1
|
Hou S, Ma W, Zhou X. FastCCC: A permutation-free framework for scalable, robust, and reference-based cell-cell communication analysis in single cell transcriptomics studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635115. [PMID: 39975391 PMCID: PMC11838302 DOI: 10.1101/2025.01.27.635115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Detecting cell-cell communications (CCCs) in single-cell transcriptomics studies is fundamental for understanding the function of multicellular organisms. Here, we introduce FastCCC, a permutation-free framework that enables scalable, robust, and reference-based analysis for identifying critical CCCs and uncovering biological insights. FastCCC relies on fast Fourier transformation-based convolution to compute p -values analytically without permutations, introduces a modular algebraic operation framework to capture a broad spectrum of CCC patterns, and can leverage atlas-scale single cell references to enhance CCC analysis on user-collected datasets. To support routine reference-based CCC analysis, we constructed the first human CCC reference panel, encompassing 19 distinct tissue types, over 450 unique cell types, and approximately 16 million cells. We demonstrate the advantages of FastCCC across multiple datasets, most of which exceed the analytical capabilities of existing CCC methods. In real datasets, FastCCC reliably captures biologically meaningful CCCs, even in highly complex tissue environments, including differential interactions between endothelial and immune cells linked to COVID-19 severity, dynamic communications in thymic tissue during T-cell development, as well as distinct interactions in reference-based CCC analysis.
Collapse
|
2
|
Allman A, Gaudette BT, Kelly S, Alouche N, Carrington LJ, Perkey E, Brandstadter JD, Outen R, Vanderbeck A, Lederer K, Zhou Y, Faryabi RB, Robertson TF, Burkhardt JK, Tikhonova A, Aifantis I, Scarpellino L, Koch U, Radtke F, Lütge M, De Martin A, Ludewig B, Tveriakhina L, Gossler A, Mosteiro L, Siebel CW, Gómez Atria D, Luther SA, Allman D, Maillard I. Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs. Immunity 2025; 58:143-161.e8. [PMID: 39731910 PMCID: PMC11735314 DOI: 10.1016/j.immuni.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function. Dll1 could not be replaced by the alternative Notch ligand Dll4. Dll1-Notch2 signaling regulated a Myc-dependent gene expression program fostering cell growth and a Myc-independent program controlling cell-movement regulators such as sphingosine-1 phosphate receptor 1 (S1PR1). S1pr1-deficient B cells experienced Notch signaling within B cell follicles without entering the MZ and were retained in the spleen upon Notch deprivation. Key elements of the mouse B cell Notch regulome were preserved in subsets of human memory B cells and B cell lymphomas. Thus, specialized niches program the poised state and patrolling behavior of MZB cells via conserved Myc-dependent and Myc-independent Notch2-regulated mechanisms.
Collapse
Affiliation(s)
- Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Anastasia Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | | | | - Mechthild Lütge
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lena Tveriakhina
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | - Achim Gossler
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | | | | | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Mendes-da-Cruz DA, Lemos JP, Belorio EP, Savino W. Intrathymic Cell Migration: Implications in Thymocyte Development and T Lymphocyte Repertoire Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:139-175. [PMID: 40067586 DOI: 10.1007/978-3-031-77921-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
During the development of T cells in the thymus, differentiating thymocytes move through specific thymic compartments and interact with the cortical and medullary microenvironments of the thymic lobules. This migration is primarily controlled by adhesion molecules, such as extracellular matrix ligands and receptors, and soluble factors like chemokines that are important for thymocyte differentiation. The migration events driven by these molecules include the entry of lymphoid progenitors from the bone marrow, movement within the thymus, and the exit of mature thymocytes. Notably, the migration of developing T cells can also impact the positive and negative selection processes, which are crucial for preventing the development of self-reactive T cells. This chapter will focus on the key molecules involved in thymocyte migration and how their expression patterns may affect T cell development and the formation of T cell repertoires.
Collapse
Affiliation(s)
| | - Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elizabeth Pinto Belorio
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Tong Q, Yao L, Su M, Yang YG, Sun L. Thymocyte migration and emigration. Immunol Lett 2024; 267:106861. [PMID: 38697225 DOI: 10.1016/j.imlet.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Hematopoietic precursors (HPCs) entering into the thymus undergo a sequential process leading to the generation of a variety of T cell subsets. This developmental odyssey unfolds in distinct stages within the thymic cortex and medulla, shaping the landscape of T cell receptor (TCR) expression and guiding thymocytes through positive and negative selection. Initially, early thymic progenitors (ETPs) take residence in the thymic cortex, where thymocytes begin to express their TCR and undergo positive selection. Subsequently, thymocytes transition to the thymic medulla, where they undergo negative selection. Both murine and human thymocyte development can be broadly classified into distinct stages based on the expression of CD4 and CD8 coreceptors, resulting in categorizations as double negative (DN), double positive (DP) or single positive (SP) cells. Thymocyte migration to the appropriate thymic microenvironment at the right differentiation stage is pivotal for the development and the proper functioning of T cells, which is critical for adaptive immune responses. The journey of lymphoid progenitor cells into the T cell developmental pathway hinges on an ongoing dialogue between the differentiating cell and the signals emanating from the thymus niche. Herein, we review the contribution of the key factors mentioned above for the localization, migration and emigration of thymocytes.
Collapse
Affiliation(s)
- Qingyue Tong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Liyu Yao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mengting Su
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.
| |
Collapse
|
6
|
Schneider M, Allman A, Maillard I. Regulation of immune cell development, differentiation and function by stromal Notch ligands. Curr Opin Cell Biol 2023; 85:102256. [PMID: 37806295 PMCID: PMC10873072 DOI: 10.1016/j.ceb.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
In multicellular organisms, cell-to-cell communication is critical for the regulation of tissue organization. Notch signaling relies on direct interactions between Notch receptors on signal-receiving cells and Notch ligands on adjacent cells. Notch evolved to mediate local cellular interactions that are responsive to spatial cues via dosage-sensitive short-lived signals. Immune cells utilize these unique properties of Notch signaling to direct their development, differentiation, and function. In this review, we explore how immune cells interact through Notch receptors with stromal cells in specialized niches of lymphohematopoietic organs that express Notch-activating ligands. We emphasize factors that control these interactions and focus on how Notch signals communicate spatial, quantitative, and temporal information to program the function of signal-receiving cells in the immune system.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Jang G, Contreras Castillo S, Esteva E, Upadhaya S, Feng J, Adams NM, Richard E, Awatramani R, Sawai CM, Reizis B. Stem cell decoupling underlies impaired lymphoid development during aging. Proc Natl Acad Sci U S A 2023; 120:e2302019120. [PMID: 37216517 PMCID: PMC10236001 DOI: 10.1073/pnas.2302019120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Mammalian aging is associated with multiple defects of hematopoiesis, most prominently with the impaired development of T and B lymphocytes. This defect is thought to originate in hematopoietic stem cells (HSCs) of the bone marrow, specifically due to the age-dependent accumulation of HSCs with preferential megakaryocytic and/or myeloid potential ("myeloid bias"). Here, we tested this notion using inducible genetic labeling and tracing of HSCs in unmanipulated animals. We found that the endogenous HSC population in old mice shows reduced differentiation into all lineages including lymphoid, myeloid, and megakaryocytic. Single-cell RNA sequencing and immunophenotyping (CITE-Seq) showed that HSC progeny in old animals comprised balanced lineage spectrum including lymphoid progenitors. Lineage tracing using the aging-induced HSC marker Aldh1a1 confirmed the low contribution of old HSCs across all lineages. Competitive transplantations of total bone marrow cells with genetically marked HSCs revealed that the contribution of old HSCs was reduced, but compensated by other donor cells in myeloid cells but not in lymphocytes. Thus, the HSC population in old animals becomes globally decoupled from hematopoiesis, which cannot be compensated in lymphoid lineages. We propose that this partially compensated decoupling, rather than myeloid bias, is the primary cause of the selective impairment of lymphopoiesis in older mice.
Collapse
Affiliation(s)
- Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | | | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY10016
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Nicholas M. Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| | - Elodie Richard
- INSERM Unit 1312 Bordeaux Institute of Oncology, University of Bordeaux33076Bordeaux, France
| | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Catherine M. Sawai
- INSERM Unit 1312 Bordeaux Institute of Oncology, University of Bordeaux33076Bordeaux, France
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
8
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Cordes M, Canté-Barrett K, van den Akker EB, Moretti FA, Kiełbasa SM, Vloemans SA, Garcia-Perez L, Teodosio C, van Dongen JJM, Pike-Overzet K, Reinders MJT, Staal FJT. Single-cell immune profiling reveals thymus-seeding populations, T cell commitment, and multilineage development in the human thymus. Sci Immunol 2022; 7:eade0182. [DOI: 10.1126/sciimmunol.ade0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow. In addition, we found that the human thymus physiologically supports the development of monocytes, dendritic cells, and NK cells, as well as limited development of B cells. These results are an important step toward monitoring and guiding regenerative therapies in patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Netherlands
| | - Erik B. van den Akker
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Federico A. Moretti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M. Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Sandra A. Vloemans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura Garcia-Perez
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Gaudeaux P, Moirangthem RD, Bauquet A, Simons L, Joshi A, Cavazzana M, Nègre O, Soheili S, André I. T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:956919. [PMID: 35874778 PMCID: PMC9300856 DOI: 10.3389/fimmu.2022.956919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.
Collapse
Affiliation(s)
- Pierre Gaudeaux
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Smart Immune, Paris, France
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Laura Simons
- Smart Immune, Paris, France
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Akshay Joshi
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Marina Cavazzana
- Smart Immune, Paris, France
- Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Paris Cité, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | | | | | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Guo R, Li W, Li Y, Li Y, Jiang Z, Song Y. Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Exp Hematol Oncol 2022; 11:27. [PMID: 35568954 PMCID: PMC9107657 DOI: 10.1186/s40164-022-00285-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Engineered T cells have been shown to be highly effective in cancer immunotherapy, although T cell exhaustion presents a challenge for their long-term function. Additional T-cell sources must be exploited to broaden the application of engineered T cells for immune defense and reconstitution. Unlimited sources of pluripotent stem cells (PSCs) have provided a potential opportunity to generate precise-engineered therapeutic induced T (iT) cells. Single-cell transcriptome analysis of PSC-derived induced hematopoietic stem and progenitor cells (iHSPC)/iT identified the developmental pathways and possibilities of generating functional T cell from PSCs. To date, the PSC-to-iT platforms encounter several problems, including low efficiency of conventional T subset specification, limited functional potential, and restrictions on large-scale application, because of the absence of a thymus-like organized microenvironment. The updated PSC-to-iT platforms, such as the three-dimensional (3D) artificial thymic organoid (ATO) co-culture system and Runx1/Hoxa9-enforced iT lymphopoiesis, provide fresh perspectives for coordinating culture conditions and transcription factors, which may greatly improve the efficiency of T-cell generation greatly. In addition, the improved PSC-to-iT platform coordinating gene editing technologies will provide various functional engineered unconventional or conventional T cells. Furthermore, the clinical applications of PSC-derived immune cells are accelerating from bench to bedside.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Liu C, Gong Y, Zhang H, Yang H, Zeng Y, Bian Z, Xin Q, Bai Z, Zhang M, He J, Yan J, Zhou J, Li Z, Ni Y, Wen A, Lan Y, Hu H, Liu B. Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells. Cell Res 2021; 31:1106-1122. [PMID: 34239074 PMCID: PMC8486758 DOI: 10.1038/s41422-021-00529-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA- lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2- CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Han Zhang
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Xin
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Man Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy, Chengdu, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
The sialyltransferase ST3Gal-IV guides murine T-cell progenitors to the thymus. Blood Adv 2021; 4:1930-1941. [PMID: 32380539 DOI: 10.1182/bloodadvances.2019001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
T lymphocytes are important players in beneficial and detrimental immune responses. In contrast to other lymphocyte populations that develop in the bone marrow, T-cell precursors need to migrate to the thymus for further development. The interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) is crucial for thymic entry of T-cell precursors during settings of T-cell lineage reconstitution. PSGL-1 has to be sialylated to function as a ligand for P-selectin, and the sialyltransferase ST3Gal-IV might play a critical role in this process. We therefore investigated the role of ST3Gal-IV for T-cell development using competitive mixed bone marrow chimeric mice. We found that ST3Gal-IV is dispensable for homing and engraftment of hematopoietic precursors in the bone marrow. However, ST3Gal-IV deficiency affects seeding of the thymus by early T-cell progenitors, leading to impaired restoration of the peripheral T-cell compartment. This defect could be restored by ectopic retroviral expression of ST3Gal-IV in hematopoietic stem cells derived from ST3Gal-IV-deficient donor mice. Our findings show that ST3Gal-IV plays a critical and nonredundant role for efficient T-cell lineage reconstitution after bone marrow transplantation.
Collapse
|
14
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Harman CCD, Bailis W, Zhao J, Hill L, Qu R, Jackson RP, Shyer JA, Steach HR, Kluger Y, Goff LA, Rinn JL, Williams A, Henao-Mejia J, Flavell RA. An in vivo screen of noncoding loci reveals that Daedalus is a gatekeeper of an Ikaros-dependent checkpoint during haematopoiesis. Proc Natl Acad Sci U S A 2021; 118:e1918062118. [PMID: 33446502 PMCID: PMC7826330 DOI: 10.1073/pnas.1918062118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of the Daedalus locus, which is proximal to Ikaros, led to a severe reduction in early lymphoid progenitors, exerting control over the earliest fate decisions during lymphoid lineage commitment. Daedalus locus deletion led to alterations in Ikaros isoform expression and a significant reduction in Ikaros protein. The Daedalus locus may function through direct DNA interaction as Hi-C analysis demonstrated an interaction between the two loci. Finally, we identify an Ikaros-regulated erythroid-lymphoid checkpoint that is governed by Daedalus in a lymphoid-lineage-specific manner. Daedalus appears to act as a gatekeeper of Ikaros's broad lineage-specifying functions, selectively stabilizing Ikaros activity in the lymphoid lineage and permitting diversion to the erythroid fate in its absence. These findings represent a key illustration of how a transcription factor with broad lineage expression must work in concert with noncoding elements to orchestrate hematopoietic lineage commitment.
Collapse
Affiliation(s)
- Christian C D Harman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, New Haven, CT 06520
| | - Will Bailis
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jun Zhao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
| | - Louisa Hill
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
| | - Ruaidhrí P Jackson
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Justin A Shyer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Holly R Steach
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
- Applied Mathematics Program, Yale University, New Haven, CT 06511
| | - Loyal A Goff
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - John L Rinn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Department of Biochemistry, University of Colorado, BioFrontiers Institute, Boulder, CO 80301
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032
- Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06030
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard A Flavell
- Howard Hughes Medical Institute, New Haven, CT 06520;
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
16
|
CCL25 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:99-111. [PMID: 34286444 DOI: 10.1007/978-3-030-62658-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.
Collapse
|
17
|
Machado A, Pouzolles M, Gailhac S, Fritz V, Craveiro M, López-Sánchez U, Kondo T, Pala F, Bosticardo M, Notarangelo LD, Petit V, Taylor N, Zimmermann VS. Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. Front Immunol 2020; 11:1562. [PMID: 32793218 PMCID: PMC7387685 DOI: 10.3389/fimmu.2020.01562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Thymocyte differentiation is dependent on the availability and transport of metabolites in the thymus niche. As expression of metabolite transporters is a rate-limiting step in nutrient utilization, cell surface transporter levels generally reflect the cell's metabolic state. The GLUT1 glucose transporter is upregulated on actively dividing thymocytes, identifying thymocytes with an increased metabolism. However, it is not clear whether transporters of essential elements such as phosphate are modulated during thymocyte differentiation. While PiT1 and PiT2 are both phosphate transporters in the SLC20 family, we show here that they exhibit distinct expression profiles on both murine and human thymocytes. PiT2 expression distinguishes thymocytes with high metabolic activity, identifying immature murine double negative (CD4−CD8−) DN3b and DN4 thymocyte blasts as well as immature single positive (ISP) CD8 thymocytes. Notably, the absence of PiT2 expression on RAG2-deficient thymocytes, blocked at the DN3a stage, strongly suggests that high PiT2 expression is restricted to thymocytes having undergone a productive TCRβ rearrangement at the DN3a/DN3b transition. Similarly, in the human thymus, PiT2 was upregulated on early post-β selection CD4+ISP and TCRαβ−CD4hiDP thymocytes co-expressing the CD71 transferrin receptor, a marker of metabolic activity. In marked contrast, expression of the PiT1 phosphate importer was detected on mature CD3+ murine and human thymocytes. Notably, PiT1 expression on CD3+DN thymocytes was identified as a biomarker of an aging thymus, increasing from 8.4 ± 1.5% to 42.4 ± 9.4% by 1 year of age (p < 0.0001). We identified these cells as TCRγδ and, most significantly, NKT, representing 77 ± 9% of PiT1+DN thymocytes by 1 year of age (p < 0.001). Thus, metabolic activity and thymic aging are associated with distinct expression profiles of the PiT1 and PiT2 phosphate transporters.
Collapse
Affiliation(s)
- Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Vanessa Fritz
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marco Craveiro
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Uriel López-Sánchez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | | | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Valérie S Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
18
|
Guha I, Bhuniya A, Nandi P, Dasgupta S, Sarkar A, Saha A, Das J, Ganguly N, Ghosh S, Ghosh T, Sarkar M, Ghosh S, Majumdar S, Baral R, Bose A. Neem leaf glycoprotein reverses tumor-induced and age-associated thymic involution to maintain peripheral CD8 + T cell pool. Immunotherapy 2020; 12:799-818. [PMID: 32698648 DOI: 10.2217/imt-2019-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: As tumor causes atrophy in the thymus to target effector-T cells, this study is aimed to decipher the efficacy of neem leaf glycoprotein (NLGP) in tumor- and age-associated thymic atrophy. Materials & methods: Different thymus parameters were studied using flow cytometry, reverse transcriptase PCR and immunocyto-/histochemistry in murine melanoma and sarcoma models. Results: Longitudinal NLGP therapy in tumor hosts show tumor-reduction along with significant normalization of thymic alterations. NLGP downregulates intrathymic IL-10, which eventually promotes Notch1 to rescue blockade in CD25+CD44+c-Kit+DN2 to CD25+CD44-c-Kit-DN3 transition in T cell maturation and suppress Ikaros/IRF8/Pu.1 to prevent DN2-T to DC differentiation in tumor hosts. The CD5intTCRαβhigh DP3 population was also increased to endorse CD8+ T cell generation. Conclusion: NLGP rescues tumor-induced altered thymic events to generate more effector T cells to restrain tumor.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Partha Nandi
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Akata Saha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Juhina Das
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Madhurima Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rathindranath Baral
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
19
|
Pucella JN, Upadhaya S, Reizis B. The Source and Dynamics of Adult Hematopoiesis: Insights from Lineage Tracing. Annu Rev Cell Dev Biol 2020; 36:529-550. [PMID: 32580566 DOI: 10.1146/annurev-cellbio-020520-114601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.
Collapse
Affiliation(s)
- Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| |
Collapse
|
20
|
Guha I, Bhuniya A, Shukla D, Patidar A, Nandi P, Saha A, Dasgupta S, Ganguly N, Ghosh S, Nair A, Majumdar S, Saha B, Storkus WJ, Baral R, Bose A. Tumor Arrests DN2 to DN3 Pro T Cell Transition and Promotes Its Conversion to Thymic Dendritic Cells by Reciprocally Regulating Notch1 and Ikaros Signaling. Front Immunol 2020; 11:898. [PMID: 32582141 PMCID: PMC7292239 DOI: 10.3389/fimmu.2020.00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor progression in the host leads to severe impairment of intrathymic T-cell differentiation/maturation, leading to the paralysis of cellular anti-tumor immunity. Such suppression manifests the erosion of CD4+CD8+ double-positive (DP) immature thymocytes and a gradual increase in CD4-CD8- double negative (DN) early T-cell progenitors. The impact of such changes on the T-cell progenitor pool in the context of cancer remains poorly investigated. Here, we show that tumor progression blocks the transition of Lin-Thy1.2+CD25+CD44+c-KitlowDN2b to Lin-Thy1.2+CD25+CD44-c-Kit-DN3 in T-cell maturation, instead leading to DN2-T-cell differentiation into dendritic cells (DC). We observed that thymic IL-10 expression is upregulated, particularly at cortico-medullary junctions (CMJ), under conditions of progressive disease, resulting in the termination of IL-10Rhigh DN2-T-cell maturation due to dysregulated expression of Notch1 and its target, CCR7 (thus restricting these cells to the CMJ). Intrathymic differentiation of T-cell precursors in IL-10-/- mice and in vitro fetal thymic organ cultures revealed that IL-10 promotes the interaction between thymic stromal cells and Notch1low DN2-T cells, thus facilitating these DN2-T cells to differentiate toward CD45+CD11c+MHC-II+ thymic DCs as a consequence of activating the Ikaros/IRF8 signaling axis. We conclude that a novel function of thymically-expressed IL-10 in the tumor-bearing host diverts T-cell differentiation toward a DC pathway, thus limiting the protective adaptive immune repertoire.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Divanshu Shukla
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Ashok Patidar
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Arathi Nair
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Bhaskar Saha
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
21
|
Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity 2019; 51:930-948.e6. [PMID: 31604687 DOI: 10.1016/j.immuni.2019.09.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Siyuan Hou
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Hui Shi
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China.
| |
Collapse
|
22
|
Stable lines and clones of long-term proliferating normal, genetically unmodified murine common lymphoid progenitors. Blood 2018; 131:2026-2035. [DOI: 10.1182/blood-2017-09-805259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/11/2018] [Indexed: 01/15/2023] Open
Abstract
Key Points
We have established a novel culture system for long-term proliferating murine lymphoid progenitors without any genetic manipulation. The cultured lymphoid progenitors can differentiate to lymphoid and myeloid lineages in vitro and in vivo.
Collapse
|
23
|
Hosokawa H, Rothenberg EV. Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028621. [PMID: 28716889 DOI: 10.1101/cshperspect.a028621] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multipotent blood progenitor cells migrate into the thymus and initiate the T-cell differentiation program. T-cell progenitor cells gradually acquire T-cell characteristics while shedding their multipotentiality for alternative fates. This process is supported by extracellular signaling molecules, including Notch ligands and cytokines, provided by the thymic microenvironment. T-cell development is associated with dynamic change of gene regulatory networks of transcription factors, which interact with these environmental signals. Together with Notch or pre-T-cell-receptor (TCR) signaling, cytokines always control proliferation, survival, and differentiation of early T cells, but little is known regarding their cross talk with transcription factors. However, recent results suggest ways that cytokines expressed in distinct intrathymic niches can specifically modulate key transcription factors. This review discusses how stage-specific roles of cytokines and transcription factors can jointly guide development of early T cells.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
24
|
Krueger A. Thymus Colonization: Who, How, How Many? Arch Immunol Ther Exp (Warsz) 2017; 66:81-88. [PMID: 29288431 DOI: 10.1007/s00005-017-0503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
De novo generation of T cells depends on continual colonization of the thymus by bone marrow-derived progenitors. Thymus seeding progenitors (TSPs) constitute a heterogeneous population comprising multipotent and lineage-restricted cell types. Entry into the thymic microenvironment is tightly controlled and recent quantitative studies have revealed that the adult murine thymus only contains approximately 160 niches to accommodate TSPs. Of these niches only about 6% are open for seeding on average at steady-state. Here, I review the state of understanding of colonization of the adult murine thymus with a particular focus on past and current controversies in the field. Improving thymus colonization and/or maintaining intact TSP niches during the course of pre-conditioning regimens are likely to be critical for efficient T-cell regeneration after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Lucas B, White AJ, Parnell SM, Henley PM, Jenkinson WE, Anderson G. Progressive Changes in CXCR4 Expression That Define Thymocyte Positive Selection Are Dispensable For Both Innate and Conventional αβT-cell Development. Sci Rep 2017; 7:5068. [PMID: 28698642 PMCID: PMC5505955 DOI: 10.1038/s41598-017-05182-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
The ordered migration of immature thymocytes through thymic microenvironments generates both adaptive MHC restricted αβT-cells and innate CD1d-restricted iNKT-cells. While several chemokine receptors and ligands control multiple stages of this process, their involvement during early thymocyte development often precludes direct analysis of potential roles during later developmental stages. For example, because of early lethality of CXCR4-/- mice, and stage-specific requirements for CXCR4 in thymus colonisation and pre-TCR mediated selection, its role in thymic positive selection is unclear. Here we have examined CXCR4-CXCL12 interactions during the maturation of CD4+CD8+ thymocytes, including downstream stages of iNKT and αβT-cell development. We show CXCL12 expression is a common feature of cortical thymic epithelial cells, indicating widespread availability throughout the cortex. Moreover, CXCR4 expression by CD4+CD8+ pre-selection thymocytes is progressively downregulated following both MHC and CD1d-restricted thymic selection events. However, using CD4Cre-mediated deletion to bypass its involvement in CD4-CD8- thymocyte development, we show CXCR4 is dispensable for the maintenance and intrathymic positioning of CD4+CD8+ thymocytes, and their ability to generate mature αβT-cells and CD1d-restricted iNKT-cells. Collectively, our data define dynamic changes in CXCR4 expression as a marker for intrathymic selection events, and show its role in T-cell development is restricted to pre-CD4+CD8+ stages.
Collapse
Affiliation(s)
- Beth Lucas
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Andrea J White
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Peter M Henley
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England.
| |
Collapse
|
26
|
Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Holländer GA, Zúñiga-Pflücker JC, Tolar J, Blazar BR. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2017; 2:92056. [PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.
Collapse
Affiliation(s)
- Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Sarah L. Parker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Mitchell
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin C. Osum
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather E. Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Georg A. Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| |
Collapse
|
27
|
Wang HC, Qian L, Zhao Y, Mengarelli J, Adrianto I, Montgomery CG, Urban JF, Fung KM, Sun XH. Downregulation of E Protein Activity Augments an ILC2 Differentiation Program in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:3149-3156. [PMID: 28258196 DOI: 10.4049/jimmunol.1602009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023]
Abstract
Innate lymphoid cells (ILCs) are important regulators in various immune responses. The current paradigm states that all newly made ILCs originate from common lymphoid progenitors in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Unexpectedly, we found that ectopically expressing Id1 or deleting two E protein genes in the thymus drastically increased ILC2 counts in the thymus and other organs where ILC2 normally reside. Further evidence suggests a thymic origin of these mutant ILC2s. The mutant mice exhibit augmented spontaneous infiltration of eosinophils and heightened responses to papain in the lung and increased ability to expulse the helminth parasite, Nippostrongylus brasiliensis These results prompt the questions of whether the thymus naturally has the capacity to produce ILC2s and whether E proteins restrain such a potential. The abundance of ILC2s in Id1 transgenic mice also offers a unique opportunity for testing the biological functions of ILC2s.
Collapse
Affiliation(s)
- Hong-Cheng Wang
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Liangyue Qian
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ying Zhao
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Joni Mengarelli
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Indra Adrianto
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Courtney G Montgomery
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705; and
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104;
| |
Collapse
|
28
|
Krueger A, Ziętara N, Łyszkiewicz M. T Cell Development by the Numbers. Trends Immunol 2016; 38:128-139. [PMID: 27842955 DOI: 10.1016/j.it.2016.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
T cells are continually generated in the thymus in a highly dynamic process comprising discrete steps of lineage commitment, T cell receptor (TCR) gene rearrangement, and selection. These steps are linked to distinct rates of proliferation, survival, and cell death, but a quantitative picture of T cell development is only beginning to emerge. Here we summarize recent technical advances, including genetic fate mapping, barcoding, and molecular timers, that have allowed the implementation of computational models to quantify developmental dynamics in the thymus. Coupling new techniques with mathematical models has recently resulted in the emergence of new paradigms in early hematopoiesis and might similarly open new perspectives on T cell development.
Collapse
Affiliation(s)
- Andreas Krueger
- Institute of Molecular Medicine, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany.
| | - Natalia Ziętara
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| | - Marcin Łyszkiewicz
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| |
Collapse
|
29
|
Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, Han J, Lin T, Zhou Y, Miao P, Wang B, Zhang J, Yu Z, Zhang Y, Kosan C, Zeng H. Sepsis-Induced Thymic Atrophy Is Associated with Defects in Early Lymphopoiesis. Stem Cells 2016; 34:2902-2915. [PMID: 27422171 DOI: 10.1002/stem.2464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
Impaired T lymphopoiesis is associated with immunosuppression of the adaptive immune response and plays a role in the morbidity and mortality of patients and animal models of sepsis. Although previous studies examined several intrathymic mechanisms that negatively affect T lymphopoiesis, the extrathymic mechanisms remain poorly understood. Here, we report a dramatic decrease in the percentage of early T lineage progenitors (ETPs) in three models of sepsis in mice (cecal ligation and puncture, lipopolysaccharide continuous injection, and poly I:C continuous injection). However, septic mice did not show a decrease in the number of bone marrow (BM) precursor cells. Instead, the BM progenitors for ETPs expressed reduced mRNA levels of CC chemokine receptor (CCR) 7, CCR9 and P-selectin glycoprotein ligand 1, and exhibited impaired homing capacity in vitro and in vivo. Furthermore, RNA-Seq analysis and real-time PCR showed a marked downregulation of several lymphoid-related genes in hematopoietic stem and progenitor cells. Hematopoietic stem and progenitor cells differentiated into myeloid cells but failed to generate T lymphocytes in vitro and in vivo. Our results indicate that the depletion of ETPs in septic mice might be a consequence of an impaired migration of BM progenitors to the thymus, as well as a defect in lymphoid lineage commitment. Stem Cells 2016;34:2902-2915.
Collapse
Affiliation(s)
- Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yajie Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Weimei Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shaoxin Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Kröhnert
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Tao Lin
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Peng Miao
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jianping Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhengya Yu
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
30
|
Golec DP, Henao Caviedes LM, Baldwin TA. RasGRP1 and RasGRP3 Are Required for Efficient Generation of Early Thymic Progenitors. THE JOURNAL OF IMMUNOLOGY 2016; 197:1743-53. [PMID: 27465532 DOI: 10.4049/jimmunol.1502107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation.
Collapse
Affiliation(s)
- Dominic P Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Laura M Henao Caviedes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
31
|
Trinquand A, Dos Santos NR, Tran Quang C, Rocchetti F, Zaniboni B, Belhocine M, Da Costa de Jesus C, Lhermitte L, Tesio M, Dussiot M, Cosset FL, Verhoeyen E, Pflumio F, Ifrah N, Dombret H, Spicuglia S, Chatenoud L, Gross DA, Hermine O, Macintyre E, Ghysdael J, Asnafi V. Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia. Cancer Discov 2016; 6:972-85. [PMID: 27354269 DOI: 10.1158/2159-8290.cd-15-0675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Cancer onset and progression involves the accumulation of multiple oncogenic hits, which are thought to dominate or bypass the physiologic regulatory mechanisms in tissue development and homeostasis. We demonstrate in T-cell acute lymphoblastic leukemia (T-ALL) that, irrespective of the complex oncogenic abnormalities underlying tumor progression, experimentally induced, persistent T-cell receptor (TCR) signaling has antileukemic properties and enforces a molecular program resembling thymic negative selection, a major developmental event in normal T-cell development. Using mouse models of T-ALL, we show that induction of TCR signaling by high-affinity self-peptide/MHC or treatment with monoclonal antibodies to the CD3ε chain (anti-CD3) causes massive leukemic cell death. Importantly, anti-CD3 treatment hampered leukemogenesis in mice transplanted with either mouse- or patient-derived T-ALLs. These data provide a strong rationale for targeted therapy based on anti-CD3 treatment of patients with TCR-expressing T-ALL and demonstrate that endogenous developmental checkpoint pathways are amenable to therapeutic intervention in cancer cells. SIGNIFICANCE T-ALLs are aggressive malignant lymphoid proliferations of T-cell precursors characterized by high relapse rates and poor prognosis, calling for the search for novel therapeutic options. Here, we report that the lineage-specific TCR/CD3 developmental checkpoint controlling cell death in normal T-cell progenitors remains switchable to induce massive tumor cell apoptosis in T-ALL and is amenable to preclinical therapeutic intervention. Cancer Discov; 6(9); 972-85. ©2016 AACR.See related commentary by Lemonnier and Mak, p. 946This article is highlighted in the In This Issue feature, p. 932.
Collapse
Affiliation(s)
- Amélie Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Nuno R Dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
| | - Christine Tran Quang
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Francesca Rocchetti
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Benedetta Zaniboni
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Mohamed Belhocine
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France. Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Marseille, France
| | - Cindy Da Costa de Jesus
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Melania Tesio
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Michael Dussiot
- INSERM UMR 1163 and CNRS ERL 8654, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratory of Excellence GR-Ex, Imagine Institute and Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - François-Loïc Cosset
- CIRI, EVIR Team, INSERM U1111, CNRS UMR 5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI, EVIR Team, INSERM U1111, CNRS UMR 5308, Université de Lyon-1, ENS de Lyon, Lyon, France. INSERM U1065, C3M, Equipe "Contrôle Métabolique des Morts Cellulaires," Nice, France
| | - Françoise Pflumio
- Laboratoire des Cellules Souches Hématopoïétiques et Leucémiques, UMR 967, INSERM, Commissariat à l'Energie Atomique, Université Paris Diderot, Université Paris 11, Institut de Radiobiologie Cellulaire et Moléculaire, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U892, Angers, France
| | - Hervé Dombret
- Université Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, Paris, France
| | - Salvatore Spicuglia
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Marseille, France
| | - Lucienne Chatenoud
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France, and Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - David-Alexandre Gross
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France, and Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Olivier Hermine
- INSERM UMR 1163 and CNRS ERL 8654, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratory of Excellence GR-Ex, Imagine Institute and Paris Descartes University, Sorbonne Paris Cité, Paris, France. Department of Clinical Hematology, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Jacques Ghysdael
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
32
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
33
|
Khanam S, Sharma S, Pathak S. Lethal and nonlethal murine malarial infections differentially affect apoptosis, proliferation, and CD8 expression on thymic T cells. Parasite Immunol 2016; 37:349-61. [PMID: 25886201 DOI: 10.1111/pim.12197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/11/2015] [Indexed: 01/14/2023]
Abstract
Although thymic atrophy and apoptosis of the double-positive (DP) T cells have been reported in murine malaria, comparative studies investigating the effect of lethal and nonlethal Plasmodium infections on the thymus are lacking. We assessed the effects of P. yoelii lethal (17XL) and nonlethal (17XNL) infections on thymic T cells. Both strains affected the thymus. 17XL infection induced DP T-cell apoptosis and a selective decrease in surface CD8 expression on developing thymocytes. By contrast, more severe but reversible effects were observed during 17XNL infection. DP T cells underwent apoptosis, and proliferation of both DN and DP cells was affected around peak parasitemia. A transient increase in surface CD8 expression on thymic T cells was also observed. Adult thymic organ culture revealed that soluble serum factors, but not IFN-γ or TNF-α, contributed to the observed effects. Thus, lethal and nonlethal malarial infections led to multiple disparate effects on thymus. These parasite-induced thymic changes are expected to impact the naïve T-cell repertoire and the subsequent control of the immune response against the parasite. Further investigations are required to elucidate the mechanism responsible for these disparate effects, especially the reversible involution of the thymus in case of nonlethal infection.
Collapse
Affiliation(s)
- S Khanam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - S Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - S Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Kim CH, Hashimoto-Hill S, Kim M. Migration and Tissue Tropism of Innate Lymphoid Cells. Trends Immunol 2015; 37:68-79. [PMID: 26708278 DOI: 10.1016/j.it.2015.11.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research.
Collapse
Affiliation(s)
- Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Seika Hashimoto-Hill
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Myunghoo Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Ziętara N, Łyszkiewicz M, Puchałka J, Witzlau K, Reinhardt A, Förster R, Pabst O, Prinz I, Krueger A. Multicongenic fate mapping quantification of dynamics of thymus colonization. ACTA ACUST UNITED AC 2015; 212:1589-601. [PMID: 26347471 PMCID: PMC4577840 DOI: 10.1084/jem.20142143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Ziętara et al demonstrate with multicongenic fate mapping that thymus seeding is directly restricted to the duration of niche occupancy rather than long-range effects. Postnatal T cell development depends on continuous colonization of the thymus by BM-derived T lineage progenitors. Both quantitative parameters and the mechanisms of thymus seeding remain poorly understood. Here, we determined the number of dedicated thymus-seeding progenitor niches (TSPNs) capable of supporting productive T cell development, turnover rates of niche occupancy, and feedback mechanisms. To this end, we established multicongenic fate mapping combined with mathematical modeling to quantitate individual events of thymus colonization. We applied this method to study thymus colonization in CCR7−/−CCR9−/− (DKO) mice, whose TSPNs are largely unoccupied. We showed that ∼160–200 TSPNs are present in the adult thymus and, on average, 10 of these TSPNs were open for recolonization at steady state. Preconditioning of wild-type mice revealed a similar number of TSPNs, indicating that preconditioning can generate space efficiently for transplanted T cell progenitors. To identify potential cellular feedback loops restricting thymus colonization, we performed serial transfer experiments. These experiments indicated that thymus seeding was directly restricted by the duration of niche occupancy rather than long-range effects, thus challenging current paradigms of thymus colonization.
Collapse
Affiliation(s)
- Natalia Ziętara
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Jacek Puchałka
- Dr. von Haunersches Kinderspital, University Children's Hospital, Ludwig Maximilian University, D-80337 Munich, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Oliver Pabst
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany Institute of Molecular Medicine, RWTH Aachen University, D-52074 Aachen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
36
|
Wang S, He Q, Ma D, Xue Y, Liu F. Irf4 Regulates the Choice between T Lymphoid-Primed Progenitor and Myeloid Lineage Fates during Embryogenesis. Dev Cell 2015; 34:621-31. [DOI: 10.1016/j.devcel.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
37
|
Zepponi V, Michaels Lopez V, Martinez-Cingolani C, Boudil A, Pasqualetto V, Skhiri L, Gautreau L, Legrand A, Megret J, Zavala F, Ezine S. Lymphoid Gene Upregulation on Circulating Progenitors Participates in Their T-Lineage Commitment. THE JOURNAL OF IMMUNOLOGY 2015; 195:156-65. [PMID: 26026063 DOI: 10.4049/jimmunol.1403219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Extrathymic T cell precursors can be detected in many tissues and represent an immediately competent population for rapid T cell reconstitution in the event of immunodeficiencies. Blood T cell progenitors have been detected, but their source in the bone marrow (BM) remains unclear. Prospective purification of BM-resident and circulating progenitors, together with RT-PCR single-cell analysis, was used to evaluate and compare multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). Molecular analysis of circulating progenitors in comparison with BM-resident progenitors revealed that CCR9(+) progenitors are more abundant in the blood than CCR7(+) progenitors. Second, although Flt3(-) CLPs are less common in the BM, they are abundant in the blood and have reduced Cd25(+)-expressing cells and downregulated c-Kit and IL-7Rα intensities. Third, in contrast, stage 3 MPP (MPP3) cells, the unique circulating MPP subset, have upregulated Il7r, Gata3, and Notch1 in comparison with BM-resident counterparts. Evaluation of the populations' respective abilities to generate splenic T cell precursors (Lin(-)Thy1.2(+)CD25(+)IL7Rα(+)) after grafting recipient nude mice revealed that MPP3 cells were the most effective subset (relative to CLPs). Although several lymphoid genes are expressed by MPP3 cells and Flt3(-) CLPs, the latter only give rise to B cells in the spleen, and Notch1 expression level is not modulated in the blood, as for MPP3 cells. We conclude that CLPs have reached the point where they cannot be a Notch1 target, a limiting condition on the path to T cell engagement.
Collapse
Affiliation(s)
- Vanessa Zepponi
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Victoria Michaels Lopez
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | | | - Amine Boudil
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Valérie Pasqualetto
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Lamia Skhiri
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Laetitia Gautreau
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Agnès Legrand
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Jerome Megret
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Flora Zavala
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Sophie Ezine
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| |
Collapse
|
38
|
Dolence JJ, Gwin KA, Shapiro MB, Hsu FC, Shapiro VS, Medina KL. Cell extrinsic alterations in splenic B cell maturation in Flt3-ligand knockout mice. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:103-17. [PMID: 26029370 PMCID: PMC4444153 DOI: 10.1002/iid3.54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/29/2022]
Abstract
B lymphopoiesis in bone marrow (BM) is critical for maintaining a diverse peripheral B cell pool to fight infection and establish lifelong immunity. The generation of immature B cells is reduced in Flt3-ligand (FL-/-) mice leading to deficiencies in splenic B cells. Here, we sought to understand the cellular basis of the spleen B cell deficiency in FL-/- mice. Significant reductions in transitional (TS) and follicular (FO) B cells were found in FL-/- mice, and increased frequencies, but not absolute numbers, of marginal zone (MZ) B cells. BAFF-R expression on splenic B cells and serum levels of B cell activating factor (BAFF) was comparable to wildtype (WT) mice. Mixed BM chimeras revealed that the reductions in TS and FO B cells were cell extrinsic. FL administration into FL-/- mice restored the deficiency in TS B cells and normalized the MZ compartment. Ki67 analysis revealed a significant decrease in the proliferative capacity of TS B cells in FL-/- mice. A Bcl2 transgene did not rescue TS cells in FL-/- mice, uncoupling FL-deficiency to Bcl2-dependent survival pathways. Upregulation of CD1d expression and adoptive transfer experiments suggested MZ skewing in FL-/- mice. These findings support an integral role for Flt3 signaling in peripheral B cell maturation.
Collapse
Affiliation(s)
- Joseph J Dolence
- Department of Immunology, Mayo Clinic College of Medicine Rochester, MN, 55905
| | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic College of Medicine Rochester, MN, 55905
| | - Mariya B Shapiro
- Department of Immunology, Mayo Clinic College of Medicine Rochester, MN, 55905
| | - Fan-Chi Hsu
- Department of Immunology, Mayo Clinic College of Medicine Rochester, MN, 55905 ; Mayo Graduate School, Mayo Clinic College of Medicine Rochester, MN, 55905
| | - Virginia S Shapiro
- Department of Immunology, Mayo Clinic College of Medicine Rochester, MN, 55905
| | - Kay L Medina
- Department of Immunology, Mayo Clinic College of Medicine Rochester, MN, 55905
| |
Collapse
|
39
|
Alfaro D, García-Ceca J, Farias-de-Oliveira DA, Terra-Granado E, Montero-Herradón S, Cotta-de-Almeida V, Savino W, Zapata A. EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus. J Leukoc Biol 2015; 98:883-96. [DOI: 10.1189/jlb.1hi1114-568r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
|
40
|
Krishnamoorthy V, Carr T, de Pooter RF, Emanuelle AO, Akinola EO, Gounari F, Kee BL. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway. THE JOURNAL OF IMMUNOLOGY 2015; 194:3191-200. [PMID: 25710912 DOI: 10.4049/jimmunol.1402443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chemokine receptor CCR9 controls the immigration of multipotent hematopoietic progenitor cells into the thymus to sustain T cell development. Postimmigration, thymocytes downregulate CCR9 and migrate toward the subcapsular zone where they recombine their TCR β-chain and γ-chain gene loci. CCR9 is subsequently upregulated and participates in the localization of thymocytes during their selection for self-tolerant receptor specificities. Although the dynamic regulation of CCR9 is essential for early T cell development, the mechanisms controlling CCR9 expression have not been determined. In this article, we show that key regulators of T cell development, Notch1 and the E protein transcription factors E2A and HEB, coordinately control the expression of Ccr9. E2A and HEB bind at two putative enhancers upstream of Ccr9 and positively regulate CCR9 expression at multiple stages of T cell development. In contrast, the canonical Notch signaling pathway prevents the recruitment of p300 to the putative Ccr9 enhancers, resulting in decreased acetylation of histone H3 and a failure to recruit RNA polymerase II to the Ccr9 promoter. Although Notch signaling modestly modulates the binding of E proteins to one of the two Ccr9 enhancers, we found that Notch signaling represses Ccr9 in T cell lymphoma lines in which Ccr9 transcription is independent of E protein function. Our data support the hypothesis that activation of Notch1 has a dominant-negative effect on Ccr9 transcription and that Notch1 and E proteins control the dynamic expression of Ccr9 during T cell development.
Collapse
Affiliation(s)
- Veena Krishnamoorthy
- Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637
| | - Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Renee F de Pooter
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | | | | | - Fotini Gounari
- Committee on Immunology, The University of Chicago, Chicago, IL 60637; Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637; and
| | - Barbara L Kee
- Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637; Committee on Immunology, The University of Chicago, Chicago, IL 60637; Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
41
|
Suzuki S, Suzuki M, Nakai M, Sembon S, Fuchimoto D, Onishi A. Transcriptional and histological analyses of the thymic developmental process in the fetal pig. Exp Anim 2014; 63:215-25. [PMID: 24770647 PMCID: PMC4160976 DOI: 10.1538/expanim.63.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The humanized pig model, in which human cells or tissues can be functionally maintained
in pigs, can be an invaluable tool for human medical research. Although the recent
development of immunodeficient pigs has opened the door for the development of such a
model, the efficient engraftment and differentiation of human cells may be difficult to
achieve. The transplantation of human cells into fetal pigs, whose immune system is
immature, will ameliorate this problem. Therefore, we examined the development of porcine
fetal thymus, which is critical for the establishment of the immune system. We first
analyzed the levels of mRNA expression of genes that are relevant to the function of
thymic epithelial cells or thymocytes in whole thymi from 35 to 85 days of gestation (DG)
and at 2 days postpartum (DP) by quantitative RT-PCR. In addition, immunohistochemical
analyses of thymic epithelial cells from DG35 to DG55 and DP2 were performed. These
analyses showed that the thymic cortex was formed as early as DG35, and thymic medulla
gradually developed from DG45 to DG55. These findings suggested that, at least before
DG45, the thymus do not differentiate to form fully functional T cells.
Collapse
Affiliation(s)
- Shunichi Suzuki
- Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba,Ibaraki 305-0901, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Bose TO, Colpitts SL, Pham QM, Puddington L, Lefrançois L. CD11a is essential for normal development of hematopoietic intermediates. THE JOURNAL OF IMMUNOLOGY 2014; 193:2863-72. [PMID: 25108025 DOI: 10.4049/jimmunol.1301820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of lymphopoiesis begins in the bone marrow (BM) and requires multiple cellular intermediates. For T cell production, lymphoid progenitors exit the BM and home to the thymus where maturation and selection ensue. These processes are dependent on a number of factors, including chemokines and adhesion molecules. Although the β2 integrin CD11a plays an important role in the migration of lymphocytes to lymph nodes, the role of CD11a in T cell development is largely undefined. Our studies now show that, in CD11a(-/-) mice, thymic cellularity was decreased and early T cell development was partially impaired. Remarkably, CD11a was critical for generation of common lymphoid progenitors (CLPs) and lymphoid-primed multipotent progenitors. However, in intact CD11a(-/-) mice, peripheral B and T cell subsets were only modestly altered, suggesting that compensatory mechanisms were operating. In contrast, competitive BM-reconstitution assays revealed an essential role for CD11a in the generation of thymocytes and mature T and B cells. This defect was linked to the requirement for CD11a in the development of CLPs. Furthermore, our results identified CLPs, and not lymphoid-primed multipotent progenitors, as the requisite CD11a-dependent precursor for lymphocyte development. Thus, these findings established a key role for CD11a in lymphopoiesis.
Collapse
Affiliation(s)
- Tina O Bose
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Sara L Colpitts
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Quynh-Mai Pham
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Leo Lefrançois
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
43
|
Zhang SL, Wang X, Manna S, Zlotoff DA, Bryson JL, Blazar BR, Bhandoola A. Chemokine treatment rescues profound T-lineage progenitor homing defect after bone marrow transplant conditioning in mice. Blood 2014; 124:296-304. [PMID: 24876562 PMCID: PMC4093685 DOI: 10.1182/blood-2014-01-552794] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/22/2014] [Indexed: 12/13/2022] Open
Abstract
Development of T cells in the thymus requires continuous importation of T-lineage progenitors from the bone marrow via the circulation. Following bone marrow transplant, recovery of a normal peripheral T-cell pool depends on production of naïve T cells in the thymus; however, delivery of progenitors to the thymus limits T-lineage reconstitution. Here, we examine homing of intravenously delivered progenitors to the thymus following irradiation and bone marrow reconstitution. Surprisingly, following host conditioning by irradiation, we find that homing of lymphoid-primed multipotent progenitors and common lymphoid progenitors to the thymus decreases more than 10-fold relative to unirradiated mice. The reduction in thymic homing in irradiated mice is accompanied by a significant reduction in CCL25, an important chemokine ligand for thymic homing. We show that pretreatment of bone marrow progenitors with CCL25 and CCL21 corrects the defect in thymic homing after irradiation and promotes thymic reconstitution. These data suggest new therapeutic approaches to promote T-cell regeneration.
Collapse
Affiliation(s)
- Shirley L Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Xinxin Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Sugata Manna
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Daniel A Zlotoff
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Jerrod L Bryson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| |
Collapse
|
44
|
Modified interferon-α subtypes production and chemokine networks in the thymus during acute simian immunodeficiency virus infection, impact on thymopoiesis. AIDS 2014; 28:1101-13. [PMID: 24614087 DOI: 10.1097/qad.0000000000000249] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Thymus dysfunction characterizes human/simian immunodeficiency virus (SIV) infections and contributes to physiopathology. However, both the mechanisms involved in thymic dysfunction and its precise timing remain unknown. We here analyzed thymic function during acute SIV infection in rhesus macaques. DESIGN AND METHODS Rhesus macaques were intravenously infected with SIVmac251 and bled every 2/3 days or necropsied at different early time points postinfection. Naive T-cell counts were followed by flow cytometry and their T-cell receptor excision circle content evaluated by qPCR. Thymic chemokines were quantified by reverse transcription-qPCR and localized by in-situ hybridization in thymuses collected at necropsy. Thymic interferon alpha (IFN-α) subtype production was quantified by reverse transcription-qPCR combined to heteroduplex tracking assay. The effect of thymic IFN-α subtypes was tested on sorted triple negative thymocytes cultured on OP9-hDL1 cells. RESULTS A reduced intrathymic proliferation history characterizes T cells produced during the first weeks of infection. Moreover, we evidenced a profound alteration of both chemokines and IFN-α subtypes transcriptional patterns in SIV-infected thymuses. Finally, we showed that IFN-α subtypes produced in the infected thymuses inhibit thymocyte proliferation, still preserving their differentiation capacity. CONCLUSION Thymopoiesis is deeply impacted from the first days of SIV infection. Reduced thymocyte proliferation - a time-consuming process - together with modified chemokine networks is consistent with thymocyte differentiation speed-up. This may transiently enhance thymic output, thus increasing naive T-cell counts and diversity and the immune competence of the host. Nonetheless, long-lasting modification of thymic physiology may lead to thymic exhaustion, as observed in late primary HIV infection.
Collapse
|
45
|
De Barros SC, Zimmermann VS, Taylor N. Concise review: hematopoietic stem cell transplantation: targeting the thymus. Stem Cells 2014; 31:1245-51. [PMID: 23554173 DOI: 10.1002/stem.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic stem cell (HSC) transplantation can cure patients suffering from diverse genetic and acquired diseases as well as cancers. Nevertheless, under conditions where T-cell reconstitution is critical, the entry of donor progenitors into the thymus remains a major bottleneck. It is assumed that following the intravenous injection of HSC, they first home to the BM. More committed progenitors can then be exported to the thymus in response to a myriad of signals regulating thymus seeding. Notably although, the thymus is not continually receptive to the import of hematopoietic progenitors. Furthermore, as stem cells with self-renewing capacity do not take up residence in the thymus under physiological conditions, the periodic colonization of the thymus is essential for the sustained differentiation of T lymphocytes. As such, we and others have invested significant efforts into exploring avenues that might foster a long-term thymus-autonomous differentiation. Here, we review strategic approaches that have resulted in long-term T-cell differentiation in immunodeficient (SCID) mice, even across histocompatibility barriers. These include the forced thymic entry of BM precursors by their direct intrathymic injection as well as the transplantation of neonatal thymi. The capacity of the thymus to support hematopoietic progenitors with renewal potential will hopefully promote the development of new therapeutic strategies aimed at enhancing T-cell differentiation in patients undergoing HSC transplantation.
Collapse
Affiliation(s)
- Stéphanie C De Barros
- Institut de Génétique Moléculaire de Montpellier, Université Montpellier , Montpellier, France
| | | | | |
Collapse
|
46
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
47
|
Abstract
T, B, and NK lymphocytes are generated from pluripotent hematopoietic stem cells through a successive series of lineage restriction processes. Many regulatory components, such as transcription factors, cytokines/cytokine receptors, and signal transduction molecules orchestrate cell fate specification and determination. In particular, transcription factors play a key role in regulating lineage-associated gene programs. Recent findings suggest the involvement of epigenetic factors in the maintenance of cell fate. Here, we review the early developmental events during lymphocyte lineage determination, focusing on the transcriptional networks and epigenetic regulation. Finally, we also discuss the developmental relationship between acquired and innate lymphoid cells.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan,
| |
Collapse
|
48
|
Ramond C, Berthault C, Burlen-Defranoux O, de Sousa AP, Guy-Grand D, Vieira P, Pereira P, Cumano A. Two waves of distinct hematopoietic progenitor cells colonize the fetal thymus. Nat Immunol 2013; 15:27-35. [PMID: 24317038 DOI: 10.1038/ni.2782] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
The generation of T cells depends on the migration of hematopoietic progenitor cells to the thymus throughout life. The identity of the thymus-settling progenitor cells has been a matter of considerable debate. Here we found that thymopoiesis was initiated by a first wave of T cell lineage-restricted progenitor cells with limited capacity for population expansion but accelerated differentiation into mature T cells. They gave rise to αβ and γδ T cells that constituted Vγ3(+) dendritic epithelial T cells. Thymopoiesis was subsequently maintained by less-differentiated progenitor cells that retained the potential to develop into B cells and myeloid cells. In that second wave, which started before birth, progenitor cells had high proliferative capacity but delayed differentiation capacity and no longer gave rise to embryonic γδ T cells. Our work reconciles conflicting hypotheses on the nature of thymus-settling progenitor cells.
Collapse
Affiliation(s)
- Cyrille Ramond
- 1] Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France. [2] Université Pierre et Marie Curie, Paris, France. [3]
| | - Claire Berthault
- 1] Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France. [2] Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France. [3]
| | | | | | - Delphine Guy-Grand
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| | - Paulo Vieira
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| | - Pablo Pereira
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| |
Collapse
|
49
|
Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 2013; 122:4210-9. [PMID: 24215033 DOI: 10.1182/blood-2012-12-472803] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is followed by a period of immune deficiency due to a paucity in T-cell reconstitution. Underlying causes are a severely dysfunctional thymus and an impaired production of thymus-seeding progenitors in the host. Here, we addressed whether in vitro-derived human progenitor T (proT)-cells could not only represent a source of thymus-seeding progenitors, but also able to influence the recovery of the thymic microenvironment. We examined whether co-transplantation of in vitro-derived human proT-cells with hematopoietic stem cells (HSCs) was able to facilitate HSC-derived T-lymphopoiesis posttransplant. A competitive transfer approach was used to define the optimal proT subset capable of reconstituting immunodeficient mice. Although the 2 subsets tested (proT1, CD34(+)CD7(+)CD5(-); proT2, CD34(+)CD7(+)CD5(+)) showed thymus engrafting function, proT2-cells exhibited superior engrafting capacity. Based on this, when proT2-cells were coinjected with HSCs, a significantly improved and accelerated HSC-derived T-lymphopoiesis was observed. Furthermore, we uncovered a potential mechanism by which receptor activator of nuclear factor κb (RANK) ligand-expressing proT2-cells induce changes in both the function and architecture of the thymus microenvironment, which favors the recruitment of bone marrow-derived lymphoid progenitors. Our findings provide further support for the use of Notch-expanded progenitors in cell-based therapies to aid in the recovery of T-cells in patients undergoing HSCT.
Collapse
|
50
|
Zhang Q, Esplin BL, Iida R, Garrett KP, Huang ZL, Medina KL, Kincade PW. RAG-1 and Ly6D independently reflect progression in the B lymphoid lineage. PLoS One 2013; 8:e72397. [PMID: 24023617 PMCID: PMC3758291 DOI: 10.1371/journal.pone.0072397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/23/2013] [Indexed: 01/29/2023] Open
Abstract
Common lymphoid progenitors (CLPs) are thought to represent major intermediates in the transition of hematopoietic stem cells (HSCs) to B lineage lymphocytes. However, it has been obvious for some time that CLPs are heterogeneous, and there has been controversy concerning their differentiation potential. We have now resolved four Flt3+ CLP subsets that are relatively homogenous and capable of forming B cells. Differentiation potential and gene expression patterns suggest Flt3+ CLPs lacking both Ly6D and RAG-1 are the least differentiated. In addition to B cells, they generate natural killer (NK) and dendritic cells (DCs). At the other extreme is a subset of the recently described Flt3+ Ly6D+ CLPs that have a history of RAG-1 expression and are B lineage restricted. These relatively abundant and potent CLPs were depleted within 48 hours of acute in vivo estrogen elevation, suggesting they descend from hormone regulated progenitors. This contrasts with the hormone insensitivity of other CLP subsets that include NK lineage progenitors. This progenitor heterogeneity and differentiation complexity may add flexibility in response to environmental changes. Expression of RAG-1 and display of Ly6D are both milestone events, but they are neither synchronized nor dependent on each other.
Collapse
Affiliation(s)
- Qingzhao Zhang
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Brandt L. Esplin
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ryuji Iida
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Karla P. Garrett
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Zhixin L. Huang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul W. Kincade
- Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|