1
|
Das NC, Gorai S, Gupta PSS, Panda SK, Rana MK, Mukherjee S. Immune targeting of filarial glutaredoxin through a multi-epitope peptide-based vaccine: A reverse vaccinology approach. Int Immunopharmacol 2024; 133:112120. [PMID: 38657497 DOI: 10.1016/j.intimp.2024.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Sampa Gorai
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences & Bioengineering, D. Y. Patil International University, Akurdi, Pune 411044, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India.
| |
Collapse
|
2
|
Setegn A, Amare GA, Mihret Y. Wolbachia and Lymphatic Filarial Nematodes and Their Implications in the Pathogenesis of the Disease. J Parasitol Res 2024; 2024:3476951. [PMID: 38725798 PMCID: PMC11081757 DOI: 10.1155/2024/3476951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Lymphatic filariasis (LF) is an infection of three closely related filarial worms such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. These worms can cause a devastating disease that involves acute and chronic lymphoedema of the extremities, which can cause elephantiasis in both sexes and hydroceles in males. These important public health nematodes were found to have a mutualistic relationship with intracellular bacteria of the genus Wolbachia, which is essential for the development and survival of the nematode. The host's inflammatory response to parasites and possibly also to the Wolbachia endosymbiont is the cause of lymphatic damage and disease pathogenesis. This review tried to describe and highlight the mutualistic associations between Wolbachia and lymphatic filarial nematodes and the role of bacteria in the pathogenesis of lymphatic filariasis. Articles for this review were searched from PubMed, Google Scholar, and other databases. Article searching was not restricted by publication year; however, only English version full-text articles were included.
Collapse
Affiliation(s)
- Abebaw Setegn
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yenesew Mihret
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Chunda VC, Fombad FF, Kien CA, Ebai R, Esofi F, Ntuh AN, Ouam E, Gandjui NVT, Ekanya R, Nietcho F, Nchang LC, Magha C, Njouendou AJ, Enyong P, Hoerauf A, Wanji S, Ritter M. Comparative development of human filariae Loa loa, Onchocerca volvulus and Mansonella perstans in immunocompromised mouse strains. FRONTIERS IN TROPICAL DISEASES 2024; 5:1293632. [PMID: 38655273 PMCID: PMC7615855 DOI: 10.3389/fitd.2024.1293632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction Mouse models of human filarial infections are not only urgently needed to investigate the biology of the nematodes and their modulation of the host's immunity, but will also provide a platform to screen and test novel anti-filarial drugs. Recently, murine Loa loa infection models have been stablished using immunocompromised mouse strains, whereas murine Mansonella perstans infections have not been implemented until now. Methods Therefore, we aim to establish experimental M. perstans infections using the immunocompromised mouse strains RAG2IL-2Rγ-/- (lack B, T and natural killer cells), IL-4Rα/IL-5-/- (impaired IL-4/5 signalling and eosinophil activation) and NOD.Cg-PrkdcscidIl2rgtm1Wj l/SzJ (NOD scid gamma, NSG) BALB/c mice (lack mature lymphocytes) through subcutaneous (s.c.) or intraperitoneal (i.p.) inoculation of infective stage 3 larvae (L3) isolated from engorged vectors. Results In total, 145 immunocompromised mice have been inoculated with 3,250 M. perstans, 3,337 O. volvulus, and 2,720 Loa loa L3 to comparatively analyse which immunocompromised mouse strain is susceptible to human filarial infections. Whereas, no M. perstans and O. volvulus L3 could be recovered upon 2-63 days post-inoculation, a 62-66% Loa loa L3 recovery rate could be achieved in the different mouse strains. Gender of mice, type of inoculation (s.c. or i.p.) or time point of analysis (2-63 days post inoculation) did not interfere with the success of L3 recovery. In addition, administration of the immune suppressants hydrocortisone, prednisolone and cyclophosphamide did not restore M. perstans L3 recovery rates. Discussion These findings show that RAG2IL-2Rg-/-BALB/c and C57BL/6, IL-4Rα/IL-5-/- BALB/c and NSG mice were not susceptible to M. perstans and O. volvulus L3 inoculation using the applied methods, whereas Loa loa infection could be maintained. Further studies should investigate if humanized immunocompromised mice might be susceptible to M. perstans. and O. volvulus.
Collapse
Affiliation(s)
- Valerine C. Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Frederick Esofi
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Anna Ning Ntuh
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Emmanuel Ouam
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Narcisse Victor Tchamatchoua Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Relindis Ekanya
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Franck Nietcho
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Lucy Cho Nchang
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chefor Magha
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Peter Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
4
|
Jiang T, Xu X. Protective effect of Timosaponin AIII on Escherichia coli-induced endometritis in mice through inhibiting inflammatory response and regulating uterine microbiota structure. Int Immunopharmacol 2024; 130:111649. [PMID: 38367462 DOI: 10.1016/j.intimp.2024.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Endometritis is a sort of general reproductive disease, which can lead to infertility in both humans and animals. Escherichia coli (E. coli) is recognised as the main bacterial etiology of endometritis among livestock and causes huge economic losses to dairy farming industry. Antibiotics are frequently used in the clinical treatment of endometritis; nevertheless, long-term use may result in adverse effects, including bacterial resistance and food safety concerns. TSAIII, one of the active pharmacological components of A. asphodeloides, has exhibited multiple biological activities, including anticancer, anti-angiogenesis, and anti-inflammatory properties. However, the protective effects of TSAIII in E. coli-challenged endometritis remain unclear. This study aimed to clarify the role of TSAIII in E. coli-induced endometritis in mice and elucidate its specific molecular mechanisms. In the present research, TSAIII treatment markedly alleviated the E. coli-induced uterine histopathological injury, and decreased myeloperoxidase (MPO) activity and pro-inflammatory cytokines levels in uterine tissue. Our results further demonstrated that TSAIII improved uterine epithelial barrier function by restoring the expressions of tight junction proteins. Furthermore, TSAIII administration noticeably suppressed the activation of the TLR4/NF-κB pathway and the NLRP3 inflammasome. Importantly, we found that TSAIII could regulate the uterine microbiota structure and composition in E. coli-induced mouse endometritis. In conclusion, these data demonstrate that treatment with TSAIII protects against E. coli-induced endometritis via modulating uterine microbiota composition, inhibiting TLR4/NF-κB pathway and NLRP3 inflammasome activation, in addition to improving uterine epithelial barrier function. Therefore, the results of this study provide a new therapeutic to potentially prevent endometritis.
Collapse
Affiliation(s)
- Tao Jiang
- China-Japan Union Hospital, Jilin University, Jilin, China
| | - Xuesong Xu
- China-Japan Union Hospital, Jilin University, Jilin, China.
| |
Collapse
|
5
|
Chu YT, Liao MT, Tsai KW, Lu KC, Hu WC. Interplay of Chemokines Receptors, Toll-like Receptors, and Host Immunological Pathways. Biomedicines 2023; 11:2384. [PMID: 37760825 PMCID: PMC10525553 DOI: 10.3390/biomedicines11092384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
A comprehensive framework has been established for understanding immunological pathways, which can be categorized into eradicated and tolerable immune responses. Toll-like receptors (TLRs) are associated with specific immune responses. TH1 immunity is related to TLR7, TLR8, and TLR9, while TH2 immunity is associated with TLR1, TLR2, and TLR6. TH22 immunity is linked to TLR2, TLR4, and TLR5, and THαβ (Tr1) immunity is related to TLR3, TLR7, and TLR9. The chemokine receptor CXCR5 is a marker of follicular helper T cells, and other chemokine receptors can also be classified within a framework based on host immunological pathways. On the basis of a literature review on chemokines and immunological pathways, the following associations were identified: CCR5 with TH1 responses, CCR1 with TH1-like responses, CCR4 (basophils) and CCR3 (eosinophils) with TH2 and TH9 responses, CCR10 with TH22 responses, CCR6 with TH17 responses, CXCR3 with THαβ responses, CCR8 with regulatory T cells (Treg), and CCR2 with TH3 responses. These findings contribute to the identification of biomarkers for immune cells and provide insights into host immunological pathways. Understanding the chemokine and Toll-like receptor system is crucial for comprehending the function of the innate immune system, as well as adaptive immune responses.
Collapse
Affiliation(s)
- Yuan-Tung Chu
- Department of Anatomic Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu 300, Taiwan;
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
| | - Kuo-Cheng Lu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
7
|
Ariyaratne A, Kim SY, Pollo SMJ, Perera S, Liu H, Nguyen WNT, Coria AL, Luzzi MDC, Bowron J, Szabo EK, Patel KD, Wasmuth JD, Nair MG, Finney CAM. Trickle infection with Heligmosomoides polygyrus results in decreased worm burdens but increased intestinal inflammation and scarring. Front Immunol 2022; 13:1020056. [PMID: 36569914 PMCID: PMC9773095 DOI: 10.3389/fimmu.2022.1020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Stephen M. J. Pollo
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - William N. T. Nguyen
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Mayara de Cassia Luzzi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Kamala D. Patel
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Ehrens A, Hoerauf A, Hübner MP. Eosinophils in filarial infections: Inducers of protection or pathology? Front Immunol 2022; 13:983812. [PMID: 36389745 PMCID: PMC9659639 DOI: 10.3389/fimmu.2022.983812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 05/29/2024] Open
Abstract
Filariae are parasitic roundworms, which can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Lymphatic filariasis, also known as elephantiasis, and onchocerciasis, commonly referred to as river blindness, can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Filariae typically induce a type 2 immune response, which is characterized by cytokines, i.e., IL-4, IL-5 and IL-13 as well as type 2 immune cells including alternatively activated macrophages, innate lymphoid cells and Th2 cells. However, the hallmark characteristic of filarial infections is a profound eosinophilia. Eosinophils are innate immune cells and pivotal in controlling helminth infections in general and filarial infections in particular. By modulating the function of other leukocytes, eosinophils support and drive type 2 immune responses. Moreover, as primary effector cells, eosinophils can directly attack filariae through the release of granules containing toxic cationic proteins with or without extracellular DNA traps. At the same time, eosinophils can be a driving force for filarial pathology as observed during tropical pulmonary eosinophilia in lymphatic filariasis, in dermatitis in onchocerciasis patients as well as adverse events after treatment of onchocerciasis patients with diethylcarbamazine. This review summarizes the latest findings of the importance of eosinophil effector functions including the role of eosinophil-derived proteins in controlling filarial infections and their impact on filarial pathology analyzing both human and experimental animal studies.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
9
|
Choe H, Tatro JM, Hausman BS, Hujer KM, Marshall SH, Akkus O, Rather PN, Lee Z, Bonomo RA, Greenfield EM. Staphylococcus aureus and Acinetobacter baumannii Inhibit Osseointegration of Orthopedic Implants. Infect Immun 2022; 90:e0066921. [PMID: 35099267 PMCID: PMC8929340 DOI: 10.1128/iai.00669-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.
Collapse
Affiliation(s)
- Hyonmin Choe
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopaedics, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Joscelyn M. Tatro
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan S. Hausman
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Steve H. Marshall
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phillip N. Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Zhenghong Lee
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Prevalence of Dirofilaria repens in dogs living in deltaic coastal plain of the Volturno River (Italy): a geographical risk model of infection. J Helminthol 2022; 96:e12. [PMID: 35195063 DOI: 10.1017/s0022149x22000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of vector-associated parasitic infections is high in central-southern Italy. The deltaic coastal plain of the Volturno River has been suspected, by veterinary practitioners, to have a high accidental incidence of Dirofilaria repens. Thus, the goal of this study was to evaluate the prevalence of dirofilariasis and other coinfections frequently described in dogs living in the Volturno area. Blood samples of 100 clinical asymptomatic dogs were examined using a Knott's technique and polymerase chain reaction in order to identify microfilariae. Other vector-borne coinfections were also investigated using ELISA kits. The results were analysed using statistical and Geographic Information System (GIS) software. Microfilariae of D. repens were detected in 10% of the dogs surveyed, with a presence of antibodies against Ehrlichia canis (4/10) and Dirofilaria immitis (1/10). Such high incidence should be considered in light of the zoonotic potential for D. repens and the support for more regular use of repellents to prevent the spread of this disease. The GIS analyses indicated that the study area provides suitable conditions to sustain populations of mosquito vectors and D. repens parasites throughout much of the year.
Collapse
|
11
|
Kwarteng A, Asiedu E, Koranteng KK, Asiedu SO. Highlighting the Relevance of CD8 + T Cells in Filarial Infections. Front Immunol 2021; 12:714052. [PMID: 34603287 PMCID: PMC8481813 DOI: 10.3389/fimmu.2021.714052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
The T cell immune responses in filarial infections are primarily mediated by CD4+ T cells and type 2-associated cytokines. Emerging evidence indicates that CD8+ T cell responses are important for anti-filarial immunity, however, could be suppressed in co-infections. This review summarizes what we know so far about the activities of CD8+ T cell responses in filarial infections, co-infections, and the associations with the development of filarial pathologies.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Kelvin Kwaku Koranteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Opoku Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
12
|
Gangwar M, Jha R, Goyal M, Srivastava M. Biochemical characterization of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Int J Parasitol 2021; 51:841-853. [PMID: 34273392 DOI: 10.1016/j.ijpara.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.
Collapse
Affiliation(s)
- Mamta Gangwar
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchi Jha
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Mrigank Srivastava
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Kwarteng A, Asiedu E, Sylverken A, Larbi A, Mubarik Y, Apprey C. In silico drug repurposing for filarial infection predicts nilotinib and paritaprevir as potential inhibitors of the Wolbachia 5'-aminolevulinic acid synthase. Sci Rep 2021; 11:8455. [PMID: 33875732 PMCID: PMC8055890 DOI: 10.1038/s41598-021-87976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Filarial infections affect millions of individuals and are responsible for some notorious disabilities. Current treatment options involve repeated mass drug administrations, which have been met with several challenges despite some successes. Administration of doxycycline, an anti-Wolbachia agent, has shown clinical effectiveness but has several limitations, including long treatment durations and contraindications. We describe the use of an in silico drug repurposing approach to screening a library of over 3200 FDA-approved medications against the filarial endosymbiont, Wolbachia. We target the enzyme which catalyzes the first step of heme biosynthesis in the Wolbachia. This presents an opportunity to inhibit heme synthesis, which leads to depriving the filarial worm of heme, resulting in a subsequent macrofilaricidal effect. High throughput virtual screening, molecular docking and molecular simulations with binding energy calculations led to the identification of paritaprevir and nilotinib as potential anti-Wolbachia agents. Having higher binding affinities to the catalytic pocket than the natural substrate, these drugs have the structural potential to bind and engage active site residues of the wolbachia 5'-Aminolevulinic Acid Synthase. We hereby propose paritaprevir and nilotinib for experimental validations as anti-Wolbachia agents.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana. .,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Augustina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Amma Larbi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Yusif Mubarik
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Charles Apprey
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
14
|
Fordjour FA, Asiedu E, Larbi A, Kwarteng A. The role of nuclear factor kappa B (NF-κB) in filarial pathology. J Cell Commun Signal 2021; 15:185-193. [PMID: 33630268 DOI: 10.1007/s12079-021-00607-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
The transcription factor NF-κB promotes immunity by controlling the expression of genes involved in inflammation. Cytokines and pathogen-associated molecular patterns stimulate cell surface receptors, including toll-like receptors, to initiate a signalling cascade resulting in the activation of NF-κB. NF-κB drives the expression of target genes that mediate cell proliferation and release antimicrobial molecules and cytokines to activate an immune response. Filariasis is one of the most complex infections of humans. The actual causes of the heterogeneity in infection are not well understood. However, they have been attributed to differences in inflammatory processes that are immune-mediated, secondary bacterial infections, and host immune-genetics. Elevated production of angiogenic molecules (VEGFs, CEACAM and MMPs) in filarial pathology has been shown to be dependent on phosphorylation and intracellular activation of NF-κB. This review examines the role of NF-κB in filarial pathology and its potential therapeutic options for individuals with the disease.
Collapse
Affiliation(s)
- Fatima Amponsah Fordjour
- Department of Microbiology, University for Development Studies, UDS, Tamale, Ghana. .,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Amma Larbi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
15
|
Hu R, Yuan K, Zhou J, Zhang Y, Zheng J, Zhao Y, Huang X, Jin X. Influence of Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone on human corneal epithelial cells. Exp Biol Med (Maywood) 2020; 246:426-435. [PMID: 33175611 DOI: 10.1177/1535370220969838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The quorum-sensing (QS) signaling-dependent extracellular virulence factors of Pseudomonas aeruginosa can cause infections such as P. aeruginosa keratitis. P. aeruginosa communicates by secreting and sensing small chemical molecules called autoinducers in QS system. The key QS signal molecule, N-3-oxododecanoyl-homoserine lactone (3OC12HSL), can affect the behavior of host cells and initiate immune response. In this report we investigated the influence of 3OC12HSL on human corneal epithelial cells (HCECs) and the mechanisms of 3OC12HSL on activated toll-like receptor 2 (TLR2)-dependent interleukin-8 (IL-8) secretion in HCECs. Cells were cultured under different concentrations of 3OC12HSL. Cell viability was assessed using Crystal violet staining and the cell counting kit-8 assay. We demonstrated the administration of 3OC12HSL decreased HCEC viability and survival in a concentration- and time-dependent manner. At high concentrations, 3OC12HSL rapidly promoted a time-dependent increase in the expressions of TLR2 and TLR4. It was found that the nuclear translocation and expression of nuclear factor-κB (NF-κB) were also increased in response to 3OC12HSL treatment. The significantly elevated expressions of TLR2, TLR4, and NF-κB, encouraged us to further test their mechanisms that cause inflammatory response. Among the inflammatory factors examined (IL-6, IL-8, IL-10, and TNF-α), we found that IL-8 was significantly increased after treatment with 3OC12HSL and its expression was inhibited when TLR2 was specifically blocked or silenced. These results indicated that the QS signaling molecule 3OC12HSL could be recognized by the host innate immune system in HCECs. This recognition then triggered an immune inflammatory response involving the activation of TLR2 and an increase in expression of IL-8. This crosstalk between 3OC12HSL and host immunity in HCECs contributes to the development and progression of P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Renjian Hu
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Kelan Yuan
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jie Zhou
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Zhang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jiao Zheng
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yingying Zhao
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaodan Huang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
16
|
Turner JD, Marriott AE, Hong D, O' Neill P, Ward SA, Taylor MJ. Novel anti-Wolbachia drugs, a new approach in the treatment and prevention of veterinary filariasis? Vet Parasitol 2020; 279:109057. [PMID: 32126342 DOI: 10.1016/j.vetpar.2020.109057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/09/2023]
Abstract
Filarial nematodes are tissue-dwelling parasitic worms that can cause a range of disfiguring pathologies in humans and potentially lethal infections of companion animals. The bacterial endosymbiont, Wolbachia, is present within most human and veterinary filarial pathogens, including the causative agent of heartworm disease, Dirofilaria immitis. Doxycycline-mediated drug targeting of Wolbachia leads to sterility, clearance of microfilariae and gradual death of adult filariae. This mode of action is attractive in the treatment of filariasis because it avoids severe host inflammatory adverse reactions invoked by rapid-killing anthelmintic agents. However, doxycycline needs to be taken for four weeks to exert curative activity. In this review, we discuss the evidence that Wolbachia drug targeting is efficacious in blocking filarial larval development as well as in the treatment of chronic filarial disease. We present the current portfolio of next-generation anti-Wolbachia candidates discovered through phenotypic screening of chemical libraries and validated in a range of in vitro and in vivo filarial infection models. Several novel chemotypes have been identified with selected narrow-spectrum anti-Wolbachia specificity and superior time-to-kill kinetics compared with doxycycline. We discuss the opportunities of developing these novel anti-Wolbachia agents as either cures, adjunct therapies or new preventatives for the treatment of veterinary filariasis.
Collapse
Affiliation(s)
- Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Amy E Marriott
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Hong
- Department of Chemistry, University of Liverpool, UK
| | - Paul O' Neill
- Department of Chemistry, University of Liverpool, UK
| | - Steve A Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
17
|
Andersen BJ, Rosa BA, Kupritz J, Meite A, Serge T, Hertz MI, Curtis K, King CL, Mitreva M, Fischer PU, Weil GJ. Systems analysis-based assessment of post-treatment adverse events in lymphatic filariasis. PLoS Negl Trop Dis 2019; 13:e0007697. [PMID: 31557154 PMCID: PMC6762072 DOI: 10.1371/journal.pntd.0007697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background Lymphatic filariasis (LF) is a neglected tropical disease, and the Global Program to Eliminate LF delivers mass drug administration (MDA) to 500 million people every year. Adverse events (AEs) are common after LF treatment. Methodology/Principal findings To better understand the pathogenesis of AEs, we studied LF-patients from a treatment trial. Plasma levels of many filarial antigens increased post-treatment in individuals with AEs, and this is consistent with parasite death. Circulating immune complexes were not elevated in these participants, and the classical complement cascade was not activated. Multiple cytokines increased after treatment in persons with AEs. A transcriptomic analysis was performed for nine individuals with moderate systemic AEs and nine matched controls. Differential gene expression analysis identified a significant transcriptional signature associated with post-treatment AEs; 744 genes were upregulated. The transcriptional signature was enriched for TLR and NF-κB signaling. Increased expression of seven out of the top eight genes upregulated in persons with AEs were validated by qRT-PCR, including TLR2. Conclusions/Significance This is the first global study of changes in gene expression associated with AEs after treatment of lymphatic filariasis. Changes in cytokines were consistent with prior studies and with the RNAseq data. These results suggest that Wolbachia lipoprotein is involved in AE development, because it activates TLR2-TLR6 and downstream NF-κB. Additionally, LPS Binding Protein (LBP, which shuttles lipoproteins to TLR2) increased post-treatment in individuals with AEs. Improved understanding of the pathogenesis of AEs may lead to improved management, increased MDA compliance, and accelerated LF elimination. Lymphatic filariasis (LF) is a disabling parasitic disease that affects millions of people in the developing world. The Global Programme to Eliminate Lymphatic Filariasis (coordinated by the World Health Organization) uses mass administration of antifilarial medications to cure infections, prevent disease, and reduce transmission. Some individuals develop adverse events (AEs) after treatment, and this can reduce willingness of persons in endemic areas to accept treatment. The purpose of this study was to improve understanding of the cause of AEs following treatment. We hypothesized that parasite antigens released into the blood following treatment trigger inflammatory responses that lead to AEs. To test this hypothesis we collected blood from LF-infected individuals before and after treatment and clinically assessed them for AEs. We measured parasite antigens, cytokines and other components of the immune system in blood samples and compared post-treatment changes in persons with and without AEs. We also assessed changes in transcription profiles in peripheral blood leukocytes that were associated with post-treatment AEs. Post-treatment changes in transcription profiles and in immune proteins and parasite components in plasma suggest that systemic AEs are triggered by death of the parasites following treatment with release of parasite antigens and Wolbachia bacteria into the circulation. Improved understanding of the pathogenesis of post-treatment AEs may help to improve messaging related to mass drug administration programs and lead to improved AE management.
Collapse
Affiliation(s)
- Britt J. Andersen
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University School of Medicine, St.Louis, Missouri, United States of America
| | - Jonah Kupritz
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aboulaye Meite
- Programme National de la Lutte Contre la Schistosomiase, Les Geohelminthiases et la Filariose Lymphatique, Abidjan, Côte d’Ivoire
| | - Traye Serge
- Programme National de la Lutte Contre la Schistosomiase, Les Geohelminthiases et la Filariose Lymphatique, Abidjan, Côte d’Ivoire
| | - Marla I. Hertz
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt Curtis
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St.Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Murthy PK. Strategies to Control Human Lymphatic Filarial Infection: Tweaking Host’s Immune System. Curr Top Med Chem 2019; 19:1226-1240. [DOI: 10.2174/1568026619666190618110613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Human lymphatic filariasis (LF), a parasitic infection caused by the nematodes Wuchereria bancrofti, Brugia malayi and B. timori, and transmitted by mosquito, results in a debilitating disease commonly identified as ‘elephantiasis’. LF affects millions of people in India and several other tropical and sub-tropical countries imposing a huge economic burden on governments due to disability associated loss of man-hours and for disease management. Efforts to control the infection by WHO’s mass drug administration (MDA) strategy using three antifilarials diethylcarbamazine, albendazole and ivermectin are only partly successful and therefore, there is an immediate need for alternative strategies. Some of the alternative strategies being explored in laboratories are: enhancing the immune competence of host by immunomodulation, combining immunomodulation with antifilarials, identifying immunoprophylactic parasite molecules (vaccine candidates) and identifying parasite molecules that can be potential drug targets. This review focuses on the advances made in this direction.
Collapse
Affiliation(s)
- Puvvada Kalpana Murthy
- Department of Zoology, University of Lucknow, University Road, Lucknow 226 007, Uttar Pradesh, India
| |
Collapse
|
19
|
Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol 2019; 90:e12771. [PMID: 31054156 DOI: 10.1111/sji.12771] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.
Collapse
Affiliation(s)
| | - Sahel Huda
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| |
Collapse
|
20
|
Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. Int Immunopharmacol 2019; 70:201-207. [PMID: 30822611 DOI: 10.1016/j.intimp.2019.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Endometritis is one of the main diseases that causes great economic losses in the dairy industry. Recent studies have shown that matrine extracted from the traditional Chinese herb Sophora flavescens is an alkaloid with a broad range of bioactivities. Here, we aimed to investigate the protective effects of matrine on Staphylococcus aureus lipoteichoic acid (LTA)-induced endometritis in mice and elucidate the possible molecular mechanisms in vitro. Histopathological changes showed that matrine remarkably attenuated the uterus injury in a mouse model of LTA-induced endometritis. qPCR and ELISA results showed that matrine dose-dependently reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β). To further elucidate the underlying mechanisms of this protective effect of matrine, LTA-stimulated bovine endometrial epithelial cells (bEECs) were employed in this study. The results demonstrated that TLR2 expression and its downstream nuclear factor (NF)-κB activation were both suppressed by matrine treatment. Furthermore, a small interference RNA targeting TLR2 gene mimicked matrine in its inhibition on LTA-induced activation of TLR2 and NF-κB. In conclusion, these findings suggest the protective effect of matrine against LTA-induced endometritis through negative regulation of TLR2-mediated NF-κB pathway.
Collapse
|
21
|
The central adaptor molecule TRIF influences L. sigmodontis worm development. Parasitol Res 2019; 118:539-549. [PMID: 30643971 DOI: 10.1007/s00436-018-6159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Worldwide approximately 68 million people are infected with lymphatic filariasis (Lf), provoked by Wuchereria bancrofti, Brugia malayi and Brugia timori. This disease can lead to massive swelling of the limbs (elephantiasis) and disfigurement of the male genitalia (hydrocele). Filarial induced immune regulation is characterised by dominant type 2 helper T cell and regulatory immune responses. In vitro studies have provided evidence that signalling via Toll-like receptor-mediated pathways is triggered by filarial associated factors. Nevertheless, until now, less is known about the role of the adapter molecule TRIF during in vivo infections. Here, we used the rodent-specific nematode Litomosoides sigmodontis to investigate the role of TLR signalling and the corresponding downstream adapter and regulatory molecules TRIF, MyD88, IRF1 and IRF3 during an ongoing infection in semi-susceptible C57BL/6 mice. Interestingly, lack of the central adapter molecule TRIF led to higher worm burden and reduced overall absolute cell numbers in the thoracic cavity (the site of infection) 30 days post-infection. In addition, frequencies of macrophages and lymphocytes in the TC were increased in infected TRIF-/- C57BL/6 mice, whereas frequencies of eosinophils, CD4+ and CD8+ T cells were reduced. Nevertheless, cytokine levels and regulatory T cell populations remained comparable between TRIF-deficient and wildtype C57BL/6 mice upon 30 days of L. sigmodontis infection. In summary, this study revealed a crucial role of the adapter molecule TRIF on worm recovery and immune cell recruitment into the site of infection 30 days upon L. sigmodontis infection in C57BL/6 mice.
Collapse
|
22
|
Muhsin M, Ajendra J, Gentil K, Berbudi A, Neumann AL, Klaas L, Schmidt KE, Hoerauf A, Hübner MP. IL-6 is required for protective immune responses against early filarial infection. Int J Parasitol 2018; 48:925-935. [PMID: 30176234 DOI: 10.1016/j.ijpara.2018.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/29/2022]
Abstract
IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6-/- mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6-/- mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6-/- mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6-/- mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.
Collapse
Affiliation(s)
- Muhsin Muhsin
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Department of Parasitology Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Lil Klaas
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kim E Schmidt
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Andersen BJ, Kumar J, Curtis K, Sanuku N, Satofan S, King CL, Fischer PU, Weil GJ. Changes in Cytokine, Filarial Antigen, and DNA Levels Associated With Adverse Events Following Treatment of Lymphatic Filariasis. J Infect Dis 2018; 217:280-287. [PMID: 29149303 PMCID: PMC5853815 DOI: 10.1093/infdis/jix578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background Mild to moderate adverse events (AEs) are common after treatment of lymphatic filariasis (LF) and pose a major challenge for the global LF elimination program. We studied changes in cytokine levels and filarial worm components in plasma of subjects with and without AEs following treatment of LF. Methods Participants (n = 24) were hospitalized and monitored for AEs following treatment. Cytokines (27), filarial DNA, circulating filarial antigen (CFA), and immune complexes were measured in plasma samples collected before and after treatment. Results Levels for 16 cytokines increased after treatment in individuals with moderate AEs compared to individuals with no and/or mild AEs. These included 3 major proinflammatory cytokines (interleukin 6, tumor necrosis factor α, and interleukin 1β). Eotaxin-1 levels were elevated at baseline in individuals who developed moderate AEs after treatment; thus, eotaxin-1 is a potential biomarker for AE risk. CFA and filarial DNA levels increased more in individuals with moderate AEs after treatment than in people with no/mild AEs. Conclusions Increases in cytokine, filarial DNA, and CFA levels were associated with development of AEs following treatment of LF. Improved understanding of the pathogenesis of AEs may lead to improved methods for their prevention or management that could increase compliance in elimination programs.
Collapse
Affiliation(s)
- Britt J Andersen
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jessica Kumar
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kurt Curtis
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nelly Sanuku
- Papua New Guinea Institute of Medical Research, Goroka
| | | | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter U Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Gary J Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
24
|
TLR Specific Immune Responses against Helminth Infections. J Parasitol Res 2017; 2017:6865789. [PMID: 29225962 PMCID: PMC5684585 DOI: 10.1155/2017/6865789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023] Open
Abstract
Despite marked improvement in the quality of lives across the globe, more than 2 million individuals in socioeconomically disadvantaged environments remain infected by helminth (worm) parasites. Owing to the longevity of the worms and paucity of immunologic controls, these parasites survive for long periods within the bloodstream, lymphatics, and gastrointestinal tract resulting in pathologic conditions such as anemia, cirrhosis, and lymphatic filariasis. Despite infection, an asymptomatic state may be maintained by the host immunoregulatory environment, which involves multiple levels of regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. The role of TLR expression and function in relation to intracellular parasites has been documented but limited studies are available for multicellular helminth parasites. In this review, we discuss the unique and shared host effector mechanisms elicited by systemic helminth parasites and their derived products, including the role of TLRs and sphingolipids. Understanding and exploiting the interactions between these parasites and the host regulatory network are likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
25
|
Mukherjee S, Mukherjee S, Bhattacharya S, Sinha Babu SP. Surface proteins of Setaria cervi induce inflammation in macrophage through Toll-like receptor 4 (TLR4)-mediated signalling pathway. Parasite Immunol 2017; 39. [PMID: 27659561 DOI: 10.1111/pim.12389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022]
Abstract
Lymphatic filariasis is a vectorborne parasitic disease that results in morbidities, disabilities and socio-economic loss each year globally. Inflammatory consequences associated with any form of filariasis have drawn special attention. However, the molecular insight behind the inflammation of host macrophage (MФ) is considered as one of the shaded areas in filarial research. Herein, major emphasis was given to study the signalling pathway of MФ inflammation induced by surface proteins (SPs) of filarial parasite through in vitro and in vivo approaches. Twenty-four hours of in vitro stimulation of Raw MФs with endotoxin-free SPs of Setaria cervi resulted in the secretion of pro-inflammatory cytokines (TNF-α and IL-1β) that revealed induction of inflammation, which was found to be elicited from classical NF-кB activation. Moreover, this NF-кB activation was found to be signalled from TLR4 and mediated by the downstream signalling intermediates, viz. MyD88, pTAK1 and NEMO. In vivo studies in adult Wistar rats, experimentally injected with SPs, clearly supported the outcomes of in vitro experiments by showing higher degree of inflammation rather classical activation of the peritoneal MФs. Therefore, SPs from S. cervi cuticle could be responsible for the induction of pro-inflammatory response in MФ, which appears to be propagated through TLR4-NF-кB route.
Collapse
Affiliation(s)
- Su Mukherjee
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Sa Mukherjee
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - S Bhattacharya
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| | - S P Sinha Babu
- Department of Zoology, Centre for Advanced Studies, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
26
|
Mukherjee S, Mukherjee S, Maiti TK, Bhattacharya S, Sinha Babu SP. A Novel Ligand of Toll-like Receptor 4 From the Sheath of Wuchereria bancrofti Microfilaria Induces Proinflammatory Response in Macrophages. J Infect Dis 2017; 215:954-965. [PMID: 28453850 DOI: 10.1093/infdis/jix067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/28/2017] [Indexed: 11/13/2022] Open
Abstract
Background Lymphatic filariasis, frequently caused from Wuchereria bancrofti infection, is endemic in several parts of the globe and responsible for human health problems and socioeconomic loss to a large extent. Inflammatory consequences originating from host-parasite interaction play a major role in the disease pathology and allied complications. The identity of the key mediator of this process is yet unknown in filarial research. Methods Microfilarial protein (MfP) was isolated from the sheath of W. bancrofti microfilariae through ultrafiltration, followed by chromatographic separation. Expression of signaling molecules was studied by enzyme-linked immunosorbent assay and immunoblotting. Binding of MfP to Toll-like receptor 4 (TLR4) was determined by co-immunoprecipitation, fluorescein isothiocyanate-probing, and surface plasmon resonance analysis. Results We found that MfP (approximately 70 kDa) binds to macrophage-TLR4 and triggers nuclear factor kappa beta activation that upregulates secretion of proinflammatory cytokines. Microfilarial protein failed to induce inflammation in either TLRKO macrophage or macrophage treated with TLR4 inhibitor, indicating that MfP acts through TLR4. We have also detected phenotypic transformation of macrophages from anti-inflammatory (M2) to proinflammatory (M1) subtype after incubation with MfP. Conclusions Microfilarial protein appears to be a new ligand of TLR4 from W. bancrofti. Determination of its functional attributions in the host-parasite relationship, especially immunopathogenesis of filarial infection, may improve our understanding.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, West Bengal, India
| | - Sandip Mukherjee
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, West Bengal, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, Haryana (NCR Delhi), India
| | - Samir Bhattacharya
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, West Bengal, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, West Bengal, India
| |
Collapse
|
27
|
Kolaviron shows anti-proliferative effect and down regulation of vascular endothelial growth factor-C and toll like receptor-2 in Wuchereria bancrofti infected blood lymphocytes. J Infect Public Health 2017; 10:661-666. [PMID: 28619504 DOI: 10.1016/j.jiph.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023] Open
Abstract
The anti-proliferative effect and down regulation of vascular endothelial growth factor C and toll like receptor-2 by kolaviron on Wuchereria bancrofti infected peripheral blood lymphocytes were investigated. Blood were collected from consenting volunteers in Talata Mafara, Nigeria, between the hours of 10pm to 12am, and microscopically identified for microfilariae. W. bancrofti positive samples were cultured for 72h treated with Doxycycline (2μg/ml) and kolaviron (5μg/ml) in vitro. Mitotic index, expression of vascular endothelial growth factor-C (VEGF-c), toll like receptor-2 (TLR-2) were determined using standard procedures. Mitotic index was significantly (P<0.05) reduced in the kolaviron treated group compared to negative control. Kolaviron also significantly (P<0.05) down regulated the expression of VEGF-c and TLR-2 when compared with the untreated group. In both cases, the effects of kolaviron was not significantly different (P<0.05) to that of doxycycline. Furthermore, strong positive correlations between mitotic index, VEGF-c and TLR-2 expressions were observed. The study suggests that kolaviron rich portion of Garcinia kola exhibited anti-proliferative effect and down regulation of VEGF-c and TLR-2 in W. bancrofti infected blood. Thus, the results from this study might have unravelled the potency of kolaviron in the management of complications associated with lymphatic filariasis.
Collapse
|
28
|
Functional Impairment of Murine Dendritic Cell Subsets following Infection with Infective Larval Stage 3 of Brugia malayi. Infect Immun 2016; 85:IAI.00818-16. [PMID: 27799335 DOI: 10.1128/iai.00818-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023] Open
Abstract
Filarial parasites cause functional impairment of host dendritic cells (DCs). However, the effects of early infection on individual DC subsets are not known. In this study, we infected BALB/c mice with infective stage 3 larvae of the lymphatic filarial parasite Brugia malayi (Bm-L3) and studied the effect on fluorescence-activated cell sorter (FACS)-sorted DC subsets. While myeloid DCs (mDCs) accumulated by day 3 postinfection (p.i.), lymphoid DCs (LDCs) and CD8+ plasmacytoid DCs (pDCs) peaked at day 7 p.i. in the spleens and mesenteric lymph nodes (mLNs) of infected mice. Increased tumor necrosis factor alpha (TNF-α) but reduced interleukin 12 (IL-12) and Toll-like receptor 4 (TLR4), -6, and -9 and reciprocal secretion of IL-4 and IL-10 were also observed across all DC subsets. Interestingly, Bm-L3 increased the expression of CD80 and CD86 across all DC subsets but decreased that of major histocompatibility complex class II (MHC-II) on mDCs and pDCs, resulting in their impaired antigen uptake and presentation capacities, but maximally attenuated the T-cell proliferation capacity of only mDCs. Furthermore, Bm-L3 increased phosphorylated p38 (p-p38), but not p-ERK, in mDCs and LDCs but downregulated them in pDCs, along with differential modulation of protein tyrosine phosphatases SHP-1, TCPTP, PTEN, and PTP1B across all DC subsets. Taken together, we report hitherto undocumented effects of early Bm-L3 infection on purified host DC subsets that lead to their functional impairment and attenuated host T-cell response.
Collapse
|
29
|
Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci Rep 2016; 6:35559. [PMID: 27752109 PMCID: PMC5067710 DOI: 10.1038/srep35559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, induce neutrophilic responses to the human helminth pathogen Onchocerca volvulus. The formation of Neutrophil Extracellular Traps (NETs), has been implicated in anti-microbial defence, but has not been identified in human helminth infection. Here, we demonstrate NETs formation in human onchocerciasis. Extracellular NETs and neutrophils were visualised around O. volvulus in nodules excised from untreated patients but not in nodules from patients treated with the anti-Wolbachia drug, doxycycline. Whole Wolbachia or microspheres coated with a synthetic Wolbachia lipopeptide (WoLP) of the major nematode Wolbachia TLR2/6 ligand, peptidoglycan associated lipoprotein, induced NETosis in human neutrophils in vitro. TLR6 dependency of Wolbachia and WoLP NETosis was demonstrated using purified neutrophils from TLR6 deficient mice. Thus, we demonstrate for the first time that NETosis occurs during natural human helminth infection and demonstrate a mechanism of NETosis induction via Wolbachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6.
Collapse
|
30
|
Yoon J, Leyva-Castillo JM, Wang G, Galand C, Oyoshi MK, Kumar L, Hoff S, He R, Chervonsky A, Oppenheim JJ, Kuchroo VK, van den Brink MRM, Malefyt RDW, Tessier PA, Fuhlbrigge R, Rosenstiel P, Terhorst C, Murphy G, Geha RS. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med 2016; 213:2147-66. [PMID: 27551155 PMCID: PMC5032726 DOI: 10.1084/jem.20150376] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4(+) T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4(+) T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD.
Collapse
Affiliation(s)
- Juhan Yoon
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Guoxing Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Claire Galand
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Michiko K Oyoshi
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Lalit Kumar
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Sabine Hoff
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Rui He
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | | | - Joost J Oppenheim
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, MD 21702
| | - Vijay K Kuchroo
- Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Marcel R M van den Brink
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | - Philippe A Tessier
- Centre de Recherche du Centre Hospitalier de l'Université Laval, Sainte-Foy, Quebec QC G1V 4G2, Canada
| | - Robert Fuhlbrigge
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - George Murphy
- Department of Dermatology, Harvard Medical School, Boston, MA 02115 Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
31
|
Berbudi A, Surendar J, Ajendra J, Gondorf F, Schmidt D, Neumann AL, Wardani APF, Layland LE, Hoffmann LS, Pfeifer A, Hoerauf A, Hübner MP. Filarial Infection or Antigen Administration Improves Glucose Tolerance in Diet-Induced Obese Mice. J Innate Immun 2016; 8:601-616. [PMID: 27544668 DOI: 10.1159/000448401] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
Helminths induce type 2 immune responses and establish an anti-inflammatory milieu in their hosts. This immunomodulation was previously shown to improve diet-induced insulin resistance which is linked to chronic inflammation. In the current study, we demonstrate that infection with the filarial nematode Litomosoides sigmodontis increased the eosinophil number and alternatively activated macrophage abundance within epididymal adipose tissue (EAT) and improved glucose tolerance in diet-induced obese mice in an eosinophil-dependent manner. L. sigmodontis antigen (LsAg) administration neither altered the body weight of animals nor adipose tissue mass or adipocyte size, but it triggered type 2 immune responses, eosinophils, alternatively activated macrophages, and type 2 innate lymphoid cells in EAT. Improvement in glucose tolerance by LsAg treatment remained even in the absence of Foxp3+ regulatory T cells. Furthermore, PCR array results revealed that LsAg treatment reduced inflammatory immune responses and increased the expression of genes related to insulin signaling (Glut4, Pde3b, Pik3r1, and Hk2) and fatty acid uptake (Fabp4 and Lpl). Our investigation demonstrates that L. sigmodontis infection and LsAg administration reduce diet-induced EAT inflammation and improve glucose tolerance. Helminth-derived products may, therefore, offer new options to improve insulin sensitivity, while loss of helminth infections in developing and developed countries may contribute to the recent increase in the prevalence of type 2 diabetes.
Collapse
Affiliation(s)
- Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rodrigo MB, Schulz S, Krupp V, Ritter M, Wiszniewsky K, Arndts K, Tamadaho RSE, Endl E, Hoerauf A, Layland LE. Patency of Litomosoides sigmodontis infection depends on Toll-like receptor 4 whereas Toll-like receptor 2 signalling influences filarial-specific CD4(+) T-cell responses. Immunology 2016; 147:429-42. [PMID: 26714796 DOI: 10.1111/imm.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
BALB/c mice develop a patent state [release of microfilariae (Mf), the transmission life-stage, into the periphery] when exposed to the rodent filariae Litomosoides sigmodontis. Interestingly, only a portion of the infected mice become patent, which reflects the situation in human individuals infected with Wuchereria bancrofti. Since those individuals had differing filarial-specific profiles, this study compared differences in immune responses between Mf(+) and Mf(-) infected BALB/c mice. We demonstrate that cultures of total spleen or mediastinal lymph node cells from Mf(+) mice produce significantly more interleukin-5 (IL-5) to filarial antigens but equal levels of IL-10 when compared with Mf(-) mice. However, isolated CD4(+) T cells from Mf(+) mice produced significantly higher amounts of all measured cytokines, including IL-10, when compared with CD4(+) T-cell responses from Mf(-) mice. Since adaptive immune responses are influenced by triggering the innate immune system we further studied the immune profiles and parasitology in infected Toll-like receptor-2-deficient (TLR2(-/-)) and TLR4(-/-) BALB/c mice. Ninety-three per cent of L. sigmodontis-exposed TLR4(-/-) BALB/c mice became patent (Mf(+)) although worm numbers remained comparable to those in Mf(+) wild-type controls. Lack of TLR2 had no influence on patency outcome or worm burden but infected Mf(+) mice had significantly lower numbers of Foxp3(+) regulatory T cells and dampened peripheral immune responses. Interestingly, in vitro culturing of CD4(+) T cells from infected wild-type mice with granulocyte-macrophage colony-stimulating factor-derived TLR2(-/-) dendritic cells resulted in an overall diminished cytokine profile to filarial antigens. Hence, triggering TLR4 or TLR2 during chronic filarial infection has a significant impact on patency and efficient CD4(+) T-cell responses, respectively.
Collapse
Affiliation(s)
- Maria B Rodrigo
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Sandy Schulz
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Vanessa Krupp
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Katharina Wiszniewsky
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Kathrin Arndts
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Ruth S E Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Elmar Endl
- Institute for Molecular Medicine, University Hospital of Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| |
Collapse
|
33
|
Rana AK, Kushwaha S, Singh PK, Misra-Bhattacharya S. Immunological evaluation of an rsmD-like rRNA methyltransferase from Wolbachia endosymbiont of Brugia malayi. Comp Immunol Microbiol Infect Dis 2016; 44:41-7. [PMID: 26851594 DOI: 10.1016/j.cimid.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022]
Abstract
Wolbachia is a wonderful anti-filarial target with many of its enzymes and surface proteins (WSPs) representing potential drug targets and vaccine candidates. Here we report on the immunologic response of a drug target, rsmD-like rRNA methyltransferase from Wolbachia endosymbiont of Brugia malayi. The recombinant protein generated both humoral and cell-mediated response in BALB/c mice but compromised its immunity. The humoral response was transient and endured barely for six months in mice with or without B. Malayi challenge. In splenocytes of mice, the key humoral immunity mediating cytokine IL4 was lowered (IL4↓) while IFNγ, the major cytokine mediating cellular immunity was decreased along with upregulation of IL10 cytokine (IFNγ↓, IL10↑). The finding here indicates that the enzyme has low immunogenicity and triggers lowering of cytokine level in BALB/c mice. Interestingly the overall immune profile can be summed up with equivalent response generated by WSP or whole Wolbachia.
Collapse
Affiliation(s)
- Ajay Kumar Rana
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow, India
| | - Susheela Kushwaha
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow, India
| | - Prashant Kumar Singh
- Division of Parasitology, CSIR - Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
34
|
Abegunde AT, Ahuja RM, Okafor NJ. Doxycycline plus ivermectin versus ivermectin alone for treatment of patients with onchocerciasis. Cochrane Database Syst Rev 2016; 2016:CD011146. [PMID: 26771164 PMCID: PMC5029467 DOI: 10.1002/14651858.cd011146.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Onchocerciasis, also known as "river blindness," is a parasitic disease that is caused by infection from the filarial nematode (roundworm), Onchocerca volvulus. Nematodes are transmitted from person to person by blackflies of the Simulium genus, which usually breed in fast flowing streams and rivers. The disease is the second leading infectious cause of blindness in endemic areas.Ivermectin (a microfilaricide) is widely distributed to endemic populations for prevention and treatment of onchocerciasis. Doxycycline, an antibiotic, targets Wolbachia organisms that are crucial to the survival of adult onchocerca (macrofilaricide). Combined treatment with both drugs is believed to cause direct microfilarial death by ivermectin and indirect macrofilarial death by doxycycline. Long-term reduction in the numbers of microfilaria in the skin and eyes and in the numbers of adult worms in the body has the potential to reduce the transmission and occurrence of onchocercal eye disease. OBJECTIVES The primary aim of this review was to assess the effectiveness of doxycycline plus ivermectin versus ivermectin alone for prevention and treatment of onchocerciasis. The secondary aim was to assess the effectiveness of doxycycline plus ivermectin versus ivermectin alone for prevention and treatment of onchocercal ocular lesions in communities co-endemic for onchocerciasis and Loa loa (loiasis) infection. SEARCH METHODS We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (Issue 7, 2015), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2015), EMBASE (January 1980 to July 2015), PubMed (1948 to July 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to July 2015), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) (last searched 1 July 2014), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic search for trials. We last searched the electronic databases on 15 July 2015. SELECTION CRITERIA We included randomized controlled trials (RCTs) that had compared doxycycline plus ivermectin versus ivermectin alone. Participants with or without one or more characteristic signs of ocular onchocerciasis resided in communities where onchocerciasis was endemic. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and extracted data. We used standard methodological procedures as expected by Cochrane. MAIN RESULTS We identified three RCTs including a total of 466 participants with a diagnosis of onchocerciasis. All trials compared doxycycline plus ivermectin versus ivermectin alone. One study investigated improvement in visual impairment at six-month follow-up; the other two studies measured microfilarial loads in skin snips to assess sustained effects of treatment at follow-up of 21 months or longer. The studies were conducted at various centers across three countries (Cameroon, Ghana, and Liberia). We judged all studies to be at overall high risk of bias because of inadequate randomization and lack of masking (one study), missing data (two studies), and selective outcome reporting (three studies).Only one study measured visual outcomes. This study reported uncertainty about the difference in the proportion of participants with improvement in visual impairment at six-month follow-up for doxycycline plus ivermectin compared with ivermectin alone (risk ratio (RR) 1.06, 95% confidence interval (95% CI) 0.80 to 1.39; 240 participants; very low-quality evidence). No participant in either group showed improvement in optic atrophy, chorioretinitis, or sclerosing keratitis at six-month follow-up. More participants in the doxycycline plus ivermectin group than in the ivermectin alone group showed improvement in iridocyclitis (RR 1.24, 95% CI 0.69 to 2.22) and punctate keratitis (RR 1.43, 95% CI 1.02 to 2.00) at six-month follow-up; however, we graded these results as very low quality.Two studies reported that a six-week course of doxycycline may result in Wolbachia depletion and macrofilaricidal and sterilizing activities in female Onchocerca worms; however, no analysis was possible because data were missing and incomplete (graded evidence as very low quality). Adverse events were reported in 16 of 135 (12%) participants in one of these studies and included itching, headaches, body pains, and vertigo; no difference between treatment groups was reported for any adverse event. The second study reported that one (1.3%) participant in the doxycycline plus ivermectin group had bloody diarrhea after treatment was initiated. AUTHORS' CONCLUSIONS Available evidence on the effectiveness of doxycycline plus ivermectin compared with ivermectin alone in preventing and treating onchocerciasis is unclear. Limited evidence of very low quality from two studies indicates that a six-week course of doxycycline followed by ivermectin may result in more frequent macrofilaricidal and microfilaricidal activity and sterilization of female adult Onchocerca compared with ivermectin alone; however, effects on vision-related outcomes are uncertain. Future studies should consider the effectiveness of treatments in preventing visual acuity and visual field loss and their effects on anterior and posterior segment lesions, particularly chorioretinitis. These studies should report outcomes in a uniform and consistent manner at follow-up of three years or longer to allow detection of meaningful changes in vision-related outcomes.
Collapse
Affiliation(s)
- Ayokunle T Abegunde
- John H. Stroger, Jr. Hospital of Cook CountyDivision of Internal Medicine1900 W. Polk StreetChicagoILUSA60612
| | - Richard M Ahuja
- John H. Stroger, Jr. Hospital of Cook CountyDivision of Ophthalmology1900 W. Polk StreetChicagoILUSA60612
| | - Nkem J Okafor
- Kaplan Medical205 W. Randolph Street, Suite #200ChicagoILUSA60606
| | | |
Collapse
|
35
|
Taube MA, del Mar Cendra M, Elsahn A, Christodoulides M, Hossain P. Pattern recognition receptors in microbial keratitis. Eye (Lond) 2015; 29:1399-415. [PMID: 26160532 DOI: 10.1038/eye.2015.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/31/2015] [Indexed: 12/12/2022] Open
Abstract
Microbial keratitis is a significant cause of global visual impairment and blindness. Corneal infection can be caused by a wide variety of pathogens, each of which exhibits a range of mechanisms by which the immune system is activated. The complexity of the immune response to corneal infection is only now beginning to be elucidated. Crucial to the cornea's defences are the pattern-recognition receptors: Toll-like and Nod-like receptors and the subsequent activation of inflammatory pathways. These inflammatory pathways include the inflammasome and can lead to significant tissue destruction and corneal damage, with the potential for resultant blindness. Understanding the immune mechanisms behind this tissue destruction may enable improved identification of therapeutic targets to aid development of more specific therapies for reducing corneal damage in infectious keratitis. This review summarises current knowledge of pattern-recognition receptors and their downstream pathways in response to the major keratitis-causing organisms and alludes to potential therapeutic approaches that could alleviate corneal blindness.
Collapse
Affiliation(s)
- M-A Taube
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M del Mar Cendra
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Elsahn
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Christodoulides
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Hossain
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
36
|
Pathak M, Verma M, Srivastava M, Misra-Bhattacharya S. Wolbachia endosymbiont of Brugia malayi elicits a T helper type 17-mediated pro-inflammatory immune response through Wolbachia surface protein. Immunology 2015; 144:231-44. [PMID: 25059495 DOI: 10.1111/imm.12364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium of the filarial nematode Brugia malayi. The symbiotic relationship between Wolbachia and its filarial host is dependent on interactions between the proteins of both organisms. However, little is known about Wolbachia proteins that are involved in the inflammatory pathology of the host during lymphatic filariasis. In the present study, we cloned, expressed and purified Wolbachia surface protein (r-wsp) from Wolbachia and administered it to mice, either alone or in combination with infective larvae of B. malayi (Bm-L3) and monitored the developing immune response in infected animals. Our results show that spleens and mesenteric lymph nodes of mice immunized with either r-wsp or infected with Bm-L3 show increased percentages of CD4(+) T helper type 17 (Th17) cells and Th1 cytokines like interferon-γ and interleukin-2 (IL-2) along with decreased percentages of regulatory T cells, Th2 cytokines like IL-4 and IL-10 and transforming growth factor β (TGF-β) levels in culture supernatants of splenocytes. These observations were stronger in mice immunized with r-wsp alone. Interestingly, when mice were first immunized with r-wsp and subsequently infected with Bm-L3, percentages of CD4(+) Th17 cells and Th1 cytokines increased even further while that of regulatory T cells, Th2 cytokines and TGF-β levels decreased. These results for the first time show that r-wsp acts synergistically with Bm-L3 in promoting a pro-inflammatory response by increasing Th17 cells and at the same time diminishes host immunological tolerance by decreasing regulatory T cells and TGF-β secretion.
Collapse
Affiliation(s)
- Manisha Pathak
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow
| | | | | | | |
Collapse
|
37
|
Gondorf F, Berbudi A, Buerfent BC, Ajendra J, Bloemker D, Specht S, Schmidt D, Neumann AL, Layland LE, Hoerauf A, Hübner MP. Chronic filarial infection provides protection against bacterial sepsis by functionally reprogramming macrophages. PLoS Pathog 2015; 11:e1004616. [PMID: 25611587 PMCID: PMC4303312 DOI: 10.1371/journal.ppat.1004616] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control. As the human immune system evolved in the presence of helminth infections, it is postulated that improved hygiene and subsequent loss of helminth infections and their immunomodulatory functions contributed to the sharp increase of autoimmune diseases and allergies over the last decades. Accordingly, helminth-induced anti-inflammatory, regulatory immune responses ameliorate allergy and autoimmune diseases and are likely to impact other immunological disorders including sepsis. Sepsis is an exacerbated, systemic inflammatory disease that occurs when pathogens cannot be locally confined and spread via the blood stream. Thus, efficient sepsis therapies should reduce excessive inflammation without impairing protective immune responses. In the present study we demonstrate that chronic filarial infection modulates macrophages to a less pro-inflammatory phenotype with improved phagocytic capacity. This immunomodulation reduces sepsis-induced inflammation and hypothermia and clears bacteria more efficiently thus improving sepsis survival. Moreover, we found that Wolbachia, the endosymbiotic bacteria of filariae, play a crucial role in triggering the correct macrophage response via TLR2. Thus, our observations suggest that helminths and helminth-derived antigens may not only present new treatment options for allergies and autoimmune diseases, but may also allow treatment of sepsis caused inflammation without impairing bacterial control.
Collapse
Affiliation(s)
- Fabian Gondorf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Benedikt C. Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Dominique Bloemker
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - David Schmidt
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Laura E. Layland
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
38
|
Chronic Filarial Infection Provides Protection against Bacterial Sepsis by Functionally Reprogramming Macrophages. PLoS Pathog 2015. [DOI: 10.1371/journal.ppat.1004616 order by 14300--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Stack J, Doyle SL, Connolly DJ, Reinert LS, O'Keeffe KM, McLoughlin RM, Paludan SR, Bowie AG. TRAM is required for TLR2 endosomal signaling to type I IFN induction. THE JOURNAL OF IMMUNOLOGY 2014; 193:6090-102. [PMID: 25385819 DOI: 10.4049/jimmunol.1401605] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection of microbes by TLRs on the plasma membrane leads to the induction of proinflammatory cytokines such as TNF-α, via activation of NF-κB. Alternatively, activation of endosomal TLRs leads to the induction of type I IFNs via IFN regulatory factors (IRFs). TLR4 signaling from the plasma membrane to NF-κB via the Toll/IL-1R (TIR) adaptor protein MyD88 requires the TIR sorting adaptor Mal, whereas endosomal TLR4 signaling to IRF3 via the TIR domain-containing adaptor-inducing IFN-β (TRIF) requires the TRIF-related adaptor molecule (TRAM). Similar to TLR4 homodimers, TLR2 heterodimers can also induce both proinflammatory cytokines and type I IFNs. TLR2 plasma membrane signaling to NF-κB is known to require MyD88 and Mal, whereas endosomal IRF activation by TLR2 requires MyD88. However, it was unclear whether TLR2 requires a sorting adaptor for endosomal signaling, like TLR4 does. In this study, we show that TLR2-dependent IRF7 activation at the endosome is both Mal- and TRAM-dependent, and that TRAM is required for the TLR2-dependent movement of MyD88 to endosomes following ligand engagement. TRAM interacted with both TLR2 and MyD88, suggesting that TRAM can act as a bridging adapter between these two molecules. Furthermore, infection of macrophages lacking TRAM with herpes viruses or the bacterium Staphylococcus aureus led to impaired induction of type I IFN, indicating a role for TRAM in TLR2-dependent responses to human pathogens. Our work reveals that TRAM acts as a sorting adaptor not only for TLR4, but also for TLR2, to facilitate signaling to IRF7 at the endosome, which explains how TLR2 is capable of causing type I IFN induction.
Collapse
Affiliation(s)
- Julianne Stack
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah L Doyle
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland; The National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; and
| | - Dympna J Connolly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kate M O'Keeffe
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| |
Collapse
|
40
|
Voronin D, Guimarães AF, Molyneux GR, Johnston KL, Ford L, Taylor MJ. Wolbachia lipoproteins: abundance, localisation and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus. Parasit Vectors 2014; 7:462. [PMID: 25287420 PMCID: PMC4197220 DOI: 10.1186/s13071-014-0462-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoproteins are the major agonists of Wolbachia-dependent inflammatory pathogenesis in filariasis and a validated target for drug discovery. Here we characterise the abundance, localisation and serology of the Wolbachia lipoproteins: Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6. METHODS We used proteomics to confirm lipoprotein presence and relative abundance; fractionation, immunoblotting and confocal and electron immuno-microscopy for localisation and ELISA for serological analysis. RESULTS Proteomic analysis of Brugia malayi adult female protein extracts confirmed the presence of two lipoproteins, previously predicted through bioinformatics: Wolbachia peptidoglycan associated lipoprotein (wBmPAL) and the Type IV Secretion System component, VirB6 (wBmVirB6). wBmPAL was among the most abundant Wolbachia proteins present in an extract of adult female worms with wBmVirB6 only detected at a much lower abundance. This differential abundance was reflected in the immunogold-labelling, which showed wBmPAL localised at numerous sites within the bacterial membranes, whereas wBmVirB6 was present as a single cluster on each bacterial cell and also located within the bacterial membranes. Immunoblotting of fractionated extracts confirmed the localisation of wBmPAL to membranes and its absence from cytosolic fractions of C6/36 mosquito cells infected with wAlbB. In whole worm mounts, antibody labelling of both lipoproteins were associated with Wolbachia. Serological analysis showed that both proteins were immunogenic and raised antibody responses in the majority of individuals infected with Wuchereria bancrofti. CONCLUSIONS Two Wolbachia lipoproteins, wBmPAL and wBmVirB6, are present in extracts of Brugia malayi with wBmPAL among the most abundant of Wolbachia proteins. Both lipoproteins localised to bacterial membranes with wBmVirB6 present as a single cluster suggesting a single Type IV Secretory System on each Wolbachia cell.
Collapse
Affiliation(s)
- Denis Voronin
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Ana F Guimarães
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Gemma R Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Kelly L Johnston
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
41
|
O'Regan NL, Steinfelder S, Venugopal G, Rao GB, Lucius R, Srikantam A, Hartmann S. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses. PLoS Negl Trop Dis 2014; 8:e3206. [PMID: 25275395 PMCID: PMC4183501 DOI: 10.1371/journal.pntd.0003206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. AIM To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. METHODOLOGY AND PRINCIPAL FINDINGS Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. CONCLUSIONS AND SIGNIFICANCE Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in an IL-10-dependent manner. Together with suppression of macrophage innate responses, this may contribute to the overall down-regulation of immune responses observed in asymptomatically infected patients.
Collapse
Affiliation(s)
- Noëlle Louise O'Regan
- Freie Universität Berlin, Center for Infection Medicine, Institute of Immunology, Berlin, Germany
| | - Svenja Steinfelder
- Freie Universität Berlin, Center for Infection Medicine, Institute of Immunology, Berlin, Germany
| | - Gopinath Venugopal
- Freie Universität Berlin, Center for Infection Medicine, Institute of Immunology, Berlin, Germany
| | - Gopala B. Rao
- Blue Peter Public Health and Research Centre-LEPRA Society, Hyderabad, Andhra Pradesh, India
| | - Richard Lucius
- Humboldt Universität Berlin, Department of Biology, Molecular Parasitology, Berlin, Germany
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre-LEPRA Society, Hyderabad, Andhra Pradesh, India
| | - Susanne Hartmann
- Freie Universität Berlin, Center for Infection Medicine, Institute of Immunology, Berlin, Germany
- * E-mail:
| |
Collapse
|
42
|
Gentil K, Lentz CS, Rai R, Muhsin M, Kamath AD, Mutluer O, Specht S, Hübner MP, Hoerauf A. Eotaxin-1 is involved in parasite clearance during chronic filarial infection. Parasite Immunol 2014; 36:60-77. [PMID: 24112106 DOI: 10.1111/pim.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/19/2013] [Indexed: 01/10/2023]
Abstract
Eosinophil migration as key feature of helminth infection is increased during infection with filarial nematodes. In a mouse model of filariasis, we investigated the role of the eosinophil-attracting chemokine Eotaxin-1 on disease outcome. BALB/c and Eotaxin-1(-/-) mice were infected with the rodent filaria Litomosoides sigmodontis, and parasitic parameters, cellular migration to the site of infection, and cellular responsiveness were investigated. We found increased parasite survival but unaffected eosinophil migration to the site of infection in Eotaxin-1(-/-) mice. Expression of CD80 and CD86 was reduced on eosinophils from Eotaxin-1(-/-) mice after in vitro TLR2 stimulation and exposure to filarial antigen, respectively, suggesting a potential reduced activation state of eosinophils in Eotaxin-1 deficient mice. We further demonstrated that macrophages from Eotaxin-1(-/-) mice produce decreased amounts of IL-6 in vitro, a cytokine found to be associated with parasite containment, suggesting possible mechanisms by which Eotaxin-1 regulates activation of inflammatory cells and thus parasite survival.
Collapse
Affiliation(s)
- K Gentil
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Janssen E, Ozcan E, Liadaki K, Jabara HH, Manis J, Ullas S, Akira S, Fitzgerald KA, Golenbock DT, Geha RS. TRIF signaling is essential for TLR4-driven IgE class switching. THE JOURNAL OF IMMUNOLOGY 2014; 192:2651-8. [PMID: 24532577 DOI: 10.4049/jimmunol.1300909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TLR4 ligand LPS causes mouse B cells to undergo IgE and IgG1 isotype switching in the presence of IL-4. TLR4 activates two signaling pathways mediated by the adaptor molecules MyD88 and Toll/IL-IR domain-containing adapter-inducing IFN-β (TRIF)-related adaptor molecule (TRAM), which recruits TRIF. Following stimulation with LPS plus IL-4, Tram(-/-) and Trif(-/-) B cells completely failed to express Cε germline transcripts (GLT) and secrete IgE. In contrast, Myd88(-/-) B cells had normal expression of Cε GLT but reduced IgE secretion in response to LPS plus IL-4. Following LPS plus IL-4 stimulation, Cγ1 GLT expression was modestly reduced in Tram(-/-) and Trif(-/-) B cells, whereas Aicda expression and IgG1 secretion were reduced in Tram(-/-), Trif(-/-), and Myd88(-/-) B cells. B cells from all strains secreted normal amounts of IgE and IgG1 in response to anti-CD40 plus IL-4. Following stimulation with LPS plus IL-4, Trif(-/-) B cells failed to sustain NF-κB p65 nuclear translocation beyond 3 h and had reduced binding of p65 to the Iε promoter. Addition of the NF-κB inhibitor, JSH-23, to wild-type B cells 15 h after LPS plus IL-4 stimulation selectively blocked Cε GLT expression and IgE secretion but had little effect on Cγ1 GLT expression and IgG secretion. These results indicate that sustained activation of NF-κB driven by TRIF is essential for LPS plus IL-4-driven activation of the Cε locus and class switching to IgE.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Arndts K, Specht S, Debrah AY, Tamarozzi F, Klarmann Schulz U, Mand S, Batsa L, Kwarteng A, Taylor M, Adjei O, Martin C, Layland LE, Hoerauf A. Immunoepidemiological profiling of onchocerciasis patients reveals associations with microfilaria loads and ivermectin intake on both individual and community levels. PLoS Negl Trop Dis 2014; 8:e2679. [PMID: 24587458 PMCID: PMC3930501 DOI: 10.1371/journal.pntd.0002679] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/19/2013] [Indexed: 11/19/2022] Open
Abstract
Mass drug administration (MDA) programmes against Onchocerca volvulus use ivermectin (IVM) which targets microfilariae (MF), the worm's offspring. Most infected individuals are hyporesponsive and present regulated immune responses despite high parasite burden. Recently, with MDA programmes, the existence of amicrofilaridermic (a-MF) individuals has become apparent but little is known about their immune responses. Within this immunoepidemiological study, we compared parasitology, pathology and immune profiles in infection-free volunteers and infected individuals that were MF(+) or a-MF. The latter stemmed from villages in either Central or Ashanti regions of Ghana which, at the time of the study, had received up to eight or only one round of MDA respectively. Interestingly, a-MF patients had fewer nodules and decreased IL-10 responses to all tested stimuli. On the other hand, this patient group displayed contrary IL-5 profiles following in vitro stimulation or in plasma and the dampened response in the latter correlated to reduced eosinophils and associated factors but elevated neutrophils. Furthermore, multivariable regression analysis with covariates MF, IVM or the region (Central vs. Ashanti) revealed that immune responses were associated with different covariates: whereas O. volvulus-specific IL-5 responses were primarily associated with MF, IL-10 secretion had a negative correlation with times of individual IVM therapy (IIT). All plasma parameters (eosinophil cationic protein, IL-5, eosinophils and neutrophils) were highly associated with MF. With regards to IL-17 secretion, although no differences were observed between the groups to filarial-specific or bystander stimuli, these responses were highly associated with the region. These data indicate that immune responses are affected by both, IIT and the rounds of IVM MDA within the community. Consequently, it appears that a lowered infection pressure due to IVM MDA may affect the immune profile of community members even if they have not regularly participated in the programmes.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Alexander Y. Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Faculty of Allied Health Sciences and School of Medical Sciences of Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francesca Tamarozzi
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Ute Klarmann Schulz
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - Sabine Mand
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Linda Batsa
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Alexander Kwarteng
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Mark Taylor
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Ohene Adjei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Faculty of Allied Health Sciences and School of Medical Sciences of Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS, Museum National d'Histoire Naturelle, Paris, France
| | - Laura E. Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
45
|
Harberts E, Fishelevich R, Liu J, Atamas SP, Gaspari AA. MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation. Innate Immun 2013; 20:529-39. [PMID: 24048771 DOI: 10.1177/1753425913501706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022] Open
Abstract
UV irradiation-induced cellular damage is classically associated with apoptosis and is known to result in systemic immunosuppression. How the decision to undergo apoptosis is made following UV is not fully understood. We hypothesize that a central mediator of TLR signaling, MyD88, determines cell fate after UV exposure. Survival after UV of immortalized bone marrow-derived macrophages (BMDM) and ex vivo peritoneal macrophages (PM) from MyD88 germline-deficient mice (MyD88(-/-)) was significantly higher than wild type (WT) PM. UV-induced apoptosis (DNA laddering) in PM and epidermis of MyD88(-/-) animals versus WT was decreased. In MyD88(-/-) PM, decreased cleavage of caspase 3, as well as pro-necroptotic protein, RIP1, and a significant increase in transcription and release of pro-inflammatory TNF-α, suggest that necroptosis, rather than apoptosis, has been initiated. In vivo studies confirm this hypothesis after UV, showing low apoptosis by TUNEL and inflammation in MyD88(-/-) skin sections. Considering that MyD88 participates in many TLR pathways, BMDM from TLR2(-/-), TLR4(-/-) and WT mice were compared for evidence of UV-induced apoptosis. Only TLR4(-/-) BMDM and PM had a similar phenotype to MyD88(-/-), suggesting that the TLR4-MyD88 axis importantly contributes to cell fate decision. Our study describes a new cellular consequence of MyD88 signaling after UV, and may provide rationale for therapies to mitigate UV-induced immunosuppression.
Collapse
Affiliation(s)
- Erin Harberts
- Department of Molecular Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Rita Fishelevich
- Department of Dermatology, University of Maryland, Baltimore, MD, USA
| | - Juan Liu
- Department of Dermatology, University of Maryland, Baltimore, MD, USA
| | - Sergei P Atamas
- Department of Medicine, University of Maryland, Baltimore, MD, USA VA Medical Center, Baltimore, MD, USA
| | - Anthony A Gaspari
- Department of Molecular Microbiology and Immunology, University of Maryland, Baltimore, MD, USA Department of Dermatology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
46
|
Bouchery T, Lefoulon E, Karadjian G, Nieguitsila A, Martin C. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis. Clin Microbiol Infect 2013; 19:131-40. [PMID: 23398406 DOI: 10.1111/1469-0691.12069] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 01/25/2023]
Abstract
Symbiotic associations between eukaryotes and microorganisms are frequently observed in nature, and range along the continuum between parasitism and mutualism. The genus Wolbachia contains well-known intracellular bacteria of arthropods that induce several reproductive phenotypes that benefit the transmission of the bacteria. Interestingly, Wolbachia bacteria have been found in the Onchocercidae, a family of filarial nematodes, including species that cause human filarial diseases, e.g. lymphatic filariasis and onchocerciasis. The endosymbiont is thought to be mutualistic in the Onchocercidae, and to provide essential metabolites to the filariae. Currently, Wolbachia bacteria are targets of antibiotic therapy with tetracyclines, which have profound effects on the development, viability and fertility of filarial parasites. This overview article presents the Onchocercidae and Wolbachia, and then discusses the origin and the nature of the symbiosis. It highlights the contribution of Wolbachia to the survival of the filariae and to the development of pathology. Finally, the infection control implications for filariases are debated. Potential directions for future research are also discussed.
Collapse
Affiliation(s)
- T Bouchery
- UMR 7245, MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Bonsignore LA, Anderson JR, Lee Z, Goldberg VM, Greenfield EM. Adherent lipopolysaccharide inhibits the osseointegration of orthopedic implants by impairing osteoblast differentiation. Bone 2013; 52:93-101. [PMID: 22995462 PMCID: PMC3513552 DOI: 10.1016/j.bone.2012.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Osseointegration is the process by which an orthopedic implant makes direct bone-to-implant contact and is crucial for the long-term function of the implant. Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopedic implants after sterilization and impair osseointegration. For example, specific lots of implants that were associated with impaired osseointegration and high failure rates were discovered to have contaminants including bacterial debris. Therefore, the goals of this study were to determine if bacterial debris exists on sterile orthopedic implants and if adherent bacterial debris inhibits the osseointegration of orthopedic implants. We found that debris containing lipopolysaccharide (LPS) from Gram-negative bacteria exists on both sterile craniofacial implants and wrist implants. Levels of bacterial debris vary not only between different lots of implants but within an individual lot. Using our murine model of osseointegration, we found that ultrapure LPS adherent to the implants inhibited bone-to-implant contact and biomechanical pullout measures. Analysis of osseointegration in knock-out mice demonstrated that adherent LPS inhibited osseointegration by signaling through its primary receptor, Toll-like receptor 4, and not by signaling through Toll-like receptor 2. Ultrapure LPS adherent to titanium alloy discs had no detectable effect on early stages of MC3T3-E1 osteogenesis in vitro such as attachment, spreading or growth. However, later stages of osteogenic differentiation and mineralization were inhibited by adherent LPS. Thus, LPS may inhibit osseointegration in part through cell autonomous effects on osteoblasts. These results highlight bacterial debris as a type of surface contaminant that can impair the osseointegration of orthopedic implants.
Collapse
Affiliation(s)
- Lindsay A Bonsignore
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
48
|
Immunopathogenesis of lymphatic filarial disease. Semin Immunopathol 2012; 34:847-61. [PMID: 23053393 DOI: 10.1007/s00281-012-0346-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/13/2012] [Indexed: 01/06/2023]
Abstract
Although two thirds of the 120 million people infected with lymph-dwelling filarial parasites have subclinical infections, ~40 million have lymphedema and/or other pathologic manifestations including hydroceles (and other forms of urogenital disease), episodic adenolymphangitis, tropical pulmonary eosinophilia, lymphedema, and (in its most severe form) elephantiasis. Adult filarial worms reside in the lymphatics and lymph nodes and induce changes that result in dilatation of lymphatics and thickening of the lymphatic vessel walls. Progressive lymphatic damage and pathology results from the summation of the effect of tissue alterations induced by both living and nonliving adult parasites, the host inflammatory response to the parasites and their secreted antigens, the host inflammatory response to the endosymbiont Wolbachia, and those seen as a consequence of secondary bacterial or fungal infections. Inflammatory damage induced by filarial parasites appears to be multifactorial, with endogenous parasite products, Wolbachia, and host immunity all playing important roles. This review will initially examine the prototypical immune responses engendered by the parasite and delineate the regulatory mechanisms elicited to prevent immune-mediated pathology. This will be followed by a discussion of the proposed mechanisms underlying pathogenesis, with the central theme being that pathogenesis is a two-step process-the first initiated by the parasite and host innate immune system and the second propagated mainly by the host's adaptive immune system and by other factors (including secondary infections).
Collapse
|
49
|
Serbus LR, Landmann F, Bray WM, White PM, Ruybal J, Lokey RS, Debec A, Sullivan W. A cell-based screen reveals that the albendazole metabolite, albendazole sulfone, targets Wolbachia. PLoS Pathog 2012; 8:e1002922. [PMID: 23028321 PMCID: PMC3447747 DOI: 10.1371/journal.ppat.1002922] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022] Open
Abstract
Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.
Collapse
Affiliation(s)
- Laura R Serbus
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND It is believed that ivermectin (a microfilaricide) could prevent blindness due to onchocerciasis. However, when given to everyone in communities where onchocerciasis is common, the effects of ivermectin on lesions affecting the eye are uncertain and data on whether the drug prevents visual loss are unclear. OBJECTIVES The aim of this review was to assess the effectiveness of ivermectin in preventing visual impairment and visual field loss in onchocercal eye disease. The secondary aim was to assess the effects of ivermectin on lesions affecting the eye in onchocerciasis. SEARCH METHODS We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 3), MEDLINE (January 1950 to April 2012), EMBASE (January 1980 to April 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 2 April 2012. SELECTION CRITERIA We included randomised controlled trials with at least one year of follow-up comparing ivermectin with placebo or no treatment. Participants in the trials were people normally resident in endemic onchocercal communities with or without one or more characteristic signs of ocular onchocerciasis. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed trial quality. We contacted study authors for additional information. As trials varied in design and setting, we were unable to perform a meta-analysis. MAIN RESULTS The review included four trials: two small studies (n = 398) in which people with onchocercal infection were given one dose of ivermectin or placebo and followed up for one year; and two larger community-based studies (n = 4941) whereby all individuals in selected communities were treated every six or 12 months with ivermectin or placebo, whether or not they were infected, and followed for two to three years. The studies provide evidence that treating people who have onchocerciasis with ivermectin reduces the number of microfilariae in their skin and eye(s) and reduces the number of punctate opacities. There was weaker evidence that ivermectin reduced the risk of chorioretinitis. The studies were too small and of too short a duration to provide evidence for an effect on sclerosing keratitis, iridocyclitis, optic nerve disease or visual loss. One community-based study in communities mesoendemic for the savannah strain of O.volvulus provided evidence that annual mass treatment with ivermectin reduces the risk of new cases of optic nerve disease and visual field loss. The other community-based study of mass biannual treatment of ivermectin in communities affected by the forest strain of O.volvulus demonstrated reductions in microfilarial load, punctate keratitis and iridocyclitis but not sclerosing keratitis, chorioretinitis, optic atrophy or visual impairment. The study was underpowered to estimate the effect of ivermectin on visual impairment and other less frequent clinical signs. The studies included in this review reported some adverse effects, in particular an increased risk of postural hypotension in people treated with ivermectin. AUTHORS' CONCLUSIONS The lack of evidence for prevention of visual impairment and blindness should not be interpreted to mean that ivermectin is not effective, however, clearly this is a key question that remains unanswered. The main evidence for a protective effect of mass treatment with ivermectin on visual field loss and optic nerve disease comes from communities mesoendemic for the savannah strain of O.volvulus. Whether these findings can be applied to communities with different endemicity and affected by the forest strain is unclear. Serious adverse effects were rarely reported. None of the studies, however, were conducted in areas where people are infected with Loa loa (loiasis).
Collapse
|