1
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Lee SW, Park HJ, Van Kaer L, Hong S. Roles and therapeutic potential of CD1d-Restricted NKT cells in inflammatory skin diseases. Front Immunol 2022; 13:979370. [PMID: 36119077 PMCID: PMC9478174 DOI: 10.3389/fimmu.2022.979370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens rather than peptides. Due to their immunoregulatory properties, extensive work has been done to elucidate the immune functions of NKT cells in various immune contexts such as autoimmunity for more than two decades. In addition, as research on barrier immunity such as the mucosa-associated lymphoid tissue has flourished in recent years, the role of NKT cells to immunity in the skin has attracted substantial attention. Here, we review the contributions of NKT cells to regulating skin inflammation and discuss the factors that can modulate the functions of NKT cells in inflammatory skin diseases such as atopic dermatitis. This mini-review article will mainly focus on CD1d-dependent NKT cells and their therapeutic potential in skin-related immune diseases.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
3
|
Romanò C, Clausen MH. Chemical Biology of αGalCer: a Chemist’s Toolbox for the Stimulation of Invariant Natural Killer T (iNKT) Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Romanò
- Technical University of Denmark: Danmarks Tekniske Universitet Department of Chemisty Kemitorvet 207 2800 Kgs. Lyngby DENMARK
| | - Mads Hartvig Clausen
- Technical University of Denmark Department of Chemistry Kemitorvet, Building 201 2800 Kgs. Lyngby DENMARK
| |
Collapse
|
4
|
Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021; 29:1249-1265.e9. [PMID: 34289377 PMCID: PMC8370265 DOI: 10.1016/j.chom.2021.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Thomas Battaglia
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Kimberly Krautkramer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden
| | - Wei Vivian Li
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jackie Li
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Mark Brown
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Michelle H Badri
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA
| | - Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Christopher M Strauch
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Altomare
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Joseph C Devlin
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Linchen He
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Jamie T Morton
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - John Alex Chalk
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly Needles
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Viviane Liao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Julia Mount
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Kelly V Ruggles
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Richard A Bonneau
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA; Institute for Food, Nutrition and Health, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden; Region västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanley L Hazen
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Efforts toward rational design of Th2-bias immune stimulator through modification on D-Gal-C-4 of α-GalCer derivative. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Wang Y, Sedimbi SK, Löfbom L, Besra GS, Porcelli SA, Cardell SL. Promotion or Suppression of Murine Intestinal Polyp Development by iNKT Cell Directed Immunotherapy. Front Immunol 2019; 10:352. [PMID: 30881361 PMCID: PMC6405695 DOI: 10.3389/fimmu.2019.00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/11/2019] [Indexed: 01/23/2023] Open
Abstract
The glycosphingolipid α-galactosylceramide (α-GalCer) is a well-described immune activator with strong anti-tumor properties in animal models. It is presented on CD1d and acts by stimulating the invariant, type I, natural killer T (iNKT) lymphocytes to rapidly secrete TH1 and TH2 associated cytokines. This in turn promotes activation of a diversity of immune cells including natural killer (NK) cells with anti-tumor functions. Prior to tumor development, iNKT cells can also perform tumor surveillance and naturally protect from emergence of cancer. In contrast, we have recently demonstrated that iNKT cells naturally promote polyps in the spontaneous murine adenomatous polyposis coli (Apc) ApcMin/+ model for colon cancer, associated with suppressed TH1 immunity and enhanced immunoregulation. Here we investigated whether iNKT cell directed immunotherapy could subvert the polyp promoting function of iNKT cells and reduce polyp growth in this model. We treated ApcMin/+ mice with α-GalCer, or synthetic derivatives of this ligand (C-glycoside and C20:2) that have enhanced immunoregulatory properties. Treatment with iNKT cell ligands led to increased iNKT cell division, but reduced iNKT cell frequencies, lower NK1.1 expression and elevation of PD-1. ApcMin/+ mice that had been treated either long-term (5–15 weeks of age), or short-term (12–15 weeks of age) with α-GalCer demonstrated a significant decrease in polyp burden. Surprisingly, long-term treatment with the TH1 biasing ligand C-glycoside did not have significant effects on polyps, while long-term treatment with the TH2 biasing ligand C20:2 enhanced polyp growth. In stark contrast, short-term treatment with C20:2 led to reduction in polyp numbers and size. Reduced polyp burden after long-term treatment was associated with increased expression of genes indicating a pro-inflammatory polyp microenvironment. Polyp-reducing short-term treatment led to CD8 T cell activation specifically in polyps, and decreased tumor infiltrating and splenic macrophages, and a switch toward a pro-inflammatory phenotype. Thus, iNKT cell directed therapy could subvert the natural polyp enhancing function of iNKT cells, overcome immunosuppression, and reduce polyps. However, different iNKT cell activating ligands had opposite effects, and the timing of treatment had a major influence on outcomes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gurdyal S Besra
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Steven A Porcelli
- Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Yu JC, Lin G, Field JJ, Linden J. Induction of antiinflammatory purinergic signaling in activated human iNKT cells. JCI Insight 2018; 3:91954. [PMID: 30185656 DOI: 10.1172/jci.insight.91954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are activated at sites of local tissue injury, or globally during vaso-occlusive episodes of sickle cell disease (SCD). Tissue damage stimulates production of CD1d-restricted lipid antigens that activate iNKT cells to produce Th1- and Th2-type cytokines. Here, we show that circulating iNKT cells in SCD patients express elevated levels of the ectonucleoside triphosphate diphosphosphohydrolase, CD39, as well the adenosine A2A receptor (A2AR). We also investigated the effects of stimulating cultured human iNKT cells on the expression of genes involved in the regulation of purinergic signaling. iNKT cell stimulation caused induction of ADORA2A, P2RX7, CD38, CD39, ENPP1, CD73, PANX1, and ENT1. Transcription of ADA, which degrades adenosine, was reduced. Induction of CD39 mRNA was associated with increased ecto-ATPase activity on iNKT cells that was blocked by POM1. Exposure of iNKT cells to A2AR agonists during stimulation reduced production of IFN-γ and enhanced production of IL-13 and CD39. Based on these findings, we define "purinergic Th2-type cytokine bias" as an antiinflammatory purinergic response to iNKT cell stimulation resulting from changes in the transcription of several genes involved in purine release, extracellular metabolism, and signaling.
Collapse
Affiliation(s)
- Jennifer C Yu
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology La Jolla, California, USA.,Division of Pediatric Hematology/Oncology, University of California/Rady Children's Hospital, San Diego, California, USA
| | - Gene Lin
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology La Jolla, California, USA
| | - Joshua J Field
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology La Jolla, California, USA.,Department of Pharmacology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
8
|
Zhang XS, Li J, Krautkramer KA, Badri M, Battaglia T, Borbet TC, Koh H, Ng S, Sibley RA, Li Y, Pathmasiri W, Jindal S, Shields-Cutler RR, Hillmann B, Al-Ghalith GA, Ruiz VE, Livanos A, van 't Wout AB, Nagalingam N, Rogers AB, Sumner SJ, Knights D, Denu JM, Li H, Ruggles KV, Bonneau R, Williamson RA, Rauch M, Blaser MJ. Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. eLife 2018; 7:37816. [PMID: 30039798 PMCID: PMC6085123 DOI: 10.7554/elife.37816] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Jackie Li
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Kimberly A Krautkramer
- Department of Biomolecular Chemistry, Wisconsin Institute for Discovery, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Michelle Badri
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States.,Center for Data Science, New York University, New York, United States
| | - Thomas Battaglia
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Timothy C Borbet
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Hyunwook Koh
- Department of Population Health, New York University Langone Medical Center, New York, United States
| | - Sandy Ng
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Rachel A Sibley
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Yuanyuan Li
- Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, United States
| | - Wimal Pathmasiri
- Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, United States
| | - Shawn Jindal
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Robin R Shields-Cutler
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - Ben Hillmann
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - Gabriel A Al-Ghalith
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - Victoria E Ruiz
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Alexandra Livanos
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Angélique B van 't Wout
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Nabeetha Nagalingam
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Arlin B Rogers
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, United States
| | - Susan Jenkins Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, United States
| | - Dan Knights
- Computer Science and Engineering, BioTechnology Institute, University of Minnesota, St. Paul, United States
| | - John M Denu
- Department of Biomolecular Chemistry, Wisconsin Institute for Discovery, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, United States
| | - Kelly V Ruggles
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States
| | - Richard Bonneau
- Center for Data Science, New York University, New York, United States
| | - R Anthony Williamson
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Marcus Rauch
- Janssen Prevention Center London, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Martin J Blaser
- Department of Medicine, New York University Langone Medical Center, New York, United States.,Human Microbiome Program, New York University Langone Medical Center, New York, United States.,Department of Microbiology, New York Uniersity Langone Medical Center, New York, United States
| |
Collapse
|
9
|
Chennamadhavuni D, Saavedra-Avila NA, Carreño LJ, Guberman-Pfeffer MJ, Arora P, Yongqing T, Pryce R, Koay HF, Godfrey DI, Keshipeddy S, Richardson SK, Sundararaj S, Lo JH, Wen X, Gascón JA, Yuan W, Rossjohn J, Le Nours J, Porcelli SA, Howell AR. Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chem Biol 2018; 25:571-584.e8. [PMID: 29576533 PMCID: PMC6025895 DOI: 10.1016/j.chembiol.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents.
Collapse
Affiliation(s)
| | | | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Millennium Institute on Immunology and Immunotherapy, Programa de Inmunologia, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tang Yongqing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Melbourne, Australia
| | - Santosh Keshipeddy
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Stewart K Richardson
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Srinivasan Sundararaj
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José A Gascón
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jérôme Le Nours
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Amy R Howell
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
10
|
Van Kaer L, Wu L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol 2018; 9:519. [PMID: 29593743 PMCID: PMC5859017 DOI: 10.3389/fimmu.2018.00519] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT) cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
11
|
Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, Gao Z, Barber C, Kim J, Ng S, Rogers AB, Sumner S, Zhang XS, Cadwell K, Knights D, Alekseyenko A, Bäckhed F, Blaser MJ. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 2016; 1:16140. [PMID: 27782139 PMCID: PMC5808443 DOI: 10.1038/nmicrobiol.2016.140] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.
Collapse
Affiliation(s)
- Alexandra E. Livanos
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Thomas U. Greiner
- Department of Molecular and Clinical Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pajau Vangay
- Biomedical Informatics and Computational Biology Program, University of Minnesota, Minneapolis, Minneapolis 55455, USA
| | - Wimal Pathmasiri
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Delisha Stewart
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Susan McRitchie
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Huilin Li
- Departments of Population Health, New York University Langone Medical Center, New York, New York 10016, USA
| | - Jennifer Chung
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Jiho Sohn
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Sara Kim
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Zhan Gao
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Cecily Barber
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Joanne Kim
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Sandy Ng
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Arlin B. Rogers
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, USA
| | - Susan Sumner
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Xue-Song Zhang
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Langone Medical Center, New York, New York 10016, USA
- Skirball Institute, New York University Langone Medical Center, New York, New York 10016, USA
| | - Dan Knights
- Computer Science and Engineering, University of Minnesota, Minneapolis, Minneapolis 55455, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minneapolis 55108, USA
| | - Alexander Alekseyenko
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
- CHIBI, New York University Langone Medical Center, New York, New York 10016, USA
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Martin J. Blaser
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
- New York Harbor Veterans Affairs Medical Center, New York, New York 10010, USA
| |
Collapse
|
12
|
Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol 2016; 1:16133. [PMID: 27562263 DOI: 10.1038/nmicrobiol.2016.133] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022]
Abstract
Suppression of major histocompatibility complex (MHC) class II antigen presentation is believed to be among the major mechanisms used by Mycobacterium tuberculosis to escape protective host immune responses. Through a genome-wide screen for the genetic loci of M. tuberculosis that inhibit MHC class II-restricted antigen presentation by mycobacteria-infected dendritic cells, we identified the PE_PGRS47 protein as one of the responsible factors. Targeted disruption of the PE_PGRS47 (Rv2741) gene led to attenuated growth of M. tuberculosis in vitro and in vivo, and a PE_PGRS47 mutant showed enhanced MHC class II-restricted antigen presentation during in vivo infection of mice. Analysis of the effects of deletion or over-expression of PE_PGRS47 implicated this protein in the inhibition of autophagy in infected host phagocytes. Our findings identify PE_PGRS47 as a functionally relevant, non-redundant bacterial factor in the modulation of innate and adaptive immunity by M. tuberculosis, suggesting strategies for improving antigen presentation and the generation of protective immunity during vaccination or infection.
Collapse
|
13
|
Kharkwal SS, Arora P, Porcelli SA. Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics 2016; 68:597-610. [PMID: 27377623 DOI: 10.1007/s00251-016-0925-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Natural Killer T cells (NKT cells) are a subpopulation of T lymphocytes with unique phenotypic properties and a remarkably broad range of immune effector and regulatory functions. One subset of these cells, known as invariant NKT cells (iNKT cells), has become a significant focus in the search for new and better ways to enhance immunotherapies and vaccination. These unconventional T cells are characterized by their ability to be specifically activated by a range of foreign and self-derived glycolipid antigens presented by CD1d, an MHC class I-related antigen presenting molecule that has evolved to bind and present lipid antigens. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here we review the basic background biology of iNKT cells that is relevant to their potential for improving immune responses, and summarize recent work supporting the further development of glycolipid activators of iNKT cells as a new class of vaccine adjuvants.
Collapse
Affiliation(s)
- Shalu Sharma Kharkwal
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pooja Arora
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven A Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
15
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
16
|
Arora P, Kharkwal SS, Ng TW, Kunnath-Velayudhan S, Saini NK, Johndrow CT, Chang YT, Besra GS, Porcelli SA. "Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexes". Chem Phys Lipids 2015; 194:49-57. [PMID: 26496152 DOI: 10.1016/j.chemphyslip.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d-presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these "stabilized" CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the outcome of iNKT cell mediated responses.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shalu S Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tony W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher T Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young-Tae Chang
- Department of Chemistry and NUS Medchem Program of The Life Sciences Institute, National University of Singapore 117543, Singapore
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexes. Chem Phys Lipids 2015; 191:75-83. [PMID: 26306469 DOI: 10.1016/j.chemphyslip.2015.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/28/2022]
Abstract
Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d-presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these "stabilized" CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the outcome of iNKT cell mediated responses.
Collapse
|
18
|
Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SMM. CD1d- and MR1-Restricted T Cells in Sepsis. Front Immunol 2015; 6:401. [PMID: 26322041 PMCID: PMC4533011 DOI: 10.3389/fimmu.2015.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022] Open
Abstract
Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - Ram V Anantha
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of General Surgery, Department of Medicine, Western University , London, ON , Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - John K McCormick
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada
| |
Collapse
|
19
|
Carreño LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 2015; 6:309-20. [PMID: 24762075 DOI: 10.2217/imt.13.175] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.
Collapse
Affiliation(s)
- Leandro J Carreño
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
20
|
Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol 2014; 14:640-6. [PMID: 25103356 DOI: 10.1038/nri3725] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer T (NKT) cells are credited with regulatory roles in immunity against cancers, autoimmune diseases, allergies, and bacterial and viral infections. Studies in mice and observational research in patient groups have suggested that NKT cell-based therapies could be used to prevent or treat these diseases, yet the translation into clinical settings has been disappointing. We support the view that NKT cells have regulatory characteristics that could be exploited in clinical settings, but there are doubts about the natural roles of NKT cells in vivo and whether NKT cell defects are fundamental drivers of disease in humans. In this Opinion article, we discuss the uncertainties and opportunities regarding NKT cells in humans, and the potential for NKT cells to be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Stuart P Berzins
- School of Health Sciences, Federation University, Ballarat, Victoria 3350, Australia, the Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia, and the Department of Microbiology and Immunology, the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Ritchie
- Department of Clinical Hematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
21
|
Beaudoin L, Diana J, Ghazarian L, Simoni Y, Boitard C, Lehuen A. Plasmacytoid dendritic cells license regulatory T cells, upon iNKT-cell stimulation, to prevent autoimmune diabetes. Eur J Immunol 2014; 44:1454-66. [PMID: 24481989 DOI: 10.1002/eji.201343910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/17/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Invariant NKT (iNKT)-cell stimulation with exogenous specific ligands prevents the development of type 1 diabetes (T1D) in NOD mice. Studies based on anti-islet T-cell transfer showed that iNKT cells prevent the differentiation of these T cells into effector T cells in the pancreatic lymph nodes (PLNs). We hypothesize that this defective priming could be explained by the ability of iNKT cells to induce tolerogenic dendritic cells (DCs) in the PLNs. We evaluated the effect of iNKT-cell stimulation on T1D development by transferring naïve diabetogenic BDC2.5 T cells into proinsulin 2(-/-) NOD mice treated with a long-lasting α-galactosylceramide regimen. In this context, iNKT cells induce the conversion of BDC2.5 T cells into Foxp3(+) Treg cells in the PLNs accumulating in the pancreatic islets. Furthermore, tolerogenic plasmacytoid DCs (pDCs) characterized by low MHC class II molecule expression and TGF-β production are critical in the PLNs for the recruitment of Treg cells into the pancreatic islets by inducing CXCR3 expression. Accordingly, pDC depletion in α-galactosylceramide-treated proinsulin 2(-/-) NOD mice abrogates the protection against T1D. These findings reveal that upon repetitive iNKT-cell stimulation, pDCs are critical for the recruitment of Treg cells in the pancreatic islets and the prevention of T1D development.
Collapse
Affiliation(s)
- Lucie Beaudoin
- INSERM U1016, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Arora P, Baena A, Yu KOA, Saini NK, Kharkwal SS, Goldberg MF, Kunnath-Velayudhan S, Carreño LJ, Venkataswamy MM, Kim J, Lazar-Molnar E, Lauvau G, Chang YT, Liu Z, Bittman R, Al-Shamkhani A, Cox LR, Jervis PJ, Veerapen N, Besra GS, Porcelli SA. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 2014; 40:105-16. [PMID: 24412610 PMCID: PMC3895174 DOI: 10.1016/j.immuni.2013.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022]
Abstract
Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. Complexes of antigenic glycolipids bound to CD1d have been visualized in situ A single DC subset predominates in presentation of a variety of glycolipids Antigen presentation to iNKT cells rapidly alters accessory molecules on APCs Reciprocal induction of CD70 and PD-L2 controls cytokine bias of iNKT cell responses
Collapse
Affiliation(s)
- Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética GICIG, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No.52-21, Medellin 05001000, Colombia
| | - Karl O A Yu
- Pediatric Infectious Diseases, Comer Children's Hospital, University of Chicago, Chicago, IL 60637, USA
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shalu S Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | | | - John Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eszter Lazar-Molnar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young-tae Chang
- Department of Chemistry and Medicinal Chemistry Programme, National University of Singapore, and Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 117543, Singapore
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367, USA
| | - Aymen Al-Shamkhani
- Faculty of Medicine, Cancer Sciences Academic Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Anderson BL, Teyton L, Bendelac A, Savage PB. Stimulation of natural killer T cells by glycolipids. Molecules 2013; 18:15662-88. [PMID: 24352021 PMCID: PMC4018217 DOI: 10.3390/molecules181215662] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 01/31/2023] Open
Abstract
Natural killer T (NKT) cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type.
Collapse
Affiliation(s)
| | | | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
24
|
Sørensen JØ, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS 2013; 122:167-82. [PMID: 23992281 DOI: 10.1111/apm.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed.
Collapse
Affiliation(s)
- Jakob Ørskov Sørensen
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaloesvej 5, Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013. [PMID: 23199318 DOI: 10.1111/j.1365-2249.2012.04625.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases.
Collapse
Affiliation(s)
- Y Simoni
- INSERM, U986, Hospital Cochin/St Vincent de Paul, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
26
|
East JE, Kennedy AJ, Webb TJ. Raising the roof: the preferential pharmacological stimulation of Th1 and th2 responses mediated by NKT cells. Med Res Rev 2012; 34:45-76. [PMID: 23239102 DOI: 10.1002/med.21276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell's cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure-activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses.
Collapse
Affiliation(s)
- James E East
- Department of Microbiology and Immunology, The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | | |
Collapse
|
27
|
Liu Z, Courtney AN, Metelitsa LS, Bittman R. C-Glycosphingolipids with an exo-methylene substituent: stereocontrolled synthesis and immunostimulation of mouse and human natural killer T lymphocytes. Chembiochem 2012; 13:1733-7. [PMID: 22782839 DOI: 10.1002/cbic.201200374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Indexed: 01/29/2023]
Affiliation(s)
- Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, NY 11367, USA
| | | | | | | |
Collapse
|
28
|
Novak J, Novakova L. Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells. Clin Exp Med 2012; 13:229-37. [PMID: 22825586 DOI: 10.1007/s10238-012-0199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023]
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted T cells with regulatory functions. iNKT cells are numerically and functionally deficient in experimental models of type 1 diabetes mellitus (T1DM). Moreover, various experimental strategies correcting the defect of or stimulating iNKT cells prevent T1DM. Here, we review the data on the role of iNKT cells in the development of T1DM and discuss indications, obstacles and prospects of the use of iNKT cell manipulations in the prevention and treatment of human T1DM.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague 10, Czech Republic,
| | | |
Collapse
|
29
|
Jervis PJ, Graham LM, Foster EL, Cox LR, Porcelli SA, Besra GS. New CD1d agonists: synthesis and biological activity of 6″-triazole-substituted α-galactosyl ceramides. Bioorg Med Chem Lett 2012; 22:4348-52. [PMID: 22652050 PMCID: PMC3401990 DOI: 10.1016/j.bmcl.2012.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 11/28/2022]
Abstract
Huisgen [3+2] dipolar cycloaddition of 6″-azido-6″-deoxy-α-galactosyl ceramide 11 with a range of alkynes (or a benzyne precursor) yielded a series of triazole-containing α-galactosyl ceramide (α-GalCer) analogues in high yield. These α-GalCer analogues and the precursor azide 11 were tested for their ability to activate iNKT cells and stimulate IL-2 cytokine secretion in vitro, and IFN-γ and IL-4 cytokine secretion in vivo. Some of these analogues, specifically 11, 12b, 12f and 13, were more potent IL-2 stimulators than the prototypical CD1d agonist, α-GalCer 1. In terms of any cytokine bias, most of the triazole-containing analogues exhibited a small Th2 cytokine-biasing response relative to that shown by α-GalCer 1. In contrast, the cycloaddition precursor, namely azide 11, provided a small Th1 cytokine-biasing response.
Collapse
Affiliation(s)
- Peter J. Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lisa M. Graham
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Erin L. Foster
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
Kerzerho J, Yu ED, Barra CM, Alari-Pahissa E, Alari-Pahisa E, Girardi E, Harrak Y, Lauzurica P, Llebaria A, Zajonc DM, Akbari O, Castaño AR. Structural and functional characterization of a novel nonglycosidic type I NKT agonist with immunomodulatory properties. THE JOURNAL OF IMMUNOLOGY 2012; 188:2254-65. [PMID: 22301545 DOI: 10.4049/jimmunol.1103049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of type I NKT (iNKT) cells by CD1d-presented agonists is a potent immunotherapeutic tool. α-Galactosylceramide (α-GalCer) is the prototypic agonist, but its excessive potency with simultaneous production of both pro- and anti-inflammatory cytokines hampers its potential therapeutic use. In search for novel agonists, we have analyzed the structure and function of HS44, a synthetic aminocyclitolic ceramide analog designed to avoid unrestrained iNKT cell activation. HS44 is a weaker agonist compared with α-GalCer in vitro, although in vivo it induces robust IFN-γ production, and highly reduced but still functional Th2 response. The characteristic cytokine storm produced upon α-GalCer activation was not induced. Consequently, HS44 induced a very efficient iNKT cell-dependent antitumoral response in B16 animal model. In addition, intranasal administration showed the capacity to induce lung inflammation and airway hyperreactivity, a cardinal asthma feature. Thus, HS44 is able to elicit functional Th1 or Th2 responses. Structural studies show that HS44 binds to CD1d with the same conformation as α-GalCer. The TCR binds to HS44 similarly as α-GalCer, but forms less contacts, thus explaining its weaker TCR affinity and, consequently, its weaker recognition by iNKT cells. The ability of this compound to activate an efficient, but not massive, tailored functional immune response makes it an attractive reagent for immune manipulation.
Collapse
Affiliation(s)
- Jerome Kerzerho
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Blumenfeld HJ, Tohn R, Haeryfar SMM, Liu Y, Savage PB, Delovitch TL. Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice. Clin Exp Immunol 2011; 166:121-33. [PMID: 21910729 DOI: 10.1111/j.1365-2249.2011.04454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because invariant natural killer T (iNK T) cells link innate and adaptive immunity, the structure-dependent design of iNK T cell agonists may have therapeutic value as vaccines for many indications, including autoimmune disease. Previously, we showed that treatment of non-obese diabetic (NOD) mice with the iNK T cell activating prototypic glycolipid α-galactosylceramide (α-GalCer) protects them from type 1 diabetes (T1D). However, α-GalCer is a strong agonist that can hyperactivate iNK T cells, elicit several side effects and has shown only limited success in clinical trials. Here, we used a structure-guided design approach to identify an iNK T cell agonist that optimally protects from T1D with minimal side effects. Analyses of the kinetics and function of a panel of synthetic α-GalCer fatty acyl chain derivatives (C8:0-C16:0) were performed in NOD mice. C16:0 elicited the highest protection from insulitis and T1D, which was associated with a higher frequency and survival of iNK T cells and enhanced activity of tolerogenic dendritic cells (DCs) in draining pancreatic lymph nodes (PLN), inability to transactivate NK cells and a more rapid kinetics of induction and recovery of iNK T cells from anergy. We conclude that the length and structure of the acyl chain of α-GalCer regulates the level of protection against T1D in mice, and propose that the extent of this protection depends on the relative capacity of the acyl chain to accommodate an endogenous spacer lipid of appropriate length and structure. Thus, our findings with the α-GalCer C16:0 derivative suggest strongly that it be considered as a lead glycolipid candidate in clinical trials of T1D.
Collapse
Affiliation(s)
- H J Blumenfeld
- Laboratory of Autoimmune Diabetes, Robarts Research Institute Department of Microbiology and Immunology, Dental Science Building, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Simoni Y, Gautron AS, Beaudoin L, Bui LC, Michel ML, Coumoul X, Eberl G, Leite-de-Moraes M, Lehuen A. NOD mice contain an elevated frequency of iNKT17 cells that exacerbate diabetes. Eur J Immunol 2011; 41:3574-85. [PMID: 22002883 DOI: 10.1002/eji.201141751] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/18/2011] [Accepted: 10/10/2011] [Indexed: 01/13/2023]
Abstract
Invariant natural killer T (iNKT) cells are a distinct lineage of innate-like T lymphocytes and converging studies in mouse models have demonstrated the protective role of iNKT cells in the development of type 1 diabetes. Recently, a new subset of iNKT cells, producing high levels of the pro-inflammatory cytokine IL-17, has been identified (iNKT17 cells). Since this cytokine has been implicated in several autoimmune diseases, we have analyzed iNKT17 cell frequency, absolute number and phenotypes in the pancreas and lymphoid organs in non-obese diabetic (NOD) mice. The role of iNKT17 cells in the development of diabetes was investigated using transfer experiments. NOD mice exhibit a higher frequency and absolute number of iNKT17 cells in the lymphoid organs as compared with C57BL/6 mice. iNKT17 cells infiltrate the pancreas of NOD mice where they express IL-17 mRNA. Contrary to the protective role of CD4(+) iNKT cells, the CD4(-) iNKT cell population, which contains iNKT17 cells, enhances the incidence of diabetes. Treatment with a blocking anti-IL-17 antibody prevents the exacerbation of the disease. This study reveals that different iNKT cell subsets play distinct roles in the regulation of type 1 diabetes and iNKT17 cells, which are abundant in NOD mice, exacerbate diabetes development.
Collapse
Affiliation(s)
- Yannick Simoni
- INSERM U986, Hôpital Cochin/Saint-Vincent de Paul, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hayworth JL, Mazzuca DM, Maleki Vareki S, Welch I, McCormick JK, Haeryfar SMM. CD1d-independent activation of mouse and human iNKT cells by bacterial superantigens. Immunol Cell Biol 2011; 90:699-709. [PMID: 22041925 DOI: 10.1038/icb.2011.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Invariant NKT (iNKT) cells are infrequent but important immunomodulatory lymphocytes that exhibit CD1d-restricted reactivity with glycolipid Ags. iNKT cells express a unique T-cell receptor (TCR) composed of an invariant α-chain, paired with a limited range of β-chains. Superantigens (SAgs) are microbial toxins defined by their ability to activate conventional T cells in a TCR β-chain variable domain (Vβ)-specific manner. However, whether iNKT cells are directly activated by bacterial SAgs remains an open question. Herein, we explored the responsiveness of mouse and human iNKT cells to a panel of staphylococcal and streptococcal SAgs and examined the contribution of major histocompatibility complex (MHC) class II and CD1d to these responses. Bacterial SAgs that target mouse Vβ8, such as staphylococcal enterotoxin B (SEB), were able to activate mouse hybridoma and primary hepatic iNKT cells in the presence of mouse APCs expressing human leukocyte antigen (HLA)-DR4. iNKT cell-mediated cytokine secretion in SEB-challenged HLA-DR4-transgenic mice was CD1d-independent and accompanied by a high interferon-γ:interleukin-4 ratio consistent with an in vivo Th1 bias. Furthermore, iNKT cells from SEB-injected HLA-DR4-transgenic mice, and iNKT cells from SEB-treated human PBMCs, showed early activation by intracellular cytokine staining and CD69 expression. Unlike iNKT cell stimulation by α-galactosylceramide, stimulation by SEB did not induce TCR downregulation of either mouse or human iNKT cells. We conclude that Vβ8-targeting bacterial SAgs can activate iNKT cells by utilizing a novel pathway that requires MHC class II interactions, but not CD1d. Therefore, iNKT cells fulfill important effector functions in response to bacterial SAgs and may provide attractive targets in the management of SAg-induced illnesses.
Collapse
Affiliation(s)
- Jacqueline L Hayworth
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist. Immunol Cell Biol 2011; 90:630-9. [PMID: 21912419 DOI: 10.1038/icb.2011.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA.
Collapse
|
35
|
IFN regulatory factors 4 and 8 expression in the NOD mouse. Clin Dev Immunol 2011; 2011:374859. [PMID: 21647406 PMCID: PMC3102445 DOI: 10.1155/2011/374859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/09/2011] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) contribute to islet inflammation and its progression to diabetes in NOD mouse model and human. DCs play a crucial role in the presentation of autoantigen and activation of diabetogenic T cells, and IRF4 and IRF8 are crucial genes involved in the development of DCs. We have therefore investigated the expression of these genes in splenic DCs during diabetes progression in NOD mice. We found that IRF4 expression was upregulated in splenocytes and in splenic CD11c+ DCs of NOD mice as compared to BALB/c mice. In contrast, IRF8 gene expression was higher in splenocytes of NOD mice whereas its expression was similar in splenic CD11c+ DCs of NOD and BALB/c mice. Importantly, levels of IRF4 and IRF8 expression were lower in tolerogenic bone marrow derived DCs (BMDCs) generated with GM-CSF as compared to immunogenic BMDCs generated with GM-CSF and IL-4. Analysis of splenic DCs subsets indicated that high expression of IRF4 was associated with increased levels of CD4+CD8α−IRF4+CD11c+ DCs but not CD4−CD8α+IRF8+CD11c+ DCs in NOD mice. Our results showed that IRF4 expression was up-regulated in NOD mice and correlated with the increased levels of CD4+CD8α− DCs, suggesting that IRF4 may be involved in abnormal DC functions in type 1 diabetes in NOD mice.
Collapse
|
36
|
Arora P, Venkataswamy MM, Baena A, Bricard G, Li Q, Veerapen N, Ndonye R, Park JJ, Lee JH, Seo KC, Howell AR, Chang YT, Illarionov PA, Besra GS, Chung SK, Porcelli SA. A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids. J Am Chem Soc 2011; 133:5198-201. [PMID: 21425779 PMCID: PMC3072113 DOI: 10.1021/ja200070u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 11/30/2022]
Abstract
Structural variants of α-galactosylceramide (αGC) that activate invariant natural killer T cells (iNKT cells) are being developed as potential immunomodulatory agents for a variety of applications. Identification of specific forms of these glycolipids that bias responses to favor production of proinflammatory vs anti-inflammatory cytokines is central to current efforts, but this goal has been hampered by the lack of in vitro screening assays that reliably predict the in vivo biological activity of these compounds. Here we describe a fluorescence-based assay to identify functionally distinct αGC analogues. Our assay is based on recent findings showing that presentation of glycolipid antigens by CD1d molecules localized to plasma membrane detergent-resistant microdomains (lipid rafts) is correlated with induction of interferon-γ secretion and Th1-biased cytokine responses. Using an assay that measures lipid raft residency of CD1d molecules loaded with αGC, we screened a library of ∼200 synthetic αGC analogues and identified 19 agonists with potential Th1-biasing activity. Analysis of a subset of these novel candidate Th1 type agonists in vivo in mice confirmed their ability to induce systemic cytokine responses consistent with a Th1 type bias. These results demonstrate the predictive value of this novel in vitro assay for assessing the in vivo functionality of glycolipid agonists and provide the basis for a relatively simple high-throughput assay for identification and functional classification of iNKT cell activating glycolipids.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Andres Baena
- Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gabriel Bricard
- Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Qian Li
- Department of Chemistry and Medicinal Chemistry Programme, National University of Singapore, and Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Rachel Ndonye
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Jeong Ju Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ji Hyung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kyung-Chang Seo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme, National University of Singapore, and Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Petr A. Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Sung-Kee Chung
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Steven A. Porcelli
- Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
37
|
Activation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide. Clin Immunol 2011; 140:196-207. [PMID: 21493160 DOI: 10.1016/j.clim.2011.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/23/2022]
Abstract
Activation of CD1d-restricted invariant NKT (iNKT) cells with the glycolipid α-galactosylceramide (α-GalCer) confers protection against disease in murine models, however, clinical trials in humans have had limited impact. We synthesized a novel thioglycoside analogue of α-GalCer, denoted α-S-GalCer, and tested its efficacy for stimulating human iNKT cells in vitro. α-S-GalCer stimulated cytokine release by iNKT cells in a CD1d-dependent manner and primed CD1d(+) target cells for lysis. α-S-GalCer-stimulated iNKT cells induced maturation of monocyte-derived dendritic cells into antigen-presenting cells that released IL-12 and small amounts of IL-10. The nature and potency of α-S-GalCer and α-GalCer in human iNKT cell activation were similar. However, in contrast to α-GalCer, α-S-GalCer did not activate murine iNKT cells in vivo. Because of its enhanced stability in biological systems, α-S-GalCer may be superior to α-GalCer as a parent compound for developing adjuvant therapies for humans.
Collapse
|
38
|
Van Kaer L, Parekh VV, Wu L. Invariant NK T cells: potential for immunotherapeutic targeting with glycolipid antigens. Immunotherapy 2011; 3:59-75. [PMID: 21174558 DOI: 10.2217/imt.10.85] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invariant NK T (iNKT) cells are a subset of T lymphocytes that recognize glycolipid antigens bound with the antigen-presenting molecule CD1d. iNKT cells have potent immunoregulatory activities that can promote or suppress immune responses during different pathological conditions. These immunoregulatory properties can be harnessed for therapeutic purposes with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid α-galactosylceramide. Preclinical studies have shown substantial promise for iNKT cell-based treatments of infections, cancer and autoimmune and inflammatory diseases. Translation of these preclinical studies to the clinic, while faced with some obstacles, has already had some initial success. In this article, we review the immunodulatory activities of iNKT cells and the potential for developing iNKT cell-based prophylactic and curative therapies of human disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology & Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Avenue South, Nashville, TN 37232-32363, USA.
| | | | | |
Collapse
|
39
|
Characterisation of the chemical composition and in vitro anti-inflammation assessment of a novel lotus (Nelumbo nucifera Gaertn) plumule polysaccharide. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.09.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Tohn R, Blumenfeld H, Haeryfar SMM, Veerapen N, Besra GS, Porcelli SA, Delovitch TL. Stimulation of a shorter duration in the state of anergy by an invariant natural killer T cell agonist enhances its efficiency of protection from type 1 diabetes. Clin Exp Immunol 2011; 164:26-41. [PMID: 21361909 DOI: 10.1111/j.1365-2249.2011.04323.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have reported previously that treatment of non-obese diabetic (NOD) mice with the invariant natural killer T (iNK T) cell agonist α-galactosylceramide C26:0 (α-GalCer) or its T helper type 2 (Th2)-biasing derivative α-GalCer C20:2 (C20:2) protects against type 1 diabetes (T1D), with C20:2 yielding greater protection. After an initial response to α-GalCer, iNK T cells become anergic upon restimulation. While such anergic iNK T cells can induce tolerogenic dendritic cells (DCs) that mediate protection from T1D, chronic administration of α-GalCer also results in long-lasting anergy accompanied by significantly reduced iNK T cell frequencies, which raises concerns about its long-term therapeutic use. In this study, our objective was to understand more clearly the roles of anergy and induction of tolerogenic DCs in iNK T cell-mediated protection from T1D and to circumvent potential complications associated with α-GalCer. We demonstrate that NOD iNK T cells activated during multi-dose (MD) treatment in vivo with C20:2 enter into and exit from anergy more rapidly than after activation by α-GalCer. Importantly, this shorter duration of iNK T cells in the anergic state promotes the more rapid induction of tolerogenic DCs and reduced iNK T cell death, and enables C20:2 stimulated iNK T cells to elicit enhanced protection from T1D. Our findings further that suggest C20:2 is a more effective therapeutic drug than α-GalCer for protection from T1D. Moreover, the characteristics of C20:2 provide a basis of selection of next-generation iNK T cell agonists for the prevention of T1D.
Collapse
Affiliation(s)
- R Tohn
- Laboratory of Autoimmune Diabetes, Robarts Research Institute Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
O’Konek JJ, Illarionov P, Khursigara DS, Ambrosino E, Izhak L, Castillo BF, Raju R, Khalili M, Kim HY, Howell AR, Besra GS, Porcelli SA, Berzofsky JA, Terabe M. Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 2011; 121:683-94. [PMID: 21245578 PMCID: PMC3026717 DOI: 10.1172/jci42314] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/17/2010] [Indexed: 01/07/2023] Open
Abstract
Type 1 or invariant NKT (iNKT) cell agonists, epitomized by α-galactosylceramide, protect against cancer largely by IFN-γ-dependent mechanisms. Here we describe what we believe to be a novel IFN-γ-independent mechanism induced by β-mannosylceramide, which also defines a potentially new class of iNKT cell agonist, with an unusual β-linked sugar. Like α-galactosylceramide, β-mannosylceramide directly activates iNKT cells from both mice and humans. In contrast to α-galactosylceramide, protection by β-mannosylceramide was completely dependent on NOS and TNF-α, neither of which was required to achieve protection with α-galactosylceramide. Moreover, at doses too low for either alone to protect, β-mannosylceramide synergized with α-galactosylceramide to protect mice against tumors. These results suggest that treatment with β-mannosylceramide provides a distinct mechanism of tumor protection that may allow efficacy where other agonists have failed. Furthermore, the ability of β-mannosylceramide to synergize with α-galactosylceramide suggests treatment with this class of iNKT agonist may provide protection against tumors in humans.
Collapse
Affiliation(s)
- Jessica J. O’Konek
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Petr Illarionov
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Deborah Stewart Khursigara
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Elena Ambrosino
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Liat Izhak
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Bernard F. Castillo
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Ravinder Raju
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Maryam Khalili
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Hee-Yong Kim
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Amy R. Howell
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Gurdyal S. Besra
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Steven A. Porcelli
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA.
Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
42
|
Yu S, Cantorna MT. Epigenetic reduction in invariant NKT cells following in utero vitamin D deficiency in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1384-90. [PMID: 21191070 PMCID: PMC3127168 DOI: 10.4049/jimmunol.1002545] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin D status changes with season, but the effect of these changes on immune function is not clear. In this study, we show that in utero vitamin D deficiency in mice results in a significant reduction in invariant NKT (iNKT) cell numbers that could not be corrected by later intervention with vitamin D or 1,25-dihydroxy vitamin D(3) (active form of the vitamin). Furthermore, this was intrinsic to hematopoietic cells, as vitamin D-deficient bone marrow is specifically defective in generating iNKT cells in wild-type recipients. This vitamin D deficiency-induced reduction in iNKT cells is due to increased apoptosis of early iNKT cell precursors in the thymus. Whereas both the vitamin D receptor and vitamin D regulate iNKT cells, the vitamin D receptor is required for both iNKT cell function and number, and vitamin D (the ligand) only controls the number of iNKT cells. Given the importance of proper iNKT cell function in health and disease, this prenatal requirement for vitamin D suggests that in humans, the amount of vitamin D available in the environment during prenatal development may dictate the number of iNKT cells and potential risk of autoimmunity.
Collapse
Affiliation(s)
- Sanhong Yu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802. USA
| | | |
Collapse
|
43
|
Veerapen N, Reddington F, Salio M, Cerundolo V, Besra GS. Synthesis of truncated analogues of the iNKT cell agonist, α-galactosyl ceramide (KRN7000), and their biological evaluation. Bioorg Med Chem 2011; 19:221-8. [PMID: 21145749 PMCID: PMC3052434 DOI: 10.1016/j.bmc.2010.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/25/2022]
Abstract
Stimulation of iNKT cells by α-galactosyl ceramide (α-GalCer), also known as KRN7000, and its truncated analogue OCH induces both Th1- and Th2-cytokines, with OCH inducing a Th2-cytokine bias. Skewing of the iNKT cells' response towards either a Th1- or Th2-cytokine profile offers potential therapeutic benefits. The length of both the acyl and the sphingosine chains in α-galactosyl ceramides is known to influence the cytokine release profile. We have synthesized analogues of α-GalCer with truncated sphingosine chains for biological evaluation, with particular emphasis on the Th1/Th2 distribution. Starting from a common precursor, d-lyxose, the sphingosine derivatives were synthesised via a straightforward Wittig condensation.
Collapse
Affiliation(s)
- Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Faye Reddington
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mariolina Salio
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
44
|
Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 2010; 53:263-70. [PMID: 21185200 DOI: 10.1016/j.cyto.2010.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 10/06/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023]
Abstract
iNKT cells, CD1d dependent natural killer T cells are a unique population of T cells. The capacity of iNKT cells to produce regulatory cytokines first provided an indication of their regulatory potential. Later on, in experimental models as well as in patients afflicted with an auto-immune disease, such as Type 1 diabetes mellitus, multiple sclerosis, and systemic lupus erythematosus along with others, a deficit in iNKT cell number was observed, suggesting the role these cells may possibly have in the prevention of auto-immune diseases. More importantly, experimental strategies which focused on increasing the volume or stimulation of iNKT cells in laboratory animals, demonstrated an improved level of protection against the development of auto-immune diseases. This article reviews the mechanism of protection against autoimmunity by iNKT cells, discusses the obstacles against and indications for the potential use of iNKT cell manipulation in the treatment of human auto-immune diseases.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Centre of Research for Diabetes, Endocrinological Diseases and Clinical Nutrition, Czech Republic.
| | | |
Collapse
|
45
|
Bricard G, Venkataswamy MM, Yu KOA, Im JS, Ndonye RM, Howell AR, Veerapen N, Illarionov PA, Besra GS, Li Q, Chang YT, Porcelli SA. Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents. PLoS One 2010; 5:e14374. [PMID: 21179412 PMCID: PMC3003687 DOI: 10.1371/journal.pone.0014374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/05/2010] [Indexed: 01/22/2023] Open
Abstract
CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.
Collapse
Affiliation(s)
- Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karl O. A. Yu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jin S. Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rachel M. Ndonye
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Petr A. Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Qian Li
- Department of Chemistry, National University of Singapore, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
46
|
Zhang W, Xia C, Nadas J, Chen W, Gu L, Wang PG. Introduction of aromatic group on 4'-OH of α-GalCer manipulated NKT cell cytokine production. Bioorg Med Chem 2010; 19:2767-76. [PMID: 21439833 DOI: 10.1016/j.bmc.2010.11.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/12/2023]
Abstract
The glycosphingolipid α-GalCer has been found to influence mammalian immune system significantly through the natural killer T cells. Unfortunately, the pre-clinical and clinical studies revealed several critical disadvantages that prevented the therapeutic application of α-GalCer in treating cancer and other diseases. Recently, the detailed illustration of the CD1d/α-GalCer/NKT TCR complex crystal structural, together with other latest structural and biological understanding on glycolipid ligands and NKT cells, provided a new platform for developing novel glycolipid ligands with optimized therapeutic effects. Here, we designed a series of novel aromatic group substituted α-GalCer analogues. The biological activity of these analogues was characterized and the results showed the unique substitution group manipulated the immune responses of NKT cells. Computer modeling and simulation study indicated the analogues had unique binding mode when forming CD1d/glycolipid/NKT TCR complex, comparing to original α-GalCer.
Collapse
Affiliation(s)
- Wenpeng Zhang
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
47
|
NKT cell costimulation: experimental progress and therapeutic promise. Trends Mol Med 2010; 17:65-77. [PMID: 21087900 DOI: 10.1016/j.molmed.2010.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 01/23/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate lymphocytes with unique specificity for glycolipid antigens and remarkable immunomodulatory properties. The role of costimulatory interactions in iNKT cell responses has recently come under scrutiny. Although iNKT cells and their prototype glycolipid agonist α-galactosylceramide (α-GalCer) have shown promise in several clinical trials conducted in patients with cancer or viral diseases, current iNKT cell-based therapies are far from effective. The concomitant targeting of T cell receptors (TCRs) and costimulatory molecules on iNKT cells represents an exciting new opportunity to optimize such therapeutic approaches. Here, we review recent advances in our understanding of iNKT cell costimulation and discuss potential treatment modalities based on the responsiveness of iNKT cells to disease-tailored glycolipids and select costimulatory ligands.
Collapse
|
48
|
Abstract
The development of type 1 diabetes involves a complex interaction between pancreatic beta-cells and cells of both the innate and adaptive immune systems. Analyses of the interactions between natural killer (NK) cells, NKT cells, different dendritic cell populations and T cells have highlighted how these different cell populations can influence the onset of autoimmunity. There is evidence that infection can have either a potentiating or inhibitory role in the development of type 1 diabetes. Interactions between pathogens and cells of the innate immune system, and how this can influence whether T cell activation or tolerance occurs, have been under close scrutiny in recent years. This Review focuses on the nature of this crosstalk between the innate and the adaptive immune responses and how pathogens influence the process.
Collapse
Affiliation(s)
- Agnès Lehuen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U986, Hôpital Saint Vincent de Paul, Bâtiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France.
| | | | | | | |
Collapse
|
49
|
|
50
|
Xia C, Zhang W, Zhang Y, Chen W, Nadas J, Severin R, Woodward R, Wang B, Wang X, Kronenberg M, Wang PG. The roles of 3' and 4' hydroxy groups in alpha-galactosylceramide stimulation of invariant natural killer T cells. ChemMedChem 2010; 4:1810-5. [PMID: 19780098 DOI: 10.1002/cmdc.200900350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chengfeng Xia
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|