1
|
Liu H, Ge W, Yu X, Luo J, Zhang J, Yang M, Cao L, Zhang Y, Wang R, Yang C, Li P, Tian M, Peng X, Peng L, Wu D, Liu M, Liang Q, Zhang S, Li W, Rong P, Li H, Ma X, Wang W. CRISPR/Cas9-mediated SHP-1-knockout T cells combined with simvastatin enhances anti-tumor activity in humanized-PDX HCC model. iScience 2025; 28:112266. [PMID: 40241752 PMCID: PMC12003012 DOI: 10.1016/j.isci.2025.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) resists immunotherapy due to its immunosuppressive microenvironment. Sarcoma homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) inhibits T cell receptor signaling, and its pharmacological inhibition is limited by poor selectivity and membrane permeability. Here, we generated CRISPR-edited SHP-1-knockout (KO) CD8+ T cells to enhance adoptive therapy against HCC. Single-cell RNA sequencing of HCC patient T cells revealed elevated SHP-1 in exhausted subsets. SHP-1-KO T cells exhibited increased effector memory T cells (TEM) proportions and enhanced IFN-γ/Granzyme B/perforin secretion, improving cytotoxicity against HCC lines. In humanized PDX models, SHP-1-KO T cells demonstrated superior tumor-killing activity. Transcriptomics identified upregulated lipid metabolism pathways, with HMGCR as a hub gene. Combining SHP-1-KO T cells with simvastatin (HMGCR inhibitor) synergistically amplified anti-HCC efficacy. This study proposes a dual strategy combining SHP-1-targeted cell therapy and metabolic modulation to overcome immunotherapy resistance, offering a translatable approach for HCC treatment.
Collapse
Affiliation(s)
- Huaping Liu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Wu Ge
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Xiaoping Yu
- Department of Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianwei Luo
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Min Yang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Lu Cao
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Pei Li
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Mengyu Tian
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - XiaoPei Peng
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Lei Peng
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Di Wu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Muqi Liu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Qi Liang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengwang Zhang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Hailan Li
- Department of Radiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Xiaoqian Ma
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Qu Z, Dong J, Zhang ZY. Protein tyrosine phosphatases as emerging targets for cancer immunotherapy. Br J Pharmacol 2023:10.1111/bph.16304. [PMID: 38116815 PMCID: PMC11186978 DOI: 10.1111/bph.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Contemporary strategies in cancer immunotherapy, despite remarkable success, remain constrained by inherent limitations such as suboptimal patient responses, the emergence of drug resistance, and the manifestation of pronounced adverse effects. Consequently, the need for alternative strategies for immunotherapy becomes clear. Protein tyrosine phosphatases (PTPs) wield a pivotal regulatory influence over an array of essential cellular processes. Substantial research has underscored the potential in targeting PTPs to modulate the immune responses and/or regulate antigen presentation, thereby presenting a novel paradigm for cancer immunotherapy. In this review, we focus on recent advances in genetic and biological validation of several PTPs as emerging targets for immunotherapy. We also highlight recent development of small molecule inhibitors and degraders targeting these PTPs as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Zihan Qu
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Chai R, Zhao Y, Su Z, Liang W. Integrative analysis reveals a four-gene signature for predicting survival and immunotherapy response in colon cancer patients using bulk and single-cell RNA-seq data. Front Oncol 2023; 13:1277084. [PMID: 38023180 PMCID: PMC10644708 DOI: 10.3389/fonc.2023.1277084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colon cancer (CC) ranks as one of the leading causes of cancer-related mortality globally. Single-cell transcriptome sequencing (scRNA-seq) offers precise gene expression data for distinct cell types. This study aimed to utilize scRNA-seq and bulk transcriptome sequencing (bulk RNA-seq) data from CC samples to develop a novel prognostic model. Methods scRNA-seq data was downloaded from the GSE161277 database. R packages including "Seurat", "Harmony", and "singleR" were employed to categorize eight major cell types within normal and tumor tissues. By comparing tumor and normal samples, differentially expressed genes (DEGs) across these major cell types were identified. Gene Ontology (GO) enrichment analyses of DEGs for each cell type were conducted using "Metascape". DEGs-based signature construction involved Cox regression and least absolute shrinkage operator (LASSO) analyses, performed on The Cancer Genome Atlas (TCGA) training cohort. Validation occurred in the GSE39582 and GSE33382 datasets. The expression pattern of prognostic genes was verified using spatial transcriptome sequencing (ST-seq) data. Ultimately, an established prognostic nomogram based on the gene signature and age was established and calibrated. Sensitivity to chemotherapeutic drugs was predicted with the "oncoPredict" R package. Results Using scRNA-Seq data, we examined 33,213 cells, categorizing them into eight cell types within normal and tumor samples. GO enrichment analysis revealed various cancer-related pathways across DEGs in these cell types. Among the 55 DEGs identified via univariate Cox regression, four independent prognostic genes emerged: PTPN6, CXCL13, SPINK4, and NPDC1. Expression validation through ST-seq confirmed PTPN6 and CXCL13 predominance in immune cells, while SPINK4 and NPDC1 were relatively epithelial cell-specific. Creating a four-gene prognostic signature, Kaplan-Meier survival analyses emphasized higher risk scores correlating with unfavorable prognoses, confirmed across training and validation cohorts. The risk score emerged as an independent prognostic factor, supported by a reliable nomogram. Intriguingly, drug sensitivity analysis unveiled contrasting anti-cancer drug responses in the two risk groups, suggesting significant clinical implications. Conclusion We developed a novel prognostic four-gene risk model, and these genes may act as potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Ruoyang Chai
- Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengjia Su
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
6
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
7
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
9
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
10
|
Sioud M. Unleashing the Therapeutic Potential of Dendritic and T Cell Therapies Using RNA Interference. Methods Mol Biol 2020; 2115:259-280. [PMID: 32006406 DOI: 10.1007/978-1-0716-0290-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic dendritic cell (DC) cancer vaccines work to boost the body's immune system to fight a cancer. Although this type of immunotherapy often leads to the activation of tumor-specfic T cells, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. Recent studies revealed a promising strategy of combining DC vaccines with small interfering RNAs (siRNAs) targeting immunosuppressive signals such as checkpoint receptors. Similarly, incorporating checkpoint siRNA blockers in adoptive T-cell therapy to amplify cytotoxic T lymphocyte responses is now being tested in the clinic. The development of the next generation of cancer immunotherapies using siRNA technology will hopefuly benefit patients with various cancer types including those who did not respond to current therapies. This review highlights the latest advances in RNA interference technology to improve the therapeutic efficacy of DC cancer vaccines and T cell therapy.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, Oslo, Norway.
| |
Collapse
|
11
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
12
|
Sioud M. Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11020176. [PMID: 30717461 PMCID: PMC6406640 DOI: 10.3390/cancers11020176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Therapeutic dendritic cell (DC) cancer vaccines rely on the immune system to eradicate tumour cells. Although tumour antigen-specific T cell responses have been observed in most studies, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. The incorporation of small interfering RNAs (siRNAs) against immunosuppressive factors in the manufacturing process of DCs can turn the vaccine into potent immune stimulators. Additionally, siRNA modification of ex vivo-expanded T cells for adoptive immunotherapy enhanced their killing potency. Most of the siRNA-targeted immune inhibitory factors have been successful in that their blockade produced the strongest cytotoxic T cell responses in preclinical and clinical studies. Cancer patients treated with the siRNA-modified DC vaccines showed promising clinical benefits providing a strong rationale for further development of these immunogenic vaccine formulations. This review covers the progress in combining siRNAs with DC vaccines or T cell therapy to boost anti-tumour immunity.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Montebello, N-0310 Oslo, Norway.
| |
Collapse
|
13
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
14
|
Abstract
The immense power of the immune system is harnessed in healthy individuals by a range of negative regulatory signals and checkpoints. Manipulating these checkpoints through inhibition has resulted in striking immune-mediated clearance of otherwise untreatable tumours and metastases; unfortunately, not all patients respond to treatment with the currently available inhibitors of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Combinatorial studies using both anti-CTLA-4 and anti-PD-1 demonstrate synergistic effects of targeting multiple checkpoints, paving the way for other immune checkpoints to be targeted. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T-cells. This review will discuss the potential value of SHP-1 inhibition in future tumour immunotherapy.
Collapse
|
15
|
SHP-1 Acts as a Key Regulator of Alloresponses by Modulating LFA-1-Mediated Adhesion in Primary Murine T Cells. Mol Cell Biol 2016; 36:3113-3127. [PMID: 27697866 DOI: 10.1128/mcb.00294-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The clinical potential of transplantation is often reduced by T cell-mediated alloresponses that cause graft rejection or graft-versus-host disease. Integrin-mediated adhesion between alloreactive T cells and antigen-presenting cells is essential for allorejection. The identity of the signaling events needed for the activation of integrins such as LFA-1 is poorly understood. Here, we identified a novel role of the protein tyrosine phosphatase SHP-1 in the regulation of murine LFA-1-mediated adhesion in an allograft setting. Upon alloactivation, SHP-1 activity is reduced, resulting in an increase in LFA-1 adhesion compared to that for syngeneically activated T cells. The importance of these differential activation properties was further indicated by small interfering RNA (siRNA) knockdown of SHP-1 in syngeneically and allogeneically stimulated T cells. Mechanistically, SHP-1 modulated the binding of SLP-76 to ADAP by dephosphorylation of the YDGI tyrosine motif of ADAP, a known docking site for the Src family kinase Fyn. This novel key role of SHP-1 in the regulation of LFA-1-mediated adhesion may provide a new insight into T cell-mediated alloresponses and may pave the way to the development of new immunosuppressive pharmaceutical agents.
Collapse
|
16
|
Purity of transferred CD8(+) T cells is crucial for safety and efficacy of combinatorial tumor immunotherapy in the absence of SHP-1. Immunol Cell Biol 2016; 94:802-8. [PMID: 27430370 PMCID: PMC5027373 DOI: 10.1038/icb.2016.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Adoptive transfer of tumor-specific cytotoxic T cells is a promising advance in cancer therapy. Similarly, checkpoint inhibition has shown striking clinical results in some patients. Here we combine adoptive cell transfer with ablation of the checkpoint protein Src homology 2-domain-containing phosphatase 1 (SHP-1, Ptpn6). Naturally occurring motheaten mice lack SHP-1 and do not survive weaning due to extensive immunopathology. To circumvent this limitation, we created a novel SHP-1null mouse that is viable up to 12 weeks of age by knocking out IL1r1. Using this model, we demonstrate that the absence of SHP-1 augments the ability of adoptively transferred CD8+ T cells to control tumor growth. This therapeutic effect was only observed in situations where T-cell numbers were limited, analogous to clinical settings. However, adoptive transfer of non-CD8+ SHP-1null hematopoietic cells resulted in lethal motheaten-like pathology, indicating that systemic inhibition of SHP-1 could have serious adverse effects. Despite this caveat, our findings support the development of SHP-1 inhibition strategies in human T cells to complement adoptive transfer therapies in the clinic.
Collapse
|
17
|
Abstract
The therapeutic potential of dendritic cell (DC) cancer vaccines has gained momentum in recent years. However, clinical data indicate that antitumor immune responses generally fail to translate into measurable tumor regression. This has been ascribed to a variety of tolerance mechanisms, one of which is the expression of immunosuppressive factors by DCs and T cells. With respect to cancer immunotherapies, these factors antagonise the ability to induce robust and sustained immunity required for tumor cell eradication. Gene silencing of immunosuppressive factors in either DCs or adoptive transferred T cells enhanced anti-tumor immune responses and significantly inhibited tumor growth. Therefore, engineered next generation of DC vaccines or adoptive T-cell therapy should include immunomodulatory siRNAs to release the "brakes" imposed by the immune system. Moreover, the combination of gene silencing, antigen targeting to DCs and cytoplasmic cargo delivery will improve clinical benefits.
Collapse
Key Words
- AML, acute myeloid leukemia
- CMV, human cytomegalovirus
- CTLA4, T-lymphocyte-associated antigen 4
- DC, Dendritic cells
- Gal, galectin hTERT, human telomerase reverse transcriptase
- IDO, indoleamine 2,3-dioxygenase
- IL, interleukin
- INF, interferon
- NK, natural killer
- PD1, programmed cell death
- RNA interference
- RNAi, RNA interference
- SOCS1, suppressor of cytokine signaling
- STAT, Signal transducer and activator of transcription
- T-cell therapy
- TCR, T cell receptor
- TLR, toll like receptor
- Treg, Regulatory T
- cancer vaccine
- gene silencing
- immunotherapy
- siRNA, small interfering RNA
- targeted therapies
Collapse
Affiliation(s)
- Mouldy Sioud
- a Department of Immunology; Institute for Cancer Research ; Oslo University Hospital ; Montebello , Norway
| |
Collapse
|
18
|
Stromnes IM, Fowler C, Casamina CC, Georgopolos CM, McAfee MS, Schmitt TM, Tan X, Kim TD, Choi I, Blattman JN, Greenberg PD. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:1812-25. [PMID: 22798667 DOI: 10.4049/jimmunol.1200552] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
T cell expression of inhibitory proteins can be a critical component for the regulation of immunopathology owing to self-reactivity or potentially exuberant responses to pathogens, but it may also limit T cell responses to some malignancies, particularly if the tumor Ag being targeted is a self-protein. We found that the abrogation of Src homology region 2 domain-containing phosphatase-1 (SHP-1) in tumor-reactive CD8(+) T cells improves the therapeutic outcome of adoptive immunotherapy in a mouse model of disseminated leukemia, with benefit observed in therapy employing transfer of CD8(+) T cells alone or in the context of also providing supplemental IL-2. SHP-1(-/-) and SHP-1(+/+) effector T cells were expanded in vitro for immunotherapy. Following transfer in vivo, the SHP-1(-/-) effector T cells exhibited enhanced short-term accumulation, followed by greater contraction, and they ultimately formed similar numbers of long-lived, functional memory cells. The increased therapeutic effectiveness of SHP-1(-/-) effector cells was also observed in recipients that expressed the tumor Ag as a self-antigen in the liver, without evidence of inducing autoimmune toxicity. SHP-1(-/-) effector CD8(+) T cells expressed higher levels of eomesodermin, which correlated with enhanced lysis of tumor cells. Furthermore, reduction of SHP-1 expression in tumor-reactive effector T cells by retroviral transduction with vectors that express SHP-1-specific small interfering RNA, a translatable strategy, also exhibited enhanced antitumor activity in vivo. These studies suggest that abrogating SHP-1 in effector T cells may improve the efficacy of tumor elimination by T cell therapy without affecting the ability of the effector cells to persist and provide a long-term response.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kumagai C, Kalman B, Middleton FA, Vyshkina T, Massa PT. Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol 2012; 246:51-7. [PMID: 22458980 DOI: 10.1016/j.jneuroim.2012.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022]
Abstract
The protein tyrosine phosphatase, SHP-1, is a negative regulator of proinflammatory signaling and autoimmune disease. We have previously reported reduced SHP-1 expression in peripheral blood leukocytes of subjects with multiple sclerosis (MS). Recent evidence indicates that virus-induced DNA methylation of the SHP-1 promoter is responsible for aberrant silencing of SHP-1 expression and function in hematopoietic cells that might relate to inflammatory diseases. In the present study, bisulfite sequencing of the SHP-1 promoter demonstrated that over a third of MS subjects had abnormally high promoter methylation. As SHP-1 is deficient in MS leukocytes and SHP-1-regulated proinflammatory genes are correspondingly upregulated, we propose that increased SHP-1 promoter methylation may relate in part to decreased SHP-1 expression and increased leukocyte-mediated inflammation in MS.
Collapse
Affiliation(s)
- Chiharu Kumagai
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
20
|
Fowler CC, Pao LI, Blattman JN, Greenberg PD. SHP-1 in T cells limits the production of CD8 effector cells without impacting the formation of long-lived central memory cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3256-67. [PMID: 20696858 PMCID: PMC2980864 DOI: 10.4049/jimmunol.1001362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During responses against viruses and malignancies, naive CD8 T lymphocytes expand to form both short-lived effector cells and a population containing cells with the potential to be long-lived and participate in memory responses (memory precursor effector cells). The strength of antigenic, costimulatory, and cytokine signals during responses impacts the magnitude and type of CD8 populations formed. In vitro studies have revealed that the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) regulates signal transduction from receptors on T cells including the TCR, helping set the activation threshold, and therefore may shape responses of mature CD8 T cells in vivo. Analysis of CD8 T cells from motheaten mice, which are globally deficient in SHP-1, proved problematic due to cell-extrinsic effects of SHP-1 deficiency in non-T cells on CD8 T cells. Therefore, a conditional knockout of SHP-1 in mature single-positive T cells was developed to analyze cell-intrinsic consequences of complete and partial SHP-1 deficiency on CD8 T cell responses to acute viral infection. The results demonstrated that SHP-1 has disparate effects on subpopulations of responding cells, limiting the magnitude and quality of primary and secondary responses by reducing the number of short-lived effector cells generated without affecting the size of the memory precursor effector cell pool that leads to formation of long-term memory.
Collapse
Affiliation(s)
- Carla C. Fowler
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-6425
| | - Lily I. Pao
- Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Joseph N. Blattman
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-6425
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Philip D. Greenberg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-6425
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
21
|
Enhanced IL-12p40 production by phenylarsine oxide is mediated by cAMP response element in macrophages. Arch Pharm Res 2010; 33:745-51. [PMID: 20512473 DOI: 10.1007/s12272-010-0514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/23/2010] [Accepted: 03/03/2010] [Indexed: 11/25/2022]
Abstract
Phenylarsine oxide (PAO), a membrane-permeable trivalent arsenical, is widely used as an inhibitor of protein tyrosine phosphatases. It reacts with vicinal sulfhydryl groups of proteins to form stable ring structures. Here we show the regulatory function of PAO in immune responses from macrophages. PAO significantly induced the secretion of interleukin (IL)-12p40 in lipopolysaccharide-stimulated macrophages. The mRNA expression and the gene promoter activity of IL-12p40 were enhanced by PAO. These results suggest that PAO may enhance IL-12p40 production at the transcriptional level. Furthermore, the effects of PAO on several signaling molecules regulating IL-12p40 expression were investigated. PAO attenuated the induced binding activity of cAMP response element (CRE), but not of NF-kappaB. Moreover, CRE promoter activity was dose-dependently inhibited by PAO and the increased secretion of IL-12p40 by PAO was reduced by forskolin, a cAMP activator. These results suggest that PAO enhances IL-12p40 production by inhibiting CRE activity.
Collapse
|
22
|
Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2010; 3:29-47. [PMID: 21209773 PMCID: PMC2990491 DOI: 10.1007/s12307-010-0044-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 12/16/2022]
Abstract
The immune system of cancer patients recognizes tumor-associated antigens expressed on solid tumors and these antigens are able to induce tumor-specific humoral and cellular immune responses. Diverse immunotherapeutic strategies have been used in an attempt to enhance both antibody and T cell responses to tumors. While several tumor vaccination strategies significantly increase the number of tumor-specific lymphocytes in the blood of cancer patients, most vaccinated patients ultimately experience tumor progression. CD4+ and CD8+ T cells with an effector memory phenotype infiltrate human tumor microenvironments, but most are hyporesponsive to stimulation via the T cell receptor (TCR) and CD28 under conditions that activate memory T cells derived from the peripheral blood of the cancer patients or normal donors. Attempts to identify cells and molecules responsible for the TCR signaling arrest of tumor-infiltrating T cells have focused largely upon the immunosuppressive effects of tumor cells, tolerogenic dendritic cells and regulatory T cells. Here we review potential mechanisms by which human T cell function is arrested in the tumor microenvironment with a focus on the immunomodulatory effects of stromal fibroblasts. Determining in vivo which cells and molecules are responsible for the TCR arrest in human tumor-infiltrating T cells will be necessary to formulate and test strategies to prevent or reverse the signaling arrest of the human T cells in situ for a more effective design of tumor vaccines. These questions are now addressable using novel human xenograft models of tumor microenvironments.
Collapse
Affiliation(s)
- Jennifer L. Barnas
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Michelle R. Simpson-Abelson
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Sandra J. Yokota
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Raymond J. Kelleher
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
23
|
Schnell FJ, Alberts-Grill N, Evavold BD. CD8+ T cell responses to a viral escape mutant epitope: active suppression via altered SHP-1 activity. THE JOURNAL OF IMMUNOLOGY 2009; 182:1829-35. [PMID: 19201834 DOI: 10.4049/jimmunol.0801798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One mechanism viruses use to subvert immune surveillance is through mutation of MHC contact residues of antigenic epitopes that weaken T cell recognition to the point that the immune system is ignorant of the infection. However, in contrast to ignorance, results presented herein demonstrate that intracellular signaling does occur upon stimulation with a lymphocytic choriomeningitis virus-derived escape mutant as demonstrated by the sustained activation of Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1). In addition to the increased SHP-1 activity, we found that the mutated epitope failed to induce oxidation of SHP-1, further enhancing enzymatic activity. Sustained activation of SHP-1 in a reduced form correlated with ERK and early growth response gene 1 activation and failure of T cells to commit to the effector lineage. Thus, instead of immune ignorance, these studies demonstrate the activation of a negative signaling pathway that actively suppresses T cell responses and limits recognition of viral escape mutants.
Collapse
Affiliation(s)
- Frederick J Schnell
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
24
|
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 2009; 126:147-64. [PMID: 19125886 PMCID: PMC2632693 DOI: 10.1111/j.1365-2567.2008.02848.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/16/2023] Open
Abstract
The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
25
|
Chong LK, Aicheler RJ, Llewellyn-Lacey S, Tomasec P, Brennan P, Wang ECY. Proliferation and interleukin 5 production by CD8hi CD57+ T cells. Eur J Immunol 2008; 38:995-1000. [PMID: 18383036 PMCID: PMC2843081 DOI: 10.1002/eji.200737687] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD8hi CD57+ T cells have previously been described as effector memory T cells with minimal expansion capacity and high susceptibility to activation-induced cell death. In contrast, we demonstrate here that CD8hi CD57+ T cells are capable of rapid expansion using multiple techniques including [(3)H]thymidine uptake, flow cytometric bead-based enumeration and standard haemocytometer counting. Previous reports can be explained by marked inhibition of activation-induced expansion and increased 7-amino-actinomycin D uptake by CD8hi CD57+ T cells following treatment with CFSE, a dye previously used to measure their proliferation, combined with specific media requirements for the growth of this cell subset. The ability of CD8hi CD57+ T cells to further differentiate is highlighted by a distinct cytokine profile late after activation that includes the unexpected release of high levels of interleukin 5. These data indicate that CD8hi CD57+ T cells should not be considered as "end-stage" effector T cells incapable of proliferation, but represent a highly differentiated subset capable of rapid division and exhibiting novel functions separate from their previously described cytotoxic and IFN-gamma responses.
Collapse
Affiliation(s)
- Lee K Chong
- Department of Medical Biochemistry & Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
26
|
Simpson-Abelson M, Bankert RB. Targeting the TCR signaling checkpoint: a therapeutic strategy to reactivate memory T cells in the tumor microenvironment. Expert Opin Ther Targets 2008; 12:477-90. [DOI: 10.1517/14728222.12.4.477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|