1
|
Radbruch A, Melchers F. [Why the regeneration of immunological tolerance by vaccination is difficult]. Z Rheumatol 2024; 83:105-111. [PMID: 38110746 DOI: 10.1007/s00393-023-01453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/20/2023]
Abstract
Autoimmunity, including that involved in chronic inflammatory rheumatic diseases, seems to be the price we have to pay for our efficient immune system. It has the ability to precisely recognize pathogens and tumor cells, to efficiently fight them, to adapt to their alterations and provide specific immunity for a lifetime. "Inoculation", and more specifically "vaccination" takes advantage of this, either by transfer of protective antibodies (passive vaccination) or by using attenuated pathogens or parts of them by which a specific protective immunity is induced (active vaccination). The idea to use vaccination to reduce undesired (auto)immunity and chronic inflammation is nothing new in rheumatology. Many biologicals are antibodies, which specifically block the mediators of inflammation and in the broader sense are similar to a passive vaccination. The active vaccination with autoantigens using the recent mRNA/liposome technology, has shown in experimental animal models that they can prevent the formation of chronic inflammatory immune reactions, in that they strengthen the physiological tolerance and deviate the immune system to noninflammatory immune reactions against the antigen; however, there is still a long way to go to achieve the actual goals of a permanent suppression of established undesired immune reactions and the regeneration of immunological tolerance.
Collapse
Affiliation(s)
- Andreas Radbruch
- Deutsches Rheumaforschungszentrum Berlin, ein Leibniz Institut, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Fritz Melchers
- Deutsches Rheumaforschungszentrum Berlin, ein Leibniz Institut, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
2
|
Shafieichaharberoud F, Lang S, Whalen C, Rivera Quiles C, Purcell L, Talbot C, Wang P, Norton EB, Mazei-Robison M, Sulima A, Jacobson AE, Rice KC, Matyas GR, Huang X. Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles. Bioconjug Chem 2024; 35:164-173. [PMID: 38113481 PMCID: PMC11259974 DOI: 10.1021/acs.bioconjchem.3c00415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qβ (mQβ), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQβ-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQβ-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQβ-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.
Collapse
Affiliation(s)
- Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cristina Rivera Quiles
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lillie Purcell
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Cameron Talbot
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Michelle Mazei-Robison
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2221859120. [PMID: 37844250 PMCID: PMC10614828 DOI: 10.1073/pnas.2221859120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023] Open
Abstract
Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorβ). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
| | | | | | - Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Zhongchao Zhao
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
- Department of Radiology, University of California, San Diego, CA92093
- Institute for Materials Discovery and Design, University of California, San Diego, CA92093
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA92093
- Center for Engineering in Cancer, University of California, San Diego, CA92093
| |
Collapse
|
4
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol 2022; 19:993-1011. [PMID: 35962190 PMCID: PMC9371956 DOI: 10.1038/s41423-022-00897-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Virus-like particles (VLPs) have become key tools in biology, medicine and even engineering. After their initial use to resolve viral structures at the atomic level, VLPs were rapidly harnessed to develop antiviral vaccines followed by their use as display platforms to generate any kind of vaccine. Most recently, VLPs have been employed as nanomachines to deliver pharmaceutically active products to specific sites and into specific cells in the body. Here, we focus on the use of VLPs for the development of vaccines with broad fields of indications ranging from classical vaccines against viruses to therapeutic vaccines against chronic inflammation, pain, allergy and cancer. In this review, we take a walk through time, starting with the latest developments in experimental preclinical VLP-based vaccines and ending with marketed vaccines, which earn billions of dollars every year, paving the way for the next wave of prophylactic and therapeutic vaccines already visible on the horizon.
Collapse
Affiliation(s)
- Mona O Mohsen
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland.
- Saiba Biotech AG, Bahnhofstr. 13, CH-8808, Pfaeffikon, Switzerland.
| | - Martin F Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
9
|
Abstract
Complement protein C3dg, a key linkage between innate and adaptive immunity, is capable of stimulating both humoral and cell-mediated immune responses, leading to considerable interest in its use as a molecular adjuvant. However, the potential of C3dg as an adjuvant is limited without ways of controllably assembling multiple copies of it into vaccine platforms. Here, we report a strategy to assemble C3dg into supramolecular nanofibers with excellent compositional control, using β-tail fusion tags. These assemblies were investigated as therapeutic active immunotherapies, which may offer advantages over existing biologics, particularly toward chronic inflammatory diseases. Supramolecular assemblies based on the Q11 peptide system containing β-tail-tagged C3dg, B cell epitopes from TNF, and the universal T cell epitope PADRE raised strong antibody responses against both TNF and C3dg, and prophylactic immunization with these materials significantly improved protection in a lethal TNF-mediated inflammation model. Additionally, in a murine model of psoriasis induced by imiquimod, the C3dg-adjuvanted nanofiber vaccine performed as well as anti-TNF monoclonal antibodies. Nanofibers containing only β-tail-C3dg and lacking the TNF B cell epitope also showed improvements in both models, suggesting that supramolecular C3dg, by itself, played an important therapeutic role. We observed that immunization with β-tail-C3dg caused the expansion of an autoreactive C3dg-specific T cell population, which may act to dampen the immune response, preventing excessive inflammation. These findings indicate that molecular assemblies displaying C3dg warrant further development as active immunotherapies.
Collapse
|
10
|
Wu B, Liu H, Cai H, Tao W, Wang G, Shi X, Chen H, Li R. Vaccine targeting TNF epitope 1-14 do not suppress host defense against Mycobacterium bovis Bacillus Calmette-Guérin infection. Int J Biol Macromol 2020; 169:371-383. [PMID: 33347929 DOI: 10.1016/j.ijbiomac.2020.12.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Anti-TNF inhibitors are efficacious in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA), Crohn's disease (CD), juvenile idiopathic arthritis (JIA), and ankylosing spondylitis (AS). However, more and more clinical case reports revealed that anti-TNF inhibitors could increase the risk of viral, fungal, and bacterial (especially intracellular) infection. In this study, based on Immune Epitope Database (IEDB) online B cell epitope prediction and the knowledge of TNF three dimensional (3D) structure we developed a novel vaccine (DTNF114-TNF114) that targeting TNF epitope 1-14, which produced antibodies only partially binding to trans-membrane TNF (tmTNF), therefore partially sparing tmTNF-TNFR1/2 interaction. Immunization with DTNF114-TNF114 significantly protected and prolonged the survival rate of mice challenged with lipopolysaccharide (LPS); and in the mCherry expressing Mycobacterium bovis Bacillus Calmette-Guérin (mCherry-BCG) infection model, DTNF114-TNF114 immunization significantly decreased soluble TNF (solTNF) level in serum, meanwhile did not suppress host immunity against infection. Thus, this novel and infection concern-free vaccine provides a potential alternative or supplement to currently clinically used anti-TNF inhibitors.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Weihong Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Gengchong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Xiaohui Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
11
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
12
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
13
|
Chen Z, Wholey WY, Hassani Najafabadi A, Moon JJ, Grigorova I, Chackerian B, Cheng W. Self-Antigens Displayed on Liposomal Nanoparticles above a Threshold of Epitope Density Elicit Class-Switched Autoreactive Antibodies Independent of T Cell Help. THE JOURNAL OF IMMUNOLOGY 2019; 204:335-347. [PMID: 31836655 DOI: 10.4049/jimmunol.1801677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Epitope density has a profound impact on B cell responses to particulate Ags, the molecular mechanisms of which remain to be explored. To dissect the role of epitope density in this process, we have synthesized a series of liposomal particles, similar to the size of viruses, that display a model self-antigen peptide at defined surface densities. Immunization of C57BL/6J mice using these particles elicited both IgM and class-switched IgG1, IgG2b, and IgG3 autoreactive Abs that depended on the epitope density. In C57BL/6 gene knockout mice lacking either functional TCRs or MHC class II molecules on B cells, the liposomal particles also elicited IgM, IgG1, IgG2b, and IgG3 responses that were comparable in magnitudes to wild-type mice, suggesting that this B cell response was independent of cognate T cell help. Notably, the titer of the IgG in wild-type animals could be increased by more than 200-fold upon replacement of liposomes with bacteriophage Qβ virus-like particles that displayed the same self-antigen peptide at comparable epitope densities. This enhancement was lost almost completely in gene knockout mice lacking either TCRs or MHC class II molecules on B cells. In conclusion, epitope density above a threshold on particulate Ags can serve as a stand-alone signal to trigger secretion of autoreactive and class-switched IgG in vivo in the absence of cognate T cell help or any adjuvants. The extraordinary immunogenicity of Qβ viral-like particles relies, in large part, on their ability to effectively recruit T cell help after B cell activation.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131; and
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109; .,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
14
|
Mohsen MO, Speiser DE, Knuth A, Bachmann MF. Virus-like particles for vaccination against cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1579. [PMID: 31456339 PMCID: PMC6916610 DOI: 10.1002/wnan.1579] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Active immunotherapy of cancer aims to treat the disease by inducing effective cellular and humoral immune responses. Virus‐like particle‐based vaccines have evolved dramatically over the last few decades, greatly reducing morbidity and mortality of several infectious diseases and expectedly preventing cervical cancer caused by human papilloma virus. In contrast to these broad successes of disease prevention, therapeutic cancer vaccines remain to demonstrate clinical benefit. Yet, several preclinical and clinical trials have revealed promising results and are paving the way for medical breakthroughs. This study reviews and discusses the recent preclinical development and clinical trials in this field. This article is categorized under: Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- Mona O Mohsen
- The Interim Translational Research Institute "iTRI", National Center for Cancer Care & Research (NCCCR), Doha, Qatar.,Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Alexander Knuth
- The Interim Translational Research Institute "iTRI", National Center for Cancer Care & Research (NCCCR), Doha, Qatar
| | - Martin F Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
16
|
Belmellat N, Semerano L, Segueni N, Damotte D, Decker P, Ryffel B, Quesniaux V, Boissier MC, Assier E. Tumor Necrosis Factor-Alpha Targeting Can Protect against Arthritis with Low Sensitization to Infection. Front Immunol 2017; 8:1533. [PMID: 29184553 PMCID: PMC5694445 DOI: 10.3389/fimmu.2017.01533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/27/2017] [Indexed: 01/12/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) blockade is an effective treatment for rheumatoid arthritis (RA) and other inflammatory diseases, but in patients, it is associated with reduced resistance to the infectious agents Mycobacterium tuberculosis and Listeria monocytogenes, among others. Our goal was to model infection and arthritis in mice and to compare etanercept, a currently used anti-TNF-α inhibitor, to an anti-TNF-α vaccine. We developed a murine surrogate of the TNF-α kinoid and produced an anti-murine TNF-α vaccine (TNFKi) composed of keyhole limpet hemocyanin conjugated to TNF-α, which resulted in anti-TNF-α antibody production in mice. We also used etanercept (a soluble receptor of TNF commonly used to treat RA) as a control of TNF neutralization. In a mouse model of collagen-induced arthritis, TNFKi protected against inflammation similar to etanercept. In a mouse model of acute L. monocytogenes infection, all TNFKi-treated mice showed cleared bacterial infection and survived, whereas etanercept-treated mice showed large liver granulomas and quickly died. Moreover, TNFKi mice infected with the virulent H37Rv M. tuberculosis showed resistance to infection, in contrast with etanercept-treated mice or controls. Depending on the TNF-α blockade strategy, treating arthritis with a TNF-α inhibitor could result in a different profile of infection suceptibility. Our TNFKi vaccine allowed for a better remaining host defense than did etanercept.
Collapse
Affiliation(s)
- Nadia Belmellat
- UMR 1125 INSERM, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, Bobigny, France
| | - Luca Semerano
- UMR 1125 INSERM, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, Bobigny, France.,Service de Rhumatologie, Groupe Hospitalier Avicenne-Jean Verdier-René Muret, APHP, Bobigny, France
| | - Noria Segueni
- INEM UMR7355, CNRS, University of Orléans, Orléans, France
| | - Diane Damotte
- Service de pathologie Hôpitaux Universitaires Paris Centre, APHP, Université Paris Descartes, Paris, France
| | - Patrice Decker
- UMR 1125 INSERM, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, Bobigny, France
| | - Bernhard Ryffel
- INEM UMR7355, CNRS, University of Orléans, Orléans, France.,IDM, University of Cape Town, Cape Town, South Africa
| | | | - Marie-Christophe Boissier
- UMR 1125 INSERM, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, Bobigny, France.,Service de Rhumatologie, Groupe Hospitalier Avicenne-Jean Verdier-René Muret, APHP, Bobigny, France
| | - Eric Assier
- UMR 1125 INSERM, Bobigny, France.,Sorbonne Paris Cité Université Paris 13, Bobigny, France
| |
Collapse
|
17
|
Mora-Solano C, Wen Y, Han H, Chen J, Chong AS, Miller ML, Pompano RR, Collier JH. Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. Biomaterials 2017; 149:1-11. [PMID: 28982051 DOI: 10.1016/j.biomaterials.2017.09.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022]
Abstract
Active immunotherapies raising antibody responses against autologous targets are receiving increasing interest as alternatives to the administration of manufactured antibodies. The challenge in such an approach is generating protective and adjustable levels of therapeutic antibodies while at the same time avoiding strong T cell responses that could lead to autoimmune reactions. Here we demonstrate the design of an active immunotherapy against TNF-mediated inflammation using short synthetic peptides that assemble into supramolecular peptide nanofibers. Immunization with these materials, without additional adjuvants, was able to break B cell tolerance and raise protective antibody responses against autologous TNF in mice. The strength of the anti-TNF antibody response could be tuned by adjusting the epitope content in the nanofibers, and the T-cell response was focused on exogenous and non-autoreactive T-cell epitopes. Immunization with unadjuvanted peptide nanofibers was therapeutic in a lethal model of acute inflammation induced by intraperitoneally delivered lipopolysaccharide, whereas formulations adjuvanted with CpG showed comparatively poorer protection that correlated with a more Th1-polarized response. Additionally, immunization with peptide nanofibers did not diminish the ability of mice to clear infections of Listeria monocytogenes. Collectively this work suggests that synthetic self-assembled peptides can be attractive platforms for active immunotherapies against autologous targets.
Collapse
Affiliation(s)
- Carolina Mora-Solano
- Department of Surgery, University of Chicago, Chicago, IL, 60637, United States; Molecular Pathogenesis Program, University of Chicago, Chicago, IL, 60637, United States
| | - Yi Wen
- Department of Surgery, University of Chicago, Chicago, IL, 60637, United States
| | - Huifang Han
- Department of Surgery, University of Chicago, Chicago, IL, 60637, United States
| | - Jianjun Chen
- Department of Surgery, University of Chicago, Chicago, IL, 60637, United States
| | - Anita S Chong
- Department of Surgery, University of Chicago, Chicago, IL, 60637, United States
| | - Michelle L Miller
- Molecular Pathogenesis Program, University of Chicago, Chicago, IL, 60637, United States
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, United States
| | - Joel H Collier
- Department of Surgery, University of Chicago, Chicago, IL, 60637, United States; Molecular Pathogenesis Program, University of Chicago, Chicago, IL, 60637, United States.
| |
Collapse
|
18
|
Lee PW, Shukla S, Wallat JD, Danda C, Steinmetz NF, Maia J, Pokorski JK. Biodegradable Viral Nanoparticle/Polymer Implants Prepared via Melt-Processing. ACS NANO 2017; 11:8777-8789. [PMID: 28902491 PMCID: PMC5765982 DOI: 10.1021/acsnano.7b02786] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Viral nanoparticles have been utilized as a platform for vaccine development and are a versatile system for the display of antigenic epitopes for a variety of disease states. However, the induction of a clinically relevant immune response often requires multiple injections over an extended period of time, limiting patient compliance. Polymeric systems to deliver proteinaceous materials have been extensively researched to provide sustained release, which would limit administration to a single dose. Melt-processing is an emerging manufacturing method that has been utilized to create polymeric materials laden with proteins as an alternative to typical solvent-based production methods. Melt-processing is advantageous because it is continuous, solvent-free, and 100% of the therapeutic protein is encapsulated. In this study, we utilized melt-encapsulation to fabricate viral nanoparticle laden polymeric materials that effectively deliver intact particles and generate carrier specific antibodies in vivo. The effects of initial processing and postprocessing on particle integrity and aggregation were studied to develop processing windows for scale-up and the creation of more complex materials. The dispersion of particles within the PLGA matrix was studied, and the effect of additives and loading level on the release profile was determined. Overall, melt-encapsulation was found to be an effective method to produce composite materials that can deliver viral nanoparticles over an extended period and elicit an immune response comparable to typical administration schedules.
Collapse
Affiliation(s)
- Parker W. Lee
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jaqueline D. Wallat
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chaitanya Danda
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- School of Medicine, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joao Maia
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 2017; 34:123-132. [PMID: 28887001 DOI: 10.1016/j.smim.2017.08.014] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023]
Abstract
Virus-like particles (VLPs) have made giant strides in the field of vaccinology over the last three decades. VLPs constitute versatile tools in vaccine development due to their favourable immunological characteristics such as their size, repetitive surface geometry, ability to induce both innate and adaptive immune responses as well as being safe templates with favourable economics. Several VLP-based vaccines are commercially available including vaccines against Human Papilloma Virus (HPV) such as Cervarix®, Gardasil® & Gardasil9® and Hepatitis B Virus (HBV) including the 3rd generation Sci-B-Vac™. In addition, the first licensed malaria-VLP-based vaccine Mosquirix™ has been recently approved by the European regulators. Several other VLP-based vaccines are currently undergoing preclinical and clinical development. This review summarizes some of the major findings and recent advances in VLP-based vaccine development and technologies and outlines general principles that may be harnessed for induction of targeted immune responses.
Collapse
Affiliation(s)
- Mona O Mohsen
- Jenner Institute, University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Qatar Foundation, Doha, State of Qatar
| | - Lisha Zha
- Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland
| | | | - Martin F Bachmann
- Jenner Institute, University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland.
| |
Collapse
|
20
|
Spohn G, Arenas-Ramirez N, Bouchaud G, Boyman O. Endogenous polyclonal anti–IL-1 antibody responses potentiate IL-1 activity during pathogenic inflammation. J Allergy Clin Immunol 2017; 139:1957-1965.e3. [DOI: 10.1016/j.jaci.2016.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 10/20/2022]
|
21
|
Assier E, Bessis N, Zagury JF, Boissier MC. IL-1 Vaccination Is Suitable for Treating Inflammatory Diseases. Front Pharmacol 2017; 8:6. [PMID: 28197099 PMCID: PMC5281538 DOI: 10.3389/fphar.2017.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Eric Assier
- UMR 1125 Institut National de la Santé et de la Recherche MédicaleBobigny, France; Sorbonne Paris Cité Université Paris 13Bobigny, France
| | - Natacha Bessis
- UMR 1125 Institut National de la Santé et de la Recherche MédicaleBobigny, France; Sorbonne Paris Cité Université Paris 13Bobigny, France
| | | | - Marie-Christophe Boissier
- UMR 1125 Institut National de la Santé et de la Recherche MédicaleBobigny, France; Sorbonne Paris Cité Université Paris 13Bobigny, France; Assistance Publique-Hôpitaux de Paris, HUPSSD, Service de RhumatologieBobigny, France
| |
Collapse
|
22
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
23
|
Lee KL, Twyman RM, Fiering S, Steinmetz N. Virus-based nanoparticles as platform technologies for modern vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:554-78. [PMID: 26782096 PMCID: PMC5638654 DOI: 10.1002/wnan.1383] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | | | - Steven Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Nicole Steinmetz
- Departments of Biomedical Engineering, Radiology, Materials Science and Engineering, and Macromolecular Science and Engineering, Case Western Reserve University and Medicine, Cleveland, OH 44106;
| |
Collapse
|
24
|
Kang TS, Mao Z, Ng CT, Wang M, Wang W, Wang C, Lee SMY, Wang Y, Leung CH, Ma DL. Identification of an Iridium(III)-Based Inhibitor of Tumor Necrosis Factor-α. J Med Chem 2016; 59:4026-31. [DOI: 10.1021/acs.jmedchem.6b00112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tian-Shu Kang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Zhifeng Mao
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Chan-Tat Ng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Modi Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Wanhe Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Chunming Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Simon Ming-Yuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Yitao Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Chung-Hang Leung
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Dik-Lung Ma
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| |
Collapse
|
25
|
Immunization against an IL-6 peptide induces anti-IL-6 antibodies and modulates the Delayed-Type Hypersensitivity reaction in cynomolgus monkeys. Sci Rep 2016; 6:19549. [PMID: 26782790 PMCID: PMC4726013 DOI: 10.1038/srep19549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023] Open
Abstract
Interleukin-6 (IL-6) overproduction has been involved in the pathogenesis of several chronic inflammatory diseases and the administration of an anti-IL-6 receptor monoclonal antibody has been proven clinically efficient to treat them. However, the drawbacks of monoclonal antibodies have led our group to develop an innovative anti-IL-6 strategy using a peptide-based active immunization. This approach has previously shown its efficacy in a mouse model of systemic sclerosis. Here the safety, immunogenicity, and efficacy of this strategy was assessed in non human primates. No unscheduled death and clinical signs of toxicity was observed during the study. Furthermore, the cynomolgus monkeys immunized against the IL-6 peptide produced high levels of anti-IL-6 antibodies as well as neutralizing antibodies compared to control groups. They also showed an important decrease of the cumulative inflammatory score following a delayed-type hypersensitivity reaction induced by the Tetanus vaccine compared to control groups (minus 57,9%, P = 0.014). These findings are highly significant because the immunizing IL-6 peptide used in this study is identical in humans and in monkeys and this novel anti-IL-6 strategy could thus represent a promising alternative to monoclonal antibodies.
Collapse
|
26
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
27
|
Liu C, Zhao Y, He W, Wang W, Chen Y, Zhang S, Ma Y, Gohda J, Ishida T, Walter TS, Owens RJ, Stuart DI, Ren J, Gao B. A RANKL mutant used as an inter-species vaccine for efficient immunotherapy of osteoporosis. Sci Rep 2015; 5:14150. [PMID: 26412210 PMCID: PMC4585926 DOI: 10.1038/srep14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/14/2015] [Indexed: 01/01/2023] Open
Abstract
Anti-cytokine therapeutic antibodies have been demonstrated to be effective in the treatment of several auto-immune disorders. However, The problems in antibody manufacture and the immunogenicity caused by multiple doses of antibodies inspire people to use auto-cytokine as immunogen to induce anti-cytokine antibodies. Nevertheless, the tolerance for inducing immune response against self-antigen has hindered the wide application of the strategy. To overcome the tolerance, here we proposed a strategy using the inter-species cytokine as immunogen for active immunization (TISCAI) to induce anti-cytokine antibody. As a proof of concept, an inter-species cytokine RANKL was successfully used as immunogen to induce anti-RANKL immune response. Furthermore, to prevent undesirable side-effects, the human RANKL was mutated based on the crystal structure of the complex of human RANKL and its rodent counterpart receptor RANK. We found, the antibodies produced blocked the osteoclast development in vitro and osteoporosis in OVX rat models. The results demonstrated this strategy adopted is very useful for general anti-cytokine immunotherapy for different diseases settings.
Collapse
Affiliation(s)
- Changzhen Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, NO.16, Dongzhimennei South Street, Dongcheng District, Beijing 100700, China
| | - Yunfeng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Wen He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Wei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Yuan Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Shiqian Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Yijing Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | - Takaomi Ishida
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | - Thomas S Walter
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Raymond J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Science and Innovation Campus, Oxfordshire, OX11 0FA, UK
| | - David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
28
|
Campa M, Ryan C, Menter A. An overview of developing TNF-α targeted therapy for the treatment of psoriasis. Expert Opin Investig Drugs 2015; 24:1343-54. [PMID: 26289788 DOI: 10.1517/13543784.2015.1076793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Three biologic drugs targeting TNF-α are approved to treat moderate-to-severe cutaneous psoriasis. These are adalimumab, etanercept and infliximab. These drugs are given by subcutaneous injection or intravenous infusion, and while generally safe and effective, they are expensive with potential for side effects. Thus, numerous new drug candidates are under development that also target TNF-α. AREAS COVERED In this review, the authors detail several drugs under development that target TNF-α, focusing on those drugs in preclinical, Phase I and II trials. The authors describe emerging biologic psoriasis therapies, including biosimilars and novel biologics, in addition to several synthetic and naturally derived small-molecule drug candidates. EXPERT OPINION The currently approved TNF-α antagonists benefit from over 10 years of safety and efficacy data. The expense and method of administration of these biologics, however, can be cumbersome, and less expensive alternatives have the potential to benefit patients with psoriasis. It is inevitable, despite the introduction of new anti-IL-17 therapies, that established TNF-α targeted therapies, as well as newcomers targeting TNF-α, will continue to play an important role in the lifelong management of psoriasis.
Collapse
Affiliation(s)
- Molly Campa
- a Baylor University Medical Center, Division of Dermatology , Dallas, TX, USA
| | - Caitriona Ryan
- a Baylor University Medical Center, Division of Dermatology , Dallas, TX, USA
| | - Alan Menter
- a Baylor University Medical Center, Division of Dermatology , Dallas, TX, USA
| |
Collapse
|
29
|
Dallenbach K, Maurer P, Röhn T, Zabel F, Kopf M, Bachmann MF. Protective effect of a germline, IL-17-neutralizing antibody in murine models of autoimmune inflammatory disease. Eur J Immunol 2015; 45:1238-47. [PMID: 25545966 DOI: 10.1002/eji.201445017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/19/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.
Collapse
|
30
|
Therapeutic vaccination with TNF-Kinoid in TNF antagonist-resistant rheumatoid arthritis: a phase II randomized, controlled clinical trial. PLoS One 2014; 9:e113465. [PMID: 25517733 PMCID: PMC4269456 DOI: 10.1371/journal.pone.0113465] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/16/2014] [Indexed: 12/29/2022] Open
Abstract
Objectives Active immunization, or vaccination, with tumor necrosis factor (TNF)-Kinoid (TNF-K) is a novel approach to induce polyclonal anti-TNF antibodies in immune-mediated inflammatory diseases. This study was performed to transfer the proof of concept obtained in mice model of rheumatoid arthritis (RA) into human. We designed a pilot study to demonstrate the feasibility of therapeutic vaccination in RA. Methods This was a phase IIa, placebo-controlled, multicenter study in adults with RA who previously experienced secondary failure of TNF antagonists. Patients were immunized intramuscularly with 2 or 3 doses of placebo (n = 10) or 90 (n = 6), 180 (n = 12), or 360 µg TNF-K (n = 12). The primary objective was to identify the best dose and schedule based on anti-TNF antibody titers. Clinical symptoms and safety were assessed during 12 months and solicited reactions for 7 days after each injection. Results The highest anti-TNF antibody response was detected in patients immunized with 360 µg TNF-K and with 3 injections, although this difference was not significant with all other groups. Similar proportions of patients receiving TNF-K and placebo reported adverse events up to month 12. Serious adverse events were reported by 4 patients treated with TNF-K (13.3%) and 3 treated with placebo (30.0%), all unrelated to treatment. At month 12, DAS28-CRP, tender and swollen joint counts, and HAQ scores decreased significantly more in patients who exhibited anti-TNF antibody response than in patients who did not. Conclusions TNF-K therapeutic vaccination induced dose- and schedule-dependent anti-TNF antibodies in RA patients and was well tolerated. Patients who developed anti-TNF antibodies showed a trend toward clinical improvement. Although the most aggressive dose and schedule, i.e. 360 mg dose administered 3 times, did show a strong trend of higher antibody response, further studies are warranted to examine even higher and more frequent doses in order to establish the best conditions for clinical improvement. Trial Registration ClinicalTrials.gov NCT01040715
Collapse
|
31
|
Guan Q, Burtnick HA, Qing G, Weiss CR, Ma AG, Ma Y, Warrington RJ, Peng Z. Employing an IL-23 p19 vaccine to block IL-23 ameliorates chronic murine colitis. Immunotherapy 2014; 5:1313-22. [PMID: 24283842 DOI: 10.2217/imt.13.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Overexpression of IL-23 has been implicated in the pathogenesis of Crohn's disease. Using vaccines to block overexpressed endogenous cytokines has emerged as a new therapeutic strategy for the long-term treatment of the disease. AIM We sought to develop peptide-based vaccines specific to IL-23 and evaluate their effects in colitis mice. MATERIALS & METHODS The vaccine was developed by inserting a peptide derived from mouse IL-23 p19 into the carrier protein, hepatitis B core antigen, using molecular engineering methods. One vaccine against IL-23 p19 was obtained that induced high-titered and long-lasting antibodies to IL-23 without the use of adjuvants. The inhibitory effect of vaccine-immunized serum was subsequently evaluated in vitro. To evaluate the in vivo effects, mice were subcutaneously injected with the vaccine, carrier or saline three times. Two weeks after the last injection, chronic colitis was induced in mice by seven weekly administrations with 2,4,6-trinitrobenzene sulfonic acid. RESULTS In vitro studies revealed that serum IL-23 p19-specific IgG significantly suppressed IL-23-induced IL-17 production by splenocytes. In vivo evaluation of the effect of the vaccine in mice with chronic colitis indicated that vaccine-immunized mice exhibited a decrease in colon inflammation, collagen deposition and levels of IL-23 and IL-12 cytokines, compared with control groups. CONCLUSION IL-23 p19 vaccine is capable of downregulating inflammatory responses in chronic murine colitis, providing a novel therapeutic approach in Crohn's disease.
Collapse
Affiliation(s)
- Qingdong Guan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaffenberger BH, Lee GL, Tyler K, Chan DV, Jarjour W, Ariza ME, Williams MV, Wong HK. Current and potential immune therapies and vaccines in the management of psoriasis. Hum Vaccin Immunother 2014; 10:876-86. [PMID: 24492530 DOI: 10.4161/hv.27532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Psoriasis is a chronic, immune skin disease associated with significant morbidity. Development of psoriasis is influenced by numerous genes, one allele is HLA-CW*0602. Other genes and single nucleotide polymorphisms affect immunologic pathways and antimicrobial peptide synthesis. Dendritic cells initiate psoriasis by activating T-cells toward a Th1 and Th17 response, with increased cytokines including TNF-α, IL-6, -12, -17, -22, and -23. IL-22 appears to promote keratinocyte dedifferentiation and increased antimicrobial peptide synthesis while TNF-α and IL-17 induce leukocyte localization within the psoriatic plaque. These recent insights identifying key cytokine pathways have led to the development of inhibitors with significant efficacy in the treatment of psoriasis. While a strategy for vaccine modulation of the immune response in psoriasis is in progress, with new technology they may provide a cost-effective long-term treatment that may induce tolerance or targeted self-inhibition for patients with autoimmune disorders, such as psoriasis.
Collapse
Affiliation(s)
- Benjamin H Kaffenberger
- Division of Dermatology; Department of Internal Medicine; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Grace L Lee
- Division of Dermatology; Department of Internal Medicine; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Kelly Tyler
- Division of Dermatology; Department of Internal Medicine; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Derek V Chan
- Division of Dermatology; Department of Internal Medicine; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Wael Jarjour
- Division of Rheumatology; Department of Internal Medicine; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Maria E Ariza
- Department of Medical Virology, Immunology, and Molecular Genetics; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Marshall V Williams
- Department of Medical Virology, Immunology, and Molecular Genetics; Ohio State University Wexner Medical Center; Columbus, OH USA
| | - Henry K Wong
- Division of Dermatology; Department of Internal Medicine; Ohio State University Wexner Medical Center; Columbus, OH USA
| |
Collapse
|
33
|
Spohn G, Bachmann MF. Exploiting viral properties for the rational design of modern vaccines. Expert Rev Vaccines 2014; 7:43-54. [DOI: 10.1586/14760584.7.1.43] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
El Shikh ME, Kmieciak M, Manjili MH, Szakal AK, Pitzalis C, Tew JG. Multi-therapeutic potential of autoantibodies induced by immune complexes trapped on follicular dendritic cells. Hum Vaccin Immunother 2013; 9:2434-44. [PMID: 23836278 PMCID: PMC3981854 DOI: 10.4161/hv.25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
Induction of autoantibodies (autoAbs) targeting disease drivers / mediators is emerging as a potential immunotherapeutic strategy. Auto-immune complex (IC)-retaining follicular dendritic cells (FDCs) critically regulate pathogenic autoAb production in autoreactive germinal centers (GCs); however, their ability to induce potentially therapeutic autoAbs has not been explored. We hypothesized that deliberate display of clinically targeted antigens (Ags) in the form of ICs on FDC membranes induces target-specific autoreactive GCs and autoAbs that may be exploited therapeutically. To test our hypothesis, three therapeutically relevant Ags: TNF-α, HER2/neu and IgE, were investigated. Our results indicated that TNF-α-, HER2/neu- and IgE-specific autoAbs associated with strong GC reactions were induced by TNF-α-, HER2/neu- and IgE-IC retention on FDCs. Moreover, the induced anti-TNF-α autoAbs neutralized mouse and human TNF-α with half maximal Inhibitory Concentration (IC₅₀) of 7.1 and 1.6 nM respectively. In addition, we demonstrated that FDC-induced Ab production could be non-specifically inhibited by the IgG-specific Endo-S that accessed the light zones of GCs and interfered with FDC-IC retention. In conclusion, the ability of FDCs to productively present autoAgs raises the potential for a novel immunotherapeutic platform targeting mediators of autoimmune disorders, allergic diseases, and Ab responsive cancers.
Collapse
Affiliation(s)
- Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology; William Harvey Research Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London, UK
| | - Maciej Kmieciak
- Department of Microbiology and Immunology; VCU School of Medicine; Richmond, VA USA
- Massey Cancer Centre; VCU School of Medicine; Richmond, VA USA
| | - Masoud H Manjili
- Department of Microbiology and Immunology; VCU School of Medicine; Richmond, VA USA
- Massey Cancer Centre; VCU School of Medicine; Richmond, VA USA
| | - Andras K Szakal
- Anatomy and Neurobiology; VCU School of Medicine; Richmond, VA USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology; William Harvey Research Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London, UK
| | - John G Tew
- Department of Microbiology and Immunology; VCU School of Medicine; Richmond, VA USA
| |
Collapse
|
35
|
Skibinski DAG, Hanson BJ, Lin Y, von Messling V, Jegerlehner A, Tee JBS, Chye DH, Wong SKK, Ng AAP, Lee HY, Au B, Lee BTK, Santoso L, Poidinger M, Fairhurst AM, Matter A, Bachmann MF, Saudan P, Connolly JE. Enhanced neutralizing antibody titers and Th1 polarization from a novel Escherichia coli derived pandemic influenza vaccine. PLoS One 2013; 8:e76571. [PMID: 24204639 PMCID: PMC3799843 DOI: 10.1371/journal.pone.0076571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/25/2013] [Indexed: 01/19/2023] Open
Abstract
Influenza pandemics can spread quickly and cost millions of lives; the 2009 H1N1 pandemic highlighted the shortfall in the current vaccine strategy and the need for an improved global response in terms of shortening the time required to manufacture the vaccine and increasing production capacity. Here we describe the pre-clinical assessment of a novel 2009 H1N1 pandemic influenza vaccine based on the E. coli-produced HA globular head domain covalently linked to virus-like particles derived from the bacteriophage Qβ. When formulated with alum adjuvant and used to immunize mice, dose finding studies found that a 10 µg dose of this vaccine (3.7 µg globular HA content) induced antibody titers comparable to a 1.5 µg dose (0.7 µg globular HA content) of the licensed 2009 H1N1 pandemic vaccine Panvax, and significantly reduced viral titers in the lung following challenge with 2009 H1N1 pandemic influenza A/California/07/2009 virus. While Panvax failed to induce marked T cell responses, the novel vaccine stimulated substantial antigen-specific interferon-γ production in splenocytes from immunized mice, alongside enhanced IgG2a antibody production. In ferrets the vaccine elicited neutralizing antibodies, and following challenge with influenza A/California/07/2009 virus reduced morbidity and lowered viral titers in nasal lavages.
Collapse
Affiliation(s)
- David A. G. Skibinski
- A*STAR Program in Translational Research on Infectious Disease, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | | | - Yufang Lin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Veronika von Messling
- Institut National de la Recherche Scientifique (INRS)- Institut Armand-Frappier, University of Quebec, Quebec, Canada
| | | | | | - De Hoe Chye
- Defence Science Organisation (DSO) National Laboratories, Singapore
| | | | - Amanda A. P. Ng
- A*STAR Program in Translational Research on Infectious Disease, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Hui Yin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Bijin Au
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Bernett T. K. Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Lucia Santoso
- Experimental Therapeutics Centre (ETC), Agency for Science, Technology and Research, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Alex Matter
- Experimental Therapeutics Centre (ETC), Agency for Science, Technology and Research, Singapore
| | | | | | - John E. Connolly
- A*STAR Program in Translational Research on Infectious Disease, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| |
Collapse
|
36
|
Jia T, Pan Y, Li J, Wang L. Strategies for active TNF-α vaccination in rheumatoid arthritis treatment. Vaccine 2013; 31:4063-8. [PMID: 23845805 DOI: 10.1016/j.vaccine.2013.06.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022]
Abstract
Local overexpression of tumor necrosis factors alpha (TNF-α) is critically involved in the inflammatory response and tissue destruction of rheumatoid arthritis (RA). Currently, the blockade of TNF-α by passive immunotherapy is indeed efficacious in the treatment of RA, but it still present some disadvantages. Induction of high level of anti-TNF-α neutralizing autoantibodies by TNF-α autovaccine has been developed to avoid these shortcomings. This review is to briefly introduce several vaccination approaches that have been used to induce a B cell response, including coupled TNF-α (entire/peptide) with a carrier protein, modified TNF-α with foreign Th cell epitopes, and engineered DNA vaccine. These methods showed remarkable therapeutic efficiency in experimental animals which indicated that active TNF-α immunization would be a promising and cost-effective new treatment option for RA.
Collapse
Affiliation(s)
- Tingting Jia
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
37
|
To KW, Reino JJG, Yoo DH, Tam LS. Tumour necrosis factor antagonist and tuberculosis in patients with rheumatoid arthritis: An Asian perspective. Respirology 2013; 18:765-73. [PMID: 23627398 DOI: 10.1111/resp.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/01/2013] [Accepted: 04/17/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kin Wang To
- Division of Respiratory Medicine; Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong, SAR; China
| | - Juan J Gomez Reino
- Department of Medicine and Rheumatology Unit; Hospital Clínico Universitario, USC; Santiago de Compostela; Spain
| | - Dae Hyun Yoo
- Division of Rheumatology, Department of Internal Medicine; Hanyang University Hospital, Hanyang University College of Medicine; Seoul; Korea
| | - Lai Shan Tam
- Division of Rheumatology; Department of Medicine and Therapeutics; Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong, SAR; China
| |
Collapse
|
38
|
Guan Q, Weiss CR, Qing G, Ma Y, Peng Z. An IL-17 peptide-based and virus-like particle vaccine enhances the bioactivity of IL-17 in vitro and in vivo. Immunotherapy 2013; 4:1799-807. [PMID: 23240747 DOI: 10.2217/imt.12.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS To develop an IL-17 peptide-based virus-like particle vaccine that elicits autoantibodies to IL-17 and to evaluate the effects of the vaccine in mice with experimental colitis. MATERIALS & METHODS Recombinant IL-17 vaccines were constructed by inserting selected peptides derived from mouse IL-17 into the carrier protein, hepatitis B core antigen, using molecular engineering methods. To evaluate the in vivo effects of the vaccine, mice with 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis were injected three times with the vaccine, carrier or saline after the second delivery of 2,4,6-trinitrobenzene sulfonic acid. Colon inflammation and fibrosis were evaluated by histological examination. Serum IL-17-specific IgG and colon-tissue cytokine levels were measured by ELISA. In vitro inhibition tests of sera from vaccine-immunized mice were performed using IL-17-induced IL-6 production by NIH 3T3 cells and IL-17-induced TNF production by macrophages. RESULTS Immunization with the vaccine without the use of adjuvants induced high-titered and long-lasting antibodies to IL-17. Unexpectedly, vaccinated mice exhibited increases in colon inflammation, collagen deposition, levels of TNF and IL-17 cytokines compared with carrier and saline groups. Furthermore, in vitro study revealed that serum IL-17-specific IgG from vaccine-immunized mice significantly enhanced IL-17-induced IL-6 production and IL-17-induced TNF production dose-dependently. CONCLUSION The IL-17 peptide-based vaccine enhances the bioactivity of IL-17 in vitro and in vivo, providing a potential immunotherapy for treatment of diseases associated with insufficient IL-17 production, such as hyper-IgE syndrome.
Collapse
Affiliation(s)
- Qingdong Guan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
39
|
Guan Q, Ma Y, Aboud L, Weiss CR, Qing G, Warrington RJ, Peng Z. Targeting IL-23 by employing a p40 peptide-based vaccine ameliorates murine allergic skin and airway inflammation. Clin Exp Allergy 2013; 42:1397-405. [PMID: 22925326 DOI: 10.1111/j.1365-2222.2012.04022.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies have found that the IL-23/Th17 pathway plays an important role in the pathogenesis of atopic dermatitis (AD) and severe and steroid-resistant asthma. Targeting IL-23/Th17 pathway with monoclonal antibodies (mAb) has been successful in the reduction of skin and airway inflammation in animal models. However, the mAb has a short half-life, requiring repeated administrations. For the long-term suppression of IL-23/Th17 pathway, we have previously developed an IL-23p40 peptide-based virus-like particle vaccine, which induces long-lasting autoantibodies to IL-23. OBJECTIVE We sought to evaluate the effects of this IL-23p40 peptide-based vaccine on the down-regulation of allergic skin and airway inflammation in mice. METHODS Mice were subcutaneously injected three times with the IL-23p40 vaccine, or the vaccine carrier protein or saline as controls. Two weeks later, mice were epicutaneously sensitized with ovalbumin four times at a 2-week interval. One week after the final sensitization, mice were nasally administrated with ovalbumin daily for 3 days. One day later, bronchoalveolar lavage fluids (BALF), sera, lung and skin tissues were obtained and analysed. RESULTS Mice immunized with the vaccine produced high levels of IgG antibodies to IL-23, p40 and IL-12 that in vitro inhibited IL-23-dependent IL-17 production. The numbers of total cells, neutrophils, and eosinophils in BALF were significantly reduced in the vaccine group, compared with controls. The levels of IL-13, IL-5, IL-23 and, IL-17 in BALF and levels of serum ovalbumin-specific IgE, IgG1, and total IgE were also significantly decreased. Histological analysis showed less inflammation of the lung and skin tissues in the vaccine group, compared with controls. CONCLUSION AND CLINICAL RELEVANCE Administration of an IL-23p40 peptide-based vaccine down-regulates allergic skin and airway inflammation, suggesting that this strategy may be a potential therapeutic approach in the treatment of AD and asthma.
Collapse
Affiliation(s)
- Q Guan
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada; Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Over the last three decades, virus-like particles (VLPs) have evolved to become a widely accepted technology, especially in the field of vaccinology. In fact, some VLP-based vaccines are currently used as commercial medical products, and other VLP-based products are at different stages of clinical study. Several remarkable advantages have been achieved in the development of VLPs as gene therapy tools and new nanomaterials. The analysis of published data reveals that at least 110 VLPs have been constructed from viruses belonging to 35 different families. This review therefore discusses the main principles in the cloning of viral structural genes, the relevant host systems and the purification procedures that have been developed. In addition, the methods that are used to characterize the structural integrity, stability, and components, including the encapsidated nucleic acids, of newly synthesized VLPs are analyzed. Moreover, some of the modifications that are required to construct VLP-based carriers of viral origin with defined properties are discussed, and examples are provided.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga 1067, Latvia.
| |
Collapse
|
41
|
Noninfectious disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
CɛmX peptide-carrying HBcAg virus-like particles induced antibodies that down-regulate mIgE-B lymphocytes. Mol Immunol 2012; 52:190-9. [DOI: 10.1016/j.molimm.2012.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
|
43
|
El Shikh MEM, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3:292. [PMID: 23049531 PMCID: PMC3448061 DOI: 10.3389/fimmu.2012.00292] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | | |
Collapse
|
44
|
Semerano L, Assier E, Boissier MC. Anti-cytokine vaccination: A new biotherapy of autoimmunity? Autoimmun Rev 2012; 11:785-6. [DOI: 10.1016/j.autrev.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Hao ZM, Fan XB, Li S, Lv YF, Su HQ, Jiang HP, Li HH. Vaccination with platelet-derived growth factor B kinoids inhibits CCl₄-induced hepatic fibrosis in mice. J Pharmacol Exp Ther 2012; 342:835-42. [PMID: 22711911 DOI: 10.1124/jpet.112.194357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet-derived growth factor B (PDGF-B) plays an essential role in hepatic fibrosis. Inhibition of the PDGF-B signaling in chronically injured livers might represent a potential therapeutic measure for hepatic fibrosis. In this study, we assessed the effects of vaccination against PDGF-B on CCl₄-induced liver fibrosis in BALB/c mice. The PDGF-B kinoid immunogens were prepared by cross-linking two PDGF-B-derived B-cell epitope peptides [PDGF-B¹⁶-(23-38) and PDGF-B¹⁶-(72-83)] to ovalbumin and keyhole limpet hemocyanin, respectively. Enzyme-linked immunosorbent assay, Western blotting, and NIH3T3 cell proliferation assay verified that immunization with the PDGF-B kinoids elicited the production of high levels of neutralizing anti-PDGF-B autoantibodies. The vaccination markedly alleviated CCl₄-induced hepatic fibrosis, as indicated by the lessened morphological alternations and reduced hydroxyproline contents in the mouse livers. Moreover, immunohistochemical staining for proliferating cell nuclear antigen, α-smooth muscle actin, and desmin demonstrated that neutralization of PDGF-B inhibited both the proliferation and the activation of hepatic stellate cells in the fibrotic mouse livers. Taken together, this study demonstrated that vaccination with PDGF-B kinoids significantly suppressed CCl₄-induced hepatic fibrosis in mice. Our results suggest that vaccination against PDGF-B might be developed into an effective, convenient, and safe therapeutic measure for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhi-Ming Hao
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yantaxilu, Xi'an 710061, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Franco NH, Correia-Neves M, Olsson IAS. How "humane" is your endpoint? Refining the science-driven approach for termination of animal studies of chronic infection. PLoS Pathog 2012; 8:e1002399. [PMID: 22275862 PMCID: PMC3261900 DOI: 10.1371/journal.ppat.1002399] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nuno H. Franco
- IBMC - Institute for Molecular and Cell Biology (Laboratory Animal Science Group), University of Porto, Porto, Portugal
- * E-mail:
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - I. Anna S. Olsson
- IBMC - Institute for Molecular and Cell Biology (Laboratory Animal Science Group), University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Le Buanec H, Bensussan A, Bagot M, Gallo RC, Zagury D. Active and passive anticytokine immune therapies: current status and development. Adv Immunol 2012; 115:187-227. [PMID: 22608260 DOI: 10.1016/b978-0-12-394299-9.00007-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anticytokine (AC) immune therapies derived from vaccine procedures aim at enhancing natural immune defense mechanisms ineffective to contain abnormally produced cytokines and counteract their pathogenic effects. Given their short half-life, cytokines, the production of which by effector immune cells (T and B lymphocytes, antigen-presenting cells (APCs), natural killer (NK) and endothelial cells) is inducible and controlled by negative feedback regulation, (1) exert locally their signaling to paracrine/autocrine target responder cells carrying high-affinity membrane receptors and (2) are commonly present at minimal concentration in the body fluid (lymph, serum). Aberrant signaling triggered by cytokines, uncontrolly released by effector immune cells or produced by cancer and other pathologic cells, contribute to the pathogenesis of chronic diseases including cancer, viral infections, allergy, and autoimmunity. To block these ectopic cytokine signaling and prevent their pathogenic effects, AC Abs supplied either by injections (passive AC immune therapy) or elicited by immunization with cytokine-derived immunogenes called Kinoids (active AC immune therapy) proved to be experimentally effective and safe. In this review, we detailed the rationale and the requirements for the use of AC immunotherapies in humans, the proof of efficacy of these medications in animal disease models, and their current clinical development and outcome, including adverse side effects they may generate. We particularly show that, to date, the benefit:risk ratio of AC immune therapies is highly positive.
Collapse
|
48
|
Bachmann MF, Jennings GT. Therapeutic vaccines for chronic diseases: successes and technical challenges. Philos Trans R Soc Lond B Biol Sci 2011; 366:2815-22. [PMID: 21893545 DOI: 10.1098/rstb.2011.0103] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic, non-communicable diseases are the major cause of death and disability worldwide and have replaced infectious diseases as the major burden of society in large parts of the world. Despite the complexity of chronic diseases, relatively few predisposing risk factors have been identified by the World Health Organization. Those include smoking, alcohol abuse, obesity, high cholesterol and high blood pressure as the cause of many of these chronic conditions. Here, we discuss several examples of vaccines that target these risk factors with the aim of preventing the associated diseases and some of the challenges they face.
Collapse
Affiliation(s)
- Martin F Bachmann
- Cytos Biotechnology AG, Wagistrasse 25, 8952 Zuerich-Schlieren, Switzerland.
| | | |
Collapse
|
49
|
Dambuza I, Keeton R, Allie N, Hsu NJ, Randall P, Sebesho B, Fick L, Quesniaux VJF, Jacobs M. Reactivation of M. tuberculosis infection in trans-membrane tumour necrosis factor mice. PLoS One 2011; 6:e25121. [PMID: 22132068 PMCID: PMC3221652 DOI: 10.1371/journal.pone.0025121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/25/2011] [Indexed: 12/14/2022] Open
Abstract
Of those individuals who are infected with M. tuberculosis, 90% do not develop active disease and represents a large reservoir of M. tuberculosis with the potential for reactivation of infection. Sustained TNF expression is required for containment of persistent infection and TNF neutralization leads to tuberculosis reactivation. In this study, we investigated the contribution of soluble TNF (solTNF) and transmembrane TNF (Tm-TNF) in immune responses generated against reactivating tuberculosis. In a chemotherapy induced tuberculosis reactivation model, mice were challenged by aerosol inhalation infection with low dose M. tuberculosis for three weeks to establish infection followed chemotherapeutic treatment for six weeks, after which therapy was terminated and tuberculosis reactivation investigated. We demonstrate that complete absence of TNF results in host susceptibility to M. tuberculosis reactivation in the presence of established mycobacteria-specific adaptive immunity with mice displaying unrestricted bacilli growth and diffused granuloma structures compared to WT control mice. Interestingly, bacterial re-emergence is contained in Tm-TNF mice during the initial phases of tuberculosis reactivation, indicating that Tm-TNF sustains immune pressure as in WT mice. However, Tm-TNF mice show susceptibility to long term M. tuberculosis reactivation associated with uncontrolled influx of leukocytes in the lungs and reduced IL-12p70, IFNγ and IL-10, enlarged granuloma structures, and failure to contain mycobacterial replication relative to WT mice. In conclusion, we demonstrate that both solTNF and Tm-TNF are required for maintaining immune pressure to contain reactivating M. tuberculosis bacilli even after mycobacteria-specific immunity has been established.
Collapse
Affiliation(s)
- Ivy Dambuza
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Roanne Keeton
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nasiema Allie
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippa Randall
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Boipelo Sebesho
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizette Fick
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie J. F. Quesniaux
- CNRS UMR6218, Orleans, France
- Molecular Immunology and Embryology, University of Orleans, Orleans, France
| | - Muazzam Jacobs
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Sandringham, South Africa
- * E-mail:
| |
Collapse
|
50
|
Garcia I, Olleros ML, Quesniaux VFJ, Jacobs M, Allie N, Nedospasov SA, Szymkowski DE, Ryffel B. Roles of soluble and membrane TNF and related ligands in mycobacterial infections: effects of selective and non-selective TNF inhibitors during infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:187-201. [PMID: 21153323 DOI: 10.1007/978-1-4419-6612-4_20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Irene Garcia
- Department of Pathology and Immunology, CMU, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|