-433. [DOI: 10.1016/j.it.2018.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
|
24
|
Gebhardt T, Palendira U, Tscharke DC, Bedoui S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol Rev 2018; 283:54-76. [DOI: 10.1111/imr.12650] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| | - Umaimainthan Palendira
- Centenary Institute; The University of Sydney; Sydney NSW Australia
- Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - David C. Tscharke
- The John Curtin School of Medical Research; The Australian National University; Canberra ACT Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| |
Collapse
|
25
|
Yao Y, Lai R, Afkhami S, Haddadi S, Zganiacz A, Vahedi F, Ashkar AA, Kaushic C, Jeyanathan M, Xing Z. Enhancement of Antituberculosis Immunity in a Humanized Model System by a Novel Virus-Vectored Respiratory Mucosal Vaccine. J Infect Dis 2017; 216:135-145. [PMID: 28531291 DOI: 10.1093/infdis/jix252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background The translation of preclinically promising novel tuberculosis vaccines to ultimate human applications has been challenged by the lack of animal models with an immune system equivalent to the human immune system in its genetic diversity and level of susceptibility to tuberculosis. Methods We have developed a humanized mice (Hu-mice) tuberculosis model system to investigate the clinical relevance of a novel virus-vectored (VV) tuberculosis vaccine administered via respiratory mucosal or parenteral route. Results We find that VV vaccine activates T cells in Hu-mice as it does in human vaccinees. The respiratory mucosal route for delivery of VV vaccine in Hu-mice, but not the parenteral route, significantly reduces the humanlike lung tuberculosis outcomes in a human T-cell-dependent manner. Conclusions Our results suggest that the Hu-mouse can be used to predict the protective efficacy of novel tuberculosis vaccines/strategies before they proceed to large, expensive human trials. This new vaccine testing system will facilitate the global pace of clinical tuberculosis vaccine development.
Collapse
Affiliation(s)
- Yushi Yao
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Siamak Haddadi
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre.,Department of Pathology & Molecular Medicine.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Haddadi S, Thanthrige-Don N, Afkhami S, Khera A, Jeyanathan M, Xing Z. Expression and role of VLA-1 in resident memory CD8 T cell responses to respiratory mucosal viral-vectored immunization against tuberculosis. Sci Rep 2017; 7:9525. [PMID: 28842633 PMCID: PMC5573413 DOI: 10.1038/s41598-017-09909-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Lung resident memory T cells (TRM) characterized by selective expression of mucosal integrins VLA-1 (α1β1) and CD103 (αEβ7) are generated following primary respiratory viral infections. Despite recent progress, the generation of lung TRM and the role of mucosal integrins following viral vector respiratory mucosal immunization still remains poorly understood. Here by using a replication-defective viral vector tuberculosis vaccine, we show that lung Ag-specific CD8 T cells express both VLA-1 and CD103 following respiratory mucosal immunization. However, VLA-1 and CD103 are acquired in differential tissue sites with the former acquired during T cell priming in the draining lymph nodes and the latter acquired after T cells entered the lung. Once in the lung, Ag-specific CD8 T cells continue to express VLA-1 at high levels through the effector/expansion, contraction, and memory phases of T cell responses. Using a functional VLA-1 blocking mAb, we show that VLA-1 is not required for trafficking of these cells to the lung, but it negatively regulates them in the contraction phase. Furthermore, VLA-1 plays a negligible role in the maintenance of these cells in the lung. Our study provides new information on vaccine-inducible lung TRM and shall help develop effective viral vector respiratory mucosal tuberculosis vaccination strategies.
Collapse
Affiliation(s)
- Siamak Haddadi
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Niroshan Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada. .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
27
|
Jeyanathan M, Afkhami S, Khera A, Mandur T, Damjanovic D, Yao Y, Lai R, Haddadi S, Dvorkin-Gheva A, Jordana M, Kunkel SL, Xing Z. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway. THE JOURNAL OF IMMUNOLOGY 2017; 199:2555-2569. [PMID: 28827285 DOI: 10.4049/jimmunol.1700382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Sam Afkhami
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Amandeep Khera
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Talveer Mandur
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Daniela Damjanovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Yushi Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Rocky Lai
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Siamak Haddadi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada; .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| |
Collapse
|
28
|
Calderon-Nieva D, Goonewardene KB, Gomis S, Foldvari M. Veterinary vaccine nanotechnology: pulmonary and nasal delivery in livestock animals. Drug Deliv Transl Res 2017; 7:558-570. [PMID: 28639138 DOI: 10.1007/s13346-017-0400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.
Collapse
Affiliation(s)
- Daniella Calderon-Nieva
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Kalhari Bandara Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
29
|
Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 2017; 35:4983-4989. [PMID: 28774560 DOI: 10.1016/j.vaccine.2017.07.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is contracted via aerosol infection, typically affecting the lungs. Mycobacterium bovis bacillus Calmette-Guerin (BCG) is the only licensed vaccine and has variable efficacy in protecting against pulmonary TB. Additionally, chemotherapy is associated with low compliance contributing to development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. Experimental vaccines delivered through the mucosal route induce robust T helper type 17 (Th17)/ Interleukin (IL) -17 responses and provide superior protection against Mtb infection. Thus, the development of safe mucosal adjuvants for human use is critical. In this study, we demonstrate that nanoemulsion (NE)-based adjuvants when delivered intranasally along with Mtb specific immunodominant antigens (NE-TB vaccine) induce potent mucosal IL-17T-cell responses. Additionally, the NE-TB vaccine confers significant protection against Mtb infection, and when delivered along with BCG, is associated with decreased disease severity. These findings strongly support the development of a NE-TB vaccine as a novel, safe and effective, first-of-kind IL-17 inducing mucosal vaccine for potential use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | | | - Tarek Hamouda
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, United States
| | - Ali Fattom
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States.
| |
Collapse
|
30
|
Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice. Mol Ther 2017; 25:1222-1233. [PMID: 28342639 PMCID: PMC5417795 DOI: 10.1016/j.ymthe.2017.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the lung. Sendai virus, a respiratory RNA virus, is here engineered firstly as a novel recombinant anti-TB vaccine (SeV85AB) that encodes Mtb immuno-dominant antigens, Ag85A and Ag85B. A single mucosal vaccination elicited potent antigen-specific T cell responses and a degree of protection against Mtb challenge similar to the effect of BCG in mice. Depletion of CD8+ T cells abrogated the protective immunity afforded by SeV85AB vaccination. Interestingly, only SeV85AB vaccination induced high levels of lung-resident memory CD8+ T (TRM) cells, and this led to a rapid and strong recall of antigen-specific CD8+ T cell responses against Mtb challenge infection. Furthermore, when used in a BCG prime-SeV85AB boost strategy, SeV85AB vaccine significantly enhanced protection above that seen after BCG vaccination alone. Our findings suggest that CD8+ TRM cells that arise in lungs responding to this mucosal vaccination might help to protect against TB, and SeV85AB holds notable promise to improve BCG’s protective efficacy in a prime-boost immunization regimen.
Collapse
|
31
|
Ahmed M, Jiao H, Domingo-Gonzalez R, Das S, Griffiths KL, Rangel-Moreno J, Nagarajan UM, Khader SA. Rationalized design of a mucosal vaccine protects against Mycobacterium tuberculosis challenge in mice. J Leukoc Biol 2017; 101:1373-1381. [PMID: 28258153 DOI: 10.1189/jlb.4a0616-270r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/23/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a leading cause of global morbidity and mortality. The only licensed TB vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), has variable efficacy in protecting against pulmonary TB. Thus, the development of more effective TB vaccines is critical to control the TB epidemic. Specifically, vaccines delivered through the mucosal route are known to induce Th17 responses and provide superior protection against Mtb infection. However, already tested Th17-inducing mucosal adjuvants, such as heat-labile enterotoxins and cholera toxins, are not considered safe for use in humans. In the current study, we rationally screened adjuvants for their ability to induce Th17-polarizing cytokines in dendritic cells (DCs) and determined whether they could be used in a protective mucosal TB vaccine. Our new studies show that monophosphoryl lipid A (MPL), when used in combination with chitosan, potently induces Th17-polarizing cytokines in DCs and downstream Th17/Th1 mucosal responses and confers significant protection in mice challenged with a clinical Mtb strain. Additionally, we show that both TLRs and the inflammasome pathways are activated in DCs by MPL-chitosan to mediate induction of Th17-polarizing cytokines. Together, our studies put forward the potential of a new, protective mucosal TB vaccine candidate, which incorporates safe adjuvants already approved for use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongmei Jiao
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Racquel Domingo-Gonzalez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin L Griffiths
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Uma M Nagarajan
- Department of Pediatrics and Microbiology/Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
32
|
Acosta-Ramirez E, Tram C, Kampen RM, Tillman MR, Schwendener RA, Xing Z, Halperin SA, Wang J. Respiratory macrophages regulate CD4 T memory responses to mucosal immunization with recombinant adenovirus-based vaccines. Cell Immunol 2016; 310:53-62. [PMID: 27425590 PMCID: PMC7094387 DOI: 10.1016/j.cellimm.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Respiratory macrophages have dual functional roles that regulate CD4 T cell responses to recombinant adenovirus-based vaccination in a stage-dependent manner. Respiratory macrophages suppress the initial CD4 T cell activation and the subsequent size of tissue-resident CD4 memory T cells. Respiratory macrophages and potentially circulating monocytes are critically required for the development and fitness of long-term tissue-resident CD4 memory T cells.
Respiratory immunization is an attractive way to generate systemic and mucosal protective memory responses that are required for preventing mucosally transmitted infections. However, the molecular and cellular mechanisms for controlling memory T cell responses remain incompletely understood. In this study, we investigated the role of respiratory macrophage (MΦ) in regulating CD4 T cell responses to recombinant adenovirus-based (rAd) vaccines. We demonstrated that rAd intranasal (i.n.) vaccination induced migration and accumulation of respiratory MΦ and circulatory monocytes in the mediastinal lymph nodes and lung parenchyma. Under the influence of respiratory MΦ CD4 T cells exhibited slow proliferation kinetics and an increased tendency of generating central memory, as opposed to effector memory, CD4 T cell responses in vitro and in vivo. Correspondingly, depletion of MΦ using clodronate-containing liposome prior to i.n. immunization significantly enhanced CD4 T cell proliferation and increased the frequency of CD4 memory T cells in the airway lumen, demonstrating that MΦ initially serve as a negative regulator in limiting generation of mucosal tissue-resident memory CD4 T cells. However, clodronate-containing liposome delivery following i.n. immunization markedly reduced the frequencies of memory CD4 T cells in the airway lumen and spleen, indicating that respiratory MΦ and potentially circulating monocytes are critically required for maintaining long-term memory CD4 T cells. Collectively, our data demonstrate that rAd-induced mucosal CD4 T memory responses are regulated by respiratory MΦ and/or monocytes at multiple stages.
Collapse
Affiliation(s)
- Elizabeth Acosta-Ramirez
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Cynthia Tram
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Rachel M Kampen
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Melanie R Tillman
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Reto A Schwendener
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jun Wang
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
33
|
Abstract
Tuberculosis (TB) is still a major global health problem. A third of the world’s population is infected with Mycobacterium tuberculosis. Only ~10% of infected individuals develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of TB require at least 6 months of treatment with multiple drugs. The management of latent TB infection and TB has become more challenging because of the spread of multidrug-resistant and extremely drug-resistant TB. Intensified efforts to find new TB drugs and immunotherapies are needed. Immunotherapies could modulate the immune system in patients with latent TB infection or active disease, enabling better control of M. tuberculosis replication. This review describes several types of potential immunotherapies with a focus on those which have been tested in humans.
Collapse
Affiliation(s)
- Getahun Abate
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology
| | - Daniel F Hoft
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology; Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
34
|
Zhang Y, Feng L, Li L, Wang D, Li C, Sun C, Li P, Zheng X, Liu Y, Yang W, Niu X, Zhong N, Chen L. Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine. Hum Vaccin Immunother 2016; 11:1803-13. [PMID: 26076321 DOI: 10.1080/21645515.2015.1042193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4(+) T and CD8(+) T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens.
Collapse
Key Words
- APC, Allophycocyanin
- BCG, Mycobacterium bovis bacille Calmette-Guérin
- BSA, bovine serum album
- CMI, cell-mediated immune responses
- DAPI, 4′,6-diamidino-2-phenylindole
- DMSO, Dimethyl sulfoxide
- ELISPOT, Enzyme-linked immune-sorbent spot
- FACS, Fluorescence Activated Cell Sorter
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- HA tag, hemagglutinin tag
- HEK, human embryo kidney
- ICS, Intracellular cytokine staining
- IFN-γ, interferon gamma
- IL-2, Interleukin 2
- IM, intramuscular
- IN, intranasal
- Mtb, Mycobacterium tuberculosis
- NBT/BCIP, Nitro blue tetrazolium/ 5-Bromo-4-chloro-3-indolyl phosphate
- PBS, Phosphate Buffered Saline
- PCR, polymerase chain reaction
- PE, Phycoerythrin
- PerCP, Peridinin-ChlorophylL-Protein Complex
- RPMI, Roswell Park Memorial Institute
- SC, subcutaneous
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SFC, spot-forming cells
- TB, tuberculosis
- TNF-α, tumor necrosis factor α
- fusion strategies
- immunization routes
- immunogenicity
- multiple antigens
- mycobacterium tuberculosis
- rAd5, recombinant adenovirus type 5
- tPA, tissue plasminogen activator
- vp, viral particles
Collapse
Affiliation(s)
- Yiling Zhang
- a State Key Laboratory of Respiratory Diseases; The First Affiliated Hospital of Guangzhou Medical University ; Guangzhou , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pang Y, Zhao A, Cohen C, Kang W, Lu J, Wang G, Zhao Y, Zheng S. Current status of new tuberculosis vaccine in children. Hum Vaccin Immunother 2016; 12:960-70. [PMID: 27002369 DOI: 10.1080/21645515.2015.1120393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Pediatric tuberculosis contributes significantly to the burden of TB disease worldwide. In order to achieve the goal of eliminating TB by 2050, an effective TB vaccine is urgently needed to prevent TB transmission in children. BCG vaccination can protect children from the severe types of TB such as TB meningitis and miliary TB, while its efficacy against pediatric pulmonary TB ranged from no protection to very high protection. In recent decades, multiple new vaccine candidates have been developed, and shown encouraging safety and immunogenicity in the preclinical experiments. However, the limited data on protective efficacy in infants evaluated by clinical trials has been disappointing, an example being MVA85A. To date, no vaccine has been shown to be clinically safer and more effective than the presently licensed BCG vaccine. Hence, before a new vaccine is developed with more promising efficacy, we must reconsider how to better use the current BCG vaccine to maximize its effectiveness in children.
Collapse
Affiliation(s)
- Yu Pang
- a Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University , Beijing , China.,b National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Aihua Zhao
- c National Institute for Food and Drug Control , Beijing , China
| | - Chad Cohen
- d McGill International TB Centre, Montreal , Quebec , Canada
| | - Wanli Kang
- a Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University , Beijing , China
| | - Jie Lu
- e Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , Beijing , China
| | - Guozhi Wang
- c National Institute for Food and Drug Control , Beijing , China
| | - Yanlin Zhao
- b National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Suhua Zheng
- a Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University , Beijing , China
| |
Collapse
|
36
|
Lai R, Afkhami S, Haddadi S, Jeyanathan M, Xing Z. Mucosal immunity and novel tuberculosis vaccine strategies: route of immunisation-determined T-cell homing to restricted lung mucosal compartments. Eur Respir Rev 2016; 24:356-60. [PMID: 26028646 DOI: 10.1183/16000617.00002515] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Despite the use of bacille Calmette-Guérin (BCG) for almost a century, pulmonary tuberculosis (TB) continues to be a serious global health concern. Therefore, there has been a pressing need for the development of new booster vaccines to enhance existing BCG-induced immunity. Protection following mucosal intranasal immunisation with AdHu5Ag85A is associated with the localisation of antigen-specific T-cells to the lung airway. However, parenteral intramuscular immunisation is unable to provide protection despite the apparent presence of antigen-specific T-cells in the lung interstitium. Recent advances in intravascular staining have allowed us to reassess the previously established T-cell distribution profile and its relationship with the observed differential protection. Respiratory mucosal immunisation empowers T-cells to home to both the lung interstitium and the airway lumen, whereas intramuscular immunisation-activated T-cells are largely trapped within the pulmonary vasculature, unable to populate the lung interstitium and airway. Given the mounting evidence supporting the safety and enhanced efficacy of respiratory mucosal immunisation over the traditional parenteral immunisation route, a greater effort should be made to clinically develop respiratory mucosal-deliverable TB vaccines.
Collapse
Affiliation(s)
- Rocky Lai
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Siamak Haddadi
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain N. Mucoadhesion: A promising approach in drug delivery system. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Tuberculosis vaccines--state of the art, and novel approaches to vaccine development. Int J Infect Dis 2016; 32:5-12. [PMID: 25809749 DOI: 10.1016/j.ijid.2014.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 11/20/2022] Open
Abstract
The quest for a vaccine that could have a major impact in reducing the current global burden of TB disease in humans continues to be extremely challenging. Significant gaps in our knowledge and understanding of the pathogenesis and immunology of tuberculosis continue to undermine efforts to break new ground, and traditional approaches to vaccine development have thus far met with limited success. Existing and novel candidate vaccines are being assessed in the context of their ability to impact the various stages that culminate in disease transmission and an increase in the global burden of disease. Innovative methods of vaccine administration and delivery have provided a fresh stimulus to the search for the elusive vaccine. Here we discuss the current status of preclinical vaccine development, providing insights into alternative approaches to vaccine delivery and promising candidate vaccines. The state of the art of clinical development also is reviewed.
Collapse
|
39
|
Nasal vaccination stimulates CD8(+) T cells for potent protection against mucosal Brucella melitensis challenge. Immunol Cell Biol 2016; 94:496-508. [PMID: 26752510 PMCID: PMC4879022 DOI: 10.1038/icb.2016.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement.
Collapse
|
40
|
Orr MT, Beebe EA, Hudson TE, Argilla D, Huang PWD, Reese VA, Fox CB, Reed SG, Coler RN. Mucosal delivery switches the response to an adjuvanted tuberculosis vaccine from systemic TH1 to tissue-resident TH17 responses without impacting the protective efficacy. Vaccine 2015; 33:6570-8. [PMID: 26541135 DOI: 10.1016/j.vaccine.2015.10.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022]
Abstract
Pulmonary tuberculosis (TB) remains one of the leading causes of infectious disease death despite widespread usage of the BCG vaccine. A number of new TB vaccines have moved into clinical evaluation to replace or boost the BCG vaccine including ID93+GLA-SE, an adjuvanted subunit vaccine. The vast majority of new TB vaccines in trials are delivered parenterally even though intranasal delivery can augment lung-resident immunity and protective efficacy in small animal models. Parenteral immunization with the adjuvanted subunit vaccine ID93+GLA-SE elicits robust TH1 immunity and protection against aerosolized Mycobacterium tuberculosis in mice and guinea pigs. Here we describe the immunogenicity and efficacy of this vaccine when delivered intranasally. Intranasal delivery switches the CD4 T cell response from a TH1 to a TH17 dominated tissue-resident response with increased frequencies of ID93-specific cells in both the lung tissue and at the lung surface. Surprisingly these changes do not affect the protective efficacy of ID93+GLA-SE. Unlike intramuscular immunization, ID93+GLA does not require the squalene-based oil-in-water emulsion SE to elicit protective CD4 T cells when delivered intranasally. Finally we demonstrate that TNF and the IL-17 receptor are dispensable for the efficacy of the intranasal vaccine suggesting an alternative mechanism of protection.
Collapse
Affiliation(s)
- Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| | - Elyse A Beebe
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Thomas E Hudson
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - David Argilla
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Po-Wei D Huang
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Valerie A Reese
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA 98102, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA 98102, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
41
|
Jeyanathan M, Thanthrige-Don N, Afkhami S, Lai R, Damjanovic D, Zganiacz A, Feng X, Yao XD, Rosenthal KL, Medina MF, Gauldie J, Ertl HC, Xing Z. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol 2015; 8:1373-87. [PMID: 25872483 DOI: 10.1038/mi.2015.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Collapse
Affiliation(s)
- M Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - N Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Afkhami
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - R Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - D Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - A Zganiacz
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X Feng
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X-D Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - K L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - M Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - H C Ertl
- Department of Immunology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Z Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Ahsan MJ. Recent advances in the development of vaccines for tuberculosis. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:66-75. [PMID: 26288734 DOI: 10.1177/2051013615593891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberculosis (Tb) continues to be a dreadful infection worldwide with nearly 1.5 million deaths in 2013. Furthermore multi/extensively drug-resistant Tb (MDR/XDR-Tb) worsens the condition. Recently approved anti-Tb drugs (bedaquiline and delamanid) have the potential to induce arrhythmia and are recommended in patients with MDR-Tb when other alternatives fail. The goal of elimination of Tb by 2050 will not be achieved without an effective new vaccine. The recent advancement in the development of Tb vaccines is the keen focus of this review. To date, Bacille Calmette Guerin (BCG) is the only licensed Tb vaccine in use, however its efficacy in pulmonary Tb is variable in adolescents and adults. There are nearly 15 vaccine candidates in various phases of clinical trials, includes five protein or adjuvant vaccines, four viral-vectored vaccines, three mycobacterial whole cell or extract vaccines, and one each of the recombinant live and the attenuated Mycobacterium tuberculosis (Mtb) vaccine.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 303 039, India
| |
Collapse
|
43
|
Khera AK, Afkhami S, Lai R, Jeyanathan M, Zganiacz A, Mandur T, Hammill J, Damjanovic D, Xing Z. Role of B Cells in Mucosal Vaccine-Induced Protective CD8+ T Cell Immunity against Pulmonary Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2015; 195:2900-7. [PMID: 26268652 DOI: 10.4049/jimmunol.1500981] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests a role of B cells in host defense against primary pulmonary tuberculosis (TB). However, the role of B cells in TB vaccine-induced protective T cell immunity still remains unknown. Using a viral-vectored model TB vaccine and a number of experimental approaches, we have investigated the role of B cells in respiratory mucosal vaccine-induced T cell responses and protection against pulmonary TB. We found that respiratory mucosal vaccination activated Ag-specific B cell responses. Whereas respiratory mucosal vaccination elicited Ag-specific T cell responses in the airway and lung interstitium of genetic B cell-deficient (Jh(-/-) knockout [KO]) mice, the levels of airway T cell responses were lower than in wild-type hosts, which were associated with suboptimal protection against pulmonary Mycobacterium tuberculosis challenge. However, mucosal vaccination induced T cell responses in the airway and lung interstitium and protection in B cell-depleted wild-type mice to a similar extent as in B cell-competent hosts. Furthermore, by using an adoptive cell transfer approach, reconstitution of B cells in vaccinated Jh(-/-) KO mice did not enhance anti-TB protection. Moreover, respiratory mucosal vaccine-activated T cells alone were able to enhance anti-TB protection in SCID mice, and the transfer of vaccine-primed B cells alongside T cells did not further enhance such protection. Alternatively, adoptively transferring vaccine-primed T cells from Jh(-/-) KO mice into SCID mice only provided suboptimal protection. These data together suggest that B cells play a minimal role, and highlight a central role by T cells, in respiratory mucosal vaccine-induced protective immunity against M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep K Khera
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Sam Afkhami
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Rocky Lai
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Anna Zganiacz
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Talveer Mandur
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Joni Hammill
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Daniela Damjanovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
44
|
Ma J, Lu J, Huang H, Teng X, Tian M, Yu Q, Yuan X, Jing Y, Shi C, Li J, Fan X. Inhalation of recombinant adenovirus expressing granulysin protects mice infected with Mycobacterium tuberculosis. Gene Ther 2015; 22:968-76. [PMID: 26181627 DOI: 10.1038/gt.2015.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 11/09/2022]
Abstract
Granulysin is a cytolytic molecule with perforin and granzymes that is expressed by activated human CTLs, NK and γδ T cells, and it has broad antimicrobial activity, including to drug-sensitive and drug-resistant Mycobacterium tuberculosis. We hypothesized that approaches facilitating the expression of granulysin in M. tuberculosis-infected host cells in the lung may provide a novel treatment strategy for pulmonary TB. In this study, a recombinant replication-deficient adenovirus serotype 5-based rAdhGLi was constructed that expressed human granulysin in the cytosol of the U937 and RAW264.7 macrophage-like cell lines as confirmed by western blotting and co-localization technology using indirect immunofluorescence staining. Ninety-six hours after both cell lines were infected with M. tuberculosis, acid-fast staining and enumeration demonstrated that rAdhGLi-treated cells had a lower colony-forming units (CFU) of intracellular bacteria than culture medium or AdNull controls. Granulysin was only expressed in the lung and not in other organs following inhalation of rAdhGLi. In particular, immunocompetent BALB/c mice or SCID mice intranasally infected with ~200 CFU of virulent M. tuberculosis H37Rv intranasally were treated with rAdhGLi, and they showed decreased bacterial loads in the lung when compared with phosphate-buffered saline or AdNull controls. Importantly, a clear dose-dependent rAdhGLi treatment efficacy was found in infected BALB/c mice, with the most significant reduction in lung bacteria obtained in BALB/c mice treated with 10(9) plaque-forming units of rAdhGLi without any pathological changes. Our study indicates that rAdhGLi may be used as a novel and efficient treatment strategy with the capability to directly kill intracellular M. tuberculosis.
Collapse
Affiliation(s)
- J Ma
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - J Lu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - H Huang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - X Teng
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - M Tian
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Q Yu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - X Yuan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Y Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - C Shi
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - J Li
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - X Fan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 2015; 348:aaa8205. [PMID: 26089520 DOI: 10.1126/science.aaa8205] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ-producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)-inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct-cSAP targeted immunogenic uterine CD11b(+)CD103(-) dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b(-)CD103(+) DCs. Regardless of vaccination route, UV-Ct-cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T(RM) cells). Optimal Ct clearance required both T(RM) seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct-cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties.
Collapse
Affiliation(s)
- Georg Stary
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Olive
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar F Radovic-Moreno
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Gondek
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Alvarez
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Basto
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mario Perro
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir D Vrbanac
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Langer
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael N Starnbach
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Damjanovic D, Khera A, Afkhami S, Lai R, Zganiacz A, Jeyanathan M, Xing Z. Age at Mycobacterium bovis BCG Priming Has Limited Impact on Anti-Tuberculosis Immunity Boosted by Respiratory Mucosal AdHu5Ag85A Immunization in a Murine Model. PLoS One 2015; 10:e0131175. [PMID: 26098423 PMCID: PMC4476612 DOI: 10.1371/journal.pone.0131175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) remains a global pandemic despite the use of Bacillus Calmette-Guérin (BCG) vaccine, partly because BCG fails to effectively control adult pulmonary TB. The introduction of novel boost vaccines such as the human Adenovirus 5-vectored AdHu5Ag85A could improve and prolong the protective immunity of BCG immunization. Age at which BCG immunization is implemented varies greatly worldwide, and research is ongoing to discover the optimal stage during childhood to administer the vaccine, as well as when to boost the immune response with potential novel vaccines. Using a murine model of subcutaneous BCG immunization followed by intranasal AdHu5Ag85A boosting, we investigated the impact of age at BCG immunization on protective efficacy of BCG prime and AdHu5Ag85A boost immunization-mediated protection. Our results showed that age at parenteral BCG priming has limited impact on the efficacy of BCG prime-AdHu5Ag85A respiratory mucosal boost immunization-enhanced protection. However, when BCG immunization was delayed until the maturity of the immune system, longer sustained memory T cells were generated and resulted in enhanced boosting effect on T cells of AdHu5Ag85A respiratory mucosal immunization. Our findings hold implications for the design of new TB immunization protocols for humans.
Collapse
Affiliation(s)
- Daniela Damjanovic
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Li W, Li M, Deng G, Zhao L, Liu X, Wang Y. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Mol Med Rep 2015; 12:3073-80. [PMID: 25962477 DOI: 10.3892/mmr.2015.3770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| |
Collapse
|
48
|
Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg 2015; 109:175-81. [PMID: 25636950 PMCID: PMC4321022 DOI: 10.1093/trstmh/tru206] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
TB remains a very significant global health burden. There is an urgent need for better tools for TB control, which include an effective vaccine. Bacillus Calmette-Guérin (BCG), the currently licensed vaccine, confers highly variable protection against pulmonary TB, the main source of TB transmission. Replacing BCG completely or boosting BCG with another vaccine are the two current strategies for TB vaccine development. Delivering a vaccine by aerosol represents a way to match the route of vaccination to the route of infection. This route of immunisation offers not only the scientific advantage of delivering the vaccine directly to the respiratory mucosa, but also practical and logistical advantages. This review summarises the state of current TB vaccine candidates in the pipeline, reviews current progress in aerosol administration of vaccines in general and evaluates the potential for TB vaccine candidates to be administered by the aerosol route.
Collapse
Affiliation(s)
| | - Helen McShane
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
49
|
Abstract
Pulmonary TB remains a leading global health issue, but the current Bacille Calmette-Guérin (BCG) vaccine fails to control it effectively. Much effort has gone into developing safe and effective boost vaccine candidates for use after the BCG prime vaccination. To date, almost all the lead candidates are being evaluated clinically via a parenteral route. Abundant experimental evidence suggests that parenteral boosting with a virus-based vaccine is much less effective than respiratory mucosal boosting, because the former fails to activate a type of T cell capable of rapidly transmigrating into the airway luminal space in the early phase of the Mycobacterium tuberculosis infection. The next few years will determine whether parenteral boosting with some of the lead vaccine candidates, particularly the protein-based vaccines, improves protection in humans over that by BCG. Much effort is needed to develop respiratory mucosal boost vaccines and to identify the reliable immune protective correlates in humans.
Collapse
Affiliation(s)
- Zhou Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Fiona Smaill
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
|