1
|
Farhid F, Hosseini E, Kargar F, Ghasemzadeh M. Interplay between platelet and T lymphocyte after coronary artery bypass grafting (CABG): Evidence for platelet mediated post-CABG immunomodulation. Microvasc Res 2025; 160:104805. [PMID: 40107494 DOI: 10.1016/j.mvr.2025.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND On-pump coronary artery bypass grafting (CABG) triggers inflammatory responses as a result of surgical stress and extracorporeal circulation, which affect platelet and leukocyte activation while enhancing their intimate crosstalk. Given this, the study presented here aimed to investigate platelet-T cell interaction after CABG focusing on the changes in immunomodulatory subtypes of regulatory T Cells. METHODS Blood samples were obtained from twenty patients undergoing on-pump CABG at 5 different time points of 24 h before, immediately, 2 h, 24 h, and one week after surgery. Total leukocyte and lymphocyte counts were determined using an automatic cell counter. Platelet P-selectin expression, frequencies of CD4+ and CD8+ T cells, platelet-T cell aggregates (PTCAs), and regulatory T cells derived from CD4+ (T4reg) and CD8+ (T8reg) cells, were assessed by flow cytometry. RESULTS A significant increase in total leukocyte count occurred immediately after CABG, whereas, conversely, lymphocyte and CD4+ T cells but not CD8+ T cells decreased 2 h after surgery. However, all these changes returned to pre-CABG baseline levels within a week. Platelet P-selectin expression increased immediately after surgery, followed by a two-hour delay after PTCA, and both returned to baseline after one week. T4regs and T8regs showed a similar increase and decrease trend, where T8regs but not T4regs returned to baseline one week after surgery. CONCLUSION CABG surgery induces an inflammatory response that activates platelets and enhances P-selectin expression, facilitating PTCA formation. This mechanism is critical for the dynamics and differentiation of T cells, which play an essential role in post-CABG modulation of immune responses.
Collapse
Affiliation(s)
- Fateme Farhid
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Faranak Kargar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
2
|
Layzell S, Barbarulo A, van Loo G, Beyaert R, Seddon B. NF-κB regulated expression of A20 controls IKK dependent repression of RIPK1 induced cell death in activated T cells. Cell Death Differ 2025; 32:256-270. [PMID: 39327505 PMCID: PMC11802744 DOI: 10.1038/s41418-024-01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
IKK signalling is essential for survival of thymocytes by repressing RIPK1 induced cell death rather than its canonical function of activating NF-κB. The role of IKK signalling in activated T cells is unclear. To investigate this, we analysed activation of IKK2 deficient T cells. While TCR triggering was normal, proliferation and expansion was profoundly impaired. This was not due to defective cell cycle progression, rather dividing T cells became sensitised to TNF induced cell death, since inhibition of RIPK1 kinase activity rescued cell survival. Gene expression analysis of activated IKK2 deficient T cells revealed defective expression of Tnfaip3, that encodes A20, a negative regulator of NF-κB. To test whether A20 expression was required to protect IKK2 deficient T cells from cell death, we generated mice with T cells lacking both A20 and IKK2. Doing this resulted in near complete loss of peripheral T cells, in contrast to mice lacking one or other gene. Strikingly, this phenotype was completely reversed by inactivation of RIPK1 kinase activity in vivo. Together, our data show that IKK signalling in activated T cells protects against RIPK1 dependent death, both by direct phosphorylation of RIPK1 and through NF-κB mediated induction of A20, that we identify for the first time as a key modulator of RIPK1 activity in T cells.
Collapse
Affiliation(s)
- Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, UGent Department for Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Gent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, UGent Department for Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Gent, Belgium
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK.
| |
Collapse
|
3
|
Rahman SMT, Singh A, Lowe S, Aqdas M, Jiang K, Vaidehi Narayanan H, Hoffmann A, Sung MH. Co-imaging of RelA and c-Rel reveals features of NF-κB signaling for ligand discrimination. Cell Rep 2024; 43:113940. [PMID: 38483906 PMCID: PMC11015162 DOI: 10.1016/j.celrep.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Apeksha Singh
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarina Lowe
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin Jiang
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haripriya Vaidehi Narayanan
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Voisin A, Plaschka M, Perrin-Niquet M, Twardowski J, Boutemine I, Eluard B, Lalle G, Stéphan P, Bouherrou K, Tonon L, Pommier R, Ferrari A, Klein U, Wencker M, Baud V, Cassier PA, Grinberg-Bleyer Y. The NF-κB RelA transcription factor is not required for CD8+ T-cell function in acute viral infection and cancer. Front Immunol 2024; 15:1379777. [PMID: 38504985 PMCID: PMC10948531 DOI: 10.3389/fimmu.2024.1379777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
CD8+ T cells are critical mediators of pathogen clearance and anti-tumor immunity. Although signaling pathways leading to the activation of NF-κB transcription factors have crucial functions in the regulation of immune responses, the CD8+ T cell-autonomous roles of the different NF-κB subunits, are still unresolved. Here, we investigated the function of the ubiquitously expressed transcription factor RelA in CD8+ T-cell biology using a novel mouse model and gene-edited human cells. We found that CD8+ T cell-specific ablation of RelA markedly altered the transcriptome of ex vivo stimulated cells, but maintained the proliferative capacity of both mouse and human cells. In contrast, in vivo experiments showed that RelA deficiency did not affect the CD8+ T-cell response to acute viral infection or transplanted tumors. Our data suggest that in CD8+ T cells, RelA is dispensable for their protective activity in pathological contexts.
Collapse
Affiliation(s)
- Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Insaf Boutemine
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Baptiste Eluard
- Université Paris Cité, NF-κB, Différenciation et Cancer, Paris, France
| | - Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Gilles Thomas Bioinformatics Platform, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Roxane Pommier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Gilles Thomas Bioinformatics Platform, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Anthony Ferrari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Gilles Thomas Bioinformatics Platform, Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5308, Lyon, France
| | - Véronique Baud
- Université Paris Cité, NF-κB, Différenciation et Cancer, Paris, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
- Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut National de la Santé et de la Recherche Médicale (INSERM) 1052, Centre National de la Recherche Scientifique (CNRS) 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
5
|
Pando A, Schorl C, Fast LD, Reagan JL. Tumor Derived Extracellular Vesicles Modulate Gene Expression in T cells. Gene 2023; 850:146920. [DOI: 10.1016/j.gene.2022.146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
|
6
|
Lalle G, Twardowski J, Grinberg-Bleyer Y. NF-κB in Cancer Immunity: Friend or Foe? Cells 2021; 10:355. [PMID: 33572260 PMCID: PMC7914614 DOI: 10.3390/cells10020355] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.
Collapse
Affiliation(s)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (G.L.); (J.T.)
| |
Collapse
|
7
|
Blanchett S, Boal-Carvalho I, Layzell S, Seddon B. NF-κB and Extrinsic Cell Death Pathways - Entwined Do-or-Die Decisions for T cells. Trends Immunol 2020; 42:76-88. [PMID: 33246882 DOI: 10.1016/j.it.2020.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
NF-κB signaling is required at multiple stages of T cell development and function. The NF-κB pathway integrates signals from many receptors and involves diverse adapters and kinases. Recent advances demonstrate that kinases controlling NF-κB activation, such as the IKK complex, serve dual independent functions because they also control cell death checkpoints. Survival functions previously attributed to NF-κB are in fact mediated by these upstream kinases by novel mechanisms. This new understanding has led to a refined view of how NF-κB and cell death signaling are interlinked and how they regulate cell fate. We discuss how NF-κB activation and control of cell death signaling by common upstream triggers cooperate to regulate different aspects of T cell development and function.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ines Boal-Carvalho
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
8
|
The many-sided contributions of NF-κB to T-cell biology in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:245-300. [PMID: 34074496 DOI: 10.1016/bs.ircmb.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cells (or T lymphocytes) exhibit a myriad of functions in immune responses, ranging from pathogen clearance to autoimmunity, cancer and even non-lymphoid tissue homeostasis. Therefore, deciphering the molecular mechanisms orchestrating their specification, function and gene expression pattern is critical not only for our comprehension of fundamental biology, but also for the discovery of novel therapeutic targets. Among the master regulators of T-cell identity, the functions of the NF-κB family of transcription factors have been under scrutiny for several decades. However, a more precise understanding of their pleiotropic functions is only just emerging. In this review we will provide a global overview of the roles of NF-κB in the different flavors of mature T cells. We aim at highlighting the complex and sometimes diverging roles of the five NF-κB subunits in health and disease.
Collapse
|
9
|
Zhou Y, Cui C, Ma X, Luo W, Zheng SG, Qiu W. Nuclear Factor κB (NF-κB)-Mediated Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:391. [PMID: 32265906 PMCID: PMC7105607 DOI: 10.3389/fimmu.2020.00391] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range of biological processes, including inflammation, cell proliferation, differentiation, and apoptosis. The past three decades have witnessed a great progress in understanding the impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders. In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis, a typical inflammatory demyelinating disease of the central nervous system, and its involvement in developing potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Funsten JR, Murillo Brizuela KO, Swatzel HE, Ward AS, Scott TA, Eikenbusch SM, Shields MC, Meredith JL, Mitchell TY, Hanna ML, Bingham KN, Rawlings JS. PKC signaling contributes to chromatin decondensation and is required for competence to respond to IL-2 during T cell activation. Cell Immunol 2020; 347:104027. [PMID: 31864664 PMCID: PMC10731676 DOI: 10.1016/j.cellimm.2019.104027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The clonal proliferation of antigen-specific T cells during an immune response critically depends on the differential response to growth factors, such as IL-2. While activated T cells proliferate robustly in response to IL-2 stimulation, naïve (quiescent) T cells are able to ignore the potent effects of growth factors because they possess chromatin that is tightly condensed such that transcription factors, such as STAT5, cannot access DNA. Activation via the T cell receptor (TCR) induces a rapid decondensation of chromatin, permitting STAT5-DNA engagement and ultimately promoting proliferation of only antigen-specific T cells. Previous work demonstrated that the mobilization of intracellular calcium following TCR stimulation is a key event in the decondensation of chromatin. Here we examine PKC-dependent signaling mechanisms to determine their role in activation-induced chromatin decondensation and the subsequent acquisition of competence to respond to IL-2 stimulation. We found that a calcium-dependent PKC contributes to activation-induced chromatin decondensation and that the p38 MAPK and NFκB pathways downstream of PKC each contribute to regulating the proper decondensation of chromatin. Importantly, we found that p44/42 MAPK activity is required for peripheral T cells to gain competence to properly respond to IL-2 stimulation. Our findings shed light on the mechanisms that control the clonal proliferation of antigen-specific peripheral T cells during an immune response.
Collapse
Affiliation(s)
| | | | - Hayley E Swatzel
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Audrey S Ward
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Tia A Scott
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | | | - Molly C Shields
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Jenna L Meredith
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | | | - Megan L Hanna
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Kellie N Bingham
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Jason S Rawlings
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
11
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019; 17:56. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
12
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0#] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
14
|
Byerly J, Halstead-Nussloch G, Ito K, Katsyv I, Irie HY. PRKCQ promotes oncogenic growth and anoikis resistance of a subset of triple-negative breast cancer cells. Breast Cancer Res 2016; 18:95. [PMID: 27663795 PMCID: PMC5034539 DOI: 10.1186/s13058-016-0749-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background The protein kinase C (PKC) family comprises distinct classes of proteins, many of which are implicated in diverse cellular functions. Protein tyrosine kinase C theta isoform (PRKCQ)/PKCθ, a member of the novel PKC family, may have a distinct isoform-specific role in breast cancer. PKCθ is preferentially expressed in triple-negative breast cancer (TNBC) compared to other breast tumor subtypes. We hypothesized that PRKCQ/PKCθ critically regulates growth and survival of a subset of TNBC cells. Methods To elucidate the role of PRKCQ/PKCθ in regulating growth and anoikis resistance, we used both gain and loss of function to modulate expression of PRKCQ. We enhanced expression of PKCθ (kinase-active or inactive) in non-transformed breast epithelial cells (MCF-10A) and assessed effects on epidermal growth factor (EGF)-independent growth, anoikis, and migration. We downregulated expression of PKCθ in TNBC cells, and determined effects on in vitro and in vivo growth and survival. TNBC cells were also treated with a small molecule inhibitor to assess requirement for PKCθ kinase activity in the growth of TNBC cells. Results PRKCQ/PKCθ can promote oncogenic phenotypes when expressed in non-transformed MCF-10A mammary epithelial cells; PRKCQ/PKCθ enhances anchorage-independent survival, growth-factor-independent proliferation, and migration. PKCθ expression promotes retinoblastoma (Rb) phosphorylation and cell-cycle progression under growth factor-deprived conditions that typically induce cell-cycle arrest of MCF-10A breast epithelial cells. Proliferation and Rb phosphorylation are dependent on PKCθ-stimulated extracellular signal-related kinase (Erk)/mitogen-activated protein kinase (MAPK) activity. Enhanced Erk/MAPK activity is dependent on the kinase activity of PKCθ, as overexpression of kinase-inactive PKCθ does not stimulate Erk/MAPK or Rb phosphorylation or promote growth-factor-independent proliferation. Downregulation of PRKCQ/PKCθ in TNBC cells enhances anoikis, inhibits growth in 3-D MatrigelTM cultures, and impairs triple-negative tumor xenograft growth. AEB071, an inhibitor of PKCθ kinase activity, also inhibits growth and invasive branching of TNBC cells in 3-D cultures, further supporting a role for PKCθ kinase activity in triple-negative cancer cell growth. Conclusions Enhanced PRKCQ/PKCθ expression can promote growth-factor-independent growth, anoikis resistance, and migration. PRKCQ critically regulates growth and survival of a subset of TNBC. Inhibition of PKCθ kinase activity may be an attractive therapeutic approach for TNBC, a subtype in need of improved targeted therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0749-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Byerly
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Gwyneth Halstead-Nussloch
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| |
Collapse
|
15
|
Crompton JG, Sukumar M, Roychoudhuri R, Clever D, Gros A, Eil RL, Tran E, Hanada KI, Yu Z, Palmer DC, Kerkar SP, Michalek RD, Upham T, Leonardi A, Acquavella N, Wang E, Marincola FM, Gattinoni L, Muranski P, Sundrud MS, Klebanoff CA, Rosenberg SA, Fearon DT, Restifo NP. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 2015; 75:296-305. [PMID: 25432172 PMCID: PMC4384335 DOI: 10.1158/0008-5472.can-14-2277] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) results in complete regression of advanced cancer in some patients, but the efficacy of this potentially curative therapy may be limited by poor persistence of TIL after adoptive transfer. Pharmacologic inhibition of the serine/threonine kinase Akt has recently been shown to promote immunologic memory in virus-specific murine models, but whether this approach enhances features of memory (e.g., long-term persistence) in TIL that are characteristically exhausted and senescent is not established. Here, we show that pharmacologic inhibition of Akt enables expansion of TIL with the transcriptional, metabolic, and functional properties characteristic of memory T cells. Consequently, Akt inhibition results in enhanced persistence of TIL after adoptive transfer into an immunodeficient animal model and augments antitumor immunity of CD8 T cells in a mouse model of cell-based immunotherapy. Pharmacologic inhibition of Akt represents a novel immunometabolomic approach to enhance the persistence of antitumor T cells and improve the efficacy of cell-based immunotherapy for metastatic cancer.
Collapse
MESH Headings
- Animals
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Melanoma/immunology
- Melanoma/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/immunology
- Random Allocation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Joseph G Crompton
- National Cancer Institute (NCI), NIH, Bethesda, Maryland. Department of Surgery, University of California Los Angeles, Los Angeles, California. Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| | | | | | - David Clever
- National Cancer Institute (NCI), NIH, Bethesda, Maryland. Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Alena Gros
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Robert L Eil
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Eric Tran
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | | | - Zhiya Yu
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | | | - Sid P Kerkar
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | | | - Trevor Upham
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | | | | | - Ena Wang
- Sidra Medical and Research Centre, Doha, Qatar
| | | | - Luca Gattinoni
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Pawel Muranski
- National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Mark S Sundrud
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida
| | - Christopher A Klebanoff
- National Cancer Institute (NCI), NIH, Bethesda, Maryland. Clinical Investigator Development Program, NCI, NIH, Bethesda, Maryland
| | | | - Douglas T Fearon
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Gandhapudi SK, Chilton PM, Mitchell TC. TRIF is required for TLR4 mediated adjuvant effects on T cell clonal expansion. PLoS One 2013; 8:e56855. [PMID: 23457630 PMCID: PMC3574014 DOI: 10.1371/journal.pone.0056855] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/15/2013] [Indexed: 12/04/2022] Open
Abstract
Toll like receptor 4 (TLR4) is an important pattern recognition receptor with the ability to drive potent innate immune responses and also to modulate adaptive immune responses needed for long term protection. Activation of TLR4 by its ligands is mediated by engagement of the adapter proteins MyD88 (myeloid differentiation factor 88) and TRIF (Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta). Previously, we showed that TRIF, but not MyD88, plays an important role in allowing TLR4 agonists to adjuvant early T cell responses. In this study, we investigated the T cell priming events that are regulated specifically by the TRIF signaling branch of TLR4. We found that TRIF deficiency prevented the TLR4 agonist lipid A from enhancing T cell proliferation and survival in an adoptive transfer model of T cell priming. TRIF deficient DC showed defective maturation as evidenced by their failure to upregulate co-stimulatory molecules in response to lipid A stimulation. Importantly, TRIF alone caused CD86 and CD40 upregulation on splenic DC, but both TRIF and MyD88 were required for CD80 upregulation. The impairment of T cell adjuvant effects and defective DC maturation in TRIF lps/lps mice after TLR4 stimulation was mainly due to loss of type I IFN production, indicating that type I interferons are central to TLR4's adjuvant effects. These results are useful for the continued development of TLR4 based vaccine adjuvants that avoid inflammatory risks while retaining beneficial immune response.
Collapse
Affiliation(s)
- Siva K. Gandhapudi
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Paula M. Chilton
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Thomas C. Mitchell
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2013; 249:104-15. [PMID: 22889218 DOI: 10.1111/j.1600-065x.2012.01148.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel R Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
18
|
Cheng J, Kane LP. Global identification of genes and pathways regulated by Akt during activation of T helper cells. F1000Res 2013; 2:109. [PMID: 24627779 PMCID: PMC3924950 DOI: 10.12688/f1000research.2-109.v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 01/25/2023] Open
Abstract
We previously demonstrated that Akt differentially modulated a subset of NF-kB target genes during T cell activation. In the current study, we further explored the broader effects of Akt inhibition on T cell gene induction. Global microarray analysis was used to characterize T helper cell transcriptional responses following antigen receptor stimulation in the absence or presence of Akti1/2 (an allosteric inhibitor which targets Akt1 and Akt2), to identify novel targets dependent upon Akt and obtain a more comprehensive view of Akt-sensitive genes in Th2 helper T cells. Pathway analysis of microarray data from a CD4
+ Th2 T cell line revealed effects on gene networks involving ribosomal and T cell receptor signaling pathways associated with Akti1/2 treatment. Using real-time PCR analysis, we validated the differential regulation of several genes in these pathways, including
Ier3,
Il13, Egr1,
Ccl1 and
Ccl4, among others. Additionally, transcription factor target gene (TFactS) analysis revealed that NF-kB and Myc were the most significantly enriched transcription factors among Akt-dependent genes after T cell receptor and CD28 stimulation. Akt activation elicited increases in the enrichment of NF-kB- and Myc-targeted genes. The present study has identified a diverse set of genes, and possible mechanisms for their regulation, that are dependent on Akt during T cell activation.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
19
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
20
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
21
|
Freeley M, Long A. Regulating the Regulator: Phosphorylation of PKC θ in T Cells. Front Immunol 2012; 3:227. [PMID: 22870074 PMCID: PMC3409363 DOI: 10.3389/fimmu.2012.00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 11/29/2022] Open
|
22
|
Alanärä T, Aittomäki S, Kuuliala K, Kuuliala A, Siitonen S, Leirisalo-Repo M, Repo H. Signalling profiles of circulating leucocytes in patients recovered from reactive arthritis. Scand J Rheumatol 2012; 41:267-74. [PMID: 22651550 DOI: 10.3109/03009742.2012.664649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Reactive arthritis (ReA) is a sterile joint inflammation triggered by a remote infection and associated with human leucocyte antigen (HLA)-B27. Its pathogenesis is unknown, but abnormal response to microbial structures or endogenous inflammatory mediators may be involved. We studied responses in leucocyte signalling profiles in patients with previous ReA after a full recovery. METHOD The study comprised 10 HLA-B27-positive healthy subjects with a history of Yersinia enterocolitica-triggered ReA (B27+ReA+) and 20 healthy reference subjects, of whom 10 carried HLA-B27 (B27+ReA-) and 10 did not (B27-ReA-). Phosphospecific fluorescent monoclonal antibodies and flow cytometry were used to determine activation of nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STATs) 1, 3, 5, and 6, and two mitogen-activated protein (MAP) kinases, p38 and extracellular signal-regulated kinase (ERK)1/2, in monocytes, lymphocytes, lymphocyte subsets, and neutrophils. B27+ReA+ and B27-ReA- whole-blood samples were incubated with Yersinia with or without infliximab to study the role of tumour necrosis factor (TNF) in lymphocyte subset activation. Samples of the three subject groups were studied using soluble bacterial or endogenous stimuli. Fluorescence levels were determined as relative fluorescence units (RFU) and the proportion of positively fluorescing cells. RESULTS The intracellular activation of circulating leucocytes in response to soluble stimuli was consistently comparable in B27+ReA+, B27+ReA-, and B27-ReA- subjects. Infliximab inhibited Yersinia-induced lymphocyte NF-κB phosphorylation similarly in B27+ReA+ and B27-ReA- groups. CONCLUSIONS ReA susceptibility is not reflected in leucocyte signalling profiles elicited by phlogistic stimuli. However, the possibility remains that aberrations occur in response to combinations of stimuli, such as those associated with leucocyte adhesion.
Collapse
Affiliation(s)
- T Alanärä
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
A key role for NF-κB transcription factor c-Rel in T-lymphocyte-differentiation and effector functions. Clin Dev Immunol 2012; 2012:239368. [PMID: 22481964 PMCID: PMC3310234 DOI: 10.1155/2012/239368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/13/2011] [Accepted: 12/31/2011] [Indexed: 01/01/2023]
Abstract
The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65), c-Rel, RelB, and the precursor proteins NF-κB1 (p105) and NF-κB2 (p100), that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs) controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.
Collapse
|
24
|
Molinero LL, Alegre ML. Role of T cell-nuclear factor κB in transplantation. Transplant Rev (Orlando) 2011; 26:189-200. [PMID: 22074783 DOI: 10.1016/j.trre.2011.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
Nuclear factor (NF) κB is a pleiotropic transcription factor that is ubiquitously expressed. After transplantation of solid organs, NF-κB in the graft is activated within a few hours as a consequence of ischemia/reperfusion and then again after a few days in intragraft infiltrating cells during the process of acute allograft rejection. In the present article, we review the components of the NF-κB pathway, their mechanisms of activation, and their role in T cell and antigen-presenting cell activation and differentiation and in solid organ allograft rejection. Targeted inhibition of NF-κB in selected cell types may promote graft survival with fewer adverse effects compared with global immunosuppressive therapies.
Collapse
Affiliation(s)
- Luciana L Molinero
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
25
|
Zanin-Zhorov A, Dustin ML, Blazar BR. PKC-θ function at the immunological synapse: prospects for therapeutic targeting. Trends Immunol 2011; 32:358-63. [PMID: 21733754 DOI: 10.1016/j.it.2011.04.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC)-θ regulates conventional effector T (Teff) cell function. Since this initial finding, it has become clear that the role of PKC-θ in T cells is complex. PKC-θ plays a central role in Teff cell activation and survival, and negatively regulates stability of the immunological synapse (IS). Recent studies demonstrated that PKC-θ is required for the development of natural CD4(+)Foxp3(+) regulatory T (Treg) cells, and mediates negative regulation of Treg cell function. Here, we examine the role of PKC-θ in the IS, evidence for its distinct localization in Treg cells and the therapeutic implications of inhibiting PKC-θ in Teff cells, to reduce effector function, and in Treg cells, to increase suppressor function, for the prevention and treatment of autoimmune and alloimmune disease states.
Collapse
Affiliation(s)
- Alexandra Zanin-Zhorov
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
26
|
Jordan KA, Dupont CD, Tait ED, Liou HC, Hunter CA. Role of the NF-κB transcription factor c-Rel in the generation of CD8+ T-cell responses to Toxoplasma gondii. Int Immunol 2011; 22:851-61. [PMID: 21118906 DOI: 10.1093/intimm/dxq439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nuclear factor κB transcription factor c-Rel is exclusively expressed in immune cells and plays a role in numerous cellular functions including proliferation, survival and production of chemokines and cytokines. c-Rel has also been implicated in the regulation of multiple genes involved in innate and adaptive immune responses to the intracellular protozoan parasite Toxoplasma gondii, in particular IL-12. To better understand how this transcription factor controls the CD8(+) T-cell response to this organism, wild-type (WT) and c-Rel(-/-) mice were challenged with a replication-deficient strain of T. gondii that expresses the model antigen ovalbumin (OVA). These studies revealed that c-Rel was required for optimal primary expansion of OVA-specific CD8(+) T cells and that immunized c-Rel-deficient mice were susceptible to challenge with a virulent strain of T. gondii. However, when c-Rel(-/-) cells specific for OVA were adoptively transferred into a WT recipient, or c-Rel(-/-) mice were treated with IL-12 at the time of immunization, there was no apparent proliferative defect. Surprisingly, upon secondary challenge, antigen-specific CD8(+) T cells in c-Rel(-/-) mice expanded to a much greater degree in terms of frequency as well as numbers when compared with WT mice. Despite this, the cytokine responses of c-Rel(-/-) mice remained defective, consistent with their susceptibility to secondary challenge. Together, these results indicate that in this infection model, the major influence of c-Rel in generation of CD8(+) T-cell responses is through its regulation of the inflammatory environment, rather than playing a substantial T-cell-intrinsic role.
Collapse
Affiliation(s)
- Kimberly A Jordan
- Department of Pathobiology, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, Feijoo C, Okkenhaug K, Cantrell DA. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 2011; 34:224-36. [PMID: 21295499 PMCID: PMC3052433 DOI: 10.1016/j.immuni.2011.01.012] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 09/02/2010] [Accepted: 01/19/2011] [Indexed: 12/27/2022]
Abstract
In cytotoxic T cells (CTL), Akt, also known as protein kinase B, is activated by the T cell antigen receptor (TCR) and the cytokine interleukin 2 (IL-2). Akt can control cell metabolism in many cell types but whether this role is important for CTL function has not been determined. Here we have shown that Akt does not mediate IL-2- or TCR-induced cell metabolic responses; rather, this role is assumed by other Akt-related kinases. There is, however, a nonredundant role for sustained and strong activation of Akt in CTL to coordinate the TCR- and IL-2-induced transcriptional programs that control expression of key cytolytic effector molecules, adhesion molecules, and cytokine and chemokine receptors that distinguish effector versus memory and naive T cells. Akt is thus dispensable for metabolism, but the strength and duration of Akt activity dictates the CTL transcriptional program and determines CTL fate.
Collapse
Affiliation(s)
- Andrew N Macintyre
- College of Life Sciences, Division of Cell Biology & Immunology, University of Dundee, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The transcriptional and metabolic programmes that control CD8(+) T cells are regulated by a diverse network of serine/threonine kinases. The view has been that the kinases AKT and mammalian target of rapamycin (mTOR) control T cell metabolism. Here, we challenge this paradigm and discuss an alternative role for these kinases in CD8(+) T cells, namely to control cell migration. Another emerging concept is that AMP-activated protein kinase (AMPK) family members control T cell metabolism and determine the effector versus memory fate of CD8(+) T cells. We speculate that one link between metabolism and immunological memory is provided by kinases that originally evolved to control T cell metabolism and have subsequently acquired the ability to control the expression of key transcription factors that regulate CD8(+) T cell effector function and migratory capacity.
Collapse
Affiliation(s)
- David Finlay
- Division of Cell Biology and Immunology, University of Dundee, Dundee, UK
| | | |
Collapse
|
29
|
Fauconnier M, Bourigault ML, Meme S, Szeremeta F, Palomo J, Danneels A, Charron S, Fick L, Jacobs M, Beloeil JC, Ryffel B, Quesniaux VFJ. Protein kinase C-theta is required for development of experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:212-21. [PMID: 21224058 DOI: 10.1016/j.ajpath.2010.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Abstract
Cerebral malaria is the most severe neurologic complication in children and young adults infected with Plasmodium falciparum. T-cell activation is required for development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (CM). To characterize the T-cell activation pathway involved, the role of protein kinase C-theta (PKC-θ) in experimental CM development was examined. PKC-θ-deficient mice are resistant to CM development. In the absence of PKC-θ, no neurologic sign of CM developed after blood stage PbA infection. Resistance of PKC-θ-deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and magnetic resonance angiography, whereas wild-type mice developed distinct microvascular pathology. Recruitment and activation of CD8(+) T cells, and ICAM-1 and CD69 expression were reduced in the brain of resistant mice; however, the pulmonary inflammation and edema associated with PbA infection were still present in the absence of functional PKC-θ. Resistant PKC-θ-deficient mice developed high parasitemia, and died at 3 weeks with severe anemia. Therefore, PKC-θ signaling is crucial for recruitment of CD8(+) T cells and development of brain microvascular pathology resulting in fatal experimental CM, and may represent a novel therapeutic target of CM.
Collapse
Affiliation(s)
- Mathilde Fauconnier
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orléans, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cannons JL, Wu JZ, Gomez-Rodriguez J, Zhang J, Dong B, Liu Y, Shaw S, Siminovitch KA, Schwartzberg PL. Biochemical and genetic evidence for a SAP-PKC-theta interaction contributing to IL-4 regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2819-27. [PMID: 20668219 PMCID: PMC3422635 DOI: 10.4049/jimmunol.0902182] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP), an adaptor molecule that recruits Fyn to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4(+) T cells from SAP-deficient mice have defective TCR-induced and follicular Th cell IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4(+) T cells exhibit decreased protein kinase C (PKC)-theta recruitment upon TCR stimulation. We demonstrate in this paper using GST pulldowns and coimmunoprecipitation studies that SAP constitutively associates with PKC- in T cells. SAP-PKC-theta interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP's interactions with PKC-theta occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-theta recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-theta, like SAP, was required for SLAM-mediated increases in IL-4 production, and, conversely, membrane-targeted PKC-theta mutants rescued IL-4 expression in SAP(-/-) CD4(+) T cells, providing genetic evidence that PKC-theta is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Protective Toxoplasma gondii-specific T-cell responses require T-cell-specific expression of protein kinase C-theta. Infect Immun 2010; 78:3454-64. [PMID: 20498263 DOI: 10.1128/iai.01407-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C-theta (PKC-theta) is important for the activation of autoreactive T cells but is thought to be of minor importance for T-cell responses in infectious diseases, suggesting that PKC-theta may be a target for the treatment of T-cell-mediated autoimmune diseases. To explore the function of PKC-theta in a chronic persisting infection in which T cells are crucial for pathogen control, we infected BALB/c PKC-theta(-/-) and PKC-theta(+/+) wild-type mice with Toxoplasma gondii. The PKC-theta(-/-) mice succumbed to necrotizing Toxoplasma encephalitis due to an insufficient parasite control up to day 40, whereas the wild-type mice survived. The number of T. gondii-specific CD4 and CD8 T cells was significantly reduced in the PKC-theta(-/-) mice, resulting in the impaired production of protective cytokines (gamma interferon, tumor necrosis factor) and antiparasitic effector molecules (inducible nitric oxide, gamma interferon-induced GTPase) in the spleen and brain. In addition, Th2-cell numbers were reduced in infected the PKC-theta(-/-) mice, paralleled by the diminished GATA3 expression of PKC-theta(-/-) CD4 T cells and reduced T. gondii-specific IgG production in serum and cerebrospinal fluid. Western blot analysis of splenic CD4 and CD8 T cells revealed an impaired activation of the NF-kappaB, AP-1, and MAPK pathways in T. gondii-infected PKC-theta(-/-) mice. Adoptive transfer of wild-type CD4 plus CD8 T cells significantly protected PKC-theta(-/-) mice from death by increasing the numbers of gamma interferon-producing T. gondii-specific CD4 and CD8 T cells, illustrating a cell-autonomous, protective function of PKC-theta in T cells. These findings imply that PKC-theta inhibition drastically impairs T. gondii-specific T-cell responses with fatal consequences for intracerebral parasite control and survival.
Collapse
|
32
|
Lee WY, Hampson P, Coulthard L, Ali F, Salmon M, Lord JM, Scheel-Toellner D. Novel antileukemic compound ingenol 3-angelate inhibits T cell apoptosis by activating protein kinase Ctheta. J Biol Chem 2010; 285:23889-98. [PMID: 20472553 PMCID: PMC2911273 DOI: 10.1074/jbc.m109.041962] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Members of the protein kinase C (PKC) family of serine-threonine kinases are important regulators of immune cell survival. Ingenol 3-angelate (PEP005) activates a broad range of PKC isoforms and induces apoptosis in acute myeloid leukemia cells by activating the PKC isoform PKCdelta. We show here that, in contrast to its effect on leukemic cells, PEP005 provides a strong survival signal to resting and activated human T cells. The antiapoptotic effect depends upon the activation of PKC. This PKC isoform is expressed in T cells but is absent in myeloid cells. Further studies of the mechanism involved in this process showed that PEP005 inhibited activated CD8(+) T cell apoptosis through the activation of NFkappaB downstream of PKC, leading to increased expression of the antiapoptotic proteins Mcl-1 and Bcl-x(L). Transfection of CD8(+) T cells with dominant-negative PKC diminished the prosurvival effect of PEP005 significantly. Ectopic expression of PKC in the acute myeloid leukemia cell line NB4 turned their response to PEP005 from an increased to decreased rate of apoptosis. Therefore, in contrast to myeloid leukemia cells, PEP005 provides a strong survival signal to T cells, and the expression of functional PKC influences whether PKC activation leads to an anti- or proapoptotic outcome in the cell types tested.
Collapse
Affiliation(s)
- Wing-Yiu Lee
- Medical Research Council, Centre for Immune Regulation, Institute for Biomedical Research, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Deenick EK, Po L, Chapatte L, Murakami K, Lu YC, Elford AR, Saibil SD, Ruland J, Gerondakis S, Mak TW, Ohashi PS. c-Rel phenocopies PKCtheta but not Bcl-10 in regulating CD8+ T-cell activation versus tolerance. Eur J Immunol 2010; 40:867-77. [PMID: 19950170 DOI: 10.1002/eji.200939445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elucidating the signaling events that promote T-cell tolerance versus activation provides important insights for manipulating immunity in vivo. Previous studies have suggested that the absence of PKCtheta results in the induction of anergy and that the balance between the induction of the transcription factors NFAT, AP1 and NF-kappaB plays a key role in determining whether T-cell anergy or activation is induced. Here, we examine whether Bcl-10 and specific family members of NF-kappaB act downstream of PKCtheta to alter CD8(+) T-cell activation and/or anergy. We showed that T cells from mice deficient in c-Rel but not NF-kappaB1 (p50) have increased susceptibility to the induction of anergy, similar to T cells from PKCtheta-deficient mice. Surprisingly T cells from Bcl-10-deficient mice showed a strikingly different phenotype to the PKCtheta-deficient T cells, with a severe block in TCR-mediated activation. Furthermore, we have also shown that survival signals downstream of NF-kappaB, are uncoupled from signals that mediate T-cell anergy. These results suggest that c-Rel plays a critical role downstream of PKCtheta in controlling CD8(+) T-cell anergy induction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Campbell Family Institute, Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Finlay D, Cantrell D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann N Y Acad Sci 2010; 1183:149-57. [PMID: 20146713 PMCID: PMC3520021 DOI: 10.1111/j.1749-6632.2009.05134.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The established role for phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3) signaling pathways is to regulate cell metabolism. More recently it has emerged that PI(3,4,5)P3 signaling via mammalian target of rapamycin and Foxo transcription factors also controls lymphocyte trafficking by determining the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. In quiescent T cells, nonphosphorylated active Foxos maintain expression of KLF2, a transcription factor that regulates expression of the chemokine receptors CCR7 and sphingosine 1 phosphate receptor, and the adhesion receptor CD62L that together control T-cell transmigration into secondary lymphoid tissues. PI(3,4,5)P3 mediates activation of protein kinase B, which phosphorylates and inactivates Foxos, thereby terminating expression of KLF2 and its target genes. The correct localization of lymphocytes is essential for effective immune responses, and the ability of phosphoinositide 3-kinase and mammalian target of rapamycin to regulate expression of chemokine receptors and adhesion molecules puts these signaling molecules at the core of the molecular mechanisms that control lymphocyte trafficking.
Collapse
Affiliation(s)
- David Finlay
- Division of Immunology and Cell Biology, University of Dundee, Dundee, UK
| | | |
Collapse
|
35
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
36
|
Cronstein BN. Rheumatoid arthritis: GWAS or TMI? Genome Med 2009; 1:98. [PMID: 19863773 PMCID: PMC2784311 DOI: 10.1186/gm98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genome-wide association studies are the most comprehensive and straightforward approach to teasing out the identity of genetic polymorphisms associated with any given disease or characteristic. With the availability of DNA banks from large cohorts of ethnically matched patients and healthy individuals it is now possible to define even marginal genetic associations between genetic polymorphisms and diseases. As increasing numbers of these studies are carried out and as associations with smaller and smaller risks are identified, there is the growing concern that the findings will be of increasingly marginal value. Thus, the glut of new genetic associations is rapidly overwhelming our interest in the results, a situation that could be described as TMI (too much information). Recent genetic association studies in rheumatoid arthritis suggest that we may be approaching the TMI stage of genome-wide association studies.
Collapse
Affiliation(s)
- Bruce N Cronstein
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
37
|
Mattoo H, Faulkner M, Kandpal U, Das R, Lewis V, George A, Rath S, Durdik JM, Bal V. Naive CD4 T cells from aged mice show enhanced death upon primary activation. Int Immunol 2009; 21:1277-89. [PMID: 19748905 DOI: 10.1093/intimm/dxp094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poor T cell immunity is one of the many defects seen in elderly humans and aged (Ad) mice. We report that naive CD4 T cells from aged mice (ANCD4 cells) showed greater apoptosis upon primary activation than those from young (Yg) mice, with loss of mitochondrial membrane potential, poor activation of Rel family transcription factors and increased DNA damage. Their ability to enhance glycolysis, produce lactate and induce autophagy following activation was also compromised. ANCD4 cells remained susceptible to death beyond first cell division. Activated ANCD4 cells also showed poor transition to a 'central memory' (CM) CD44(high), CD62L(high) phenotype in vitro. This correlated with low proportions of CM cells in Ad mice in vivo. Functionally, too, IFN-gamma responses recalled from T cells of immunized Ad mice, poor to begin with, worsened with time as compared with Yg mice. Thus, ANCD4 cells handle activation-associated stress very poorly due to multiple defects, possibly contributing to poor formation of long-lasting memory.
Collapse
Affiliation(s)
- Hamid Mattoo
- National Institute of Immunology, Aruna Asaf Ali, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Evenou JP, Wagner J, Zenke G, Brinkmann V, Wagner K, Kovarik J, Welzenbach KA, Weitz-Schmidt G, Guntermann C, Towbin H, Cottens S, Kaminski S, Letschka T, Lutz-Nicoladoni C, Gruber T, Hermann-Kleiter N, Thuille N, Baier G. The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new class of immunosuppressive agents affecting early T-cell activation. J Pharmacol Exp Ther 2009; 330:792-801. [PMID: 19491325 DOI: 10.1124/jpet.109.153205] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
There is a pressing need for immunosuppressants with an improved safety profile. The search for novel approaches to blocking T-cell activation led to the development of the selective protein kinase C (PKC) inhibitor AEB071 (sotrastaurin). In cell-free kinase assays AEB071 inhibited PKC, with K(i) values in the subnanomolar to low nanomolar range. Upon T-cell stimulation, AEB071 markedly inhibited in situ PKC catalytic activity and selectively affected both the canonical nuclear factor-kappaB and nuclear factor of activated T cells (but not activator protein-1) transactivation pathways. In primary human and mouse T cells, AEB071 treatment effectively abrogated at low nanomolar concentration markers of early T-cell activation, such as interleukin-2 secretion and CD25 expression. Accordingly, the CD3/CD28 antibody- and alloantigen-induced T-cell proliferation responses were potently inhibited by AEB071 in the absence of nonspecific antiproliferative effects. Unlike former PKC inhibitors, AEB071 did not enhance apoptosis of murine T-cell blasts in a model of activation-induced cell death. Furthermore, AEB071 markedly inhibited lymphocyte function-associated antigen-1-mediated T-cell adhesion at nanomolar concentrations. The mode of action of AEB071 is different from that of calcineurin inhibitors, and AEB071 and cyclosporine A seem to have complementary effects on T-cell signaling pathways.
Collapse
Affiliation(s)
- Jean-Pierre Evenou
- Novartis Institute for BioMedical Research, WSJ-386.5.27, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gruber T, Hermann-Kleiter N, Pfeifhofer-Obermair C, Lutz-Nicoladoni C, Thuille N, Letschka T, Barsig J, Baudler M, Li J, Metzler B, Nüsslein-Hildesheim B, Wagner J, Leitges M, Baier G. PKC theta cooperates with PKC alpha in alloimmune responses of T cells in vivo. Mol Immunol 2009; 46:2071-9. [PMID: 19356803 DOI: 10.1016/j.molimm.2009.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/15/2022]
Abstract
The physiological roles of PKC alpha and PKC theta were defined in T cell immune functions downstream of the antigen receptor. To investigate the hypothesis that both PKC isotypes may have overlapping functions, we generated mice lacking both genes. We find that PKC alpha(-/-)/theta(-/-) animals have additive T cell response defects in comparison to animals carrying single mutations in these genes. Our studies demonstrate that the activities of PKC alpha and PKC theta converge to regulate both IL-2 cytokine responses and T cell intrinsic alloreactivity in vivo. Mechanistically, this PKC alpha/theta crosstalk primarily affects the NFAT transactivation pathway in T lymphocytes, as observed by decreased phosphorylation of Ser-9 on GSK3 beta, reduced nuclear translocation and DNA binding of NFAT in isolated PKC alpha(-/-)/theta(-/-) CD3(+) T cells. This additive defect proved to be of physiological relevance, because PKC alpha(-/-)/theta(-/-) mice demonstrated significantly prolonged allograft survival in heart transplantation experiments, whereas both PKC alpha(-/-) and PKC theta(-/-) mice showed only minimal graft prolongation when compared to wild type controls. While PKC theta appears to be the rate-limiting PKC isotype mediating T lymphocyte activation, we here provide genetic evidence that PKC alpha and PKC theta have overlapping functions in alloimmunoreactivity in vivo and both PKC theta and PKC alpha isotypes must be targeted to prevent organ allograft rejection.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Baier G, Wagner J. PKC inhibitors: potential in T cell-dependent immune diseases. Curr Opin Cell Biol 2009; 21:262-7. [DOI: 10.1016/j.ceb.2008.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
41
|
Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z. Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 2008; 46:213-24. [PMID: 18842300 PMCID: PMC2700121 DOI: 10.1016/j.molimm.2008.08.275] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/27/2008] [Indexed: 01/25/2023]
Abstract
CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-theta-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-theta had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-theta-regulated survival, as transgenic Bcl-x(L) could not restore the Treg cell population in PKC-theta(-/-) mice. Active and WT PKC-theta markedly stimulated, whereas inactive PKC-theta and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Abeta had a decreased Treg cell population, similar to that observed in PKC-theta deficient mice. It is likely that PKC-theta promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-theta were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-theta was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-theta plays in conventional T cell and natural Treg cell function.
Collapse
Affiliation(s)
- Sonal Gupta
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Santhakumar Manicassamy
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Chenthamarakshan Vasu
- Department of Surgery, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Anvita Kumar
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Weirong Shang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30308
| | - Zuoming Sun
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Apigenin, a dietary flavonoid, sensitizes human T cells for activation-induced cell death by inhibiting PKB/Akt and NF-kappaB activation pathway. Immunol Lett 2008; 121:74-83. [PMID: 18812189 DOI: 10.1016/j.imlet.2008.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 12/23/2022]
Abstract
Resistance of T cells to activation-induced cell death (AICD) is associated with autoimmunity and lymphoproliferation. We found that apigenin (4',5,7-trihydroxyflavone), a non-mutagenic dietary flavonoid, augmented both extrinsic and intrinsic pathways of apoptosis in recurrently activated, but not in primarily stimulated, human blood CD4+ T cells. Apigenin potentiated AICD by inhibiting NF-kappaB activation and suppressing NF-kappaB-regulated anti-apoptotic molecules, cFLIP, Bcl-x(L), Mcl-1, XIAP and IAP, but not Bcl-2. Apigenin suppressed NF-kappaB translocation to nucleus and inhibited IkappaBalpha phosphorylation and degradation in response to TCR stimulation in reactivated peripheral blood CD4 T cells, as well as in leukemic Jurkat T cell lines. Among the pathways that lead to NF-kappaB activation upon TCR stimulation, apigenin selectively inhibited PI3K-PKB/Akt, but not PKC-theta activation in the human T cells, and synergized with a PI3K inhibitor to markedly augment AICD. Apigenin also suppressed expression of anti-apoptotic cyclooxygenase 2 (COX-2) protein in activated human T cells, but it did not affect activation of Erk MAPKinase. Thus, in chronically activated human T cells, relatively non-toxic apigenin can suppress anti-apoptotic pathways involving NF-kappaB activation, and especially cFLIP and COX-2 expression that are important for functioning and maintenance of immune cells in inflammation, autoimmunity and lymphoproliferation.
Collapse
|
43
|
Manicassamy S, Yin D, Zhang Z, Molinero LL, Alegre ML, Sun Z. A critical role for protein kinase C-theta-mediated T cell survival in cardiac allograft rejection. THE JOURNAL OF IMMUNOLOGY 2008; 181:513-20. [PMID: 18566417 DOI: 10.4049/jimmunol.181.1.513] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC)-theta mediates the critical TCR signals required for T cell activation. Previously, we have shown that in response to TCR stimulation, PKC-theta-/- T cells undergo apoptosis due to greatly reduced levels of the anti-apoptotic molecule, Bcl-xL. In this study, we demonstrate that PKC-theta-regulated expression of Bcl-xL is essential for T cell-mediated cardiac allograft rejection. Rag1-/- mice reconstituted with wild-type T cells readily rejected fully mismatched cardiac allografts, whereas Rag1-/- mice reconstituted with PKC-theta-/- T cells failed to promote rejection. Transgenic expression of Bcl-xL in PKC-theta-/- T cells was sufficient to restore cardiac allograft rejection, suggesting that PKC-theta-regulated survival is required for T cell-mediated cardiac allograft rejection in this adoptive transfer model. In contrast to adoptive transfer experiments, intact PKC-theta-/- mice displayed delayed, but successful cardiac allograft rejection, suggesting the potential compensation for PKC-theta function. Finally, a subtherapeutic dose of anti-CD154 Ab or CTLA4-Ig, which was not sufficient to prevent cardiac allograft rejection in the wild-type mice, prevented heart rejection in the PKC-theta-/- mice. Thus, in combination with other treatments, inhibition of PKC-theta may facilitate achieving long-term survival of allografts.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
44
|
Concepts of activated T cell death. Crit Rev Oncol Hematol 2008; 66:52-64. [DOI: 10.1016/j.critrevonc.2008.01.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 01/03/2008] [Accepted: 01/16/2008] [Indexed: 11/23/2022] Open
|
45
|
T-cell fate and function: PKC-theta and beyond. Trends Immunol 2008; 29:179-85. [PMID: 18328786 DOI: 10.1016/j.it.2008.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/20/2022]
Abstract
The serine/threonine-specific protein kinase C-theta (PKC-theta) is a core component of the immunological synapse that was shown in vitro to play a central role in the activation of T cells after T cell receptor (TCR) and co-stimulatory molecule engagement. In recent years, a series of in vivo studies have shown that the situation is far more complex; specifically, PKC-theta signaling is differentially required for Th1, Th2, Th17 and CD8+ cytotoxic T-cell responses. These studies highlight the combination of signals that directly regulate T-cell differentiation and effector responses. In this review, we highlight recent in vivo studies investigating PKC-theta function and discuss this in the context of how the integration of extrinsic signals determines T cell fate and function.
Collapse
|
46
|
Manicassamy S, Gupta S, Huang Z, Molkentin JD, Shang W, Sun Z. Requirement of Calcineurin Aβ for the Survival of Naive T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 180:106-12. [DOI: 10.4049/jimmunol.180.1.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|