1
|
De Meyst A, Van Mieghem J, Chiers K, Raemdonck K, Verbeke R, Lentacker I, Vanrompay D. mRNA Galsomes Vaccine Protects Budgerigars Against Virulent Chlamydia psittaci Challenge. Vaccines (Basel) 2025; 13:206. [PMID: 40006752 PMCID: PMC11861616 DOI: 10.3390/vaccines13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chlamydia (C.) psittaci is an avian respiratory pathogen that regularly infects budgerigars (Melopsittacus undulatus) and is a known zoonosis. This study aimed to evaluate the efficacy of a nucleoside-modified mRNA vaccine formulated in lipid nanoparticles (LNPs), either with (mRNA Galsomes) or without (mRNA LNPs) the glycolipid antigen α-Galactosylceramide, in protecting budgerigars against C. psittaci genotype A infection. METHODS Three groups of eight budgerigars received two intramuscular vaccinations with PBS, mRNA LNPs or mRNA Galsomes, and were subsequently challenged via aerosol with the C. psittaci genotype A strain 90/1051. Vaccine efficacy was assessed over 14 days post challenge by monitoring clinical signs, macroscopic and microscopic lesions, pathogen excretion and chlamydial burden in organs. Antibody levels were evaluated at baseline, after vaccination and post challenge. RESULTS Both mRNA LNPs and mRNA Galsomes induced significant serum antibody responses post booster. Vaccination significantly reduced clinical signs, chlamydial burden in the lungs and macroscopic lesions in conjunctiva, conchae, lungs and thoracic airsacs, compared to controls. Additionally, mRNA Galsomes-treated birds showed a significantly reduced lung inflammation and fewer macroscopic lesions in abdominal airsacs and liver, compared to non-vaccinated animals. These animals also experienced a significantly lower chlamydial burden in the spleen, fewer clinical signs at day 11 and fewer fecal shedding at day 14 post challenge, compared to mRNA LNP-treated animals. CONCLUSIONS This study demonstrated that mRNA vaccination confers partial protection against C. psittaci in budgerigars, with mRNA Galsomes appearing to provide enhanced efficacy. However, the absence of species-specific reagents for assessing cellular immunity in Psittaciformes limits a comprehensive understanding of vaccine-induced protection. The development of psittacine-specific T cell markers and cytokine assays is necessary to further elucidate immune mechanisms and optimize vaccine formulations.
Collapse
Affiliation(s)
- Anne De Meyst
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (J.V.M.)
| | - Joeri Van Mieghem
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (J.V.M.)
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (K.R.); (R.V.); (I.L.)
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (K.R.); (R.V.); (I.L.)
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (K.R.); (R.V.); (I.L.)
| | - Daisy Vanrompay
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.D.M.); (J.V.M.)
| |
Collapse
|
2
|
Peng Y, Qiao S, Wang H, Shekhar S, Wang S, Yang J, Fan Y, Yang X. Enhancement of Macrophage Immunity against Chlamydial Infection by Natural Killer T Cells. Cells 2024; 13:133. [PMID: 38247825 PMCID: PMC10813948 DOI: 10.3390/cells13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Lung macrophage (LM) is vital in host defence against bacterial infections. However, the influence of other innate immune cells on its function, including the polarisation of different subpopulations, remains poorly understood. This study examined the polarisation of LM subpopulations (monocytes/undifferentiated macrophages (Mo/Mφ), interstitial macrophages (IM), and alveolar macrophages (AM)). We further assessed the effect of invariant natural killer T cells (iNKT) on LM polarisation in a protective function against Chlamydia muridarum, an obligate intracellular bacterium, and respiratory tract infection. We found a preferentially increased local Mo/Mφ and IMs with a significant shift to a type-1 macrophage (M1) phenotype and higher expression of iNOS and TNF-α. Interestingly, during the same infection, the alteration of macrophage subpopulations and the shift towards M1 was much less in iNKT KO mice. More importantly, functional testing by adoptively transferring LMs isolated from iNKT KO mice (iNKT KO-Mφ) conferred less protection than those isolated from wild-type mice (WT-Mφ). Further analyses showed significantly reduced gene expression of the JAK/STAT signalling pathway molecules in iNKT KO-Mφ. The data show an important role of iNKT in promoting LM polarisation to the M1 direction, which is functionally relevant to host defence against a human intracellular bacterial infection. The alteration of JAK/STAT signalling molecule gene expression in iNKT KO-Mφ suggests the modulating effect of iNKT is likely through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Peng
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Hong Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan 250100, China
| | - Sudhanshu Shekhar
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Yijun Fan
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
3
|
Armitage CW, Carey AJ, Bryan ER, Kollipara A, Trim LK, Beagley KW. Pathogenic NKT cells attenuate urogenital chlamydial clearance and enhance infertility. Scand J Immunol 2023; 97:e13263. [PMID: 36872855 PMCID: PMC10909442 DOI: 10.1111/sji.13263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Urogenital chlamydial infections continue to increase with over 127 million people affected annually, causing significant economic and public health pressures. While the role of traditional MHCI and II peptide presentation is well defined in chlamydial infections, the role of lipid antigens in immunity remains unclear. Natural killer (NK) T cells are important effector cells that recognize and respond to lipid antigens during infections. Chlamydial infection of antigen-presenting cells facilitates presentation of lipid on the MHCI-like protein, CD1d, which stimulates NKT cells to respond. During urogenital chlamydial infection, wild-type (WT) female mice had significantly greater chlamydial burden than CD1d-/- (NKT-deficient) mice, and had significantly greater incidence and severity of immunopathology in both primary and secondary infections. WT mice had similar vaginal lymphocytic infiltrate, but 59% more oviduct occlusion compared to CD1d-/- mice. Transcriptional array analysis of oviducts day 6 post-infection revealed WT mice had elevated levels of Ifnγ (6-fold), Tnfα (38-fold), Il6 (2.5-fold), Il1β (3-fold) and Il17a (6-fold) mRNA compared to CD1d-/- mice. In infected females, oviduct tissues had an elevated infiltration of CD4+ -invariant NKT (iNKT) cells, however, iNKT-deficient Jα18-/- mice had no significant differences in hydrosalpinx severity or incidence compared to WT controls. Lipid mass spectrometry of surface-cleaved CD1d in infected macrophages revealed an enhancement of presented lipids and cellular sequestration of sphingomyelin. Taken together, these data suggest an immunopathogenic role for non-invariant NKT cells in urogenital chlamydial infections, facilitated by lipid presentation via CD1d via infected antigen-presenting cells.
Collapse
Affiliation(s)
- Charles W. Armitage
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Alison J. Carey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Emily R. Bryan
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Avinash Kollipara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Logan K. Trim
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
4
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Loureiro JP, Cruz MS, Cardoso AP, Oliveira MJ, Macedo MF. Human iNKT Cells Modulate Macrophage Survival and Phenotype. Biomedicines 2022; 10:1723. [PMID: 35885028 PMCID: PMC9313099 DOI: 10.3390/biomedicines10071723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
CD1d-restricted invariant Natural Killer T (iNKT) cells are unconventional innate-like T cells whose functions highly depend on the interactions they establish with other immune cells. Although extensive studies have been reported on the communication between iNKT cells and macrophages in mice, less data is available regarding the relevance of this crosstalk in humans. Here, we dove into the human macrophage-iNKT cell axis by exploring how iNKT cells impact the survival and polarization of pro-inflammatory M1-like and anti-inflammatory M2-like monocyte-derived macrophages. By performing in vitro iNKT cell-macrophage co-cultures followed by flow cytometry analysis, we demonstrated that antigen-stimulated iNKT cells induce a generalized activated state on all macrophage subsets, leading to upregulation of CD40 and CD86 expression. CD40L blocking with a specific monoclonal antibody prior to co-cultures abrogated CD40 and CD86 upregulation, thus indicating that iNKT cells required CD40-CD40L co-stimulation to trigger macrophage activation. In addition, activated iNKT cells were cytotoxic towards macrophages in a CD1d-dependent manner, killing M1-like macrophages more efficiently than their naïve M0 or anti-inflammatory M2-like counterparts. Hence, this work highlighted the role of human iNKT cells as modulators of macrophage survival and phenotype, untangling key features of the human macrophage-iNKT cell axis and opening perspectives for future therapeutic modulation.
Collapse
Affiliation(s)
- J. Pedro Loureiro
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Mariana S. Cruz
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - Ana P. Cardoso
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M. Fátima Macedo
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Zhao L, Yang X. Cross Talk Between Natural Killer T and Dendritic Cells and Its Impact on T Cell Responses in Infections. Front Immunol 2022; 13:837767. [PMID: 35185930 PMCID: PMC8850912 DOI: 10.3389/fimmu.2022.837767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Both innate and adaptive immunity is vital for host defense against infections. Dendritic cells (DCs) are critical for initiating and modulating adaptive immunity, especially for T-cell responses. Natural killer T (NKT) cells are a small population of innate-like T cells distributed in multiple organs. Many studies have suggested that the cross-talk between these two immune cells is critical for immunobiology and host defense mechanisms. Not only can DCs influence the activation/function of NKT cells, but NKT cells can feedback on DCs also, thus modulating the phenotype and function of DCs and DC subsets. This functional feedback of NKT cells on DCs, especially the preferential promoting effect on CD8α+ and CD103+ DC subsets in lymphoid and non-lymphoid tissues, significantly impacts the systemic and local adaptive CD4 and CD8 T cell responses in infections. This review focuses on the two-way interaction between NKT cells and DCs, emphasizing the importance of NKT cell feedback on DCs in bridging innate and adaptive immune responses for host defense purposes.
Collapse
Affiliation(s)
- Lei Zhao
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Zhao L, Li J, Zhou X, Pan Q, Zhao W, Yang X, Wang H. Natural Killer Cells Regulate Pulmonary Macrophages Polarization in Host Defense Against Chlamydial Respiratory Infection. Front Cell Infect Microbiol 2022; 11:775663. [PMID: 35059323 PMCID: PMC8764407 DOI: 10.3389/fcimb.2021.775663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
NK cells and pulmonary macrophages both are important components of innate immunity. The interaction between NK cells and pulmonary macrophages during chlamydial infection is poorly understood. In this study, we explored the effect of NK cells on regulation of pulmonary macrophage function during chlamydial respiratory infection. We found that NK depletion led to polarization of pulmonary macrophages from M1 to M2 phenotype, and it is related to reduced miR-155 expression in lung macrophage. Using adoptive transfer approach, we found that the recipients receiving lung macrophages isolated from C. muridarum-infected NK-cell-depleted mice exhibited an increased bacterial load and severe inflammation in the lung upon chlamydial challenge infection when compared with the recipients of lung macrophages from infected isotype control antibody treated mice. Herein, the effects of NK cells on macrophage polarization were examined in vitro. We found that NK cells from chlamydial-infected mice (iNK) significantly induced M1 polarization compared to that from uninfected mice (uNK). Inhibition of miR-155 expression in macrophages reduced M1 polarization induced by iNK, while miR-155 over-expression enhanced it. Furthermore, neutralization of IFN-γ in the coculture system decreased the expression of miR-155 by macrophages, and resulted in weakened M1 polarization. The data indicates that NK cells promote M1 polarization through up-regulation of miR-155 in macrophages by producing IFN-γ during chlamydial infection, and NK-regulated macrophage polarization is functionally relevant to host defense against the infection.
Collapse
Affiliation(s)
- Lei Zhao
- Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoqing Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qianqian Pan
- Department of Respiratory, Laiwu Central Hospital, Jinan, China
| | - Weiming Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hong Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
8
|
Zhao L, Wang H, Thomas R, Gao X, Bai H, Shekhar S, Wang S, Yang J, Zhao W, Yang X. NK cells modulate T cell responses via interaction with dendritic cells in Chlamydophila pneumoniae infection. Cell Immunol 2020; 353:104132. [DOI: 10.1016/j.cellimm.2020.104132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
|
9
|
Wang H, Li J, Dong X, Zhou X, Zhao L, Wang X, Rashu R, Zhao W, Yang X. NK Cells Contribute to Protective Memory T Cell Mediated Immunity to Chlamydia muridarum Infection. Front Cell Infect Microbiol 2020; 10:296. [PMID: 32626664 PMCID: PMC7311576 DOI: 10.3389/fcimb.2020.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
We previously reported that NK cells can promote type 1 T cell immune response that is essential for protection to a primary infection of Chlamydia muridarum. In this study, we have investigated the contribution of NK cells to memory T cells associated immunity during chlamydial infection. We have found that NK cell depletion led to impaired production of IFN-γ by memory T cells upon re-stimulation with chlamydial antigens in vitro. Mice with depleted NK cells also exhibited reduced type 1 T cell recall responses, with increased production of IL-4 from CD4+ T cells and a lower level of Chlamydia-specific IgG2a titers compared to control mice. In addition, Tregs response was significantly increased in mice with NK cell depletion. Moreover, NK cell-depleted mice showed an increased bacterial loads and more severe inflammatory pathological changes than control mice. These findings indicate that NK cells contribute to protective memory T cell associated immunity to chlamydial re-infection through modulating the cytokine pattern of T cell and inhibition of Tregs response.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathogenic Biology & Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jing Li
- Department of Pathogenic Biology & Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojing Dong
- Department of Pathogenic Biology & Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xaoqing Zhou
- Department of Pathogenic Biology & Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lei Zhao
- Institute of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Wang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Rasheduzzaman Rashu
- Department of Immunology and Department of Medical Microbiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Weiming Zhao
- Department of Pathogenic Biology & Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xi Yang
- Department of Immunology and Department of Medical Microbiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
The Important Role of Dendritic Cell (DC) in iNKT-Mediated Modulation of NK Cell Function in Chlamydia pneumoniae Lung Infection. Mediators Inflamm 2019; 2019:4742634. [PMID: 31236064 PMCID: PMC6545808 DOI: 10.1155/2019/4742634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 01/30/2023] Open
Abstract
Chlamydia pneumoniae (Cpn) infection causes multiple acute and chronic human diseases. The role of DCs in host defense against Cpn infection has been well documented. The same is true for invariant natural killer T (iNKT) cells and NK cells, but the interaction among cells is largely unknown. In this study, we investigated the influence and mechanism of iNKT cell on the differentiation and function of NK cell in Cpn lung infection and the role played by DCs in this process. We found that expansion of IFN-γ-producing NK cells quickly happened after the infection, but this response was altered in iNKT knockout (KO) mice. The expression of activation markers and the production of IFN-γ by different NK subsets were significantly lower in KO mice than wild-type (WT) mice. Using in vitro DC-NK coculture and in vivo adoptive transfer approaches, we further examined the role of DCs in iNKT-mediated modulation of NK cell function. We found that NK cells expressed lower levels of activation markers and produced less IFN-γ when they were cocultured with DCs from KO mice than WT mice. More importantly, we found that the adoptive transfer of DCs from the KO mice induced less NK cell activation and IFN-γ production. The results provided evidence on the modulating effect of iNKT cell on NK cell function, particularly the critical role of DCs in this modulation process. The finding suggests the complexity of cellular interactions in Cpn lung infection, which should be considered in designing preventive and therapeutic approaches for diseases and infections.
Collapse
|
11
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
12
|
Kinjo Y, Takatsuka S, Kitano N, Kawakubo S, Abe M, Ueno K, Miyazaki Y. Functions of CD1d-Restricted Invariant Natural Killer T Cells in Antimicrobial Immunity and Potential Applications for Infection Control. Front Immunol 2018; 9:1266. [PMID: 29928278 PMCID: PMC5997780 DOI: 10.3389/fimmu.2018.01266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-type lymphocytes that express a T-cell receptor (TCR) containing an invariant α chain encoded by the Vα14 gene in mice and Vα24 gene in humans. These iNKT cells recognize endogenous, microbial, and synthetic glycolipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule CD1d. Upon TCR stimulation by glycolipid antigens, iNKT cells rapidly produce large amounts of cytokines, including interferon-γ (IFNγ) and interleukin-4 (IL-4). Activated iNKT cells contribute to host protection against a broad spectrum of microbial pathogens, and glycolipid-mediated stimulation of iNKT cells ameliorates many microbial infections by augmenting innate and acquired immunity. In some cases, however, antigen-activated iNKT cells exacerbate microbial infections by promoting pathogenic inflammation. Therefore, it is important to identify appropriate microbial targets for the application of iNKT cell activation as a treatment or vaccine adjuvant. Many studies have found that iNKT cell activation induces potent adjuvant activities promoting protective vaccine effects. In this review, we summarize the functions of CD1d-restricted iNKT cells in immune responses against microbial pathogens and describe the potential applications of glycolipid-mediated iNKT cell activation for preventing and controlling microbial infections.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Kitano
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shun Kawakubo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Brutkiewicz RR, Yunes-Medina L, Liu J. Immune evasion of the CD1d/NKT cell axis. Curr Opin Immunol 2018; 52:87-92. [PMID: 29734045 DOI: 10.1016/j.coi.2018.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/19/2018] [Indexed: 01/03/2023]
Abstract
Many reviews on the CD1d/NKT cell axis focus on the ability of CD1d-restricted NKT cells to serve as effector cells in a variety of disorders, be they infectious diseases, cancer or autoimmunity. In contrast, here, we discuss the ways that viruses, bacteria and tumor cells can evade the CD1d/NKT cell axis. As a result, these disease states have a better chance to establish a foothold and potentially cause problems for the subsequent adaptive immune response, as the host tries to rid itself of infections or tumors.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, United States.
| | - Laura Yunes-Medina
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, United States
| | - Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, United States
| |
Collapse
|
14
|
Bai H, Gao X, Zhao L, Peng Y, Yang J, Qiao S, Zhao H, Wang S, Fan Y, Joyee AG, Yao Z, Yang X. Respective IL-17A production by γδ T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol 2016; 14:850-861. [PMID: 27796286 DOI: 10.1038/cmi.2016.53] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
The role of IL-17A is important in protection against lung infection with Chlamydiae, an obligate intracellular bacterial pathogen. In this study, we explored the producers of IL-17A in chlamydial lung infection and specifically tested the role of major IL-17A producers in protective immunity. We found that γδT cells and Th17 cells are the major producers of IL-17A at the early and later stages of chlamydial infection, respectively. Depletion of γδT cells in vivo at the early postinfection (p.i.) stage, when most γδT cells produce IL-17A, failed to alter Th1 responses and bacterial clearance. In contrast, the blockade of IL-17A at the time when IL-17A was mainly produced by Th17 (day 7 p.i.) markedly reduced the Th1 response and increased chlamydial growth. The data suggest that the γδ T cell is the highest producer of IL-17A in the very early stages of infection, but the protection conferred by IL-17A is mainly mediated by Th17 cells. In addition, we found that depletion of γδ T cells reduced IL-1α production by dendritic cells, which was associated with a reduced Th17 response. This finding is helpful to understand the variable role of IL-17A in different infections and to develop preventive and therapeutic approaches against infectious diseases by targeting IL-17A.
Collapse
Affiliation(s)
- Hong Bai
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Xiaoling Gao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Lei Zhao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Ying Peng
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Jie Yang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Sai Qiao
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Shuhe Wang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - YiJun Fan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Antony George Joyee
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| | - Xi Yang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T5.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin 300070, China
| |
Collapse
|
15
|
Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics 2016; 68:639-48. [PMID: 27368411 DOI: 10.1007/s00251-016-0933-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells constitute a unique subset of innate-like T cells that have been shown to have crucial roles in a variety of immune responses. iNKT cells are characterized by their expression of both NK cell markers and an invariant T cell receptor (TCR) α chain, which recognizes glycolipids presented by the MHC class I-like molecule CD1d. Despite having a limited antigen repertoire, the iNKT cell response can be very complex, and participate in both protective and harmful immune responses. The protective role of these cells against a variety of pathogens has been particularly well documented. Through the use of these pathogen models, our knowledge of the breadth of the iNKT cell response has been expanded. Specific iNKT cell antigens have been isolated from several different bacteria, from which iNKT cells are critical for protection in mouse models. These responses can be generated by direct, CD1d-mediated activation, or indirect, cytokine-mediated activation, or a combination of the two. This can lead to secretion of a variety of different Th1, Th2, or Th17 cytokines, which differentially impact the downstream immune response against these pathogens. This critical role is emphasized by the conservation of these cells between mice and humans, warranting further investigation into how iNKT cells participate in protective immune responses, with the ultimate goal of harnessing their potential for treatment.
Collapse
|
16
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
17
|
Gao Y, Williams AP. Role of Innate T Cells in Anti-Bacterial Immunity. Front Immunol 2015; 6:302. [PMID: 26124758 PMCID: PMC4463001 DOI: 10.3389/fimmu.2015.00302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination.
Collapse
Affiliation(s)
- Yifang Gao
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK
| | - Anthony P Williams
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK ; Wessex Investigational Sciences Hub (WISH) Laboratory, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
18
|
Shekhar S, Joyee AG, Yang X. Dynamics of NKT-Cell Responses to Chlamydial Infection. Front Immunol 2015; 6:233. [PMID: 26029217 PMCID: PMC4432794 DOI: 10.3389/fimmu.2015.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40–CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Antony George Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada ; Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| |
Collapse
|
19
|
DeKruyff RH, Yu S, Kim HY, Umetsu DT. Innate immunity in the lung regulates the development of asthma. Immunol Rev 2015; 260:235-48. [PMID: 24942693 DOI: 10.1111/imr.12187] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lung, while functioning as a gas exchange organ, encounters a large array of environmental factors, including particulate matter, toxins, reactive oxygen species, chemicals, allergens, and infectious microbes. To rapidly respond to and counteract these elements, a number of innate immune mechanisms have evolved that can lead to lung inflammation and asthma, which is the focus of this review. These innate mechanisms include a role for two incompletely understood cell types, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs), which together produce a wide range of cytokines, including interleukin-4 (IL-4), IL-5, IL-13, interferon-γ, IL-17, and IL-22, independently of adaptive immunity and conventional antigens. The specific roles of iNKT cells and ILCs in immunity are still being defined, but both cell types appear to play important roles in the lungs, particularly in asthma. As we gain a better understanding of these innate cell types, we will acquire great insight into the mechanisms by which allergic and non-allergic asthma phenotypes develop.
Collapse
Affiliation(s)
- Rosemarie H DeKruyff
- Division of Immunology and Allergy, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
20
|
Shekhar S, Joyee AG, Gao X, Peng Y, Wang S, Yang J, Yang X. Invariant Natural Killer T Cells Promote T Cell Immunity by Modulating the Function of Lung Dendritic Cells during Chlamydia pneumoniae Infection. J Innate Immun 2014; 7:260-74. [PMID: 25531453 DOI: 10.1159/000368779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 10/01/2014] [Indexed: 01/23/2023] Open
Abstract
In this study, we examined the effect of invariant natural killer T (iNKT) cells on the function of lung dendritic cells (LDCs) in eliciting protective immunity against Chlamydia pneumoniae (Cpn) lung infection. We employed a combination of approaches including the use of iNKT cell-deficient, Jα18-knockout (KO) mice and LDC adoptive transfer. We found that iNKT cells significantly altered the number, phenotype and cytokine profile of LDCs following infection. Furthermore, coculture of T cells with LDCs from Cpn-infected wild-type (WT) and KO mice induced type-1 and type-2 responses, respectively. More importantly, upon adoptive transfer, LDCs from Cpn-infected WT mice (WT-LDCs) conferred protective immunity, whereas LDCs from KO mice (KO-LDCs) increased the severity of disease after challenge infection. Further cytokine analyses of the lung tissues and lung-draining lymph node cells showed that KO-LDC-recipient mice exhibited a type-2 cytokine production pattern, while WT-LDC recipients exhibited a type-1 cytokine profile. Taken together, our results provide in vivo evidence that iNKT cells play a critical role in modulating LDC function to generate protective T-cell immunity, particularly in a clinically relevant intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Tincati C, Basilissi M, Sinigaglia E, Merlini E, Carpani G, Monforte AD, Marchetti G. Invariant natural killer T (iNKT) cells in HAART-treated, HIV-positive patients with bone and cardiovascular impairment. PLoS One 2014; 9:e110287. [PMID: 25329381 PMCID: PMC4201495 DOI: 10.1371/journal.pone.0110287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
Background Invariant Natural Killer T (iNKT) cells represent a determinant in the course of infections and diseases, however, their role in the pathogenesis of non-infectious co-morbidities in HIV-positive patients is unknown. Methods Flow cytometry was used to investigate iNKT cell frequency, phenotype and function in HIV-infected patients on HAART with bone and/or cardiovascular disorders and in HIV-positive controls free from co-morbidities. Results iNKT cells from subjects with bone and cardiovascular impairment expressed high levels of CD161 and predominantly secreted TNF. iNKT cells from individuals with bone disease alone did not show any distinctive phenotypical or functional characteristics. The functional capacity of iNKT cells in patients with cardiovascular disorder was impaired with no cytokine release upon stimulation. Conclusion iNKT cells may have a role in non-infectious co-morbidities in treated HIV disease, possibly through the exacerbation of inflammation. Further studies are needed to investigate iNKT cells in the pathogenesis of non-communicable disorders in HIV infection.
Collapse
Affiliation(s)
- Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, “San Paolo” Hospital, University of Milan, Milan, Italy
| | - Matteo Basilissi
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, “San Paolo” Hospital, University of Milan, Milan, Italy
| | | | - Esther Merlini
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, “San Paolo” Hospital, University of Milan, Milan, Italy
| | | | - Antonella d’Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, “San Paolo” Hospital, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases and Tropical Medicine, “San Paolo” Hospital, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
22
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
23
|
Tarumoto N, Kinjo Y, Kitano N, Shibuya K, Maesaki S, Miyazaki Y. [iNKT cells participate in the exacerbation of systemic candidal infection]. Med Mycol J 2014; 55:J115-22. [PMID: 25231226 DOI: 10.3314/mmj.55.j115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Candida species are one major causal microorganism of hospital acquired bloodstream infections associated with high mortality. Phagocytes like neutrophils in innate immunity and CD4 T cells in acquired immunity have a major role in host defense immune response. It has been recently found that a type of innate-like lymphocyte called NKT cells respond against various organisms but its role in candidal infection remained unknown. Thus, we analyzed the role of NKT cells in the immune response against systemic candidiasis using mice deficient of NKT cells. In vivo studies revealed that invariant NKT cells play a limited role for controlling systemic candidal infection. On the other hand, studies looking at the role of glycolipid-activated NKT cells during candidal infection revealed that candida-infected mice injected with glycolipid had shorter survival period and greater number of fungal colonies in the kidney accompanied with reduced number of neutrophils in the blood and bone marrow. Surprisingly, glycolipid-mediated exacerbation of candidal infection was absent in IFNγ deficient mice. Co-infection of candida with intestinal commensals caused exacerbated infection in which IFNγ played a critical role in impairing fungal elimination. These results suggest that the excessive IFNγ released from candida and bacterial co-infection is a critical factor in worsening candidal infection.
Collapse
Affiliation(s)
- Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University
| | | | | | | | | | | |
Collapse
|
24
|
Shekhar S, Joyee AG, Yang X. Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections? J Innate Immun 2014; 6:575-84. [PMID: 24903638 DOI: 10.1159/000361048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
25
|
Helminth-induced interleukin-4 abrogates invariant natural killer T cell activation-associated clearance of bacterial infection. Infect Immun 2014; 82:2087-97. [PMID: 24643536 DOI: 10.1128/iai.01578-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helminth infections affect 1 billion people worldwide and render these individuals susceptible to bacterial coinfection through incompletely understood mechanisms. This includes urinary tract coinfection by bacteria and Schistosoma haematobium worms, the etiologic agent of urogenital schistosomiasis. To study the mechanisms of S. haematobium-bacterial urinary tract coinfections, we combined the first tractable model of urogenital schistosomiasis with an established mouse model of bacterial urinary tract infection (UTI). A single bladder exposure to S. haematobium eggs triggers interleukin-4 (IL-4) production and makes BALB/c mice susceptible to bacterial UTI when they are otherwise resistant. Ablation of IL-4 receptor alpha (IL-4Rα) signaling restored the baseline resistance of BALB/c mice to bacterial UTI despite prior exposure to S. haematobium eggs. Interestingly, numbers of NKT cells were decreased in coexposed versus bacterially monoinfected bladders. Given that schistosome-induced, non-natural killer T (NKT) cell leukocyte infiltration may dilute NKT cell numbers in the bladders of coexposed mice without exerting a specific functional effect on these cells, we next examined NKT cell biology on a per-cell basis. Invariant NKT (iNKT) cells from coexposed mice expressed less gamma interferon (IFN-γ) per cell than did those from mice with UTI alone. Moreover, coexposure resulted in lower CD1d expression in bladder antigen-presenting cells (APC) than did bacterial UTI alone in an IL-4Rα-dependent fashion. Finally, coexposed mice were protected from prolonged bacterial infection by administration of α-galactosylceramide, an iNKT cell agonist. Our findings point to a previously unappreciated role for helminth-induced IL-4 in impairment of iNKT cell-mediated clearance of bacterial coexposure.
Collapse
|
26
|
Joyee AG, Yang X. Plasmacytoid dendritic cells mediate the regulation of inflammatory type T cell response for optimal immunity against respiratory Chlamydia pneumoniae infection. PLoS One 2013; 8:e83463. [PMID: 24386207 PMCID: PMC3873288 DOI: 10.1371/journal.pone.0083463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023] Open
Abstract
Chlamydia pneumoniae (Cpn) infection is a leading cause for a variety of respiratory diseases and has been implicated in the pathogenesis of chronic inflammatory diseases. The regulatory mechanisms in host defense against Cpn infection are less understood. In this study, we investigated the role of plasmacytoid dendritic cells (pDCs) in immune regulation in Cpn respiratory tract infection. We found that in vivo depletion of pDCs increased the severity of infection and lung pathology. Mice depleted of pDC had greater body weight loss, higher lung bacterial burden and excessive tissue inflammation compared to the control mice. Analysis of specific T cell cytokine production pattern in the lung following Cpn infection revealed that pDC depleted mice produced significantly higher amounts of inflammatory cytokines, especially TNF-α, but lower IL-10 compared to the controls. In particular, pDC depleted mice showed pathogenic T cell responses characterized by inflammatory type-1 (CD8 and CD4) and inflammatory Th2 cell responses. Moreover, pDC depletion dramatically reduced CD4 regulatory T cells (Tregs) in the lungs and draining lymph nodes. Furthermore, pDC-T cell co-culture experiments showed that pDCs isolated from Cpn infected mice were potent in inducing IL-10 producing CD4 Tregs. Together, these findings provide in vivo evidence for a critical role of pDCs in homeostatic regulation of immunity during Cpn infection. Our findings highlight the importance of a ‘balanced’ immune response for host protective immunity and preventing detrimental immunopathology during microbial infections.
Collapse
Affiliation(s)
- Antony George Joyee
- Laboratory for Infection and Immunity, Department of Medical Microbiology and Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Laboratory for Infection and Immunity, Department of Medical Microbiology and Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Gao X, Zhao L, Wang S, Yang J, Yang X. Enhanced inducible costimulator ligand (ICOS-L) expression on dendritic cells in interleukin-10 deficiency and its impact on T-cell subsets in respiratory tract infection. Mol Med 2013; 19:346-56. [PMID: 24100657 DOI: 10.2119/molmed.2013.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/25/2013] [Indexed: 11/06/2022] Open
Abstract
An association between inducible costimulator ligand (ICOS-L) expression and interleukin (IL)-10 production by dendritic cells (DCs) has been commonly found in infectious disease. DCs with higher ICOS-L expression and IL-10 production are reportedly more efficient in inducing regulatory T cells (Tregs). Here we use the Chlamydia muridarum (Cm) lung infection model in IL-10 knockout (KO) mice to test the relationship between IL-10 production and ICOS-L expression by DCs. We examined ICOS-L expression, the development of T-cell subsets, including Treg, Th17 and Th1 cell, in the background of IL-10 deficiency and its relationship with ICOS-L/ICOS signaling after infection. Surprisingly, we found that the IL-10 KO mice exhibited significantly higher ICOS-L expression by DCs. Moreover, IL-10 KO mice showed lower Tregs but higher Th17 and Th1 responses, but only the Th17 response depended on ICOS signaling. Consistently, most of the Th17 cells were ICOS⁺, whereas most of the Th1 cells were ICOS⁻ in the infected mice. Furthermore, neutralization of IL-17 in IL-10 KO mice significantly exacerbated lung infection. The data suggest that ICOS-L expression on DC may be negatively regulated by IL-10 and that ICOS-L expression on DC in the presence or absence of IL-10 costimulation may promote Treg or Th17 response, without significant impact on Th1.
Collapse
Affiliation(s)
- Xiaoling Gao
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
30
|
Habbeddine M, Verbeke P, Delarbre C, Moutier R, Prieto S, Ojcius DM, Kanellopoulos-Langevin C. CD1d-restricted NKT cells modulate placental and uterine leukocyte populations during chlamydial infection in mice. Microbes Infect 2013; 15:928-38. [PMID: 23999314 DOI: 10.1016/j.micinf.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 01/18/2023]
Abstract
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal-maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d(-/-) mice. We have also shown that infected- as well as uninfected-CD1d(-/-) mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d(-/-) placentas contained significantly higher percentages of CD4(+) and CD8(+) T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4(+) T cells in CD1d(-/-) mice. In infected WT pregnant mice, the numbers of uterine CD4(+) and CD8(+) T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d(-/-) mice. An increase in the percentage of CD8(+) T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d(-/-) mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal-fetal interface in the presence or absence of Chlamydia infection.
Collapse
Affiliation(s)
- Mohamed Habbeddine
- Laboratory of Inflammation, Gestation and Autoimmunity, Jacques Monod Institute, CNRS and University Paris-Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France; Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, France; INSERM U1104 and CNRS UMR7280, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Kinjo Y, Kitano N, Kronenberg M. The role of invariant natural killer T cells in microbial immunity. J Infect Chemother 2013; 19:560-70. [PMID: 23846426 PMCID: PMC3822041 DOI: 10.1007/s10156-013-0638-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Invariant natural killer T cells (iNKT cells) are unique lymphocytes with characteristic features, such as expression of an invariant T-cell antigen receptor (TCR) α-chain, recognition of glycolipid antigens presented by CD1d molecules, and ability to rapidly produce large amounts of cytokines, including interferon-γ (IFN-γ) and interleukin 4 (IL-4) upon TCR stimulation. Many studies have demonstrated that iNKT cells participate in immune response against diverse microbes, including bacteria, fungi, protozoan parasites, and viruses. Generally, these cells play protective roles in host defense against infections. However, in some contexts they play pathogenic roles, by inducing or augmenting inflammation. Recent reports show that iNKT cells recognize glycolipid antigens from pathogenic bacteria including Streptococcus pneumoniae, and they contribute to host defense against infection. iNKT cell responses to these microbial glycolipid antigens are highly conserved between rodents and humans, suggesting that iNKT cells are evolutionally conserved because their invariant TCR is useful in detecting certain pathogens. Furthermore, glycolipid-mediated iNKT cell activation during immunization has adjuvant activity, enhancing humoral and cell-mediated responses. Therefore, iNKT cell activation is an attractive target for developing new vaccines for infectious diseases.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | | | | |
Collapse
|
32
|
The glycolipid exoantigen derived from Chlamydia muridarum activates invariant natural killer T cells. Cell Mol Immunol 2012; 9:361-6. [PMID: 22728762 DOI: 10.1038/cmi.2012.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The chlamydial glycolipid exoantigen (GLXA), a glycolipid antigen derived from Chlamydia muridarum, has been implicated in chlamydial-host cell interaction. Although glycolipid antigens from Sphingomonas and related bacteria have been shown to activate invariant natural killer T (iNKT) cells, it is not yet known whether GLXA can activate these cells. In this study, we have for the first time investigated the role of GLXA in iNKT cell activation using in vitro as well as in vivo settings. First, we examined the effect of GLXA on iNKT cell activation in a cell-free antigen-presentation assay, and found that GLXA specifically stimulated iNKT1.4 hybridoma cell produce enhanced amounts of IL-2. Next, we analyzed the effect of pharmacological activation of iNKT cells by GLXA using iNKT cell-deficient (iNKT knockout (KO)) mice and bone marrow-derived dendritic cell (BMDC)-liver mononuclear cell (LMC) coculture system. On stimulation with GLXA, iNKT cells produced higher quantities of cytokines in a CD1d-dependent fashion. More importantly, iNKT cells from GLXA-treated, but not from cell mock-treated, mice showed higher expression of activation marker, CD69, and enhanced production of interferon (IFN)-γ and IL-4 in vivo. Cumulatively, these data provide evidence on the pharmacological ability of GLXA in specifically activating iNKT cells.
Collapse
|
33
|
Wang H, Zhao L, Peng Y, Liu J, Qi M, Chen Q, Yang X, Zhao W. Protective role of α-galactosylceramide-stimulated natural killer T cells in genital tract infection with Chlamydia muridarum. ACTA ACUST UNITED AC 2012; 65:43-54. [PMID: 22309187 DOI: 10.1111/j.1574-695x.2012.00939.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/28/2022]
Abstract
Natural killer T (NKT) cells are a unique lymphocyte subpopulation which has an important role in the response to microbial pathogens. In this study, we used α-galactosylceramide (α-GalCer), a specific ligand of NKT cells, to enhance NKT response and examine its effect on host defense against genital tract Chlamydia muridarum infection. The results showed that α-GalCer treatment before infection led to reduced pathological changes and bacterial burden in the genital tract. Moreover, α-GalCer-treated mice showed greater local Th1 cytokine production [interferon γ (IFN-γ) and interleukin 12 (IL-12)] in local lymph node cells and genital tissues following challenge infection compared with untreated mice, as well as an enhanced level of IFN-γ production by NK and T cells. In addition, NKT cells in the mice with genital tract C. muridarum infection, unlike those from naïve mice, showed a polarized IFN-γ production. These results suggest a promoting role of NKT cells on type 1 T cell immune response and host resistance to Chlamydia in genital tract infection.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medical Microbiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Renna MS, Figueredo CM, Rodríguez-Galán MC, Icely PA, Peralta Ramos JM, Correa SG, Sotomayor CE. Abrogation of spontaneous liver tolerance during immune response to Candida albicans: contribution of NKT and hepatic mononuclear cells. Int Immunol 2012; 24:315-25. [DOI: 10.1093/intimm/dxs001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
35
|
Zhao L, Gao X, Peng Y, Joyee AG, Bai H, Wang S, Yang J, Zhao W, Yang X. Differential modulating effect of natural killer (NK) T cells on interferon-γ production and cytotoxic function of NK cells and its relationship with NK subsets in Chlamydia muridarum infection. Immunology 2011; 134:172-84. [PMID: 21896012 DOI: 10.1111/j.1365-2567.2011.03477.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a newly identified T-cell population with potential immunomodulatory functions. Several studies have shown modulating effects of NKT cells activated by α-galactosylceramide, a model antigen, on NK cell function. We here report a differential modulating effect of NKT cells on the interferon-γ (IFN-γ) production and cytolytic function of NK cells in a chlamydial infection model, using NKT-cell-deficient mice and antibody blocking (anti-CD1d monoclonal antibody) approaches. Our results showed that both NKT and NK cells became activated and produced IFN-γ following Chlamydia muridarum infection in vitro and in vivo. The NK cells in NKT-cell-deficient mice and CD1d-blocked mice showed decreased CD69 expression, cellular expansion and IFN-γ production but surprisingly showed increased cytolytic activity (degranulation) of immature and more mature NK cell subsets, suggesting an inhibitory role of NKT cells on NK cell killing activity. The results suggest that NKT cells preferentially promote IFN-γ production but are inhibitory for the cytotoxic function of NK cells in this infection model. Furthermore, the differential modulating effect of NKT cells on the IFN-γ production and cytotoxicity of NK cells was observed in immature and mature NK cell subsets, although it was more dramatic in the relatively mature CD11b(high) CD27(high) NK cell subset. This finding demonstrates the complexity of innate cell interactions in infection and the possible differential impact of NKT cells on the variable functional aspects of other cell(s) even in one infection setting.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Medical Microbiology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kinjo Y, Ueno K. iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol Immunol 2011; 55:472-82. [DOI: 10.1111/j.1348-0421.2011.00338.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Evani SJ, Murthy AK, Mareedu N, Montgomery RK, Arulanandam BP, Ramasubramanian AK. Hydrodynamic regulation of monocyte inflammatory response to an intracellular pathogen. PLoS One 2011; 6:e14492. [PMID: 21249123 PMCID: PMC3017540 DOI: 10.1371/journal.pone.0014492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/09/2010] [Indexed: 12/30/2022] Open
Abstract
Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation.
Collapse
Affiliation(s)
- Shankar J Evani
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | | | | | | | | | | |
Collapse
|
38
|
Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed) 2011; 3:236-51. [PMID: 21196373 DOI: 10.2741/s148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semi-invariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Wu
- Department of Microbiology and Immunology, Room A-5301, Medical Center North, 1161 21st Avenue South, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
39
|
Lü H, Wang H, Zhao HM, Zhao L, Chen Q, Qi M, Liu J, Yu H, Yu XP, Yang X, Zhao WM. Dendritic cells (DCs) transfected with a recombinant adenovirus carrying chlamydial major outer membrane protein antigen elicit protective immune responses against genital tract challenge infection. Biochem Cell Biol 2010; 88:757-65. [PMID: 20651849 DOI: 10.1139/o10-011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular bacterial pathogen, is the major cause of sexually transmitted diseases worldwide. Although a variety of strategies have been taken to promote the development of a protective vaccine, no ideal vaccine has been generated so far. In this study, we transfected dendritic cells (DCs) with recombinant adenovirus carrying C. trachomatis serovar E major outer membrane protein gene (Ad-MOMP), and investigated their ability to induce specific protection against genital tract chlamydial challenge infection. The results showed that when DCs were transfected with Ad-MOMP in vitro, the DCs exhibited increased expression of CD80 and MHC-II molecules as well as enhanced IL-12 secretion and were able to stimulate T-cell proliferation. The level of IFN-gamma secreted by stimulated T cells was also up-regulated significantly. When the Ad-MOMP transfected DCs were adoptively transferred intravenously to naive mice, they generated Th1-biased cytokine production and mucosal IgA responses specific for C. trachomatis. More importantly, the mice immunized with Ad-MOMP-DC mounted protection against genital tract challenge infection, shown by lower body mass loss, lower chlamydial loads, and less severe pathological changes. In conclusion, Ad-MOMP transfected DCs are capable of inducing effective protective immune responses against C. trachomatis genital infection.
Collapse
Affiliation(s)
- Hui Lü
- Department of Medical Microbiology, Shandong Univeristy School of Medicine, Jinan, Shandong, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Snyder-Cappione JE, Tincati C, Eccles-James IG, Cappione AJ, Ndhlovu LC, Koth LL, Nixon DF. A comprehensive ex vivo functional analysis of human NKT cells reveals production of MIP1-α and MIP1-β, a lack of IL-17, and a Th1-bias in males. PLoS One 2010; 5:e15412. [PMID: 21082024 PMCID: PMC2972714 DOI: 10.1371/journal.pone.0015412] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/09/2010] [Indexed: 01/06/2023] Open
Abstract
NKT cells contribute to the modulation of immune responses and are believed to be important in the pathogenesis of autoimmune and infectious diseases, as well as cancer. Variations in the composite NKT cytokine response may determine individual disease susceptibility or severity. Due to low frequencies in peripheral blood, knowledge of the breadth of ex vivo human NKT cell functions has been limited. To bridge this gap, we studied highly purified NKT cells from PBMC of healthy donors and assessed the production of 27 effector functions using sensitive Elispot and multiplex bead assays. We found the ex vivo human NKT cell response is predominantly comprised of the chemokines MIP1-α, and MIP1-β as well as the Th1 cytokines IFN-γ and TNF-α. Although lower in magnitude, there was also significant production of IL-2, IL-4, and perforin after mitogen stimulation. Surprisingly, little/no IL-5, IL-6, IL-10, or IL-13 was detected, and no subjects' NKT cells produced IL-17. Comparison of the NKT functional profiles between age-matched male and female subjects revealed similar IL-4 responses, but higher frequencies of cells producing IFN-γ and MIP1-α, from males. There were no gender differences in the circulating NKT subset distribution. These findings implicate chemokines as a major mechanism by which NKT cells control responses in humans. In addition, the panoply of Th2 and Th17 cytokine secretion by NKT cells from healthy donors may not be as pronounced as previously believed. NKT cells may therefore contribute to the gender bias found in many diseases.
Collapse
Affiliation(s)
- Jennifer E Snyder-Cappione
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
41
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2010; 343:43-55. [PMID: 20734065 DOI: 10.1007/s00441-010-1023-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 02/08/2023]
Abstract
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Ave. South, Nashville, TN 37232-2363, USA.
| | | | | |
Collapse
|
42
|
Zhang N, Wang Z, Tang X, Wang H, Li H, Huang H, Bai H, Yang X. Type 1 T-cell responses in chlamydial lung infections are associated with local MIP-1alpha response. Cell Mol Immunol 2010; 7:355-60. [PMID: 20622889 DOI: 10.1038/cmi.2010.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemokines and their receptors are important mediators of leukocyte trafficking and recruitment and sometimes work as modulators of T-cell responses during infections and inflammation. Modulating the biological activity of chemokines has been found to influence the course of diseases. However, little is known about the role of chemokine responses during chlamydial lung infections. We therefore analyzed the dynamics of multiple chemokines, which are frequently associated with type 1 (Th1) T cell immune responses, and their receptors for their expression in the lungs during Chlamydia muridarum (Cm) infections. We also examined the relationship between chemokine responses and the development of Th1 responses as well as the clearance of infection. Our results showed that in parallel with the high levels of gamma interferon (IFN-gamma) and IL-12 production in the lungs and draining lymph nodes, and the expansion of IFN-gamma-producing CD4 and CD8+ T cells, the production of the cell-related chemokines RANTES, IFN-gamma-inducible protein-10 (IP-10) and macrophage inflammatory protein-1alpha (MIP-1alpha) and their receptor CCR1 was elevated in the lung tissues after infection. Interestingly, in a later phase of infection, the expression of RANTES and IP-10 remained elevated but the expression of MIP-1alpha and CCR1 decreased to a low level, which suggests a closer association with the pattern of Th1 cytokine responses in the process of infection. These results suggest a close association between the MIP-1alpha response and the Th1-type T-cell responses in chlamydial lung infections.
Collapse
Affiliation(s)
- Naihong Zhang
- Department of Immunology, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kadkhoda K, Wang S, Joyee AG, Fan Y, Yang J, Yang X. Th1 cytokine responses fail to effectively control Chlamydia lung infection in ICOS ligand knockout mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:3780-8. [PMID: 20190137 DOI: 10.4049/jimmunol.0901384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ICOS ligand (ICOSL) plays an important role in controlling specific aspects of T cell activation, differentiation, and function. Th1-type immune responses have been shown to be critical in host defense against chlamydial infections. To assess the role of ICOSL-ICOS interaction in host defense against chlamydial infection, we compared the immune responses and pathological reactions in ICOSL gene knockout (KO) and wild-type (WT) mice following Chlamydia muridarum lung infection. The results showed that ICOSL KO mice exhibited greater body weight loss, higher pathogen burden, and more severe histopathology in their lung than did WT mice. Cytokine analysis revealed that ICOSL KO mice produced lower levels of Th2 (IL-4 and IL-5) and anti-inflammatory (TGF-beta1 and IL-10) cytokines, but higher Th1-related (IFN-gamma and IL-12p40/IL-23) and proinflammatory (IL-6 and TNF-alpha) cytokines. ICOSL KO mice also showed reduced Chlamydia-specific Ab levels in their sera and lung homogenates. In addition, ICOSL KO mice demonstrated significantly lower ICOS expression in T cells and lower Th17 responses than did WT mice. Finally, we showed that ICOS-ICOSL interaction and cell-cell contact are essential for CD4(+) T cells to inhibit chlamydial growth in the cultured lung fibroblasts. The data suggest that ICOSL plays a significant role in immunoregulation and protective immunity against Chlamydia infections and that the Th1 skew in cytokine responses per se is not sufficient for effective control of Chlamydia infections.
Collapse
Affiliation(s)
- Kamran Kadkhoda
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Joyee AG, Uzonna J, Yang X. Invariant NKT Cells Preferentially Modulate the Function of CD8α+ Dendritic Cell Subset in Inducing Type 1 Immunity against Infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2095-106. [DOI: 10.4049/jimmunol.0901348] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Bai H, Cheng J, Gao X, Joyee AG, Fan Y, Wang S, Jiao L, Yao Z, Yang X. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2009; 183:5886-95. [PMID: 19812198 DOI: 10.4049/jimmunol.0901584] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although their contribution to host defense against extracellular infections has been well defined, IL-17 and Th17 are generally thought to have limited impact on intracellular infections. In this study, we investigated the role and mechanisms of IL-17/Th17 in host defense against Chlamydia muridarum, an obligate intracellular bacterium, lung infection. Our data showed rapid increase in IL-17 production and expansion of Th17 cells following C. muridarum infection and significant detrimental impact of in vivo IL-17 neutralization by anti-IL-17 mAb on disease course, immune response, and dendritic cell (DC) function. Specifically, IL-17-neutralized mice exhibited significantly greater body weight loss, higher organism growth, and much more severe pathological changes in the lung compared with sham-treated control mice. Immunological analysis showed that IL-17 neutralization significantly reduced Chlamydia-specific Th1 responses, but increased Th2 responses. Interestingly, the DC isolated from IL-17-neutralized mice showed lower CD40 and MHC II expression and IL-12 production, but higher IL-10 production compared with those from sham-treated mice. In two DC-T cell coculture systems, DC isolated from IL-17-neutralized mice induced higher IL-4, but lower IFN-gamma production by Ag-specific T cells than those from sham-treated mice in cell priming and reaction settings. Adoptive transfer of DC isolated from IL-17-neutralized mice, unlike those from sham-treated mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that IL-17/Th17 plays an important role in host defense against intracellular bacterial infection, and suggest that IL-17/Th17 can promote type 1 T cell immunity through modulating DC function.
Collapse
Affiliation(s)
- Hong Bai
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jiao L, Han X, Wang S, Fan Y, Yang M, Qiu H, Yang X. Imprinted DC mediate the immune-educating effect of early-life microbial exposure. Eur J Immunol 2009; 39:469-80. [PMID: 19180467 DOI: 10.1002/eji.200838367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been long proposed that exposure to environmental factors early in life may have an educating effect on the development of immune regulatory functions. However, experimental studies on this issue are limited and the related molecular and cellular basis remains unclear. Here we report that neonatal exposure to killed bacteria (Chlamydia muridarum, originally called Chlamydia trachomatis mouse pneumonitis (MoPn)) changed the pattern of the hosts' immune responses to a model allergen (OVA) in adulthood. This was associated with altered phenotype and function of DC. We found that DC from adult mice treated neonatally with UV-killed MoPn exhibited distinct patterns of surface marker and TLR expression and cytokine production from control mice (DC from adult mice neonatally treated with vehicle, (Sham-DC)). More importantly, DC from adult mice treated neonatally with UV-killed MoPn induced significantly lower type-2 antigen-specific T-cell responses than Sham-DC shown in DC:T co-culture experiments in vitro and in adoptive transfer experiments in vivo. In addition, depletion of T cells in vivo largely abolished the phenotypic and functional alterations of DC caused by bacterial exposure, suggesting the involvement of T cell in this process. Our study demonstrates a central role of DC in linking the early-life exposure to microbial products and the balanced development of immune regulatory functions and the involvement of T cells in imprinting of the DC function.
Collapse
Affiliation(s)
- Lei Jiao
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Man, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Kinjo Y, Kronenberg M. Detection of microbes by natural killer T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 633:17-26. [PMID: 19209678 DOI: 10.1007/978-0-387-79311-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuki Kinjo
- La Jolla Institute for Allergy and Immunology, CA 92037, USA
| | | |
Collapse
|
49
|
Wizel B, Nyström-Asklin J, Cortes C, Tvinnereim A. Role of CD8(+)T cells in the host response to Chlamydia. Microbes Infect 2008; 10:1420-30. [PMID: 18790073 PMCID: PMC2640455 DOI: 10.1016/j.micinf.2008.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/12/2008] [Indexed: 11/25/2022]
Abstract
Chlamydia infections constitute a major public health problem. Although multiple arms of the immune system participate in the control of Chlamydia in infected hosts, T lymphocytes are essential. This review focuses on the roles that CD8(+)T cells may play in immunoprotection and immunopathology following recognition of Chlamydia-infected cells.
Collapse
Affiliation(s)
- Benjamin Wizel
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | | | | | | |
Collapse
|
50
|
Joyee AG, Qiu H, Fan Y, Wang S, Yang X. Natural Killer T Cells Are Critical for Dendritic Cells to Induce Immunity in Chlamydial Pneumonia. Am J Respir Crit Care Med 2008; 178:745-56. [DOI: 10.1164/rccm.200804-517oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|