1
|
Jiang J, Srivastava S, Liu S, Seim G, Claude R, Zhong M, Cao S, Davé U, Kapur R, Mosley AL, Zhang C, Wan J, Fan J, Zhang J. Asparagine starvation suppresses histone demethylation through iron depletion. iScience 2023; 26:106425. [PMID: 37034982 PMCID: PMC10074807 DOI: 10.1016/j.isci.2023.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Intracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sankalp Srivastava
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gretchen Seim
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rodney Claude
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Minghua Zhong
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Utpal Davé
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jing Fan
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Wybenga-Groot LE, Tench AJ, Simpson CD, Germain JS, Raught B, Moran MF, McGlade CJ. SLAP2 Adaptor Binding Disrupts c-CBL Autoinhibition to Activate Ubiquitin Ligase Function. J Mol Biol 2021; 433:166880. [PMID: 33617900 DOI: 10.1016/j.jmb.2021.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.
Collapse
Affiliation(s)
- Leanne E Wybenga-Groot
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Andrea J Tench
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Craig D Simpson
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Jonathan St Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
3
|
Cao QQ, Li S, Lu Y, Wu D, Feng W, Shi Y, Zhang LP. Transcriptome analysis of molecular mechanisms underlying facial nerve injury repair in rats. Neural Regen Res 2021; 16:2316-2323. [PMID: 33818518 PMCID: PMC8354104 DOI: 10.4103/1673-5374.310700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied, the gene expression changes in the facial nerve trunk after injury are still unknown. In this study, we established an adult rat model of facial nerve crush injury by compressing the right lateral extracranial nerve trunk. Transcriptome sequencing, differential gene expression analysis, and cluster analysis of the injured facial nerve trunk were performed, and 39 intersecting genes with significant variance in expression were identified. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 39 intersecting genes revealed that these genes are mostly involved in leukocyte cell-cell adhesion and phagocytosis and have essential roles in regulating nerve repair. Quantitative real-time polymerase chain reaction assays were used to validate the expression of pivotal genes. Finally, nine pivotal genes that contribute to facial nerve recovery were identified, including Arhgap30, Akr1b8, C5ar1, Csf2ra, Dock2, Hcls1, Inpp5d, Sla, and Spi1. Primary Schwann cells were isolated from the sciatic nerve of neonatal rats. After knocking down Akr1b8 in Schwann cells with an Akr1b8-specific small interfering RNA plasmid, expression levels of monocyte chemoattractant protein-1 and interleukin-6 were decreased, while cell proliferation and migration were not obviously altered. These findings suggest that Akr1b8 likely regulates the interaction between Schwann cells and macrophages through regulation of cytokine expression to promote facial nerve regeneration. This study is the first to reveal a transcriptome change in the facial nerve trunk after facial nerve injury, thereby revealing the potential mechanism underlying repair of facial nerve injury. This study was approved by the Animal Ethics Committee of Nantong University, China in 2018 (approval No. S20180923-007).
Collapse
Affiliation(s)
- Qian-Qian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuo Li
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Di Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yong Shi
- Department of Otolaryngology, Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lu-Ping Zhang
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Sci Rep 2020; 10:18462. [PMID: 33116177 PMCID: PMC7595139 DOI: 10.1038/s41598-020-75417-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The inclusion of health-related traits, or functionally associated genetic markers, in pig breeding programs could contribute to produce more robust and disease resistant animals. The aim of the present work was to study the genetic determinism and genomic regions associated to global immunocompetence and health in a Duroc pig population. For this purpose, a set of 30 health-related traits covering immune (mainly innate), haematological, and stress parameters were measured in 432 healthy Duroc piglets aged 8 weeks. Moderate to high heritabilities were obtained for most traits and significant genetic correlations among them were observed. A genome wide association study pointed out 31 significantly associated SNPs at whole-genome level, located in six chromosomal regions on pig chromosomes SSC4, SSC6, SSC17 and SSCX, for IgG, γδ T-cells, C-reactive protein, lymphocytes phagocytic capacity, total number of lymphocytes, mean corpuscular volume and mean corpuscular haemoglobin. A total of 16 promising functionally-related candidate genes, including CRP, NFATC2, PRDX1, SLA, ST3GAL1, and VPS4A, have been proposed to explain the variation of immune and haematological traits. Our results enhance the knowledge of the genetic control of traits related with immunity and support the possibility of applying effective selection programs to improve immunocompetence in pigs.
Collapse
|
5
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
6
|
Dantoft W, Martínez-Vicente P, Jafali J, Pérez-Martínez L, Martin K, Kotzamanis K, Craigon M, Auer M, Young NT, Walsh P, Marchant A, Angulo A, Forster T, Ghazal P. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses. Front Immunol 2017; 8:1146. [PMID: 28993767 PMCID: PMC5622154 DOI: 10.3389/fimmu.2017.01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Collapse
Affiliation(s)
- Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Martínez-Vicente
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - James Jafali
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lara Pérez-Martínez
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kim Martin
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Synexa Life Sciences, Cape Town, South Africa
| | - Konstantinos Kotzamanis
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Craigon
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,SynthSys-Centre for Synthetic and Systems Biology, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil T Young
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Walsh
- NSilico Life Science and Department of Computing, Institute of Technology, Cork, Ireland
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB, Vallejo RL, Palti Y, Leeds TD. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout ( Oncorhynchus mykiss). Front Genet 2016; 7:203. [PMID: 27920797 PMCID: PMC5118429 DOI: 10.3389/fgene.2016.00203] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0-1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a putative gene network. The network suggests that differences in the ability to maintain a proliferative and renewable population of myogenic precursor cells may affect variation in growth and fillet yield in rainbow trout.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Guangtu Gao
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | | | | | - Beth M. Cleveland
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - P. Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia UniversityMorgantown, WV, USA
| | - Roger L. Vallejo
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Yniv Palti
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Timothy D. Leeds
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| |
Collapse
|
8
|
Giotis ES, Rothwell L, Scott A, Hu T, Talbot R, Todd D, Burt DW, Glass EJ, Kaiser P. Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV) Infection in an In Vivo Model. PLoS One 2015; 10:e0134866. [PMID: 26244502 PMCID: PMC4526643 DOI: 10.1371/journal.pone.0134866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Chicken Anaemia Virus (CAV) is an economically important virus that targets lymphoid and erythroblastoid progenitor cells leading to immunosuppression. This study aimed to investigate the interplay between viral infection and the host's immune response to better understand the pathways that lead to CAV-induced immunosuppression. To mimic vertical transmission of CAV in the absence of maternally-derived antibody, day-old chicks were infected and their responses measured at various time-points post-infection by qRT-PCR and gene expression microarrays. The kinetics of mRNA expression levels of signature cytokines of innate and adaptive immune responses were determined by qRT-PCR. The global gene expression profiles of mock-infected (control) and CAV-infected chickens at 14 dpi were also compared using a chicken immune-related 5K microarray. Although in the thymus there was evidence of induction of an innate immune response following CAV infection, this was limited in magnitude. There was little evidence of a Th1 adaptive immune response in any lymphoid tissue, as would normally be expected in response to viral infection. Most cytokines associated with Th1, Th2 or Treg subsets were down-regulated, except IL-2, IL-13, IL-10 and IFNγ, which were all up-regulated in thymus and bone marrow. From the microarray studies, genes that exhibited significant (greater than 1.5-fold, false discovery rate <0.05) changes in expression in thymus and bone marrow on CAV infection were mainly associated with T-cell receptor signalling, immune response, transcriptional regulation, intracellular signalling and regulation of apoptosis. Expression levels of a number of adaptor proteins, such as src-like adaptor protein (SLA), a negative regulator of T-cell receptor signalling and the transcription factor Special AT-rich Binding Protein 1 (SATB1), were significantly down-regulated by CAV infection, suggesting potential roles for these genes as regulators of viral infection or cell defence. These results extend our understanding of CAV-induced immunosuppression and suggest a global immune dysregulation following CAV infection.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Queen’s University Belfast, Belfast, United Kingdom
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Rothwell
- Institute for Animal Health, Compton, United Kingdom
| | | | - Tuanjun Hu
- Institute for Animal Health, Compton, United Kingdom
| | - Richard Talbot
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Todd
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - David W. Burt
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth J. Glass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Pete Kaiser
- Institute for Animal Health, Compton, United Kingdom
| |
Collapse
|
9
|
The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease. Mediators Inflamm 2015; 2015:952536. [PMID: 26339145 PMCID: PMC4539169 DOI: 10.1155/2015/952536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Although Src-like adaptor proteins (SLAP-1 and SLAP-2) were mainly studied in lymphocytes, where they act as negative regulators and provide fine control of receptor signaling, recently, several other functions of these proteins were discovered. In addition to the well-characterized immunoregulatory functions, SLAP proteins appear to have an essential role in the pathogenesis of type I hypersensitivity, osteoporosis, and numerous malignant diseases. Both adaptor proteins are expressed in a wide variety of tissues, where they have mostly inhibitory effects on multiple intracellular signaling pathways. In this review, we summarize the diverse effects of SLAP proteins.
Collapse
|
10
|
Kazi JU, Kabir NN, Rönnstrand L. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cell Mol Life Sci 2015; 72:2535-44. [PMID: 25772501 PMCID: PMC11113356 DOI: 10.1007/s00018-015-1882-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023]
Abstract
SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Nuzhat N. Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Wang SH, Cheng CY, Tang PC, Chen CF, Chen HH, Lee YP, Huang SY. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS One 2015; 10:e0125816. [PMID: 25932638 PMCID: PMC4416790 DOI: 10.1371/journal.pone.0125816] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/18/2015] [Indexed: 11/29/2022] Open
Abstract
The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (p<0.05) during the heat stress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; p<0.05), which was earlier than the time of increase in layer-type roosters. Based on a chicken 44 K oligo microarray, 163 genes were found to be expressed significantly different in the testes of the heat-stressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration.
Collapse
Affiliation(s)
- Shih-Han Wang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chuen-Yu Cheng
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Hsin Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yen-Pai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- * E-mail:
| |
Collapse
|
12
|
RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling. Cell Signal 2014; 27:267-74. [PMID: 25446260 DOI: 10.1016/j.cellsig.2014.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023]
Abstract
SLAP (Src like adaptor protein) contains adjacent Src homology 3 (SH3) and Src homology 2 (SH2) domains closely related in sequence to that of cytoplasmic Src family tyrosine kinases. Expressed most abundantly in the immune system, SLAP function has been predominantly studied in the context of lymphocyte signaling, where it functions in the Cbl dependent downregulation of antigen receptor signaling. However, accumulating evidence suggests that SLAP plays a role in the regulation of a broad range of membrane receptors including members of the receptor tyrosine kinase (RTK) family. In this review we highlight the role of SLAP in the ubiquitin dependent regulation of type III RTKs PDGFR, CSF-1R, KIT and Flt3, as well as Eph family RTKs. SLAP appears to bind activated type III and Eph RTKs via a conserved autophosphorylated juxtamembrane tyrosine motif in an SH2-dependent manner, suggesting that SLAP is important in regulating RTK signaling.
Collapse
|
13
|
SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice. Blood 2014; 125:185-94. [PMID: 25301707 DOI: 10.1182/blood-2014-06-580597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.
Collapse
|
14
|
Peterson LK, Pennington LF, Shaw LA, Brown M, Treacy EC, Friend SF, Hatlevik Ø, Rubtsova K, Rubtsov AV, Dragone LL. SLAP deficiency decreases dsDNA autoantibody production. Clin Immunol 2014; 150:201-9. [PMID: 24440645 DOI: 10.1016/j.clim.2013.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022]
Abstract
Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP(-/-) mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP(-/-) 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Luke F Pennington
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Laura A Shaw
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Meredith Brown
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Eric C Treacy
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Samantha F Friend
- Department of Pediatrics, University of Colorado Denver, 13001 E. 17th Place, Aurora, CO 80045, USA; Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Øyvind Hatlevik
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kira Rubtsova
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Anatoly V Rubtsov
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Leonard L Dragone
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Pediatrics, University of Colorado Denver, 13001 E. 17th Place, Aurora, CO 80045, USA; Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Rheumatology, Colorado Children's Hospital, 13123 E. 16th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
15
|
Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Cell Signal 2013; 25:2702-8. [DOI: 10.1016/j.cellsig.2013.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 01/17/2023]
|
16
|
Gow CH, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res 2013; 42:137-52. [PMID: 24064250 PMCID: PMC3874172 DOI: 10.1093/nar/gkt855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) acute myeloid leukemia and ETO-2 in hematopoietic cells. Here, we show that, unlike the HEB E-protein, the activation domain 1 (AD1) of E2A has specifically reduced corepressor interaction due to E2A-specific amino acid changes in the p300/CBP and ETO target motif. Replacing E2A-AD1 with HEB-AD1 abolished the ability of E2A-Pbx1 to activate target genes and to induce cell transformation. On the other hand, the weak E2A-AD1-corepressor interaction imposes a critical importance on another ETO-interacting domain, downstream ETO-interacting sequence (DES), for corepressor-mediated repression. Deletion of DES abrogates silencing of E2A activity by AML1-ETO in t(8;21) leukemia cells or by ETO-2 in normal hematopoietic cells. Our results reveal an E2A-specific mechanism important for its context-dependent activation and repression function, and provide the first evidence for the differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways.
Collapse
Affiliation(s)
- Chien-Hung Gow
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | |
Collapse
|
17
|
SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells. Immunol Res 2013; 55:116-24. [PMID: 22956467 DOI: 10.1007/s12026-012-8354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
How T cell receptor (TCR) avidity influences CD8(+) T cell development and repertoire selection is not yet fully understood. To fill this gap, we utilized Src-like adaptor protein (SLAP)-deficient mice as a tool to increase TCR avidity on double positive (DP) thymocytes. We generated SLAP(-/-) mice with the transgenic MHC class I-restricted TCR (OT-1) and SLAP(-/-) Vβ5 mice, expressing only the β-chain of the TCR OT-1 transgene, to examine the effects of increased TCR surface levels on CD8(+) T cell development and repertoire selection. In comparing SLAP(-/-) OT-1 and Vβ5 mice with wild-type controls, we performed compositional analysis and assessed thymocyte signaling by measuring CD5 levels. In addition, we performed tetramer and compositional staining to measure affinity for the cognate antigen, ovalbumin (OVA) peptide, presented by MHC. Furthermore, we quantified differences in α-chain repertoire in SLAP(-/-) Vβ5 mice. We have found that SLAP(-/-) OT-1 mice have fewer CD8(+) thymocytes but have increased CD5 expression. SLAP(-/-) OT-1 mice have fewer DP thymocytes expressing Vα2, signifying increased endogenous α-chain rearrangement, and more non-OVA-specific CD8(+) splenocytes upon tetramer staining. Our data demonstrate that SLAP(-/-) Vβ5 mice also have fewer OVA-specific cells and increased Vα2 usage in the peripheral Vβ5 CD8(+) T cells that were non-OVA-specific, demonstrating differences in α-chain repertoire. These studies provide direct evidence that increased TCR avidity in DP thymocytes enhances CD8(+) T cell negative selection deleting thymocytes with specificity for cognate antigen, an antigen the mature T cells may never encounter. Collectively, these studies provide new insights into how TCR avidity during CD8(+) T cell development influences repertoire selection.
Collapse
|
18
|
Peterson LK, Shaw LA, Joetham A, Sakaguchi S, Gelfand EW, Dragone LL. SLAP deficiency enhances number and function of regulatory T cells preventing chronic autoimmune arthritis in SKG mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:2273-81. [PMID: 21248251 DOI: 10.4049/jimmunol.1003601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
19
|
Liontos LM, Dissanayake D, Ohashi PS, Weiss A, Dragone LL, McGlade CJ. The Src-Like Adaptor Protein Regulates GM-CSFR Signaling and Monocytic Dendritic Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2011; 186:1923-33. [DOI: 10.4049/jimmunol.0903292] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Clark MR, Tanaka A, Powers SE, Veselits M. Receptors, subcellular compartments and the regulation of peripheral B cell responses: the illuminating state of anergy. Mol Immunol 2010; 48:1281-6. [PMID: 21144589 DOI: 10.1016/j.molimm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/13/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Collapse
Affiliation(s)
- Marcus R Clark
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
21
|
Kim HJ, Zou W, Ito Y, Kim SY, Chappel J, Ross FP, Teitelbaum SL. Src-like adaptor protein regulates osteoclast generation and survival. J Cell Biochem 2010; 110:201-9. [PMID: 20225239 DOI: 10.1002/jcb.22527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Src-like adaptor protein (SLAP) is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. We investigated the role of SLAP in osteoclast development and resorptive function. Employing SLAP-deficient mice, we find lack of the adaptor enhances in vitro proliferation of osteoclast precursors in the form of bone marrow macrophages (BMMs), without altering their survival. Furthermore, osteoclastogenic markers appear more rapidly in SLAP-/- BMMs exposed to RANK ligand (RANKL). The accelerated proliferation of M-CSF-treated, SLAP-deficient precursors is associated with enhanced ERK activation. SLAP's role as a mediator of M-CSF signaling, in osteoclastic cells, is buttressed by complexing of the adaptor protein and c-Fms in lipid rafts. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. Thus, SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. These counterbalancing events yield indistinguishable bones of WT and SLAP-/- mice which contain equal numbers of osteoclasts in basal and stimulated conditions.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dragone LL, Shaw LA, Myers MD, Weiss A. SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking. Immunol Rev 2010; 232:218-28. [PMID: 19909366 DOI: 10.1111/j.1600-065x.2009.00827.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Src-like adapter proteins (SLAP and SLAP-2) constitute a family of proteins that are expressed in a variety of cell types but are studied most extensively in lymphocytes. They have been shown to associate with proximal components of the T-cell receptor (TCR) and B-cell receptor (BCR) signaling complexes. An interaction of SLAP with c-Cbl leads to the ubiquitination and degradation of phosphorylated components of the TCR- and BCR-signaling complexes. The absence of this process in immature SLAP-deficient T and B cells leads to increased immunoreceptor levels due to decreased intracellular retention and degradation. We propose a model in which SLAP-dependent regulation of immunoreceptor levels allows for finer control of immunoreceptor signaling. Thus, SLAP functions to dampen immunoreceptor signaling, thereby influencing lymphocyte development and repertoire selection.
Collapse
|
23
|
Ouchida R, Kurosaki T, Wang JY. A Role for Lysosomal-Associated Protein Transmembrane 5 in the Negative Regulation of Surface B Cell Receptor Levels and B Cell Activation. THE JOURNAL OF IMMUNOLOGY 2010; 185:294-301. [PMID: 20519653 DOI: 10.4049/jimmunol.1000371] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
MESH Headings
- Animals
- Antibody Affinity
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Chickens
- Down-Regulation/immunology
- Epitopes, B-Lymphocyte/immunology
- Haptens/administration & dosage
- Haptens/immunology
- Haptens/metabolism
- Immediate-Early Proteins/deficiency
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/metabolism
- Lymphocyte Activation/immunology
- Lysosomes/enzymology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Knockout
- Nitrophenols/administration & dosage
- Nitrophenols/immunology
- Nitrophenols/metabolism
- Phenylacetates/administration & dosage
- Phenylacetates/immunology
- Phenylacetates/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/metabolism
- Up-Regulation/immunology
- gamma-Globulins/administration & dosage
- gamma-Globulins/immunology
- gamma-Globulins/metabolism
Collapse
Affiliation(s)
- Rika Ouchida
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | | | | |
Collapse
|
24
|
de la Fuente H, Lamana A, Mittelbrunn M, Perez-Gala S, Gonzalez S, García-Diez A, Vega M, Sanchez-Madrid F. Identification of genes responsive to solar simulated UV radiation in human monocyte-derived dendritic cells. PLoS One 2009; 4:e6735. [PMID: 19707549 PMCID: PMC2727914 DOI: 10.1371/journal.pone.0006735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/27/2009] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet (UV) irradiation has profound effects on the skin and the systemic immune system. Several effects of UV radiation on Dendritic cells (DCs) functions have been described. However, gene expression changes induced by UV radiation in DCs have not been addressed before. In this report, we irradiated human monocyte-derived DCs with solar-simulated UVA/UVB and analyzed regulated genes on human whole genome arrays. Results were validated by RT-PCR and further analyzed by Gene Set Enrichment Analysis (GSEA). Solar-simulated UV radiation up-regulated expression of genes involved in cellular stress and inflammation, and down-regulated genes involved in chemotaxis, vesicular transport and RNA processing. Twenty four genes were selected for comparison by RT-PCR with similarly treated human primary keratinocytes and human melanocytes. Several genes involved in the regulation of the immune response were differentially regulated in UVA/UVB irradiated human monocyte-derived DCs, such as protein tyrosine phosphatase, receptor type E (PTPRE), thrombospondin-1 (THBS1), inducible costimulator ligand (ICOSL), galectins, Src-like adapter protein (SLA), IL-10 and CCR7. These results indicate that UV-exposure triggers the regulation of a complex gene repertoire involved in human-DC–mediated immune responses.
Collapse
Affiliation(s)
- Hortensia de la Fuente
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Amalia Lamana
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Mittelbrunn
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Silvia Perez-Gala
- Servicio de Dermatología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Gonzalez
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Amaro García-Diez
- Servicio de Dermatología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Vega
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Francisco Sanchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Mansha M, Carlet M, Ploner C, Gruber G, Wasim M, Wiegers GJ, Rainer J, Geley S, Kofler R. Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia. Leuk Res 2009; 34:529-34. [PMID: 19631983 DOI: 10.1016/j.leukres.2009.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 01/28/2023]
Abstract
Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and are used in the therapy of lymphoid malignancies. SLA (Src-like-adaptor), an inhibitor of T- and B-cell receptor signaling, is a promising candidate derived from expression profiling analyses in children with acute lymphoblastic leukemia (ALL). Over-expression and knock-down experiments in ALL in vitro model revealed that transgenic SLA alone had no effect on survival or cell cycle progression, nor did it affect sensitivity to, or kinetics of, GC-induced apoptosis. Although SLA is a prominent GC response gene, it does not seem to contribute to the anti-leukemic effects of GC.
Collapse
Affiliation(s)
- Muhammad Mansha
- Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
In vivo genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res 2008; 23:644-54. [PMID: 18433299 PMCID: PMC2674539 DOI: 10.1359/jbmr.080105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Osteoporosis is characterized by low BMD. Studies have shown that B cells may participate in osteoclastogenesis through expression of osteoclast-related factors, such as RANKL, transforming growth factor beta (TGFB), and osteoprotegerin (OPG). However, the in vivo significance of B cells in human bone metabolism and osteoporosis is still largely unknown, particularly at the systematic gene expression level. MATERIALS AND METHODS In this study, Affymetrix HG-U133A GeneChip arrays were used to identify genes differentially expressed in B cells between 10 low and 10 high BMD postmenopausal women. Significance of differential expression was tested by t-test and adjusted for multiple testing with the Benjamini and Hochberg (BH) procedure (adjusted p </= 0.05). RESULTS Twenty-nine genes were downregulated in the low versus high BMD group. These genes were further analyzed using Ingenuity Pathways Analysis (Ingenuity Systems). A network involving estrogen receptor 1 (ESR1) and mitogen activated protein kinase 3 (MAPK3) was identified. Real-time RT-PCR confirmed differential expression of eight genes, including ESR1, MAPK3, methyl CpG binding protein 2 (MECP2), proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), Scr-like-adaptor (SLA), serine/threonine kinase 11 (STK11), WNK lysine-deficient protein kinase 1 (WNK1), and zinc finger protein 446 (ZNF446). CONCLUSIONS This is the first in vivo genome-wide expression study on human B cells in relation to osteoporosis. Our results highlight the significance of B cells in the etiology of osteoporosis and suggest a novel mechanism for postmenopausal osteoporosis (i.e., that downregulation of ESR1 and MAPK3 in B cells regulates secretion of factors, leading to increased osteoclastogenesis or decreased osteoblastogenesis).
Collapse
|
27
|
McIntyre BAS, Alev C, Tarui H, Jakt LM, Sheng G. Expression profiling of circulating non-red blood cells in embryonic blood. BMC DEVELOPMENTAL BIOLOGY 2008; 8:21. [PMID: 18302797 PMCID: PMC2277405 DOI: 10.1186/1471-213x-8-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 02/27/2008] [Indexed: 01/01/2023]
Abstract
Background In addition to erythrocytes, embryonic blood contains other differentiated cell lineages and potential progenitor or stem cells homed to changing niches as the embryo develops. Using chicken as a model system, we have isolated an enriched pool of circulating non red blood cells (nRBCs) from E4 and E6 embryos; a transition period when definitive hematopoietic lineages are being specified in the peri-aortic region. Results Transcriptome analysis of both nRBC and RBC enriched populations was performed using chicken Affymetrix gene expression arrays. Comparison of transcript profiles of these two populations, with verification by RT-PCR, reveals in nRBCs an expression signature indicative of hematopoietic stem cells (HSCs) and progenitor cells of myeloid and lymphoid lineages, as well as a number of previously undescribed genes possibly involved in progenitor and stem cell maintenance. Conclusion This data indicates that early circulating embryonic blood contains a full array of hematopoietic progenitors and stem cells. Future studies on their heterogeneity and differentiation potentials may provide a useful alternative to ES cells and perinatal blood.
Collapse
Affiliation(s)
- Brendan A S McIntyre
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | |
Collapse
|
28
|
O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. ACTA ACUST UNITED AC 2008; 205:585-94. [PMID: 18299402 PMCID: PMC2275382 DOI: 10.1084/jem.20072108] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mammalian microRNAs are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the miR-155–induced GM populations displayed pathological features characteristic of myeloid neoplasia. Of possible relevance to human disease, miR-155 was found to be overexpressed in the bone marrow of patients with certain subtypes of acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress.
Collapse
Affiliation(s)
- Ryan M O'Connell
- Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang M, Veselits M, O'Neill S, Hou P, Reddi AL, Berlin I, Ikeda M, Nash PD, Longnecker R, Band H, Clark MR. Ubiquitinylation of Igβ Dictates the Endocytic Fate of the B Cell Antigen Receptor. THE JOURNAL OF IMMUNOLOGY 2007; 179:4435-43. [PMID: 17878339 DOI: 10.4049/jimmunol.179.7.4435] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In both infection and autoimmunity, the development of high-affinity Abs and memory requires B cells to efficiently capture and process Ags for presentation to cognate T cells. Although a great deal is known about how Ags are processed, the molecular mechanisms by which the BCR captures Ag for processing are still obscure. In this study, we demonstrate that the Ig beta component of the BCR is diubiquitinylated and that this is dependent on the E3 ligase Itch. Itch-/- B lymphocytes manifest both a defect in ligand-induced BCR internalization and endocytic trafficking to late endosomal Ag-processing compartments. In contrast, analysis of ubiquitinylation-defective receptors demonstrated that the attachment of ubiquitins to Ig beta is required for endosomal sorting and for the presentation of Ag to T cells, yet, ubiquitinylation is dispensable for receptor internalization. Membrane-bound Ig mu was not detectably ubiquitinylated nor were the conserved lysines in the mu cytosolic tail required for trafficking to late endosomes. These results demonstrate that ubiquitinylation of a singular substrate, Ig beta, is required for a specific receptor trafficking event. However, they also reveal that E3 ligases play a broader role in multiple processes that determine the fate of Ag-engaged BCR complexes.
Collapse
Affiliation(s)
- Miao Zhang
- Section of Rheumatology, Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pakuts B, Debonneville C, Liontos LM, Loreto MP, McGlade CJ. The Src-like Adaptor Protein 2 Regulates Colony-stimulating Factor-1 Receptor Signaling and Down-regulation. J Biol Chem 2007; 282:17953-17963. [PMID: 17353186 DOI: 10.1074/jbc.m701182200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Src-like adaptor protein 2 (SLAP-2) is a hematopoietic adaptor protein previously implicated as a negative regulator of T-cell antigen receptor (TCR)-mediated signaling. SLAP-2 contains an SH3 and an SH2 domain, followed by a unique carboxyl-terminal tail, which is important for c-Cbl binding. Here we describe a novel role for SLAP-2 in regulation of the colony-stimulating factor 1 receptor (CSF-1R), a receptor tyrosine kinase important for growth and differentiation of myeloid cells. SLAP-2 co-immunoprecipitates with c-Cbl and CSF-1R in primary bone marrow-derived macrophages. Using murine myeloid cells expressing CSF-1R (FD-Fms cells), we show that SLAP-2 is tyrosine-phosphorylated upon stimulation with CSF-1 and associates constitutively with both c-Cbl and CSF-1R. In addition, we show that expression of a dominant negative form of SLAP-2 impairs c-Cbl association with the CSF-1R and receptor ubiquitination. Impaired c-Cbl recruitment also correlated with changes in the kinetics of CSF-1R down-regulation and trafficking. CSF-1-mediated differentiation of FD-Fms cells and activation of downstream signaling events was also enhanced in cells stably expressing dominant negative SLAP-2. Together, these results demonstrate that SLAP-2 plays a role in c-Cbl-dependent down-regulation of CSF-1R signaling.
Collapse
Affiliation(s)
- Benjamin Pakuts
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Christophe Debonneville
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Larissa M Liontos
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Michael P Loreto
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
31
|
Dragone LL, Myers MD, White C, Gadwal S, Sosinowski T, Gu H, Weiss A. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner. Proc Natl Acad Sci U S A 2006; 103:18202-7. [PMID: 17110436 PMCID: PMC1838730 DOI: 10.1073/pnas.0608965103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation.
Collapse
Affiliation(s)
- Leonard L. Dragone
- Division of Pediatric Immunology/Rheumatology, Department of Pediatrics, and
| | - Margaret D. Myers
- Howard Hughes Medical Institute
- Division of Rheumatology, Department of Medicine, and
- Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, CA 94143
| | - Carmen White
- Division of Pediatric Immunology/Rheumatology, Department of Pediatrics, and
| | - Shyam Gadwal
- University of Maryland Baltimore County, Baltimore, MD 21250
| | | | - Hua Gu
- Microbiology Department, Columbia University, College of Physician and Surgeons, New York, NY 10032
| | - Arthur Weiss
- Howard Hughes Medical Institute
- Division of Rheumatology, Department of Medicine, and
- Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed at:
Howard Hughes Medical Institute, University of California, 513 Parnassus Avenue, Box 0795, San Francisco, CA 94143. E-mail:
| |
Collapse
|
32
|
Nagy GR, Gyõrffy B, Galamb O, Molnár B, Nagy B, Papp Z. Use of Routinely Collected Amniotic Fluid for Whole-Genome Expression Analysis of Polygenic Disorders. Clin Chem 2006; 52:2013-20. [PMID: 17008366 DOI: 10.1373/clinchem.2006.074971] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Background: Neural tube defects related to polygenic disorders are the second most common birth defects in the world, but no molecular biologic tests are available to analyze the genes involved in the pathomechanism of these disorders. We explored the use of routinely collected amniotic fluid to characterize the differential gene expression profiles of polygenic disorders.
Methods: We used oligonucleotide microarrays to analyze amniotic fluid samples obtained from pregnant women carrying fetuses with neural tube defects diagnosed during ultrasound examination. The control samples were obtained from pregnant women who underwent routine genetic amniocentesis because of advanced maternal age (>35 years). We also investigated specific folate-related genes because maternal periconceptional folic acid supplementation has been found to have a protective effect with respect to neural tube defects.
Results: Fetal mRNA from amniocytes was successfully isolated, amplified, labeled, and hybridized to whole-genome transcript arrays. We detected differential gene expression profiles between cases and controls. Highlighted genes such as SLA, LST1, and BENE might be important in the development of neural tube defects. None of the specific folate-related genes were in the top 100 associated transcripts.
Conclusions: This pilot study demonstrated that a routinely collected amount of amniotic fluid (as small as 6 mL) can provide sufficient RNA to successfully hybridize to expression arrays. Analysis of the differences in fetal gene expressions might help us decipher the complex genetic background of polygenic disorders.
Collapse
Affiliation(s)
- Gyula Richárd Nagy
- 1st Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|