1
|
McPeek MK, Gomez JC, Martin JR, Iannone MA, Dang H, Doerschuk CM. Leukocyte kinetics and bacterial clearance during Streptococcus pneumoniae pneumonia and contributions of ICAM-1. Am J Physiol Lung Cell Mol Physiol 2025; 328:L41-L59. [PMID: 39437756 PMCID: PMC11905799 DOI: 10.1152/ajplung.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia. Intercellular adhesion molecule-1 (ICAM-1) is an adhesion molecule that is highly expressed on the pulmonary capillary endothelium, alveolar epithelium, and other cell types within the lung. ICAM-1 plays important roles in leukocyte adhesion, migration, and motility. To determine the contributions of ICAM-1 to bacterial clearance and leukocyte kinetics during pneumonia, mice were inoculated with S. pneumoniae and evaluated 1, 4, and 7 days later. Our results show that Icam1-/- mice have a greater number of viable bacteria within the lung at each time point. The impaired clearance observed in Icam1-/- mice was not due to an impediment in leukocyte recruitment. In fact, Icam1-/- mice had a greater number of neutrophils and recruited inflammatory macrophages in the lung tissue and the alveoli/airways on day 7. In contrast, fewer alveolar macrophages were present in the bronchoalveolar lavage (BAL) of Icam1-/- mice. The loss of body weight and the concentrations of inflammatory mediators in the BAL were also significantly greater in Icam1-/- mice. Mechanistic studies to understand the defect in clearance show that neutrophils and macrophage subpopulations had no defect in phagocytosis or acidification of phagosomes. RNA sequencing reveals many differences in gene expression but no suggestion of a defect in phagocytosis or killing. Thus, ICAM-1 is necessary for the clearance of S. pneumoniae and for the resolution of pneumonia but is not required for the recruitment of neutrophils or inflammatory macrophages into the pneumonic lung parenchyma or the alveoli/airways during S. pneumoniae-induced pneumonia.NEW & NOTEWORTHY Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Our study examined ICAM-1, an adhesion molecule that is expressed on most cell types and plays important roles in leukocyte adhesion, migration, and motility. The data demonstrate that ICAM-1 is necessary for the clearance of S. pneumoniae and for the resolution of pneumonia but is not required for the recruitment of neutrophils or inflammatory macrophages into the pneumonic lung parenchyma or the alveoli/airways.
Collapse
MESH Headings
- Animals
- Intercellular Adhesion Molecule-1/metabolism
- Streptococcus pneumoniae/immunology
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/metabolism
- Pneumonia, Pneumococcal/pathology
- Mice
- Neutrophils/immunology
- Neutrophils/metabolism
- Mice, Inbred C57BL
- Lung/microbiology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Leukocytes/metabolism
- Leukocytes/immunology
- Leukocytes/microbiology
- Mice, Knockout
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/pathology
- Bronchoalveolar Lavage Fluid/immunology
- Bronchoalveolar Lavage Fluid/microbiology
- Kinetics
Collapse
Affiliation(s)
- Matthew K McPeek
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - John C Gomez
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jessica R Martin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Marie Anne Iannone
- Mass Cytometry Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
2
|
Cacho-Navas C, López-Pujante C, Reglero-Real N, Colás-Algora N, Cuervo A, Conesa JJ, Barroso S, de Rivas G, Ciordia S, Paradela A, D'Agostino G, Manzo C, Feito J, Andrés G, Molina-Jiménez F, Majano P, Correas I, Carazo JM, Nourshargh S, Huch M, Millán J. ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin. eLife 2024; 12:RP89261. [PMID: 38597186 PMCID: PMC11006420 DOI: 10.7554/elife.89261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.
Collapse
Affiliation(s)
| | | | - Natalia Reglero-Real
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | | | - Ana Cuervo
- Centro Nacional de Biotecnologia (CSIC)MadridSpain
| | | | - Susana Barroso
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Gema de Rivas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | | | | | - Carlo Manzo
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic – Universitat Central de Catalunya (UVic-UCC)VicSpain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de SalamancaSalamancaSpain
| | - Germán Andrés
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Francisca Molina-Jiménez
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa)MadridSpain
| | - Pedro Majano
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Department of Cellular Biology, Universidad Complutense de MadridMadridSpain
| | - Isabel Correas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jaime Millán
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| |
Collapse
|
3
|
Rodrigues Barreto I, Monteiro A, Paiva A, Fonseca AM. Relapsing-remitting multiple sclerosis patients exhibit differential natural killer functional subpopulations. Acta Neurol Belg 2024; 124:603-610. [PMID: 38441808 DOI: 10.1007/s13760-024-02488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) and has been known as T-cell mediated. However, the contribution of multiple cell types, notably natural killer (NK) cells, has also been reported. AIM To quantify circulating total NK cells and its subpopulations, CD56 dim and bright, and to characterize the functional phenotype and IFN-γ and TNF-α production in relapsing-remitting patients treated with IFN-β and in apparently healthy controls. RESULTS CD56bright NK cells were found to be the least represented subpopulation. In relapse patients, the frequencies of IFN-γ-producing NK cells and their subpopulations were significantly decreased. In remission patients, CD56dim NK cells expressed high levels of HLA-DR and CD54. CONCLUSION These results suggest that remission RRMS patients, although in an inactive stage of MS, present circulating NK cells with an activation phenotype, supporting the idea that NK cells may be relevant mediators in the MS pathophysiology.
Collapse
Affiliation(s)
- Inês Rodrigues Barreto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Andreia Monteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Clinical Pathology Service, Centro Hospitalar Universitário da Cova da Beira (CHUCB), Covilhã, Portugal
| | - Artur Paiva
- Cytometry Operational Management Unit, Clinical Pathology Service, CHUC, Coimbra, Portugal
- iCBR - Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
- ESTESC-Coimbra Health School, Coimbra, Portugal
| | - Ana Mafalda Fonseca
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
4
|
Goldberg Y, Segal S, Hamdi L, Nabat H, Fainstein N, Mediouni E, Asis Y, Theotokis P, Salamotas I, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-intensity interval training attenuates development of autoimmune encephalomyelitis solely by systemic immunomodulation. Sci Rep 2023; 13:16513. [PMID: 37783693 PMCID: PMC10545672 DOI: 10.1038/s41598-023-43534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The impact of high-intensity interval training (HIIT) on the central nervous system (CNS) in autoimmune neuroinflammation is not known. The aim of this study was to determine the direct effects of HIIT on the CNS and development of experimental autoimmune encephalomyelitis (EAE). Healthy mice were subjected to HIIT by treadmill running and the proteolipid protein (PLP) transfer EAE model was utilized. To examine neuroprotection, PLP-reactive lymph-node cells (LNCs) were transferred to HIIT and sedentary (SED) mice. To examine immunomodulation, PLP-reactive LNCs from HIIT and SED donor mice were transferred to naïve recipients and analyzed in vitro. HIIT in recipient mice did not affect the development of EAE following exposure to PLP-reactive LNCs. HIIT mice exhibited enhanced migration of systemic autoimmune cells into the CNS and increased demyelination. In contrast, EAE severity in recipient mice injected with PLP-reactive LNCs from HIIT donor mice was significantly diminished. The latter positive effect was associated with decreased migration of autoimmune cells into the CNS and inhibition of very late antigen (VLA)-4 expression in LNCs. Thus, the beneficial effect of HIIT on EAE development is attributed solely to systemic immunomodulatory effects, likely because of systemic inhibition of autoreactive cell migration and reduced VLA-4 integrin expression.
Collapse
Affiliation(s)
- Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Nina Fainstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Paschalis Theotokis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Ilias Salamotas
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
5
|
Hou L, Yuki K. CD11a regulates hematopoietic stem and progenitor cells. Front Immunol 2023; 14:1219953. [PMID: 37781399 PMCID: PMC10537941 DOI: 10.3389/fimmu.2023.1219953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Integrin αLβ2 (CD11a/CD18, CD11a) is a critical leukocyte adhesion molecule in leukocyte arrest and immunological synapse formation. However, its role in the bone marrow has not been investigated in depth. Here we showed that CD11a was expressed on all subsets of hematopoietic stem and progenitor cells (HPSCs). CD11a deficiency enhanced HSPCs activity under lipopolysaccharide (LPS) stimulation as demonstrated by a higher HSPC cell count along with an increase in cell proliferation. However, our mixed chimera experiment did not support that this phenotype was driven in a cell-intrinsic manner. Rather we found that the production of IL-27, a major cytokine that drives HSPC proliferation, was significantly upregulated both in vivo and in vitro. This adds a novel role of CD11a biology.
Collapse
Affiliation(s)
- Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| |
Collapse
|
6
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
7
|
Elkhodiry AA, Zamzam DA, El Tayebi HM. MicroRNA‑155 modulation of CD8 + T‑cell activity personalizes response to disease‑modifying therapies of patients with relapsing‑remitting multiple sclerosis. MEDICINE INTERNATIONAL 2023; 3:20. [PMID: 37032715 PMCID: PMC10080195 DOI: 10.3892/mi.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/02/2023] [Indexed: 04/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease where activated immune cells can attack oligodendrocytes causing damage to the myelin sheath. Several molecular mechanisms are responsible for the auto-activation of immune cells such as RNA interference (RNAi) through microRNAs (miRNAs or miRs). In the present study, the role of miR-155 in regulating CD8+ T-cell activity in patients with relapsing-remitting multiple sclerosis (RRMS) was investigated, in terms of its migratory functions with regard to intracellular adhesion molecule-1 (ICAM1) and integrin subunit β2 (ITGB2), and its cytotoxic proteins, perforin and granzyme B. Gene expression of miR-155, ICAM1, ITGB2, perforin and granzyme B was evaluated following epigenetic modulations using reverse transcription-quantitative polymerase chain reaction in CD8+ T-cells isolated from blood samples of patients with RRMS and compared to healthy controls. The ectopic expression of miR-155 resulted in a persistent downregulation in all genes of interest related to CD8+ T-cell activation that were positively correlated with the Expanded Disability Status Scale of patients. The present study revealed the interplay between miR-155, ICAM1, and ITGB2, shedding light on their beneficial use as possible therapeutic regulators and diagnostic biomarkers of disease. Moreover, epigenetic modulations enhancing the efficacy of disease-modifying therapies (DMTs) may be employed as personalized therapy, to decrease the side effects of DMTs and improve the outcomes of patients.
Collapse
Affiliation(s)
- Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina A. Zamzam
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
8
|
Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, Asis Y, Touloumi O, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol 2022; 9:1792-1806. [PMID: 36217574 DOI: 10.1002/acn3.51677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The mechanisms by which exercise training (ET) elicits beneficial effects on the systemic immune system and the central nervous system (CNS) in autoimmune neuroinflammation are not fully understood. OBJECTIVES To investigate (1) the systemic effects of high-intensity continuous training (HICT) on the migratory potential of autoimmune cells; (2) the direct effects of HICT on blood-brain-barrier (BBB) properties. METHODS Healthy mice were subjected to high-intensity continuous training (HICT) by treadmill running. The proteolipid protein (PLP) transfer EAE model was utilized to examine the immunomodulatory effects of training, where PLP-reactive lymph-node cells (LNCs) from HICT and sedentary donor mice were analyzed in vitro and transferred to naïve recipients that developed EAE. To examine neuroprotection, encephalitogenic LNCs from donor mice were transferred into HICT or sedentary recipient mice and the BBB was analyzed. RESULTS Transfer of PLP-reactive LNCs obtained from HICT donor mice attenuated EAE severity and inflammation in recipient mice. HICT markedly inhibited very late antigen (VLA)-4 and lymphocyte function-associated antigen (LFA)-1 expression in LNCs. Transfer of encephalitogenic LNCs into HICT recipients resulted in milder EAE and attenuated CNS inflammation. HICT reduced BBB permeability and the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in CNS blood vessels. INTERPRETATION HICT attenuates EAE development by both immunomodulatory and neuroprotective effects. The reduction in destructive CNS inflammation in EAE is attributed to systemic inhibition of autoreactive cell migratory potential, as well as reduction in BBB permeability, which are associated with reduced VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions.
Collapse
Affiliation(s)
- Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | | | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
9
|
Lemaître F, Farzam-Kia N, Carmena Moratalla A, Carpentier Solorio Y, Clenet ML, Tastet O, Cleret-Buhot A, Guimond JV, Haddad E, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. IL-27 shapes the immune properties of human astrocytes and their impact on encountered human T lymphocytes. J Neuroinflammation 2022; 19:212. [PMID: 36050707 PMCID: PMC9434874 DOI: 10.1186/s12974-022-02572-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin-27 (IL-27) can trigger both pro- and anti-inflammatory responses. This cytokine is elevated in the central nervous system (CNS) of multiple sclerosis (MS) patients, but how it influences neuroinflammatory processes remains unclear. As astrocytes express the receptor for IL-27, we sought to determine how these glial cells respond to this cytokine and whether such exposure alters their interactions with infiltrating activated T lymphocytes. To determine whether inflammation shapes the impact of IL-27, we compared the effects of this cytokine in non-inflamed and inflamed conditions induced by an IL-1β exposure. Main body Transcriptomic analysis of IL-27-exposed human astrocytes showed an upregulation of multiple immune genes. Human astrocytes increased the secretion of chemokines (CXCL9, CXCL10, and CXCL11) and the surface expression of proteins (PD-L1, HLA-E, and ICAM-1) following IL-27 exposure. To assess whether exposure of astrocytes to IL-27 influences the profile of activated T lymphocytes infiltrating the CNS, we used an astrocyte/T lymphocyte co-culture model. Activated human CD4+ or CD8+ T lymphocytes were co-cultured with astrocytes that have been either untreated or pre-exposed to IL‑27 or IL-1β. After 24 h, we analyzed T lymphocytes by flow cytometry for transcription factors and immune molecules. The contact with IL-27-exposed astrocytes increased the percentages of T-bet, Eomes, CD95, IL-18Rα, ICAM-1, and PD-L1 expressing CD4+ and CD8+ T lymphocytes and reduced the proportion of CXCR3-positive CD8+ T lymphocytes. Human CD8+ T lymphocytes co-cultured with human IL-27-treated astrocytes exhibited higher motility than when in contact with untreated astrocytes. These results suggested a preponderance of kinapse-like over synapse-like interactions between CD8+ T lymphocytes and IL-27-treated astrocytes. Finally, CD8+ T lymphocytes from MS patients showed higher motility in contact with IL-27-exposed astrocytes compared to healthy donors’ cells. Conclusion Our results establish that IL-27 alters the immune functions of human astrocytes and shapes the profile and motility of encountered T lymphocytes, especially CD8+ T lymphocytes from MS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02572-1.
Collapse
Affiliation(s)
- Florent Lemaître
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Negar Farzam-Kia
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Marie-Laure Clenet
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Olivier Tastet
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean Victor Guimond
- CLSC Des Faubourgs, CIUSSS du Centre-Sud-de-L'Ile-de-Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Centre de Recherche du Centre Hospitalier, Université de Montréal, Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - J Marc Girard
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
10
|
Adhesion Molecule Profile and the Effect of Anti-VLA-4 mAb Treatment in Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23094637. [PMID: 35563027 PMCID: PMC9101715 DOI: 10.3390/ijms23094637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
In the course of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), the infiltration of lymphocytes and other inflammatory cells across the blood–brain barrier is associated with interactions between adhesion molecules expressed by infiltrating cells and vascular endothelium. Monoclonal antibodies (mAb) against the α4 subunit of α4-β1 integrin (VLA-4) show beneficial effects in both MS and EAE. (1) Background: The aim of this study was to examine the expression of selected adhesion molecules: VLA-4, VCAM-1, LFA-1, ICAM-1 and PECAM-1 in the successive phases of EAE and the effect of anti-VLA-4 mAb treatment on that expression. (2) Methods: EAE was induced in C57BL/6 mice by immunization with MOG35–55 peptide. The animals were killed in three successive phases of the disease: onset (day 13), peak (day 18) and chronic (day 28). Frozen sections of the lumbar spinal cord were examined by quantitative immunofluorescence microscopy. The expression of the studied molecules was quantified as the percentage of the cross-sectioned spinal cord lesion area occupied by immunopositive structures. (3) Results: The expression of the studied molecules showed two temporal patterns: (1) an increase in the onset phase, a maximum in the peak phase and a decrease in the chronic phase, which corresponded to the temporal pattern of the clinical score, the number of lesions and the inflammation level (ICAM-1, LFA-1 and PECAM-1), and (2) an increase in the peak phase and no significant change or further increase in the chronic phase (VCAM-1, VLA-4). Among the molecules studied, ICAM-1 and LFA-1 exhibited the highest expression levels in the peak phase of EAE. Anti-VLA-4 mAb inhibited the expression of not only VLA-4 but also other adhesion molecules. (4) Conclusions: The interactions of adhesion molecules governing the migration of leukocytes across the blood–brain barrier change in the successive phases of EAE. The therapeutic mechanism of anti-VLA-4 mAb treatment seems to include a complex influence on a variety of adhesion molecules expressed by infiltrating cells and vascular endothelium.
Collapse
|
11
|
Yang EJ, Song KS. The ameliorative effects of capsidiol isolated from elicited Capsicum annuum on mouse splenocyte immune responses and neuroinflammation. Phytother Res 2020; 35:1597-1608. [PMID: 33124100 DOI: 10.1002/ptr.6927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022]
Abstract
Capsidiol, is an anti-fungal phytoalexin produced by plants of Solanaceae. Capsidiol was examined in cultures of primary splenocytes (SPLCs) isolated from healthy C57BL/6 mice and from those with induced experimental autoimmune encephalomyelitis (EAE) as a mouse model for autoimmune neurodegenerative multiple sclerosis (MS). We also examined the impact of capsidiol in IFN-γ-stimulated mouse BV2 microglial cells. Capsidiol resulted in a significant reduction in the anti-CD3/CD28 (αCD3/CD28)-induced IFN-γ+ CD4+ (Th1) and IFN-γ+ CD8+ (Tc1) populations as well as in the production of cytokines (IFN-γ, IL-17A, IL-6, IL-2, TNF-α, and IP-10). Specifically, the CD4+ and CD8+ populations (T-bet+ IFN-γ- , T-bet+ IFN-γ+ , and T-bet- IFN-γ+ ) and cytokine production mediated by Th1/Tc1 polarization were diminished by 25 μM capsidiol. MOG35-55 restimulation of SPLCs from EAE mice resulted in an increase in antigen-specific T cells, including Th1, IL-17A+ CD4+ (Th17), and IL-17A+ CD8+ (Tc17) populations. By contrast, capsidiol resulted in a decrease in the proportions of Th17 and Tc17 cells; MOG35-55 -specific cytokine production was also diminished by capsidiol. Capsidiol treatment resulted in diminished levels of IFN-γ-induced nitric oxide and IL-6; expression of iNOS and COX-2 were suppressed by 50 μM capsidiol in IFN-γ-stimulated BV2 cells. This is the first report of capsidiol-mediated immunomodulatory and antineuroinflammatory activities that may serve to prevent neurodegeneration.
Collapse
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Yang B, Yin P, Yang R, Xu B, Fu J, Zhi S, Dai M, Tan C, Chen H, Wang X. Holistic insights into meningitic Escherichia coli infection of astrocytes based on whole transcriptome profiling. Epigenomics 2020; 12:1611-1632. [PMID: 32938195 DOI: 10.2217/epi-2019-0342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the mRNAs and noncoding RNAs (ncRNAs) expression in astrocytes upon meningitic-Escherichia coli infection. Materials & methods: The transcription of mRNAs and ncRNAs were fully investigated and profiled by whole transcriptome sequencing and bioinformatic approaches. Whole transcriptome differences between the infected astrocytes and brain microvascular endothelial cells were further compared and characterized. Results: A total of 2045 mRNAs, 74 long noncoding RNAs, 27 miRNAs and 418 circular RNAs were differentially transcribed in astrocytes upon infection. Competing endogenous RNAs regulatory networks were constructed and preliminary validated. Transcriptomic differences between astrocyte and brain microvascular endothelial cells revealed the cell-specific responses against the infection. Conclusion: Our study comprehensively characterized the ncRNAs and mRNAs profiles in astrocytes upon meningitic-E. coli infection, which will facilitate future functional studies.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Peixiu Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Shuli Zhi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Menghong Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of The People's Republic of China, Wuhan, Hubei 430070, China.,International Research Center for Animal Disease, Ministry of Science & Technology of The People's Republic of China, Wuhan, Hubei 430070, China
| |
Collapse
|
13
|
Hahn J, Günter M, Schuhmacher J, Bieber K, Pöschel S, Schütz M, Engelhardt B, Oster H, Sina C, Lange T, Autenrieth SE. Sleep enhances numbers and function of monocytes and improves bacterial infection outcome in mice. Brain Behav Immun 2020; 87:329-338. [PMID: 31904407 DOI: 10.1016/j.bbi.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 01/21/2023] Open
Abstract
Sleep strongly impacts both humoral and cellular immunity; however, its acute effects on the innate immune defense against pathogens are unclear. Here, we elucidated in mice whether sleep affects the numbers and functions of innate immune cells and their defense against systemic bacterial infection. Sleep significantly increased numbers of classical monocytes in blood and spleen of mice that were allowed to sleep for six hours at the beginning of the normal resting phase compared to mice kept awake for the same time. The sleep-induced effect on classical monocytes was neither caused by alterations in corticosterone nor myelopoiesis, bone marrow egress or death of monocytes and did only partially involve Gαi-protein coupled receptors like chemokine receptor 2 (CCR2), but not the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) or lymphocyte function-associated antigen 1 (LFA-1). Notably, sleep suppressed the expression of the clock gene Arntl in splenic monocytes and the sleep-induced increase in circulating classical monocytes was abrogated in Arntl-deficient animals, indicating that sleep is a prerequisite for clock-gene driven rhythmic trafficking of classical monocytes. Sleep also enhanced the production of reactive oxygen species by monocytes and neutrophils. Moreover, sleep profoundly reduced bacterial load in blood and spleen of mice that were allowed to sleep before systemic bacterial infection and consequently increased survival upon infection. These data provide the first evidence that sleep enhances numbers and function of innate immune cells and therewith strengthens early defense against bacterial pathogens.
Collapse
Affiliation(s)
- Julia Hahn
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany
| | - Manina Günter
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany
| | - Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany; Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Pöschel
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany; Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - Christian Sina
- Institute for Nutritional Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology & Clinical Immunology, University of Lübeck, 23562 Lübeck, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, 72076 Tübingen, Germany; Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
14
|
Haghayegh Jahromi N, Marchetti L, Moalli F, Duc D, Basso C, Tardent H, Kaba E, Deutsch U, Pot C, Sallusto F, Stein JV, Engelhardt B. Intercellular Adhesion Molecule-1 (ICAM-1) and ICAM-2 Differentially Contribute to Peripheral Activation and CNS Entry of Autoaggressive Th1 and Th17 Cells in Experimental Autoimmune Encephalomyelitis. Front Immunol 2020; 10:3056. [PMID: 31993059 PMCID: PMC6970977 DOI: 10.3389/fimmu.2019.03056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), myelin-specific T cells are activated in the periphery and differentiate in T helper (Th) 1 and Th17 effector cells, which cross the blood-brain barrier (BBB) to reach the central nervous system (CNS), where they induce neuroinflammation. Here, we explored the role of intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in the activation of naïve myelin-specific T cells and in the subsequent migration of differentiated encephalitogenic Th1 and Th17 cells across the BBB in vitro and in vivo. While on antigen-presenting cells ICAM-1, but not ICAM-2 was required for the activation of naïve CD4+ T cells, endothelial ICAM-1 and ICAM-2 mediated both Th1 and Th17 cell migration across the BBB. ICAM-1/-2-deficient mice developed ameliorated typical and atypical EAE transferred by encephalitogenic Th1 and Th17 cells, respectively. Our study underscores important yet cell-specific contributions for ICAM-1 and ICAM-2 in EAE pathogenesis.
Collapse
Affiliation(s)
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Donovan Duc
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Camilla Basso
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Heidi Tardent
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
15
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
16
|
Zhang X, Kiapour N, Kapoor S, Khan T, Thamilarasan M, Tao Y, Cohen S, Miller R, Sobel RA, Markovic-Plese S. IL-11 Induces Encephalitogenic Th17 Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:1142-1150. [PMID: 31341075 DOI: 10.4049/jimmunol.1900311] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
IL-11+CD4+ cells accumulate in the cerebrospinal fluid of patients with early relapsing-remitting multiple sclerosis (MS) and in active brain MS lesions. Mouse studies have confirmed a causal role of IL-11 in the exacerbation of relapsing-remitting experimental autoimmune encephalomyelitis (RREAE). Administration of IL-11 at the time of clinical onset of RREAE induced an acute exacerbation and increased clinical scores, which persisted during the entire course of the disease. IL-11 increased the numbers of spinal cord inflammatory foci, as well as the numbers of peripheral and CNS-infiltrating IL-17+CD4+ cells and IL-17A serum levels. Ag recall assays revealed that IL-11 induces IL-17A+, GM-CSF+, and IL-21+CD4+ myelin Ag-reactive cells. Passive transfer of these encephalitogenic CD4+ T cells induced severe RREAE with IL-17A+CCR6+ CD4+ and B cell accumulation within the CNS. Furthermore, passive transfer of nonmanipulated CNS-derived mononuclear cells from mice with RREAE after a single dose of IL-11 induced severe RREAE with increased accumulation of IL-17A+ and CCR6+ CD4+ cells within the CNS. These results suggest that IL-11 might serve as a biomarker of early autoimmune response and a selective therapeutic target for patients with early relapsing-remitting MS.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nazanin Kiapour
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sahil Kapoor
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Tabish Khan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Madhan Thamilarasan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yazhong Tao
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie Cohen
- Lineberger Cancer Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ryan Miller
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raymond A Sobel
- Department of Pathology, Stanford University, Palo Alto, CA 94394
| | - Silva Markovic-Plese
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
17
|
Manufacturing and preclinical validation of CAR T cells targeting ICAM-1 for advanced thyroid cancer therapy. Sci Rep 2019; 9:10634. [PMID: 31337787 PMCID: PMC6650612 DOI: 10.1038/s41598-019-46938-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
While the majority of thyroid cancer patients are easily treatable, those with anaplastic or poorly differentiated recurrent thyroid carcinomas have a very poor prognosis with a median survival of less than a year. Previously, we have shown a significant correlation between ICAM-1 overexpression and malignancy in thyroid cancer, and have pioneered the use of ICAM-1 targeted CAR T cells as a novel treatment modality. For clinical translation of this novel modality, we designed CAR T cells possessing micromolar rather than nanomolar affinity to ICAM-1 to avoid cytotoxicity in normal cells with basal levels of ICAM-1 expression. Herein, we report the automated process of CAR T cell manufacturing with CliniMACS Prodigy (Miltenyi Biotec) using cryopreserved peripheral blood leukocytes from apheresis collections. Using Prodigy, thawed leukopak cells were enriched for CD4+ and CD8+ T cells, subjected to double transduction using lentiviral vector, and expanded in culture for a total of 10 days with a final yield of 2–4 × 109 cells. The resulting CAR T cells were formulated for cryopreservation to be used directly for infusion into patients after thawing with no further processing. We examined cross-reactivity of CAR T cells toward both human and murine ICAM-1 and ICAM-1 expression in human and mouse tissues to demonstrate that both efficacy and on-target, off-tumor toxicity can be studied in our preclinical model. Selective anti-tumor activity in the absence of toxicity provides proof-of-concept that micromolar affinity tuned CAR T cells can be used to target tumors expressing high levels of antigen while avoiding normal tissues expressing basal levels of the same antigen. These studies support the initiation of a phase I study to evaluate the safety and potential efficacy of micromolar affinity tuned CAR T cells against newly diagnosed anaplastic and refractory or recurrent thyroid cancers.
Collapse
|
18
|
Gopalasingam G, Bartlett CA, McGonigle T, Majimbi M, Warnock A, Ford A, Gough A, Toomey LM, Fitzgerald M. The effects of a combination of ion channel inhibitors on pathology in a model of demyelinating disease. Mult Scler Relat Disord 2019; 34:1-8. [PMID: 31202958 DOI: 10.1016/j.msard.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) has been shown to feature oxidative damage, which can be modelled using the cuprizone model of demyelinating disease. Oxidative damage can occur as a result of excessive influx of calcium ions (Ca2+) and oligodendroglia are particularly vulnerable. However, the effects of limiting excess Ca2+ influx on oxidative damage, oligodendroglia and myelin structure are unknown. OBJECTIVE This study investigated the effects of limiting excess Ca2+ flux on oxidative damage and associated changes in oligodendroglial densities and Node of Ranvier structure in the cuprizone model. METHODS The effects of three weeks of cuprizone administration and of treatment with a combination of three ion channel inhibitors (Lomerizine, Brilliant Blue G (BBG) and YM872), were semi-quantified immunohistochemically. Outcomes assessed were protein nitration (3-nitrotyrosine (3NT)) oxidative damage to DNA (8-hydroxy deoxyguanosine (8OHDG)), advanced glycation end-products (carboxymethyl lysine (CML)), immunoreactivity of microglia (Iba1) and astrocytes (glial acidic fibrillary protein (GFAP)), densities of oligodendrocyte precursor cells (OPCs) (platelet derived growth factor alpha receptor (PDGFαR) with olig2) and oligodendrocytes (olig2 and CC1), and structural elements of the Node of Ranvier (contactin associated protein (Caspr)). RESULTS The administration of cuprizone resulted in increased protein nitration, DNA damage, and astrocyte and microglial immunoreactivity, a decrease in the density of oligodendrocytes and OPCs, together with altered structure of the Node of Ranvier and reduced myelin basic protein immunoreactivity. Treatment with the ion channel inhibitor combination significantly lowered protein nitration, increased the density of OPCs and reduced the number of atypical Node of Ranvier complexes; other outcomes were unaffected. CONCLUSION Our findings suggest that excess Ca2+ influx contributes to protein nitration, and associated changes to OPC densities and Node of Ranvier structure in demyelinating disease.
Collapse
Affiliation(s)
- Gopana Gopalasingam
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia; School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Abbey Ford
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Alexander Gough
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
19
|
Kuhbandner K, Hammer A, Haase S, Terbrack E, Hoffmann A, Schippers A, Wagner N, Hussain RZ, Miller-Little WA, Koh AY, Stoolman JS, Segal BM, Linker RA, Stüve O. MAdCAM-1-Mediated Intestinal Lymphocyte Homing Is Critical for the Development of Active Experimental Autoimmune Encephalomyelitis. Front Immunol 2019; 10:903. [PMID: 31114574 PMCID: PMC6503766 DOI: 10.3389/fimmu.2019.00903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/08/2019] [Indexed: 01/28/2023] Open
Abstract
Lymphocyte homing into the intestine is mediated by binding of leukocytes to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), expressed on endothelial cells. Currently, the immune system of the gut is considered a major modulator not only of inflammatory bowel disease, but also of extra-intestinal autoimmune disorders, including multiple sclerosis (MS). Despite intense research in this field, the exact role of the intestine in the pathogenesis of (neuro-)inflammatory disease conditions remains to be clarified. This prompted us to investigate the role of MAdCAM-1 in immunological processes in the intestine during T cell-mediated autoimmunity of the central nervous system (CNS). Using the experimental autoimmune encephalomyelitis model of MS, we show that MAdCAM-1-deficient (MAdCAM-1-KO) mice are less susceptible to actively MOG35−55-induced disease. Protection from disease was accompanied by decreased numbers of immune cells in the lamina propria and Peyer's patches as well as reduced immune cell infiltration into the spinal cord. MOG35−55-recall responses were intact in other secondary lymphoid organs of MAdCAM-1-KO mice. The composition of specific bacterial groups within the microbiome did not differ between MAdCAM-1-KO mice and controls, while MAdCAM-1-deficiency severely impaired migration of MOG35−55-activated lymphocytes to the gut. Our data indicate a critical role of MAdCAM-1 in the development of CNS inflammation by regulating lymphocyte homing to the intestine, and may suggest a role for the intestinal tract in educating lymphocytes to become encephalitogenic.
Collapse
Affiliation(s)
- Kristina Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Hammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Elisa Terbrack
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew Y Koh
- Department of Pediatrics, Microbiology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joshua S Stoolman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Benjamin M Segal
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
| |
Collapse
|
20
|
Haque M, Lei F, Xiong X, Das JK, Ren X, Fang D, Salek-Ardakani S, Yang JM, Song J. Stem cell-derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes. JCI Insight 2019; 4:126471. [PMID: 30777937 DOI: 10.1172/jci.insight.126471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The autoantigen-specific Tregs from pluripotent stem cells (PSCs), i.e., PSC-Tregs, have the ability to suppress autoimmunity. PSC-Tregs can be programmed to be tissue associated and to infiltrate into local inflamed tissues to suppress autoimmune responses after adoptive transfer. Nevertheless, the mechanisms by which the autoantigen-specific PSC-Tregs suppress the autoimmune response remain to be fully elucidated. In this study, we generated functional autoantigen-specific Tregs from the induced PSC (iPSCs), i.e., iPSC-Tregs, and investigated the underlying mechanisms of autoimmunity suppression by these Tregs in a type 1 diabetes (T1D) murine model. A double-Tg mouse model of T1D was established in F1 mice, in which the first generation of RIP-mOVA Tg mice that were crossed with OT-I T cell receptor (TCR) Tg mice was challenged with vaccinia viruses expressing OVA (VACV-OVA). We show that adoptive transfer of OVA-specific iPSC-Tregs greatly suppressed autoimmunity in the animal model and prevented the insulin-secreting pancreatic β cells from destruction. Further, we demonstrate that the adoptive transfer significantly reduced the expression of ICAM-1 in the diabetic pancreas and inhibited the migration of pathogenic CD8+ T cells and the production of the proinflammatory IFN-γ in the pancreas. These results indicate that the stem cell-derived tissue-associated Tregs can robustly accumulate in the diabetic pancreas, and, through downregulating the expression of ICAM-1 in the local inflamed tissues and inhibiting the production of proinflammatory cytokine IFN-γ, suppress the migration and activity of the pathogenic immune cells that cause T1D.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Fengyang Lei
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Xingcong Ren
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Jin-Ming Yang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| |
Collapse
|
21
|
Velázquez FE, Anastasiou M, Carrillo-Salinas FJ, Ngwenyama N, Salvador AM, Nevers T, Alcaide P. Sialomucin CD43 regulates T helper type 17 cell intercellular adhesion molecule 1 dependent adhesion, apical migration and transendothelial migration. Immunology 2019; 157:52-69. [PMID: 30690734 DOI: 10.1111/imm.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
T helper type 17 lymphocytes (Th17 cells) infiltrate the central nervous system (CNS), induce inflammation and demyelination and play a pivotal role in the pathogenesis of multiple sclerosis. Sialomucin CD43 is highly expressed in Th17 cells and mediates adhesion to endothelial selectin (E-selectin), an initiating step in Th17 cell recruitment to sites of inflammation. CD43-/- mice have impaired Th17 cell recruitment to the CNS and are protected from experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. However, E-selectin is dispensable for the development of EAE, in contrast to intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). We report that CD43-/- mice have decreased demyelination and T-cell infiltration, but similar up-regulation of ICAM-1 and VCAM-1 in the spinal cord, compared with wild-type (WT) mice, at the initiation of EAE. CD43-/- Th17 cells have impaired adhesion to ICAM-1 under flow conditions in vitro, despite having similar expression of LFA-1, the main T-cell ligand for ICAM-1, as WT Th17 cells. Regardless of the route of integrin activation, CD43-/- Th17 cell firm arrest on ICAM-1 was comparable to that of WT Th17 cells, but CD43-/- Th17 cells failed to optimally apically migrate on immobilized ICAM-1-coated coverslips and endothelial cells, and to transmigrate under shear flow conditions in an ICAM-1-dependent manner. Collectively, these findings unveil novel roles for CD43, facilitating adhesion of Th17 cells to ICAM-1 and modulating apical and transendothelial migration, as mechanisms potentially responsible for Th17 cell recruitment to sites of inflammation such as the CNS.
Collapse
Affiliation(s)
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,Laboratory of Autoimmunity and Inflammation, University of Crete Medical School, Crete, Greece
| | | | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Ane M Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Tania Nevers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
23
|
Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2019; 9:3062. [PMID: 30740109 PMCID: PMC6357938 DOI: 10.3389/fimmu.2018.03062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas carry a dismal prognosis. Conventional treatment using chemo- and radiotherapy has limited efficacy with adverse events. Therapy with genetically engineered T-cells, such as chimeric antigen receptor (CAR) T-cells, may represent a promising approach to improve patient outcomes owing to their potential ability to attack highly infiltrative tumors in a tumor-specific manner and possible persistence of the adaptive immune response. However, the unique anatomical features of the brain and susceptibility of this organ to irreversible tissue damage have made immunotherapy especially challenging in the setting of glioma. With safety concerns in mind, multiple teams have initiated clinical trials using CAR T-cells in glioma patients. The valuable lessons learnt from those trials highlight critical areas for further improvement: tackling the issues of the antigen presentation and T-cell homing in the brain, immunosuppression in the glioma microenvironment, antigen heterogeneity and off-tumor toxicity, and the adaptation of existing clinical therapies to reflect the intricacies of immune response in the brain. This review summarizes the up-to-date clinical outcomes of CAR T-cell clinical trials in glioma patients and examines the most pressing hurdles limiting the efficacy of these therapies. Furthermore, this review uses these hurdles as a framework upon which to evaluate cutting-edge pre-clinical strategies aiming to overcome those barriers.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kira M Downey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bindu Hegde
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Neil D Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States.,Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Samaha H, Pignata A, Fousek K, Ren J, Lam FW, Stossi F, Dubrulle J, Salsman VS, Krishnan S, Hong SH, Baker ML, Shree A, Gad AZ, Shum T, Fukumura D, Byrd TT, Mukherjee M, Marrelli SP, Orange JS, Joseph SK, Sorensen PH, Taylor MD, Hegde M, Mamonkin M, Jain RK, El-Naggar S, Ahmed N. A homing system targets therapeutic T cells to brain cancer. Nature 2018; 561:331-337. [PMID: 30185905 PMCID: PMC6402337 DOI: 10.1038/s41586-018-0499-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.
Collapse
Affiliation(s)
- Heba Samaha
- Children's Cancer Hospital Egypt-57357, Cairo, Egypt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Antonella Pignata
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Kristen Fousek
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jun Ren
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fong W Lam
- Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases at the Michael E DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Fabio Stossi
- Baylor College of Medicine, Houston, TX, USA
- Integrated Microscopy Core, Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Julien Dubrulle
- Baylor College of Medicine, Houston, TX, USA
- Integrated Microscopy Core, Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Vita S Salsman
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Shanmugarajan Krishnan
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sung-Ha Hong
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Matthew L Baker
- Baylor College of Medicine, Houston, TX, USA
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Shree
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Z Gad
- Children's Cancer Hospital Egypt-57357, Cairo, Egypt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiara T Byrd
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Malini Mukherjee
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Jordan S Orange
- Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Sujith K Joseph
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Poul H Sorensen
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Arthur and Sonia Labatt Brain Tumour Research Centre, Division of Neurosurgery, Departments of Surgery, Laboratory Medicine and Pathobiology, and of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Hospital, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nabil Ahmed
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
- Baylor College of Medicine, Houston, TX, USA.
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Houston Methodist Hospital, Houston, TX, USA.
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Enzmann G, Kargaran S, Engelhardt B. Ischemia-reperfusion injury in stroke: impact of the brain barriers and brain immune privilege on neutrophil function. Ther Adv Neurol Disord 2018; 11:1756286418794184. [PMID: 30181779 PMCID: PMC6111395 DOI: 10.1177/1756286418794184] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Reperfusion injury following ischemic stroke is a complex pathophysiological process involving numerous mechanisms ranging from the release of excitatory amino acids and ion disequilibrium to the induction of apoptosis and necrosis, to oxidative stress and inflammation. The migration of neutrophils into the brain parenchyma and release of their abundant proteases are generally considered the main cause of neuronal cell death and acute reperfusion injury following ischemic stroke. Recent findings in experimental and human stroke have challenged this view, as the majority of neutrophils were rather found to accumulate within the neurovascular unit (NVU) and the subarachnoid space (SAS) where they remain separated from the brain parenchyma by the glia limitans. The brain parenchyma is an immune-privileged site that is not readily accessible to immune cells and does not elicit stereotypic adaptive or innate immune responses. Understanding brain immune privilege requires intimate knowledge of its unique anatomy in which the brain barriers, that include the glia limitans, establish compartments that differ remarkably with regard to their accessibility to the immune system. We here propose that the brain immune privilege also extends to an ischemic insult, where the brain parenchyma does not evoke a rapid infiltration of neutrophils as observed in ischemic events in peripheral organs. Rather, neutrophil accumulation in the NVU and SAS could have a potential impact on cerebrospinal fluid (CSF) drainage from the central nervous system (CNS) and thus on edema formation and reperfusion injury after ischemic stroke. Integrating the anatomical and functional implications of the brain immune privilege with the unquestionable role of neutrophils in reperfusion injury is a prerequisite to exploit appropriate strategies for therapeutic interventions aiming to reduce neuronal cell death after ischemic stroke.
Collapse
Affiliation(s)
- Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern 3012, Switzerland
| | - Soghra Kargaran
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern 3012, Switzerland
| |
Collapse
|
26
|
Koutsogiannaki S, Zha H, Yuki K. Volatile Anesthetic Isoflurane Attenuates Liver Injury in Experimental Polymicrobial Sepsis Model. ACTA ACUST UNITED AC 2018; 5:63-74. [PMID: 29977977 PMCID: PMC6029873 DOI: 10.31480/2330-4871/071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Volatile anesthetics are often administered to patients with sepsis for
procedural anesthesia or sedation in intensive care units. Sepsis still carries
significant morbidities and mortalities, and organ injuries pose major
complications. Early liver dysfunction is associated with poor outcome mainly as
a result of overwhelming neutrophil recruitment. Leukocyte function-associated
antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) are major adhesion molecules
on neutrophils and involved in neutrophil recruitment. We have previously showed
that volatile anesthetic isoflurane inhibited LFA-1 and Mac-1. Here we studied
the role of isoflurane, LFA-1 and Mac-1 on neutrophil recruitment to the liver
and liver injury using experimental polymicrobial abdominal sepsis induced by
cecal ligation and puncture (CLP) surgery. We used wild type (WT), LFA-1, Mac-1
and intercellular adhesion molecule-1 (ICAM-1) knockout (KO) mice. Following the
induction of sepsis by CLP surgery, a group of mice were exposed to isoflurane
for 2 hours. We found that Mac-1 and ICAM-1, but not LFA-1 were involved in
neutrophil recruitment to liver. Isoflurane attenuated neutrophil recruitment
and liver injury in WT and LFA-1 KO mice. Mac-1 KO mice had limited neutrophil
recruitment and liver injury, both of which were not attenuated by isoflurane
further, suggesting that isoflurane mitigated liver injury via Mac-1. Mac-1
colocalized with ICAM-1 and fibrinogen on liver tissues. In the presence of
fibrinogen Mac-1 bound ICAM-1 significantly more, while LFA-1 bound less to
ICAM-1, suggesting that Mac-1 used fibrinogen as a bridging molecule to bind
ICAM-1. In conclusion, isoflurane exposure attenuated neutrophil recruitment and
liver injury via Mac-1.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Hui Zha
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Scaini G, Tonon T, Moura de Souza CF, Schuck PF, Ferreira GC, Quevedo J, Neto JS, Amorim T, Camelo JS, Margutti AVB, Hencke Tresbach R, Sperb-Ludwig F, Boy R, de Medeiros PFV, Schwartz IVD, Streck EL. Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease. J Inherit Metab Dis 2018; 41:10.1007/s10545-018-0188-x. [PMID: 29740775 DOI: 10.1007/s10545-018-0188-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1β and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1β levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Tássia Tonon
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | - Tatiana Amorim
- Associação de Pais e Amigos dos Excepcionais (APAE), Salvador, Brazil
| | - Jose S Camelo
- Pediatrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Boy
- Pediatrics Department, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula F V de Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | - Ida Vanessa D Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
28
|
Abstract
The role traditionally assigned to astrocytes in the pathogenesis of multiple sclerosis (MS) lesions has been the formation of the glial scar once inflammation has subsided. Astrocytes are now recognized to be early and highly active players during lesion formation and key for providing peripheral immune cells access to the central nervous system. Here, we review the role of astrocytes in the formation and evolution of MS lesions, including the recently described functional polarization of astrocytes, discuss prototypical pathways for astrocyte activation, and summarize mechanisms by which MS treatments affect astrocyte function.
Collapse
Affiliation(s)
- Gerald Ponath
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Calvin Park
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Enzmann GU, Pavlidou S, Vaas M, Klohs J, Engelhardt B. ICAM-1 null C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke. Transl Stroke Res 2018; 9:608-621. [PMID: 29399739 DOI: 10.1007/s12975-018-0612-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Abstract
Accumulation of neutrophils in the brain is a hallmark of cerebral ischemia and considered central in exacerbating tissue injury. Intercellular adhesion molecule (ICAM)-1 is upregulated on brain endothelial cells after ischemic stroke and considered pivotal in neutrophil recruitment as ICAM-1-deficient mouse lines were found protected from experimental stroke. Translation of therapeutic inhibition of ICAM-1 into the clinic however failed. This prompted us to investigate stroke pathogenesis in Icam1tm1Alb C57BL/6 mutants, a true ICAM-1null mouse line. Performing transient middle cerebral artery occlusion, we found that absence of ICAM-1 did not ameliorate stroke pathology at acute time points after reperfusion. Near-infrared imaging showed comparable accumulation of neutrophils in the ischemic hemispheres of ICAM-1null and wild type C57BL/6 mice. We also isolated equal numbers of neutrophils from the ischemic brains of ICAM-1null and wild type C57BL/6 mice. Immunostaining of the brains showed neutrophils to equally accumulate in the leptomeninges and brain parenchymal vessels of ICAM-1null and wild type C57BL/6 mice. In addition, the lesion size was comparable in ICAM-1null and wild type mice. Our study demonstrates that absence of ICAM-1 neither inhibits cerebral ischemia-induced accumulation of neutrophils in the brain nor provides protection from ischemic stroke.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Sofia Pavlidou
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Markus Vaas
- Institute for Biomedical Engineering, ETH and University of Zurich, 8093, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH and University of Zurich, 8093, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland.
| |
Collapse
|
30
|
Koutsogiannaki S, Schaefers MM, Okuno T, Ohba M, Yokomizo T, Priebe GP, DiNardo JA, Sulpicio SG, Yuki K. From the Cover: Prolonged Exposure to Volatile Anesthetic Isoflurane Worsens the Outcome of Polymicrobial Abdominal Sepsis. Toxicol Sci 2018; 156:402-411. [PMID: 28003439 DOI: 10.1093/toxsci/kfw261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis continues to result in high morbidity and mortality. General anesthesia is often administered to septic patients, but the impacts of general anesthesia on host defense are not well understood. General anesthesia can be given by volatile and intravenous anesthetics. Our previous in vitro study showed that volatile anesthetic isoflurane directly inhibits leukocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), critical adhesion molecules on leukocytes. Thus, the role of isoflurane exposure on in vivo LFA-1 and Mac-1 function was examined using polymicrobial abdominal sepsis model in mice. As a comparison, intravenous anesthetic propofol was given to a group of mice. Wild type, LFA-1, Mac-1, and adhesion molecule-1 knockout mice were used. Following the induction of polymicrobial abdominal sepsis by cecal ligation and puncture, groups of mice were exposed to isoflurane for either 2 or 6 h, or to propofol for 6 h, and their outcomes were examined. Bacterial loads in tissues and blood, neutrophil recruitment to the peritoneal cavity and phagocytosis were studied. Six hours of isoflurane exposure worsened the outcome of abdominal sepsis (P < .0001) with higher bacterial loads in tissues, but 2 h of isoflurane or 6 h of propofol exposure did not. Isoflurane impaired neutrophil recruitment to the abdominal cavity by inhibiting LFA-1 function. Isoflurane also impaired bacterial phagocytosis via complement receptors including Mac-1. In conclusion, prolonged isoflurane exposure worsened the outcome of experimental polymicrobial abdominal sepsis and was associated with impaired neutrophil recruitment and bacterial phagocytosis via reduced LFA-1 and Mac-1 function.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Matthew M Schaefers
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Gregory P Priebe
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - James A DiNardo
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Soriano G Sulpicio
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem 2017; 54:130-139. [PMID: 29331869 DOI: 10.1016/j.jnutbio.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Autoimmune disease is highly prevalent in humans. Since conventional therapies have limited efficacy and often come with significant side effects, nutrition may provide an alternative and complementary approach to improving autoimmune disorders. Naringenin, a flavonoid found in citrus fruits, has been shown to have anti-inflammatory and antioxidant properties. Using the experimental autoimmune encephalomyelitis (EAE), a rodent model of human multiple sclerosis, we determined the effect of dietary naringenin (0.5%) on autoimmune disease. We found that naringenin reduced the incidence, delayed the onset, and attenuated the symptoms of EAE, which were accompanied by reduced immune cell infiltration and demyelination in the spinal cord. Additionally, the pro-inflammatory CD4+ T cell subsets Th1, Th9, and Th17 cells together with their respective transcription factors T-bet, PU.1, and RORγt were reduced in both the central nervous system (CNS) and lymph nodes of EAE mice fed naringenin while no difference was found in Th2 and regulatory T cell (Treg) populations in either CNS or lymph nodes between the two groups. We further showed that pathologic T cell proliferation induced by ex vivo re-stimulation with MOG35-55 and proinflammatory cytokines IL-6 and TNF-α were lower in naringenin-fed mice than in the control mice. Additionally, we found that naringenin treatment inhibited mRNA expression of CXCL10 (Th1 recruiting chemokine), vascular cell adhesion molecule-1 (VCAM-1), and VLA-4 (VCAM-1 ligand) in the CNS of EAE mice. Altogether, these results indicate that naringenin may have a potential to ameliorate autoimmune disease by favorably modulating autoimmune response.
Collapse
Affiliation(s)
- Junpeng Wang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA; Institute of Infection and Immunity of Huaihe Clinical College, Henan University, Kaifeng, China
| | - Ying Qi
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA; Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinli Niu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA; College of Life Science, Henan University, Kaifeng, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW We review P-selectin glycoprotein ligand-1 (PSGL-1) as a selectin and chemokine-binding adhesion molecule. PSGL-1 is widely studied in neutrophils. Here, we focus on T cells, because PSGL-1 was recently described as a major immunomodulatory molecule during viral infection. PSGL-1 also plays a crucial role in T-cell homeostasis by binding to lymphoid chemokines, and can induce tolerance by enhancing the functions of regulatory T cells. RECENT FINDINGS PSGL-1 was originally described as a leukocyte ligand for P-selectin, but it is actually a ligand for all selectins (P-, L- and E-selectin), binds chemokines, activates integrins and profoundly affects T-cell biology. It has been shown recently that PSGL-1 can modulate T cells during viral infection by acting as a negative regulator for T-cell functions. Absence of PSGL-1 promotes effector CD4 and CD8 T-cell differentiation and prevents T-cell exhaustion. Consistent with this, tumor growth was significantly reduced in PSGL-1-deficient mice because of an enhanced number of effector T cells together with reduced levels of inhibitory receptors that induce T-cell exhaustion. SUMMARY PSGL-1 is the best-studied selectin ligand and has become a posterchild of versatility in leukocyte adhesion, inflammation and immunology. The direct involvement of PSGL-1 in T-cell biology suggests that it might be a drug target. Indeed, PSGL-1 has been tested in some clinical trials and recently, PSGL-1 blockers were proposed as a potential cotherapy in cancer immunotherapy.
Collapse
|
33
|
Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res 2017; 29:821-831. [PMID: 27718173 DOI: 10.1007/s40520-016-0637-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022]
Abstract
Due to an increasingly aging population, Alzheimer disease (AD) represents a crucial issue for the healthcare system because of its widespread prevalence and the burden of its care needs. Several hypotheses on AD pathogenesis have been proposed and current therapeutical strategies have shown limited effectiveness. In the last decade, more evidence has supported a role for neuroinflammation and immune system dysregulation in AD. It remains unclear whether astrocytes, microglia and immune cells influence disease onset, progression or both. Amyloid-β peptides that aggregate extracellularly in the typical neuritic plaques generate a constant inflammatory environment. This causes a prolonged activation of microglial and astroglial cells that potentiate neuronal damage and provoke the alteration of the blood brain barrier (BBB), damaging the permeability of blood vessels. Recent data support the role of the BBB as a link between neuroinflammation, the immune system and AD. Hence, a thorough investigation of the neuroinflammatory and immune system pathways that impact neurodegeneration and novel exciting findings such as microglia-derived microvesicles, inflammasomes and signalosomes will ultimately enhance our understanding of the pathological process. Eventually, we should proceed with caution in defining a causal or consequential role of neuroinflammation in AD, but rather focus on identifying its exact pathological contribution.
Collapse
|
34
|
Lyck R, Lécuyer MA, Abadier M, Wyss CB, Matti C, Rosito M, Enzmann G, Zeis T, Michel L, García Martín AB, Sallusto F, Gosselet F, Deutsch U, Weiner JA, Schaeren-Wiemers N, Prat A, Engelhardt B. ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood-brain barrier. J Cereb Blood Flow Metab 2017; 37:2894-2909. [PMID: 28273717 PMCID: PMC5536797 DOI: 10.1177/0271678x16678639] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to mediate leukocyte migration across the blood-brain barrier (BBB) in multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). Here, we confirmed vascular ALCAM expression in human brain tissue samples in situ and on two different human in vitro BBB models. Antibody-mediated inhibition of ALCAM reduced diapedesis of human CD4+ Th1 but not of Th17 cells across the human BBB in vitro. In accordance to human Th1 cells, mouse Th1 cells showed reduced diapedesis across an ALCAM-/- in vitro BBB model under static but no longer under flow conditions. In contrast to the limited role of ALCAM in T cell extravasation across the BBB, we found a contribution of ALCAM to rolling, adhesion, and diapedesis of human CD14+ monocytes across the human BBB under flow and static conditions. Taken together, our study highlights the potential differences in the CNS expression of ALCAM in mouse and human and supports a prominent role for ALCAM in the multi-step extravasation of monocytes across the BBB.
Collapse
Affiliation(s)
- Ruth Lyck
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marc-André Lécuyer
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | - Michael Abadier
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christof B Wyss
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christoph Matti
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Maria Rosito
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Thomas Zeis
- 3 Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laure Michel
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | | | | | | | - Urban Deutsch
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Joshua A Weiner
- 6 Departments of Biology and Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - Nicole Schaeren-Wiemers
- 3 Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Prat
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | | |
Collapse
|
35
|
Caveolin-1 Is Critical for Lymphocyte Trafficking into Central Nervous System during Experimental Autoimmune Encephalomyelitis. J Neurosci 2017; 36:5193-9. [PMID: 27170118 DOI: 10.1523/jneurosci.3734-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Multiple sclerosis (MS) is a progressive autoimmune disease of the CNS with its underlying mechanisms not fully understood. In the present study, we tested the hypothesis that caveolin-1, a major membrane scaffolding protein, plays a critical role in the pathogenesis of experimental autoimmune encephalomyelitis, a laboratory murine model of MS. We found increased expression of caveolin-1 in serum and spinal cord tissues in association with disease incidence and severity in wild-type mice with active encephalomyelitis. After immunization, Cav-1 knock-out mice showed remarkable disease resistance with decreased incidence and clinical symptoms. Furthermore, Cav-1 knock-out mice had alleviated encephalitogenic T cells trafficking into the CNS with decreased expressions of adhesion molecules ICAM-1 and VCAM-1 within the lesions. In agreement with in vivo studies, in vitro knockdown of caveolin-1 compromised the upregulation of ICAM-1 in endothelial cells, leading to the amelioration of the transendothelial migration of pathogenic TH1 and TH17 cells. Together, those results indicate that caveolin-1 serves as an active modulator of CNS-directed lymphocyte trafficking and could be a therapeutic target for neuroinflammatory diseases, such as multiple sclerosis. SIGNIFICANCE STATEMENT The hallmark feature of neuroinflammatory diseases is the massive infiltrations of encephalitogenic leukocytes into the CNS parenchyma, a process that remains largely unclear. Our study demonstrates the critical contribution of caveolin-1 to encephalomyelitis pathogenesis and CNS-directed lymphocyte trafficking by modulation of adhesion molecules ICAM-1 and VCAM-1, highlighting the pathological involvement of caveolin-1 in neuroinflammatory diseases.
Collapse
|
36
|
Fan Z, McArdle S, Marki A, Mikulski Z, Gutierrez E, Engelhardt B, Deutsch U, Ginsberg M, Groisman A, Ley K. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis. Nat Commun 2016; 7:12658. [PMID: 27578049 PMCID: PMC5013657 DOI: 10.1038/ncomms12658] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 07/20/2016] [Indexed: 12/28/2022] Open
Abstract
Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E(+)) and acquire a high-affinity conformation with an 'open' headpiece (H(+)). The canonical switchblade model of integrin activation proposes that the E(+) conformation precedes H(+), and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E(-)H(+) conformation. E(-)H(+) β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA
| | - Sara McArdle
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA.,Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA
| | - Zbigniew Mikulski
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 1 Freiestrasse, 3012 Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, 1 Freiestrasse, 3012 Bern, Switzerland
| | - Mark Ginsberg
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, California 92037, USA.,Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
37
|
Wu D. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis. J Investig Med 2016; 64:1213-1219. [PMID: 27531904 DOI: 10.1136/jim-2016-000158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigallocatechin-3-gallate (EGCG), have been shown to modulate immune cell functions and improve some autoimmune diseases in animal models. In a series of studies we determined EGCG's effect on T-cell functions and its application in autoimmune diseases. We first observed that EGCG inhibited CD4+ T-cell expansion induced by polyclonal (mitogens or anti-CD3/CD28) or antigen-specific stimulation. We then showed that EGCG suppressed expansion and cell cycle progression of naïve CD4+ T by modulating cell cycle-related proteins. EGCG also inhibited naive CD4+ T-cell differentiation into Th1 and Th17 effector subsets by impacting their respective signaling transducers and transcription factors. These results suggest that EGCG may improve T-cell-mediated autoimmune diseases. Using the experimental autoimmune encephalomyelitis (EAE) mice, an animal model for human multiple sclerosis, we found that dietary supplementation with EGCG attenuated the disease's symptoms and pathology. These EGCG-induced changes are associated with findings in the immune and inflammation profiles in lymphoid tissues and the central nervous system: a reduction in proliferation of autoreactive T cells, production of proinflammatory cytokines, and Th1 and Th17 subpopulations, and an increase in regulatory T-cell populations. These results suggest that green tea or its active components may have a preventive and therapeutic potential in dealing with T-cell-mediated autoimmune diseases. However, the translational value of these findings needs to be validated in future human studies.
Collapse
|
38
|
Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol 2016; 46:2187-203. [PMID: 27338806 PMCID: PMC5113696 DOI: 10.1002/eji.201546251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023]
Abstract
Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Isabelle Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
39
|
Role of sICAM-1 and sVCAM-1 as biomarkers in early and late stages of schizophrenia. J Psychiatr Res 2016; 73:45-52. [PMID: 26679764 DOI: 10.1016/j.jpsychires.2015.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SZ) is a neuroprogressive disorder presenting with biochemical, functional, and structural changes, which differ from early to late stages of the illness. We explored the differences in serum levels of soluble intercellular cell adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) between early and late stages of SZ, in regard to clinical characteristics and treatment application. Serum levels of sICAM-1 and sVCAM-1 were measured in 80 patients with SZ (40 early stage; 40 late stage), and compared with 80 healthy controls, matched by age, gender, body mass index, and smoking habits with each SZ group. Serum levels of sICAM-1 and sVCAM-1 were measured using ELISA. The severity of psychopathology was assessed using the Clinical Global Impression Scale and five-factor Positive and Negative Symptoms in Schizophrenia Scale. After adjustment for confounders, we noticed normal levels of sICAM-1 in the early stage, and elevated levels of sICAM-1 in the late stage of SZ. sVCAM-1 levels were decreased in both stages of SZ. Higher sICAM-1 levels have been related to more pronounced cognitive deficit and excitement symptoms in the early stage of SZ and to favorable characteristics of treatment application in both stages. SZ is associated with changes in the levels of adhesion molecules that vary from early to late stages of the illness. This implies that the concept of biochemical staging is applicable in SZ, at least for markers of cellular adhesion.
Collapse
|
40
|
Winger RC, Harp CT, Chiang MY, Sullivan DP, Watson RL, Weber EW, Podojil JR, Miller SD, Muller WA. Cutting Edge: CD99 Is a Novel Therapeutic Target for Control of T Cell-Mediated Central Nervous System Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:1443-8. [PMID: 26773145 DOI: 10.4049/jimmunol.1501634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
Abstract
Leukocyte trafficking into the CNS is a prominent feature driving the immunopathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Blocking the recruitment of inflammatory leukocytes into the CNS represents an exploitable therapeutic target; however, the adhesion molecules that specifically regulate the step of leukocyte diapedesis into the CNS remain poorly understood. We report that CD99 is critical for lymphocyte transmigration without affecting adhesion in a human blood-brain barrier model. CD99 blockade in vivo ameliorated experimental autoimmune encephalomyelitis and decreased the accumulation of CNS inflammatory infiltrates, including dendritic cells, B cells, and CD4(+) and CD8(+) T cells. Anti-CD99 therapy was effective when administered after the onset of disease symptoms and blocked relapse when administered therapeutically after disease symptoms had recurred. These findings underscore an important role for CD99 in the pathogenesis of CNS autoimmunity and suggest that it may serve as a novel therapeutic target for controlling neuroinflammation.
Collapse
Affiliation(s)
- Ryan C Winger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Christopher T Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Richard L Watson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Evan W Weber
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| |
Collapse
|
41
|
Yang X, Yan J, Feng J. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis. Eur J Pharmacol 2016; 771:18-28. [DOI: 10.1016/j.ejphar.2015.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
42
|
Benvenuto F, Voci A, Carminati E, Gualandi F, Mancardi G, Uccelli A, Vergani L. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Res Ther 2015; 6:245. [PMID: 26651832 PMCID: PMC4676115 DOI: 10.1186/s13287-015-0222-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
Introduction Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. Methods We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Results Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3+-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3+ cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Conclusions Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
Collapse
Affiliation(s)
- Federica Benvenuto
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS-AUO San Martino-IST, Largo Paolo Daneo 3, 16132, Genova, Italy. .,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, 16132, Genova, Italy.
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| | - Enrico Carminati
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| | - Francesca Gualandi
- Division of Hematology and Bone Marrow Transplant Unit, IRCCS-AUO San Martino-IST, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Gianluigi Mancardi
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS-AUO San Martino-IST, Largo Paolo Daneo 3, 16132, Genova, Italy. .,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, 16132, Genova, Italy.
| | - Antonio Uccelli
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS-AUO San Martino-IST, Largo Paolo Daneo 3, 16132, Genova, Italy. .,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, 16132, Genova, Italy.
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
43
|
ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia. Blood 2015; 127:898-907. [PMID: 26647392 DOI: 10.1182/blood-2015-08-664995] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022] Open
Abstract
Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense.
Collapse
|
44
|
Seo JE, Hasan M, Han JS, Kang MJ, Jung BH, Kwok SK, Kim HY, Kwon OS. Experimental autoimmune encephalomyelitis and age-related correlations of NADPH oxidase, MMP-9, and cell adhesion molecules: The increased disease severity and blood–brain barrier permeability in middle-aged mice. J Neuroimmunol 2015; 287:43-53. [DOI: 10.1016/j.jneuroim.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
|
45
|
Abstract
PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.
Collapse
|
46
|
Choi EY, Lim JH, Neuwirth A, Economopoulou M, Chatzigeorgiou A, Chung KJ, Bittner S, Lee SH, Langer H, Samus M, Kim H, Cho GS, Ziemssen T, Bdeir K, Chavakis E, Koh JY, Boon L, Hosur K, Bornstein SR, Meuth SG, Hajishengallis G, Chavakis T. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry 2015; 20:880-888. [PMID: 25385367 PMCID: PMC4351922 DOI: 10.1038/mp.2014.146] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/01/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1(-/-) mice displayed enhanced disruption of the blood-brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8(+) T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1(-/-) mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Calcium-Binding Proteins
- Capillary Permeability/drug effects
- Capillary Permeability/physiology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Granulocytes/drug effects
- Granulocytes/metabolism
- Granulocytes/pathology
- Homeostasis/drug effects
- Homeostasis/physiology
- Intercellular Signaling Peptides and Proteins
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/physiology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/metabolism
- Severity of Illness Index
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jong-Hyung Lim
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ales Neuwirth
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Matina Economopoulou
- Clinic for Ophthalmology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | | | - Seung-Hwan Lee
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Harald Langer
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Medizinische Klinik III, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Maryna Samus
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hyesoon Kim
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Geum-Sil Cho
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emmanouil Chavakis
- Department of Internal Medicine, Cardiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Kavita Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sven G. Meuth
- Department for Neurology, University Münster, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
47
|
Kolitz S, Hasson T, Towfic F, Funt JM, Bakshi S, Fowler KD, Laifenfeld D, Grinspan A, Artyomov MN, Birnberg T, Schwartz R, Komlosh A, Hayardeny L, Ladkani D, Hayden MR, Zeskind B, Grossman I. Gene expression studies of a human monocyte cell line identify dissimilarities between differently manufactured glatiramoids. Sci Rep 2015; 5:10191. [PMID: 25998228 PMCID: PMC4441120 DOI: 10.1038/srep10191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/02/2015] [Indexed: 11/09/2022] Open
Abstract
Glatiramer Acetate (GA) has provided safe and effective treatment for multiple sclerosis (MS) patients for two decades. It acts as an antigen, yet the precise mechanism of action remains to be fully elucidated, and no validated pharmacokinetic or pharmacodynamic biomarkers exist. In order to better characterize GA’s biological impact, genome-wide expression studies were conducted with a human monocyte (THP-1) cell line. Consistent with previous literature, branded GA upregulated anti-inflammatory markers (e.g. IL10), and modulated multiple immune-related pathways. Despite some similarities, significant differences were observed between expression profiles induced by branded GA and Probioglat, a differently-manufactured glatiramoid purported to be a generic GA. Key results were verified using qRT-PCR. Genes (e.g. CCL5, adj. p < 4.1 × 10−5) critically involved in pro-inflammatory pathways (e.g. response to lipopolysaccharide, adj. p = 8.7 × 10−4) were significantly induced by Probioglat compared with branded GA. Key genes were also tested and confirmed at the protein level, and in primary human monocytes. These observations suggest differential biological impact by the two glatiramoids and warrant further investigation.
Collapse
Affiliation(s)
| | - Tal Hasson
- Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | | | - Shlomo Bakshi
- Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | | | | | | | - Tal Birnberg
- Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | | | | | - David Ladkani
- Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | | | - Iris Grossman
- Teva Pharmaceutical Industries, Petach Tikva, Israel
| |
Collapse
|
48
|
Dillingham BC, Knoblach SM, Many GM, Harmon BT, Mullen AM, Heier CR, Bello L, McCall JM, Hoffman EP, Connor EM, Nagaraju K, Reeves EKM, Damsker JM. VBP15, a novel anti-inflammatory, is effective at reducing the severity of murine experimental autoimmune encephalomyelitis. Cell Mol Neurobiol 2015; 35:377-387. [PMID: 25392236 PMCID: PMC11486228 DOI: 10.1007/s10571-014-0133-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis is a chronic disease of the central nervous system characterized by an autoimmune inflammatory reaction that leads to axonal demyelination and tissue damage. Glucocorticoids, such as prednisolone, are effective in the treatment of multiple sclerosis in large part due to their ability to inhibit pro-inflammatory pathways (e.g., NFκB). However, despite their effectiveness, long-term treatment is limited by adverse side effects. VBP15 is a recently described compound synthesized based on the lazeroid steroidal backbone that shows activity in acute and chronic inflammatory conditions, yet displays a much-reduced side effect profile compared to traditional glucocorticoids. The purpose of this study was to determine the effectiveness of VBP15 in inhibiting inflammation and disease progression in experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of multiple sclerosis. Our data show that VBP15 is effective at reducing both disease onset and severity. In parallel studies, we observed that VBP15 was able to inhibit the production of NFκB-regulated pro-inflammatory transcripts in human macrophages. Furthermore, treatment with prednisolone-but not VBP15-increased expression of genes associated with bone loss and muscle atrophy, suggesting lack of side effects of VBP15. These findings suggest that VBP15 may represent a potentially safer alternative to traditional glucocorticoids in the treatment of multiple sclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Blythe C Dillingham
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | - Susan M Knoblach
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Children's National Medical Center and George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Gina M Many
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | - Brennan T Harmon
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | - Amanda M Mullen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | - Christopher R Heier
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | - Luca Bello
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
| | - John M McCall
- PharMac LLC, Boca Grande, FL, 33921, USA
- ReveraGen BioPharma, Silver Spring, MD, 20910, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Children's National Medical Center and George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
- ReveraGen BioPharma, Silver Spring, MD, 20910, USA
| | | | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Children's National Medical Center and George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
- ReveraGen BioPharma, Silver Spring, MD, 20910, USA
| | | | | |
Collapse
|
49
|
Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, Deutsch U, Engelhardt B, Lyck R. Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier. Eur J Immunol 2015; 45:1043-58. [PMID: 25545837 DOI: 10.1002/eji.201445125] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023]
Abstract
The extravasation of CD4(+) effector/memory T cells (TEM cells) across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Endothelial ICAM-1 and ICAM-2 are essential for CD4(+) TEM cell crawling on the BBB prior to diapedesis. Here, we investigated the influence of cell surface levels of endothelial ICAM-1 in determining the cellular route of CD4(+) TEM -cell diapedesis across cytokine treated primary mouse BBB endothelial cells under physiological flow. Inflammatory conditions, inducing high levels of endothelial ICAM-1, promoted rapid initiation of transcellular diapedesis of CD4(+) T cells across the BBB, while intermediate levels of endothelial ICAM-1 favored paracellular CD4(+) T-cell diapedesis. Importantly, the route of T-cell diapedesis across the BBB was independent of loss of BBB barrier properties. Unexpectedly, a low number of CD4(+) TEM cells was found to cross the inflamed BBB in the absence of endothelial ICAM-1 and ICAM-2 via an obviously alternatively regulated transcellular pathway. In vivo, this translated to the development of ameliorated EAE in ICAM-1(null) //ICAM-2(-/-) C57BL/6J mice. Taken together, our study demonstrates that cell surface levels of endothelial ICAM-1 rather than the inflammatory stimulus or BBB integrity influence the pathway of T-cell diapedesis across the BBB.
Collapse
Affiliation(s)
- Michael Abadier
- Theodor Kocher Institute, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis. Clin Immunol 2015; 157:121-32. [PMID: 25596452 DOI: 10.1016/j.clim.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Fractalkine (CX3CL1) levels are increased in the cerebrospinal fluid (CSF) of patients with clinically isolated syndrome (CIS), as well as in the CSF and serum samples from patients with relapsing-remitting multiple sclerosis (RRMS). A higher percentage of circulating CD4(+) T-cells expressed its surface receptor (CX3CR1) and intracellular adhesion molecule (ICAM-1) in RRMS patients in comparison to healthy controls (HCs). The CX3CR1(+)ICAM-1(+)CD4(+) T-cells are enriched in the CSF of the RRMS patients. In vitro migration studies revealed that CD4(+) T-cells, which migrated toward a CX3CL1 gradient, expressed higher levels of ICAM-1 than non-migrating cells. CX3CL1 significantly increased IFN-γ and TNF-α gene expression and IFN-γ secretion by CD4(+) T-cells derived from the RRMS patients. CX3CL1 upregulated ICAM-1 expression on the surface of RRMS patient-derived but not HC-derived CD4(+) T-cells. Thus, CX3CL1 induces recruitment of CX3CR1(+)ICAM-1(+)CD4(+) T-cells into the central nervous system (CNS) during the early inflammatory response in MS.
Collapse
|