1
|
Jiang H, Nace R, Ferguson C, Zhang L, Peng KW, Russell SJ. Oncolytic cytomegaloviruses expressing EGFR-retargeted fusogenic glycoprotein complex and drug-controllable interleukin 12. Cell Rep Med 2025; 6:101874. [PMID: 39694038 PMCID: PMC11866437 DOI: 10.1016/j.xcrm.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Cytomegalovirus (CMV) infects a wide range of cell types, including tumor-associated myeloid cells and glioma cells. Clinical observations suggest a potential link between long-term glioblastoma survival and CMV reactivation. We herein present an oncolytic CMV vector, AD169r, which includes a restored pentamer complex gH/gL/pUL128-131 and the removal of UL1-UL20 and UL/b' sequences. The epidermal growth factor receptor (EGFR)-retargeted paramyxoviral glycoprotein H/F complexes are incorporated into AD169r backbone to enhance viral oncolysis. Additionally, a tet-off-controlled single-chain interleukin (IL)-12 is added to boost antitumor immune responses. The engineered oncolytic CMVs expressing EGFR-retargeted H/F complex demonstrate enhanced antitumor efficacy in human glioblastoma xenograft models. In the immunocompetent mouse CT-2A glioblastoma model, an oncolytic murine CMV (mCMV) expressing IL-12 significantly increases the abundance and cytotoxicity of CD4+ T cells, CD8+ T cells, and CD4-CD8- T cells in both treated and untreated tumors. Our findings highlight the potential of the AD169r-derived oncolytic viruses as CMV-based cancer viroimmunotherapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Coryn Ferguson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
2
|
Malouli D, Taher H, Mansouri M, Iyer RF, Reed J, Papen C, Schell JB, Beechwood T, Martinson T, Morrow D, Hughes CM, Gilbride RM, Randall K, Ford JC, Belica K, Ojha S, Sacha JB, Bimber BN, Hansen SG, Picker LJ, Früh K. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8 + T cells. Sci Immunol 2024; 9:eadp5216. [PMID: 39392895 PMCID: PMC11797217 DOI: 10.1126/sciimmunol.adp5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
Rhesus cytomegalovirus (RhCMV) vectors elicit major histocompatibility complex (MHC)-E-restricted CD8+ T cells that stringently control simian immunodeficiency virus (SIV) in rhesus macaques. These responses require deletion of eight RhCMV chemokine-like open reading frames (ORFs) that are conserved in human cytomegalovirus (HCMV). To determine whether HCMV encodes additional, nonconserved inhibitors of unconventional T cell priming, we inserted 41 HCMV-specific ORFs into a chemokine-deficient strain (68-1 RhCMV). Monitoring of epitope recognition revealed that HCMV UL18 prevented unconventional T cell priming, resulting in MHC-Ia-targeted responses. UL18 is homologous to MHC-I but does not engage T cell receptors and, instead, binds with high affinity to inhibitory leukocyte immunoglobulin-like receptor-1 (LIR-1). UL18 lacking LIR-1 binding no longer interfered with MHC-E-restricted T cell stimulation by RhCMV-infected cells or the induction of unconventionally restricted T cells. Thus, LIR-1 binding needs to be deleted from UL18 of HCMV/HIV vaccines to allow for the induction of protective MHC-E-restricted T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
3
|
Vlachava VM, Seirafian S, Fielding CA, Kollnberger S, Aicheler RJ, Hughes J, Baker A, Weekes MP, Forbes S, Wilkinson GWG, Wang ECY, Stanton RJ. HCMV-secreted glycoprotein gpUL4 inhibits TRAIL-mediated apoptosis and NK cell activation. Proc Natl Acad Sci U S A 2023; 120:e2309077120. [PMID: 38011551 PMCID: PMC10710050 DOI: 10.1073/pnas.2309077120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a paradigm of pathogen immune evasion and sustains lifelong persistent infection in the face of exceptionally powerful host immune responses through the concerted action of multiple immune-evasins. These reduce NK cell activation by inhibiting ligands for activating receptors, expressing ligands for inhibitory receptors, or inhibiting synapse formation. However, these functions only inhibit direct interactions with the infected cell. To determine whether the virus also expresses soluble factors that could modulate NK function at a distance, we systematically screened all 170 HCMV canonical protein-coding genes. This revealed that UL4 encodes a secreted and heavily glycosylated protein (gpUL4) that is expressed with late-phase kinetics and is capable of inhibiting NK cell degranulation. Analyses of gpUL4 binding partners by mass spectrometry identified an interaction with TRAIL. gpUL4 bound TRAIL with picomolar affinity and prevented TRAIL from binding its receptor, thus acting as a TRAIL decoy receptor. TRAIL is found in both soluble and membrane-bound forms, with expression of the membrane-bound form strongly up-regulated on NK cells in response to interferon. gpUL4 inhibited apoptosis induced by soluble TRAIL, while also binding to the NK cell surface in a TRAIL-dependent manner, where it blocked NK cell degranulation and cytokine secretion. gpUL4 therefore acts as an immune-evasin by inhibiting both soluble and membrane-bound TRAIL and is a viral-encoded TRAIL decoy receptor. Interestingly, gpUL4 could also suppress NK responses to heterologous viruses, suggesting that it may act as a systemic virally encoded immunosuppressive agent.
Collapse
Affiliation(s)
- Virginia-Maria Vlachava
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Sepehr Seirafian
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Ceri A. Fielding
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Simon Kollnberger
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Rebecca J. Aicheler
- Department of Biomedical Sciences, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, CardiffCF5 2YB, United Kingdom
| | - Joseph Hughes
- Centre for Virus Research, School of Infection & Immunity, Glasgow University, GlasgowG61 1QH, United Kingdom
| | - Alexander Baker
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Simone Forbes
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Gavin W. G. Wilkinson
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Eddie C. Y. Wang
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Richard J. Stanton
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| |
Collapse
|
4
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
5
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
6
|
Waters S, Lee S, Ariyanto I, Leary S, Munyard K, Gaudieri S, Irish A, Allcock RJN, Price P. Variants of HCMV UL18 Sequenced Directly from Clinical Specimens Associate with Antibody and T-Cell Responses to HCMV. Int J Mol Sci 2022; 23:12911. [PMID: 36361707 PMCID: PMC9658343 DOI: 10.3390/ijms232112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Around 80% of adults worldwide carry human cytomegaloviris (HCMV). The HCMV gene UL18 is a homolog of HLA class I genes and encodes a protein with high affinity for the NK and T-cell cytotoxicity inhibitor LIR-1. UL18 was deep sequenced from blood, saliva or urine from Indonesian people with HIV (PWH) (n = 28), Australian renal transplant recipients (RTR) (n = 21), healthy adults (n = 7) and neonates (n = 4). 95% of samples contained more than one variant of HCMV UL18, as defined by carriage of nonsynonymous variations. When aligned with immunological markers of the host's burden of HCMV, the S318N variation associated with high levels of antibody reactive with HCMV lysate in PWH over 12 months on antiretroviral therapy. The A107T variation associated with HCMV antibody levels and inflammatory biomarkers in PWH at early timepoints. Variants D32G, D248N, V250A and E252D aligned with elevated HCMV antibody levels in RTR, while M191K, E196Q and F165L were associated with HCMV-reactive T-cells and proportions of Vδ2- γδ T-cells-populations linked with high burdens of HCMV. We conclude that UL18 is a highly variable gene, where variation may alter the persistent burden of HCMV and/or the host response to that burden.
Collapse
Affiliation(s)
- Shelley Waters
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Silvia Lee
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands 6009, Australia
| | - Ibnu Ariyanto
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch 6150, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch 6150, Australia
- School of Human Sciences, University of Western Australia, Nedlands 6009, Australia
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashley Irish
- Department of Nephrology, Fiona Stanley Hospital, Murdoch 6150, Australia
| | - Richard J. N. Allcock
- School of Biomedical Sciences, University of Western Australia, Nedlands 6009, Australia
- PathWest Laboratory Medicine WA, Department of Diagnostic Genomics, Nedlands 6009, Australia
| | - Patricia Price
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley 6102, Australia
| |
Collapse
|
7
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
8
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
9
|
Seidel E, Dassa L, Schuler C, Oiknine-Djian E, Wolf DG, Le-Trilling VTK, Mandelboim O. The human cytomegalovirus protein UL147A downregulates the most prevalent MICA allele: MICA*008, to evade NK cell-mediated killing. PLoS Pathog 2021; 17:e1008807. [PMID: 33939764 PMCID: PMC8118558 DOI: 10.1371/journal.ppat.1008807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/13/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines. Human cytomegalovirus (HCMV) is a common pathogen that usually causes asymptomatic infection in the immunocompetent population, but the immunosuppressed and fetuses infected in utero suffer mortality and disability due to HCMV disease. Current HCMV treatments are limited and no vaccine has been approved, despite significant efforts. HCMV encodes many genes of unknown function, and virus-host interactions are only partially understood. Here, we discovered that a hitherto uncharacterized HCMV protein, UL147A, downregulates the expression of an activating immune ligand allele named MICA*008, thus hindering the elimination of HCMV-infected cells. Elucidating HCMV immune evasion mechanisms could aid in the development of novel HCMV treatments and vaccines. Furthermore, MICA*008 is a highly prevalent allele implicated in cancer immune evasion, autoimmunity and graft rejection. In this work we have shown that UL147A interferes with MICA*008’s poorly understood, nonstandard maturation pathway, and acts additively with a functionally homologous HCMV protein, US9. Study of UL147A may enable manipulation of its expression as a therapeutic measure against HCMV.
Collapse
Affiliation(s)
- Einat Seidel
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Liat Dassa
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Corinna Schuler
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Dana G. Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (VTKL-T); (OM)
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
- * E-mail: (VTKL-T); (OM)
| |
Collapse
|
10
|
Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021; 12:532484. [PMID: 33897679 PMCID: PMC8062705 DOI: 10.3389/fimmu.2021.532484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Diego Forni
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Lars Steinbrueck
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simone De Meo
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Rachele Cagliani
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Agata Leone
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Santo Landolfo
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Manuela Sironi
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Cristina Cerboni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
11
|
A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain. Nat Commun 2021; 12:2061. [PMID: 33824318 PMCID: PMC8024260 DOI: 10.1038/s41467-021-21983-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains. Glycoprotein US9 of human cytomegalovirus downregulates the activating immune ligand MICA*008 to avoid NK cell activation. Here, Seidel et al. show that the signal peptide of US9 is cleaved unusually slowly, causing MICA*008 to be retained in the endoplasmic reticulum (ER) and degraded via the ER quality control system.
Collapse
|
12
|
Elasifer H, Wang EC, Prod’homme V, Davies J, Forbes S, Stanton RJ, Patel M, Fielding CA, Roberts D, Traherne JA, Gruber N, Bugert JJ, Aicheler RJ, Wilkinson GWG. Downregulation of HLA-I by the molluscum contagiosum virus mc080 impacts NK-cell recognition and promotes CD8 + T-cell evasion. J Gen Virol 2020; 101:863-872. [PMID: 32510303 PMCID: PMC7641395 DOI: 10.1099/jgv.0.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/26/2020] [Indexed: 11/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is a common cause of benign skin lesions in young children and currently the only endemic human poxvirus. Following the infection of primary keratinocytes in the epidermis, MCV induces the proliferation of infected cells and this results in the production of wart-like growths. Full productive infection is observed only after the infected cells differentiate. During this prolonged replication cycle the virus must avoid elimination by the host immune system. We therefore sought to investigate the function of the two major histocompatibility complex class-I-related genes encoded by the MCV genes mc033 and mc080. Following insertion into a replication-deficient adenovirus vector, codon-optimized versions of mc033 and mc080 were expressed as endoglycosidase-sensitive glycoproteins that localized primarily in the endoplasmic reticulum. MC080, but not MC033, downregulated cell-surface expression of endogenous classical human leucocyte antigen (HLA) class I and non-classical HLA-E by a transporter associated with antigen processing (TAP)-independent mechanism. MC080 exhibited a capacity to inhibit or activate NK cells in autologous assays in a donor-specific manner. MC080 consistently inhibited antigen-specific T cells being activated by peptide-pulsed targets. We therefore propose that MC080 acts to promote evasion of HLA-I-restricted cytotoxic T cells.
Collapse
Affiliation(s)
- Hana Elasifer
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Eddie C.Y. Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Virginie Prod’homme
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
- Present address: Centre Méditerranéen de Médecine Moléculaire, University of Nice Sophia, Antipolis, France
| | - James Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Simone Forbes
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Mihil Patel
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Ceri A. Fielding
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - Dawn Roberts
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| | - James A. Traherne
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Nicole Gruber
- DKMS Life Science Lab, St. Petersburger Str. 2, 01069 Dresden, Germany
| | - Joachim J. Bugert
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
- Present address: Institut für Mikrobiologie der Bundeswehr, München, Germany
| | - Rebecca J. Aicheler
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Gavin W. G. Wilkinson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XW, UK
| |
Collapse
|
13
|
Houldcroft CJ, Jackson SE, Lim EY, Sedikides GX, Davies EL, Atkinson C, McIntosh M, Remmerswaal EBM, Okecha G, Bemelman FJ, Stanton RJ, Reeves M, Wills MR. Assessing Anti-HCMV Cell Mediated Immune Responses in Transplant Recipients and Healthy Controls Using a Novel Functional Assay. Front Cell Infect Microbiol 2020; 10:275. [PMID: 32670891 PMCID: PMC7332694 DOI: 10.3389/fcimb.2020.00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
HCMV infection, reinfection or reactivation occurs in 60% of untreated solid organ transplant (SOT) recipients. Current clinical approaches to HCMV management include pre-emptive and prophylactic antiviral treatment strategies. The introduction of immune monitoring to better stratify patients at risk of viraemia and HCMV mediated disease could improve clinical management. Current approaches quantify T cell IFNγ responses specific for predominantly IE and pp65 proteins ex vivo, as a proxy for functional control of HCMV in vivo. However, these approaches have only a limited predictive ability. We measured the IFNγ T cell responses to an expanded panel of overlapping peptide pools specific for immunodominant HCMV proteins IE1/2, pp65, pp71, gB, UL144, and US3 in a cohort of D+R- kidney transplant recipients in a longitudinal analysis. Even with this increased antigen diversity, the results show that while all patients had detectable T cell responses, this did not correlate with control of HCMV replication in some. We wished to develop an assay that could directly measure anti-HCMV cell-mediated immunity. We evaluated three approaches, stimulation of PBMC with (i) whole HCMV lysate or (ii) a defined panel of immunodominant HCMV peptides, or (iii) fully autologous infected cells co-cultured with PBMC or isolated CD8+ T cells or NK cells. Stimulation with HCMV lysate often generated non-specific antiviral responses while stimulation with immunodominant HCMV peptide pools produced responses which were not necessarily antiviral despite strong IFNγ production. We demonstrated that IFNγ was only a minor component of secreted antiviral activity. Finally, we used an antiviral assay system to measure the effect of whole PBMC, and isolated CD8+ T cells and NK cells to control HCMV in infected autologous dermal fibroblasts. The results show that both PBMC and especially CD8+ T cells from HCMV seropositive donors have highly specific antiviral activity against HCMV. In addition, we were able to show that NK cells were also antiviral, but the level of this control was highly variable between donors and not dependant on HCMV seropositivity. Using this approach, we show that non-viraemic D+R+ SOT recipients had significant and specific antiviral activity against HCMV.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Jackson
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Y. Lim
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - George X. Sedikides
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. Davies
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Claire Atkinson
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Megan McIntosh
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Ester B. M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Georgina Okecha
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederike J. Bemelman
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthew Reeves
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Mark R. Wills
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Kalejta RF, Albright ER. Expanding the Known Functional Repertoire of the Human Cytomegalovirus pp71 Protein. Front Cell Infect Microbiol 2020; 10:95. [PMID: 32226778 PMCID: PMC7080695 DOI: 10.3389/fcimb.2020.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus pp71 protein is packaged within the tegument of infectious virions and performs multiple functions in host cells to prime them for productive, lytic replication. Here we review the known and hypothesized functions of pp71 in regulating proteolysis, infection outcome (lytic or latent), histone deposition, transcription, translation, immune evasion, cell cycle progression, and pathogenesis. We also highlight recent advances in CMV-based vaccine candidates informed by an improved understanding of pp71 function.
Collapse
Affiliation(s)
| | - Emily R. Albright
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
15
|
Abstract
: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection. This review summarizes the particulars of the specific CMV vaccine vector that has been used to date (rhesus CMV strain 68-1) in relation to CMV natural history.
Collapse
|
16
|
Endoplasmic Reticulum (ER) Reorganization and Intracellular Retention of CD58 Are Functionally Independent Properties of the Human Cytomegalovirus ER-Resident Glycoprotein UL148. J Virol 2020; 94:JVI.01435-19. [PMID: 31801856 DOI: 10.1128/jvi.01435-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
The human cytomegalovirus (HCMV) endoplasmic reticulum (ER)-resident glycoprotein UL148 is posited to play roles in immune evasion and regulation of viral cell tropism. UL148 prevents cell surface presentation of the immune cell costimulatory ligand CD58 while promoting maturation and virion incorporation of glycoprotein O, a receptor binding subunit for an envelope glycoprotein complex involved in entry. Meanwhile, UL148 activates the unfolded protein response (UPR) and causes large-scale reorganization of the ER. In order to determine whether the seemingly disparate effects of UL148 are related or discrete, we generated six charged cluster-to-alanine (CCTA) mutants within the UL148 ectodomain and compared them to wild-type UL148, both in the context of infection studies using recombinant viruses and in ectopic expression experiments, assaying for effects on ER remodeling and CD58 surface presentation. Two mutants, targeting charged clusters spanning residues 79 to 83 (CC3) and 133 to 136 (CC4), retained the potential to impede CD58 surface presentation. Of the six mutants, only CC3 retained the capacity to reorganize the ER, but it showed a partial phenotype. Wild-type UL148 accumulates in a detergent-insoluble form during infection. However, all six CCTA mutants were fully soluble, which implies a relationship between insolubility and organelle remodeling. Additionally, we found that the chimpanzee cytomegalovirus UL148 homolog suppresses surface presentation of CD58 but fails to reorganize the ER, while the homolog from rhesus cytomegalovirus shows neither activity. Collectively, our findings illustrate various degrees of functional divergence between homologous primate cytomegalovirus immunevasins and suggest that the capacity to cause ER reorganization is unique to HCMV UL148.IMPORTANCE In myriad examples, viral gene products cause striking effects on cells, such as activation of stress responses. It can be challenging to decipher how such effects contribute to the biological roles of the proteins. The HCMV glycoprotein UL148 retains CD58 within the ER, thereby preventing it from reaching the cell surface, where it functions to stimulate cell-mediated antiviral responses. Intriguingly, UL148 also triggers the formation of large, ER-derived membranous structures and activates the UPR, a set of signaling pathways involved in adaptation to ER stress. We demonstrate that the potential of UL148 to reorganize the ER and to retain CD58 are separable by mutagenesis and, possibly, by evolution, since chimpanzee cytomegalovirus UL148 retains CD58 but does not remodel the ER. Our findings imply that ER reorganization contributes to other roles of UL148, such as modulation of alternative viral glycoprotein complexes that govern the virus' ability to infect different cell types.
Collapse
|
17
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
18
|
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner PJ, Sinclair J, Poole E. Monocytes Latently Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience 2019; 12:13-26. [PMID: 30677738 PMCID: PMC6352302 DOI: 10.1016/j.isci.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV) in vivo is in undifferentiated cells of the myeloid lineage. Although latently infected cells are known to evade host T cell responses by suppression of T cell effector functions, it is not known if they must also evade surveillance by other host immune cells. Here we show that cells latently infected with HCMV can, indeed, be killed by host neutrophils but only in a serum-dependent manner. Specifically, antibodies to the viral latency-associated US28 protein mediate neutrophil killing of latently infected cells. To address this mechanistically, a full proteomic screen was carried out on latently infected monocytes. This showed that latent infection downregulates the neutrophil chemoattractants S100A8/A9, thus suppressing neutrophil recruitment to latently infected cells. The ability of latently infected cells to inhibit neutrophil recruitment represents an immune evasion strategy of this persistent human pathogen, helping to prevent clearance of the latent viral reservoir.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Genomic Medicine Institute, Lerner Research Institute, 9620 Carnegie Avenue, Cleveland, OH, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Yusuf Aslam
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alexander Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Kate Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Eain Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Edwin Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
19
|
Patel M, Vlahava VM, Forbes SK, Fielding CA, Stanton RJ, Wang ECY. HCMV-Encoded NK Modulators: Lessons From in vitro and in vivo Genetic Variation. Front Immunol 2018; 9:2214. [PMID: 30327650 PMCID: PMC6174198 DOI: 10.3389/fimmu.2018.02214] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) is under constant selective pressure from the immune system in vivo. Study of HCMV genes that have been lost in the absence of, or genetically altered by, such selection can focus research toward findings of in vivo significance. We have been particularly interested in the most pronounced change in the highly passaged laboratory strains AD169 and Towne—the deletion of 13–15 kb of sequence (designated the UL/b′ region) that encodes up to 22 canonical genes, UL133-UL150. At least 5 genes have been identified in UL/b′ that inhibit NK cell function. UL135 suppresses formation of the immunological synapse (IS) by remodeling the actin cytoskeleton, thereby illustrating target cell cooperation in IS formation. UL141 inhibits expression of two activating ligands (CD155, CD112) for the activating receptor CD226 (DNAM-1), and two receptors (TRAIL-R1, R2) for the apoptosis-inducing TRAIL. UL142, ectopically expressed in isolation, and UL148A, target specific MICA allotypes that are ligands for NKG2D. UL148 impairs expression of CD58 (LFA-3), the co-stimulatory cell adhesion molecule for CD2 found on T and NK cells. Outside UL/b′, studies on natural variants have shown UL18 mutants change affinity for their inhibitory ligand LIR-1, while mutations in UL40's HLA-E binding peptide differentially drive NKG2C+ NK expansions. Research into HCMV genomic stability and its effect on NK function has provided important insights into virus:host interactions, but future studies will require consideration of genetic variability and the effect of genes expressed in the context of infection to fully understand their in vivo impact.
Collapse
Affiliation(s)
- Mihil Patel
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Virginia-Maria Vlahava
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Simone K Forbes
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ceri A Fielding
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
20
|
Hicks JA, Yoo D, Liu HC. Interaction of porcine reproductive and respiratory syndrome virus major envelope proteins GP5 and M with the cellular protein Snapin. Virus Res 2018; 249:85-92. [PMID: 29577951 DOI: 10.1016/j.virusres.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is characterized by abortions in pregnant sows and respiratory disease, particularly in young pigs. The causative agent is porcine reproductive and respiratory syndrome virus (PRRSV), a member of the arterivirus family. GP5 and M are the major envelope proteins encoded by PRRSV. To further characterize these two viral proteins, a yeast two-hybrid approach was utilized to identify interacting partners of PRRSV GP5 and M proteins. METHODS Interacting partners of PRRSV GP5 and M were identified using a porcine macrophage cDNA library yeast two-hybrid screen. Subsequently, the interactions between PRRSV GP5/M and the cellular protein Snapin were mapped using truncated versions of the GP5 and M proteins in a yeast two-hybrid assay to localize the interactions. The Snapin gene from the African green monkey kidney cell line MARC-145, which is permissive to PRRSV, was cloned and sequenced, and compared to porcine Snapin. Cellular Snapin expression was reduced in PRRSV-infected cells via Snapin-specific siRNA targeting. RESULTS Here we show that the cellular Snap-Associated Protein (Snapin), an accessory protein of the SNARE membrane fusion network and also a member of the BLOC-1 complex, specifically interacts with GP5 and M. Inhibition of Snapin expression via siRNA targeting of Snapin results in the reduction of PRRSV replication. CONCLUSIONS The PRRSV GP5 and M proteins are known to form a heterodimeric complex which is important for viral structure and infectivity, and both PRRSV proteins can interact with cellular Snapin. Snapin knock-down suggests these interactions could be important in the PRRSV lifecycle. GP5 and M proteins may interact with Snapin to exploit its roles in intracellular transport and membrane fusion.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA.
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
21
|
Holder KA, Comeau EM, Grant MD. Origins of natural killer cell memory: special creation or adaptive evolution. Immunology 2018; 154:38-49. [PMID: 29355919 DOI: 10.1111/imm.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/13/2022] Open
Abstract
The few initial formative studies describing non-specific and apparently spontaneous activity of natural killer (NK) cells have since multiplied into thousands of scientific reports defining their unique capacities and means of regulation. Characterization of the array of receptors that govern NK cell education and activation revealed an unexpected relationship with the major histocompatibility molecules that NK cells originally became well known for ignoring. Proceeding true to form, NK cells continue to up-end archetypal understanding of their ever-expanding capabilities. Discovery that the NK cell repertoire is extremely diverse and can be reshaped by particular viruses into unique subsets of adaptive NK cells challenges, or at least broadens, the definition of immunological memory. This review provides an overview of studies identifying adaptive NK cells, addressing the origins of NK cell memory and introducing the heretical concept of NK cells with extensive antigenic specificity. Whether these newly apparent properties reflect adaptive utilization of known NK cell attributes and receptors or a specially creative allocation from an undefined receptor array remains to be fully determined.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Emilie M Comeau
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
22
|
The pentameric complex drives immunologically covert cell-cell transmission of wild-type human cytomegalovirus. Proc Natl Acad Sci U S A 2017; 114:6104-6109. [PMID: 28533400 DOI: 10.1073/pnas.1704809114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell-cell transmission. This process of cell-cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128-131A complex, a feature of WT but not passaged strains of HCMV.
Collapse
|
23
|
Schönrich G, Abdelaziz MO, Raftery MJ. Herpesviral capture of immunomodulatory host genes. Virus Genes 2017; 53:762-773. [PMID: 28451945 DOI: 10.1007/s11262-017-1460-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed O Abdelaziz
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
24
|
van der Ploeg K, Chang C, Ivarsson MA, Moffett A, Wills MR, Trowsdale J. Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells. Front Immunol 2017; 8:298. [PMID: 28424684 PMCID: PMC5372792 DOI: 10.3389/fimmu.2017.00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023] Open
Abstract
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A-KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation.
Collapse
Affiliation(s)
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| |
Collapse
|
25
|
Wang G, Ren G, Cui X, Lu Z, Ma Y, Qi Y, Huang Y, Liu Z, Sun Z, Ruan Q. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication. J Biosci 2017; 41:173-82. [PMID: 27240978 DOI: 10.1007/s12038-016-9604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.
Collapse
Affiliation(s)
- Guili Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Mu R, Gao YP, Dong J, Zhu L, Ma Y, Li YH, Zhang HQ, Han D, Zhang Y, McInnes IB, Zhang J, Shen B, Yang G, Li ZG. A Cytomegalovirus Peptide-Specific Antibody Alters Natural Killer Cell Homeostasis and Is Shared in Several Autoimmune Diseases. Cell Host Microbe 2016; 19:400-8. [PMID: 26962948 DOI: 10.1016/j.chom.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/14/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Human cytomegalovirus (hCMV), a ubiquitous beta-herpesvirus, has been associated with several autoimmune diseases. However, the direct role of hCMV in inducing autoimmune disorders remains unclear. Here we report the identification of an autoantibody that recognizes a group of peptides with a conserved motif matching the Pp150 protein of hCMV (anti-Pp150) and is shared among patients with various autoimmune diseases. Anti-Pp150 also recognizes the single-pass membrane protein CIP2A and induces the death of CD56(bright) NK cells, a natural killer cell subset whose expansion is correlated with autoimmune disease. Consistent with this finding, the percentage of circulating CD56(bright) NK cells is reduced in patients with several autoimmune diseases and negatively correlates with anti-Pp150 concentration. CD56(bright) NK cell death occurs via both antibody- and complement-dependent cytotoxicity. Our findings reveal that a shared hCMV-induced autoantibody is involved in the decrease of CD56(bright) NK cells and may thus contribute to the onset of autoimmune disorders.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China
| | - Ya-Ping Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China
| | - Yuyuan Ma
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Yu-Hui Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China
| | - He-Qiu Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Dong Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yu Zhang
- Department of Immunology, Peking University, Beijing 100191, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jingang Zhang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Zhan-Guo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China.
| |
Collapse
|
27
|
Abstract
Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.
Collapse
Affiliation(s)
- Raphael Carapito
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France.,Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Bruno L, Cortese M, Monda G, Gentile M, Calò S, Schiavetti F, Zedda L, Cattaneo E, Piccioli D, Schaefer M, Notomista E, Maione D, Carfì A, Merola M, Uematsu Y. Human cytomegalovirus pUL10 interacts with leukocytes and impairs TCR-mediated T-cell activation. Immunol Cell Biol 2016; 94:849-860. [PMID: 27192938 DOI: 10.1038/icb.2016.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/27/2023]
Abstract
Human cytomegalovirus (HCMV) is known to exert suppressive effects on the host immune system through expression of various viral genes, thus directly and indirectly affecting antiviral immunity of the infected individuals. We report here that HCMV UL10 encodes a protein (pUL10) with immunosuppressive properties. UL10 has been classified as a member of the HCMV RL11 gene family. Although pUL10 is known to be dispensable for viral replication in cultured cells, its amino-acid sequence is well conserved among different HCMV isolates, suggesting that the protein has a crucial role in viral survival in the host environment. We show that pUL10 is cleaved from the cell surface of fibroblasts as well as epithelial cells and interacts with a cellular receptor ubiquitously expressed on the surface of human leukocytes, demonstrated by ex vivo cell-based assays and flow cytometric analyses on both lymphoid cell lines and primary blood cells. Furthermore, preincubation of peripheral blood mononuclear cells with purified pUL10 ectodomain results in significantly impaired proliferation and substantially reduced pro-inflammatory cytokine production, in particular in CD4+ T cells upon in vitro T-cell stimulation. The inhibitory effect of pUL10 is also observed on antigen receptor-mediated intracellular tyrosine phosphorylation in a T-cell line. Based on these observations, we suggest that pUL10 is a newly identified immunomodulatory protein encoded by HCMV. Further elucidation of interactions between pUL10 and the host immune system during HCMV may contribute to finding ways towards new therapies for HCMV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | | | | | - Marcello Merola
- Research, GSK Vaccines, Siena, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | | |
Collapse
|
29
|
Murrell I, Wilkie GS, Davison AJ, Statkute E, Fielding CA, Tomasec P, Wilkinson GWG, Stanton RJ. Genetic Stability of Bacterial Artificial Chromosome-Derived Human Cytomegalovirus during Culture In Vitro. J Virol 2016; 90:3929-43. [PMID: 26842472 PMCID: PMC4810542 DOI: 10.1128/jvi.02858-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Clinical human cytomegalovirus (HCMV) strains invariably mutate when propagatedin vitro Mutations in gene RL13 are selected in all cell types, whereas in fibroblasts mutants in the UL128 locus (UL128L; genes UL128, UL130, and UL131A) are also selected. In addition, sporadic mutations are selected elsewhere in the genome in all cell types. We sought to investigate conditions under which HCMV can be propagated without incurring genetic defects. Bacterial artificial chromosomes (BACs) provide a stable, genetically defined source of viral genome. Viruses were generated from BACs containing the genomes of strains TR, TB40, FIX, and Merlin, as well as from Merlin-BAC recombinants containing variant nucleotides in UL128L from TB40-BAC4 or FIX-BAC. Propagation of viruses derived from TR-BAC, TB40-BAC4, and FIX-BAC in either fibroblast or epithelial cells was associated with the generation of defects around the prokaryotic vector, which is retained in the unique short (US) region of viruses. This was not observed for Merlin-BAC, from which the vector is excised in derived viruses; however, propagation in epithelial cells was consistently associated with mutations in the unique longb' (UL/b') region, all impacting on gene UL141. Viruses derived from Merlin-BAC in fibroblasts had mutations in UL128L, but mutations occurred less frequently with recombinants containing UL128L nucleotides from TB40-BAC4 or FIX-BAC. Viruses derived from a Merlin-BAC derivative in which RL13 and UL128L were either mutated or repressed were remarkably stable in fibroblasts. Thus, HCMV containing a wild-type gene complement can be generatedin vitroby deriving virus from a self-excising BAC in fibroblasts and repressing RL13 and UL128L. IMPORTANCE Researchers should aim to study viruses that accurately represent the causative agents of disease. This is problematic for HCMV because clinical strains mutate rapidly when propagatedin vitro, becoming less cell associated, altered in tropism, more susceptible to natural killer cells, and less pathogenic. Following isolation from clinical material, HCMV genomes can be stabilized by cloning into bacterial artificial chromosomes (BACs), and then virus is regenerated by DNA transfection. However, mutations can occur not only during isolation prior to BAC cloning but also when virus is regenerated. We have identified conditions under which BAC-derived viruses containing an intact, wild-type genome can be propagatedin vitrowith minimal risk of mutants being selected, enabling studies of viruses expressing the gene complement of a clinical strain. However, even under these optimized conditions, sporadic mutations can occur, highlighting the advisability of sequencing the HCMV stocks used in experiments.
Collapse
Affiliation(s)
- Isa Murrell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Evelina Statkute
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter Tomasec
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin W G Wilkinson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
30
|
Leukocyte Immunoglobulin-Like Receptor 1-Expressing Human Natural Killer Cell Subsets Differentially Recognize Isolates of Human Cytomegalovirus through the Viral Major Histocompatibility Complex Class I Homolog UL18. J Virol 2016; 90:3123-37. [PMID: 26739048 PMCID: PMC4810621 DOI: 10.1128/jvi.02614-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Immune responses of natural killer (NK) cell are controlled by the balance between activating and inhibitory receptors, but the expression of these receptors varies between cells within an individual. Although NK cells are a component of the innate immune system, particular NK cell subsets expressing Ly49H are positively selected and increase in frequency in response to cytomegalovirus infection in mice. Recent evidence suggests that in humans certain NK subsets also have an increased frequency in the blood of human cytomegalovirus (HCMV)-infected individuals. However, whether these subsets differ in their capacity of direct control of HCMV-infected cells remains unclear. In this study, we developed a novel in vitro assay to assess whether human NK cell subsets have differential abilities to inhibit HCMV growth and dissemination. NK cells expressing or lacking NKG2C did not display any differences in controlling viral dissemination. However, when in vitro-expanded NK cells were used, cells expressing or lacking the inhibitory receptor leukocyte immunoglobulin-like receptor 1 (LIR1) were differentially able to control dissemination. Surprisingly, the ability of LIR1+ NK cells to control virus spread differed between HCMV viral strains, and this phenomenon was dependent on amino acid sequences within the viral ligand UL18. Together, the results here outline an in vitro technique to compare the long-term immune responses of different human NK cell subsets and suggest, for the first time, that phenotypically defined human NK cell subsets may differentially recognize HCMV infections. IMPORTANCE HCMV infection is ubiquitous in most populations; it is not cleared by the host after primary infection but persists for life. The innate and adaptive immune systems control the spread of virus, for which natural killer (NK) cells play a pivotal role. NK cells can respond to HCMV infection by rapid, short-term, nonspecific innate responses, but evidence from murine studies suggested that NK cells may display long-term, memory-like responses to murine cytomegalovirus infection. In this study, we developed a new assay that examines human NK cell subsets that have been suggested to play a long-term memory-like response to HCMV infection. We show that changes in an HCMV viral protein that interacts with an NK cell receptor can change the ability of NK cell subsets to control HCMV while the acquisition of another receptor has no effect on virus control.
Collapse
|
31
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
32
|
LIU CHANG, QI YING, MA YANPING, HE RONG, SUN ZHENGRONG, HUANG YUJING, JI YAOHUA, RUAN QIANG. Interaction between the human cytomegalovirus-encoded UL142 and cellular Snapin proteins. Mol Med Rep 2014; 11:1069-72. [DOI: 10.3892/mmr.2014.2829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
|
33
|
Ota M, Serada S, Naka T, Mori Y. MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol 2014; 58:119-25. [PMID: 24330265 DOI: 10.1111/1348-0421.12121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022]
Abstract
Human herpesvirus-6 (HHV-6), which belongs to the betaherpesvirus subfamily, mainly replicates in T lymphocytes. Here, we show that MHC class I molecules are incorporated into HHV-6 viral particles and released into the extracellular environment. In addition, HHV-6A/B-infected T cells showed reduced surface and intracellular expression of MHC class I molecules. The cellular machinery responsible for molecular transport appears to be modified upon HHV-6 infection, causing MHC class I molecules to be transported to virion assembly sites.
Collapse
Affiliation(s)
- Megumi Ota
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | |
Collapse
|
34
|
Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 Secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. J Virol 2014; 88:13947-55. [PMID: 25253336 PMCID: PMC4249158 DOI: 10.1128/jvi.02424-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system.
Collapse
|
35
|
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang ECY, Aicheler R, Murrell I, Wilkinson GWG, Lehner PJ, Gygi SP. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 2014; 157:1460-1472. [PMID: 24906157 PMCID: PMC4048463 DOI: 10.1016/j.cell.2014.04.028] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/18/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called “quantitative temporal viromics” (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model. PaperClip
>8,000 proteins quantified over eight time points, including 1,200 cell-surface proteins Temporal profiles of 139/171 canonical HCMV proteins and 14 noncanonical HCMV ORFs Multiple families of cell-surface receptors selectively modulated by HCMV Multiple signaling pathways modulated during HCMV infection
Collapse
Affiliation(s)
- Michael P Weekes
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Peter Tomasec
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Ceri A Fielding
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - David Nusinow
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard J Stanton
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Eddie C Y Wang
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Rebecca Aicheler
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Isa Murrell
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Gavin W G Wilkinson
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J Virol 2014; 88:10894-908. [PMID: 25008941 DOI: 10.1128/jvi.01477-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED CD8(+) T cells specific for pp65, IE1, and IE2 are present at high frequencies in human cytomegalovirus (HCMV)-seropositive individuals, and these have been shown to have phenotypes associated with terminal differentiation, as well as both cytokine and proliferative dysfunctions, especially in the elderly. However, more recently, T cell responses to many other HCMV proteins have been described, but little is known about their phenotypes and functions. Consequently, in this study, we chose to determine the diversity of HCMV-specific CD8(+) T cell responses to the products of 11 HCMV open reading frames (ORFs) in a cohort of donors aged 20 to 80 years old as well as the ability of the T cells to secrete gamma interferon (IFN-γ). Finally, we also tested their functional antiviral capacity using a novel viral dissemination assay. We identified substantial CD8(+) T cell responses by IFN-γ enzyme-linked immunospot (ELISPOT) assays to all 11 of these HCMV proteins, and across the cohort, individuals displayed a range of responses, from tightly focused to highly diverse, which were stable over time. CD8(+) T cell responses to the HCMV ORFs were highly differentiated and predominantly CD45RA(+), CD57(+), and CD28(-), across the cohort. These highly differentiated cells had the ability to inhibit viral spread even following direct ex vivo isolation. Taken together, our data argue that HCMV-specific CD8(+) T cells have effective antiviral activity irrespective of the viral protein recognized across the whole cohort and despite viral immune evasion. IMPORTANCE Human cytomegalovirus (HCMV) is normally carried without clinical symptoms and is widely prevalent in the population; however, it often causes severe clinical disease in individuals with compromised immune responses. HCMV is never cleared after primary infection but persists in the host for life. In HCMV carriers, the immune response to HCMV includes large numbers of virus-specific immune cells, and the virus has evolved many mechanisms to evade the immune response. While this immune response seems to protect healthy people from subsequent disease, the virus is never eliminated. It has been suggested that this continuous surveillance by the immune system may have deleterious effects in later life. The study presented in this paper examined immune responses from a cohort of donors and shows that these immune cells are effective at controlling the virus and can overcome the virus' lytic cycle immune evasion mechanisms.
Collapse
|
37
|
Limited dissemination and shedding of the UL128 complex-intact, UL/b'-defective rhesus cytomegalovirus strain 180.92. J Virol 2014; 88:9310-20. [PMID: 24899204 DOI: 10.1128/jvi.00162-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The UL128 complex of human cytomegalovirus (CMV) is a major determinant of viral entry into epithelial and endothelial cells and a target for vaccine development. The UL/b' region of rhesus CMV contains several open reading frames, including orthologs of the UL128 complex. We recently showed that the coding content of the rhesus CMV (RhCMV) UL/b' region predicts acute endothelial tropism and long-term shedding in vivo in the rhesus macaque model of CMV infection. The laboratory-passaged RhCMV 180.92 strain has a truncated UL/b' region but an intact UL128 complex. To investigate whether the presence of the UL128 complex alone was sufficient to confer endothelial and epithelial tropism in vivo, we investigated tissue dissemination and viral excretion following experimental RhCMV 180.92 inoculation of RhCMV-seronegative rhesus macaques. We show the presence of at least two virus variants in the RhCMV 180.92 infectious virus stock. A rare variant noted for a nontruncated wild-type-virus-like UL/b' region, rapidly emerged during in vivo replication and showed high-level replication in blood and tissues and excretion in urine and saliva, features similar to those previously reported in naturally occurring wild-type RhCMV infection. In contrast, the predominant truncated version of RhCMV 180.92 showed significantly lower plasma DNAemia and limited tissue dissemination and viral shedding. These data demonstrate that the truncated RhCMV 180.92 variant is attenuated in vivo and suggest that additional UL/b' genes, besides the UL128 complex, are required for optimal in vivo CMV replication and dissemination. IMPORTANCE An effective vaccine against human CMV infection will need to target genes that are essential for virus propagation and transmission. The human CMV UL128 complex represents one such candidate antigen since it is essential for endothelial and epithelial cell tropism, and is a target for neutralizing antibodies in CMV-infected individuals. In this study, we used the rhesus macaque animal model of CMV infection to investigate the in vivo function of the UL128 complex. Using experimental infection of rhesus macaques with a rhesus CMV virus variant that contained an intact UL128 complex but was missing several other genes, we show that the presence of the UL128 complex alone is not sufficient for widespread tissue dissemination and virus excretion. These data highlight the importance of in vivo studies in evaluating human CMV gene function and suggest that additional UL/b' genes are required for optimal CMV dissemination and transmission.
Collapse
|
38
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
39
|
Fielding CA, Aicheler R, Stanton RJ, Wang ECY, Han S, Seirafian S, Davies J, McSharry BP, Weekes MP, Antrobus PR, Prod'homme V, Blanchet FP, Sugrue D, Cuff S, Roberts D, Davison AJ, Lehner PJ, Wilkinson GWG, Tomasec P. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 2014; 10:e1004058. [PMID: 24787765 PMCID: PMC4006889 DOI: 10.1371/journal.ppat.1004058] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.
Collapse
Affiliation(s)
- Ceri A. Fielding
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rebecca Aicheler
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C. Y. Wang
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Song Han
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sepehr Seirafian
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Davies
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Brian P. McSharry
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - P. Robin Antrobus
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginie Prod'homme
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fabien P. Blanchet
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel Sugrue
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simone Cuff
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dawn Roberts
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Gavin W. G. Wilkinson
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - Peter Tomasec
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
40
|
Nemčovičová I, Zajonc DM. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:851-62. [PMID: 24598754 PMCID: PMC3949518 DOI: 10.1107/s1399004713033750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022]
Abstract
Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A `dimerization-deficient' mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C'C'' and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar `lock-and-key' interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X6G `lock' motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host-receptor interactions are evolutionary conserved.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava, Slovakia
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Auger S, Orsini M, Céballos P, Fegueux N, Kanouni T, Caumes B, Klein B, Villalba M, Rossi JF. Controlled Epstein-Barr virus reactivation after allogeneic transplantation is associated with improved survival. Eur J Haematol 2014; 92:421-8. [PMID: 24400833 DOI: 10.1111/ejh.12260] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus reactivation (EBV-R) frequently occurs in patients having allogeneic hematopoietic stem cell transplantation (HSCT). We evaluated the impact of controlled EBV-R on survival of 190 patients (114M/76F, median age: 51 yr, range 18-69), having HSCT for hematological malignancies (105 acute leukemias and myelodysplasias, 71 lymphoproliferative disorders, 14 others). Overall survival (OS) and progression-free survival (PFS) were compared between patients with and without EBV-R. Of 138, patients had reduced-intensity conditioning regimen. Various stem cell sources (141 PB, 33 umbilical cord blood and 16 bone marrow) were used. Patients with EBV-R had longer PFS and OS than those without EBV-R: PFS at 2 yr 69% vs. 51% and at 5 yr 47% vs. 38% (P < 0.04); OS at 2 yr 76% vs. 64% and at 5 yr 63% vs. 47%) (P < 0.001). The use of rituximab had no impact on OS and PFS, but it reduced the intensity of GVHD, despite the fact that TRM was not significantly different between the two groups of patients. So, rituximab may have an additional effect to other factors on PFS and OS. In multivariate analysis, antithymocyte globulin administration was not a significant factor for PFS (P = 0.68) and for OS (P = 0.81). Circulating NK cells were significantly increased by 22% (P = 0.03) in EBV-R patients with no differences for other parameters. Controlled EBV-R in the setting of HSCT is associated with better OS and PFS, with a significant increase in circulating NK cells.
Collapse
Affiliation(s)
- Sophie Auger
- Unit for Allogeneic Transplantation, Department of Hematology, CHU de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, Kim D, Baek D, Ahn K. Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 2013; 13:678-90. [PMID: 23768492 DOI: 10.1016/j.chom.2013.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
Virulence of human cytomegalovirus (HCMV) clinical isolates correlates with carriage of a 15 kb segment in the UL/b' region of the viral genome, which is absent from attenuated strains. The mechanisms by which this segment contributes to HCMV virulence remain obscure. We observed that intergenic RNA sequences within the 15 kb segment function as a microRNA (miRNA) decay element (miRDE) and direct the selective, sequence-specific turnover of mature miR-17 and miR-20a encoded within the host miR-17-92 cluster. Unlike canonical miRNA-mRNA interactions, the miRNA-miRDE interactions did not repress miRDE expression. miRNA binding site mutations retargeted miRDE to other miR-17-92 cluster miRNAs, which are otherwise resistant to miRDE-mediated decay. miRDE function was required to accelerate virus production in the context of lytic HCMV infection. These results indicate a role for viral noncoding RNA in regulating cellular miRNAs during HCMV pathogenesis and suggest that noncoding RNAs may play a role in mature miRNA turnover.
Collapse
Affiliation(s)
- Sanghyun Lee
- National Creative Research Initiatives Center for Antigen Presentation, Seoul 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Potential for Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity for Control of Human Cytomegalovirus. Antibodies (Basel) 2013. [DOI: 10.3390/antib2040617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
44
|
Coding potential of UL/b' from the initial source of rhesus cytomegalovirus Strain 68-1. Virology 2013; 447:208-12. [PMID: 24210116 DOI: 10.1016/j.virol.2013.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/09/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022]
Abstract
Rhesus cytomegalovirus (RhCMV) 68-1 is the prototypic strain of RhCMV that has been used for pathogenesis and vaccine development. We determined the complete sequence of the RhCMV 68-1 UL/b' region directly from the original urine from which RhCMV 68-1 was isolated in 1968, and compared it to other RhCMVs. The laboratory passaged RhCMV 68-1 has inversions, deletions, and stop codons in UL/b' that are absent in the original isolate and other low passage RhCMV isolates. Fourteen of the 17 open reading frames (ORFs) in 68-1 UL/b' in the original isolate share >95% amino acid identity with low passage RhCMV. The original isolate retains 6 ORFs that encode α-chemokine-like proteins, including RhUL146 and RhUL146b that share only 92% and 81% amino acid identity, respectively, with a contemporary low passage RhCMV isolate. Identification of the original RhCMV 68-1 UL/b' sequence is important for using RhCMV 68-1 in pathogenesis and vaccine studies.
Collapse
|
45
|
Modulation of the cellular distribution of human cytomegalovirus helicase by cellular factor Snapin. J Virol 2013; 87:10628-40. [PMID: 23885069 DOI: 10.1128/jvi.01657-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV UL105 is believed to encode the helicase of the DNA replication machinery that needs to localize in the nuclei, the site of viral DNA synthesis. No host factors that interact with UL105 have been identified. In this study, we show that UL105 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and associated with cellular vesicles. UL105 was found to interact with Snapin in both the yeast two-hybrid screen and coimmunoprecipitation experiments in HCMV-infected cells. The nuclear and cytoplasmic levels of UL105 were decreased and increased in cells overexpressing Snapin, respectively, while the levels of UL105 in the nuclei and cytoplasm were increased and decreased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. Our results provide the first direct evidence to suggest that Snapin interacts with UL105 and alters its cellular distribution, leading to modulation of viral DNA synthesis and progeny production. Our study further suggests that modulation of the cellular distribution of viral helicase by Snapin may represent a possible mechanism for regulating HCMV genomic DNA synthesis, a key step during herpesvirus lytic and persistent infections.
Collapse
|
46
|
Abstract
Over several decades, various forms of genomic analysis of the human major histocompatibility complex (MHC) have been extremely successful in picking up many disease associations. This is to be expected, as the MHC region is one of the most gene-dense and polymorphic stretches of human DNA. It also encodes proteins critical to immunity, including several controlling antigen processing and presentation. Single-nucleotide polymorphism genotyping and human leukocyte antigen (HLA) imputation now permit the screening of large sample sets, a technique further facilitated by high-throughput sequencing. These methods promise to yield more precise contributions of MHC variants to disease. However, interpretation of MHC-disease associations in terms of the functions of variants has been problematic. Most studies confirm the paramount importance of class I and class II molecules, which are key to resistance to infection. Infection is likely driving the extreme variation of these genes across the human population, but this has been difficult to demonstrate. In contrast, many associations with autoimmune conditions have been shown to be specific to certain class I and class II alleles. Interestingly, conditions other than infections and autoimmunity are also associated with the MHC, including some cancers and neuropathies. These associations could be indirect, owing, for example, to the infectious history of a particular individual and selective pressures operating at the population level.
Collapse
Affiliation(s)
- John Trowsdale
- Department of Pathology and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom;
| | | |
Collapse
|
47
|
|
48
|
Cytomegalovirus (CMV)-dependent and -independent changes in the aging of the human immune system: A transcriptomic analysis. Exp Gerontol 2013; 48:305-12. [DOI: 10.1016/j.exger.2012.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/06/2012] [Accepted: 12/26/2012] [Indexed: 11/17/2022]
|
49
|
The myeloid transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus latency in an isolate-specific manner. J Virol 2013; 87:4261-71. [PMID: 23365437 DOI: 10.1128/jvi.03497-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is generally accepted that, following primary infection, human cytomegalovirus (HCMV) establishes lifelong latency in CD34(+) progenitor cells and other derivative cells of the myeloid lineage. In this study, we show that the viral UL144 gene is expressed during latent infection in two cell types of the myeloid lineage, CD34(+) and CD14(+) monocytes, and that the UL144 protein is functional in latently infected monocytes. However, this latency-associated expression of UL144 occurs only in certain isolates of HCMV and depends on the presence of functional GATA-2 transcription factor binding sites in the UL144 promoter, in contrast to the viral latency-associated gene LUNA, which we also show is regulated by GATA-2 but expressed uniformly during latent infection independent of the virus isolate. Taken together, these data suggest that the HCMV latency-associated transcriptome may be virus isolate specific and dependent on the repertoire of transcription factor binding sites in the promoters of latency-associated genes.
Collapse
|
50
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|